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Méthodes de synthèse des systèmes
combinatoires CMOS
A. Stauffer

Tout système combinatoire. défini par sa
table de vérité, admet des méthodes de
synthèse directe de schémas à transistors
CMOS. Ces méthodes évitent l'usage
intermédiaire de schémas logiques et généralisent

le concept de porte de transmission

sous forme de branche de transmission. Elles

permettent de concevoir des circuits à sortie
3-états et des circuits préchargés. Les schémas

logiques obtenus ultérieurement ne
servent qu 'à faciliter la compréhension des fonctions

réalisées par les circuits.

Für jedes kombinatorische System, das
durch seine Wahrheitstabelle definiert ist.

gibt es Methoden zum direkten Entwerfen
der Schaltungen mit CMOS-Transistoren.
Diese Syntheseverfahren gestatten es, das

logische Schema zu umgehen. Sie sind eine

Verallgemeinerung des Konzeptes der
Transmission-Gates in Form von Transmission-

Zweigen. Sie ermöglichen es. Schaltungen
mit drei Ausgangszuständen und vorbelastete

Schaltkreise zu verwirklichen. Das

nachträglich erhaltene logische Schema dient nur
der besseren Verständlichkeit der in der

Schaltung enthaltenen Funktionen.

Ce travail est partiellement financé par la Commission

pour l'encouragement de la recherche scientifique,
crédit 1085.1.

Adresse de l'auteur
A. Stauffer. Laboratoire de systèmes logiques, EPFL,
16, chemin de Bellerive, 1007 Lausanne.

1. Circuit CMOS
1.1 Transistor nMOS
Le symbole électronique du transistor

MOS à canal n (nMOS) de la figure
1 regroupe les trois électrodes de cet

élément: le drain a, la grille b et la
source c. Lorsqu'on applique un signal
logique sur sa grille, le transistor
nMOS se comporte fonctionnellement
comme un interrupteur placé entre sa

source et son drain. Pour b 0, le
transistor assure le blocage et correspond à

un interrupteur ouvert. Pour b 1, il
réalise la conduction et s'apparente à

un interrupteur fermé. Le transistor
nMOS est spécialisé dans la transmission

de la masse.

1.2 TransistorpMOS
La figure 2 donne le symbole

électronique du transistor MOS à canal p
(pMOS). Selon qu'il conduit pour b
0 ou qu'il bloque pour b 1, ce
transistor présente un fonctionnement
équivalent à celui d'un interrupteur
fermé ou ouvert. Le transistor pMOS
est spécialisé dans la transmission de
l'alimentation.

1.3 Circuit logique CMOS

Le schéma électronique d'un circuit
logique combinatoire à transistors
MOS complémentaires (CMOS) apparaît

à la figure 3.11 se compose de deux
réseaux de transistors, respectivement
à canal n et à canal p, reliés le premier
à la masse et le second à l'alimentation.

Ces réseaux, formés chacun par
la mise en parallèle de branches de
transistors connectés en série, sont

Fig. 2

commandés par les signaux d'entrée a,
bet c de telle sorte qu'ils ne conduisent
jamais simultanément. La génération
d'un signal de sortie z 0 résulte de la
conduction du réseau n et du blocage
du réseau p. Celle de z 1 découle du
blocage du réseau n et de la conduction

du réseau p.
D'une manière générale, la conduction

d'une branche d'un des réseaux
suffit à assurer la conduction du
réseau entier. Le blocage de ce réseau
nécessite par contre le blocage de chacune

de ses branches.
Inversément, le blocage d'un des

transistors d'une branche suffit à assurer

le blocage de la branche entière. La
conduction de cette branche nécessite

par contre la conduction de l'ensemble
de ses transistors.

Fig. 1 Fig. 3
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1.4 Equations des réseaux n etp
Les équations des réseaux

n(z) à bc + äbc

p(z) =ä+bc+bc

(1)

(2)

décrivent la disposition topologique
des transistors n et des transistors p de
la fonction z. Dans ces équations, chacun

des réseaux est défini par la somme

logique des branches en parallèle,
chaque branche correspond à un produit

logique des transistors connectés
en série et chaque transistor s'exprime
par la variable logique vraie ou com-
plémentée attachée à sa grille.

1.5 Equation de la fonction z

Le fonctionnement du circuit
logique de la figure 3 peut être représenté

dans une table de Karnaugh [1, pp.
50...73] qui exprime les valeurs de zen
fonction de celles de a, bet c.

Chacune des branches du réseau p,
lorsqu'elle conduit, correspond à un
bloc de 1 dans la table. Conformément
au fonctionnement en interrupteur du
transistor pMOS, les branches 1, 2, 3

conduisent respectivement pour ä 0,

pour b 0 et c 0, pour b 0 et c 0.

Ces branches déterminent ainsi trois
blocs de 1 associés à la variable a, au
produit b cet au produit b c(fig. 4).

Chacune des branches du réseau n,

lorsqu'elle conduit, correspond à un
bloc de 0 dans la table. Compte tenu
du fonctionnement en interrupteur du
transistor nMOS, la conduction est
assurée pour ä 1, b — 1 et c 1

(branche 4) et pour ä 1, b 1 et c 1

(branche 5). Cette conduction définit
ainsi deux blocs de 0 relatifs aux
mintermes a b cet ä b c(fig. 4).

L'équation de la fonction z réunit
dans une seule expression les blocs de
0 et les blocs de 1 de la table de
Karnaugh. Elle réalise la somme logique
des deux mintermes multipliés par 0

avec la variable et les deux produits
multipliés par 1:

z=[abc + abc] 0

+ [a + bc + be] 1

J 0 1 1 1

1 0 1 1

Les équations (1) et (2) relatives aux
réseaux net p se retrouvent aisément à

partir de l'équation de la fonction z.

En effet, n (z) correspond directement
à l'expression multipliée par 0 et p (z)
découle de l'expression multipliée
par 1 lorsqu'on complémente chacune
de ses variables.

1.6 Méthode

L'analyse du circuit combinatoire
précédent nous fournit, pour la
technologie CMOS, la méthode de
simplification des fonctions complètement
définies:
1. introduire la fonction logique dans la

table de Karnaugh;
2. rechercher visuellement et encadrer les

blocs de 1 qui correspondent à des

impliquants premiers de la fonction;
3. rechercher visuellement et encadrer les

blocs de 0 qui correspondent à des

impliquants premiers de la fonction inverse;
4. marquer d'un astérisque (*) les impli¬

quants premiers essentiels de la fonction
et de la fonction inverse;

5. déterminer un polynôme final composé
de l'ensemble des impliquants premiers
essentiels et d'un ensemble minimal
d'impliquants premiers non essentiels
destinés à assurer la couverture des 1 et
des 0 de la table qui ne sont pas inclus
dans l'un ou l'autre des impliquants
premiers essentiels; dans ce polynôme, les

impliquants premiers de la fonction sont
multipliés par 1 et ceux de la fonction
inverse par 0.

La méthode de simplification
proposée (comme toutes celles qui
apparaîtront ultérieurement dans cet
article) conduit à un polynôme comportant

un nombre minimal de monômes.
Elle vise donc à minimiser le nombre
de branches du circuit.

1.7 Exemple

On cherche à effectuer la synthèse
d'un circuit combinatoire défini par la
forme canonique décimale de sa sortie:

z(a, b, c) I 1, 2, 4, 5, 6 (4)

(3)

"0 '1 1 1

'1 'o 0 jt

Fig. 6

quants premiers essentiels et deux
impliquants premiers non essentiels. Les
deux polynômes qui en résultent sont
résumés dans l'équation finale de z:

a b

a c

z [b c + abc] 0

+ [b c + bc +

Les équations des réseaux

n (z) b c + à b c

P(z) bc+bc+ a b

â c

(5)

(6)

(7)

découlent de la relation (5). Elles
conduisent au schéma électronique de
la figure 6.

1.8 Application : inverseur

Le symbole logique de l'inverseur
apparaît à la figure 7. La table de
Karnaugh, qui décrit le fonctionnement de
cet opérateur, permet d'en déduire
l'équation

Opérée dans la table de Karnaugh
de la figure 5, la simplification de la
fonction zfait apparaître quatre impli-

z= [a]0 + [a] 1 (8)

Fig. 4 Fig. 5 Fig. 7
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Le schéma électronique de l'inverseur

matérialise les équations des

réseaux

n(z) a; p{z) a (9)

1.9 Application:porte NAND
La figure 8 donne le symbole

logique de la porte NAND. Opérée dans
la table de Karnaugh, la simplification
de la fonction réalisée par cet opérateur

conduit à l'équation

z=[ab]0 + [â+b]\ (10)

puis à celles des réseaux

n(z) ab; p(z) a+ b (11)

Le schéma électronique de la porte
matérialise les relations (11).

1.10 Application : porte NOR

La porte NOR, définie par son symbole

logique et sa table de Karnaugh
(fig. 9), correspond à l'équation

z [a + b] 0 + [a b] 1 (12)

Le schéma électronique de cet
opérateur matérialise les équations des
réseaux

a

o
"O '1 ® '1

u
c ® '0 ® ®

b
a

b
c

'0 '1 ® *1

® "0 ® ®

b

Fig.10

1.11 Condition indifférente

Lorsqu'une fonction logique
présente des conditions indifférentes ®
(en anglais: don't care conditions)
pour certains de ses états d'entrée,
c'est-à-dire qu'elle peut prendre
indifféremment la valeur 0 ou la valeur 1

pour les états en question, on parle
d'une fonction incomplètement définie.

Au niveau de la table de
Karnaugh, une condition indifférente
d'une fonction incomplètement définie

correspond à une case remplie d'un
symbole ®.

1.12 Méthode

Le concept de condition indifférente
®, lié aux fonctions incomplètement
définies, modifie quelque peu la
méthode de simplification des circuits
logiques CMOS (§ 1.6):

1. introduire la fonction logique incomplètement

définie dans une table de
Karnaugh;

2. rechercher visuellement les impliquants
premiers de la fonction et de la fonction
inverse en commençant par encadrer les

blocs de 1 et de 0 qui comportent le plus

grand nombre de cases (ces blocs
n'englobent que les conditions indifférentes
0 qui permettent d'accroître leurs
dimensions);

3. marquer d'un astérisque (*) les impli¬
quants premiers essentiels;

4. déterminer un polynôme final composé
de l'ensemble des impliquants premiers
essentiels et d'un ensemble minimal
d'impliquants premiers non essentiels
destinés à assurer la couverture des 1 et
des 0 de la table qui ne sont pas inclus
dans l'un ou l'autre des impliquants
premiers essentiels; dans ce polynôme, les

impliquants premiers de la fonction sont
multipliés par 1 et ceux de la fonction
inverse par 0.

1.13 Exemple

On cherche à simplifier la fonction
incomplètement définie

z(a,b, c) S2,4 + <f> 1,5,6,7 (14)

En commençant par le plus grand
bloc de 1, la simplification effectuée
dans la table de Karnaugh de la figure
10a nous conduit à la relation

z [a b + â c]0 + [a + b c] \ (15)

En partant du plus grand bloc de 0,

on passe par la table de la figure 10b

pour aboutir à l'expression

z [c + ä b]0 + [a c + b c] \ (16)

La matérialisation des deux équations

de la fonction z engendre des
schémas électroniques de complexité
comparable (fig. 1 la et 11b).

2. Circuit à branches de

transmission
2.1 Branches de transmission

Le schéma électronique du circuit
combinatoire de la figure 12 comporte

n (z) a + b\p{z)= ab (13)

=ÎH

H H[n H[n

Fig. 9

t *
a b

HI
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c H
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des branches de transmission, c'est-à-
dire des branches qui ne sont plus
reliées à la masse ou à l'alimentation
mais à une variable logique. Dans les

équations des réseaux n et p de ce
circuit, chaque branche de transmission
correspond au produit logique des
transistors connectés en série multiplié
par la variable logique:

n(z) =[äb]c+[äb]c (17)

p(z) [a b] c + [a b] c + à (18)

Représenté dans une table de
Karnaugh (fig. 13), le fonctionnement du
circuit détermine un bloc qui dépend
de la variable c (branches 1 et 4), un
bloc qui dépend de la variable c (branches

2 et 5) et un bloc de 1 (branche 3).
L'équation de la fonction z réalise la
somme logique des deux produits et de
la variable relatifs aux trois blocs,
multipliés respectivement par c, par c et

par 1:

z=[flè]c+[ai)]c+[all (19)

D'une manière générale, l'équation
d'une fonction z permet toujours de
retrouver celles de ses réseaux n (z) et p
(z): n (z) correspond aux expressions
de z multipliées par des variables et

par 0; p(z) découle des expressions de
z multipliées par des variables et par 1,

lorsqu'on complémente chacune de
leurs variables placées entre crochets.

2.2 Méthode

Le concept de blocs dépendant
d'une variable, lié aux branches de

transmission, permet de prolonger les
méthodes de simplification des fonctions

complètement ou incomplètement

définies (§ 1.6 et 1.12):
1. introduire la fonction logique résultant

de la simplification par blocs de 0 et de 1

dans une table de Karnaugh;
2. rechercher visuellement et encadrer tous

les blocs dont les 0 et les 1 ne dépendent
que d'une variable en éliminant tous
ceux qui sont totalement inclus dans un
bloc plus grand;

3. choisir parmi ces blocs ceux qui permettent

de supprimer simultanément un
impliquant premier de la fonction et un
impliquant premier de la fonction inverse
dans le polynôme final obtenu lors de la

simplification par blocs de 0 et de 1;

4. déterminer un polynôme final composé
de l'ensemble des blocs choisis et des

impliquants premiers qui n'ont pas été
supprimés; dans ce polynôme, les blocs
choisis, les impliquants premiers de la
fonction et les impliquants premiers de
la fonction inverse sont respectivement
multipliés par la variable dont ils dépendent,

par 1 et par 0.

2.3 Exemple

Pour illustrer la méthode, prenons
la fonction

z=[bc+âbc]0+[bc+bc + ab]\ (20)

qui correspond à une des solutions
obtenues lors de la simplification d'une
fonction complètement définie (§1.7).
Introduite dans la table de Karnaugh
de la figure 14, cette fonction admet
deux blocs de quatre cases et trois
blocs de deux cases qui ne dépendent
que d'une variable. Un choix judicieux
parmi ces blocs permet de supprimer
au mieux deux impliquants premiers
de la fonction et deux impliquants
premiers de la fonction inverse. La figure
15 propose une des trois solutions
possibles. Cette solution correspond à

l'équation

1.4 2,5

0 1 1 1

1 0 1 1

Fig.13

0 1 1 1

1 0 0 1

Fig. 14

,°]
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it c If
p
*

" il L II

rn
H

Ht
H!

5 a

Fig. 15

z [c] b + [b c] a + [b c] 1 (21)

Elle définit les équations des

réseaux

n(z) [c] b + [b c\ a (22)

p(z) [c] b + [b c] a + bc (23)

et conduit au schéma électronique
indiqué.

Pour une fonction donnée, le choix
d'une solution avec ou sans branches
de transmission dépend des critères
d'intégration. La première solution
comporte néanmoins toujours un
nombre plus faible de transistors.

2.4 Propriété

Les équations des réseaux n et p
d'une fonction donnée zet de l'inverse
zde cette fonction sont liées par les
relations

n[z(x,)] p[z(x,)] (24)

p[z(x,)\ n[z(x,)] (25)

dans lesquelles x, et x, représentent
respectivement les variables vraies et

complémentées des fonctions en question.

2.5 Exemple

Prenons la fonction de l'équation
(19), son inverse

Bull. SEV/VSE 75(1984)1, 7. Januar (A 21) 21



z [ä b] c + [ä b] c + [a] 0 (26)

et illustrons la propriété en vérifiant
que les équations des réseaux de ces
fonctions satisfont bien les relations
(24) et (25). On obtient effectivement

n(z) [ab]c + [âb]c (27)

p(z) [a b] c + [a b] c + à (28)

n(z) [a b] c + [à b] c + a (29)

p(z) [a b] c + [a b] c (30)

2.6 Application: fonction majorité
Si l'on ne dispose que des variables

sous forme vraie pour réaliser la fonction

majorité de trois variables:

MAJ (a. b. c)

[â b + âc + b c] 0

+ [a b + a c + b c] 1 (31)

il est préférable d'effectuer la synthè-se
de la fonction complémentaire
MAJ (a. b. c) puis de l'inverser. On est
ainsi conduit à l'utilisation d'un inverseur

au lieu de trois.

3. Circuit à sortie 3-états
3.1 Etat à haute impédance

Le multiplexage entre plusieurs
circuits logiques se simplifie si chacun de

ces circuits est pourvu d'une sortie à

3-états capable de générer un état à

haute impédance V en plus des états
logiques 0 et 1. Au niveau de la table
de Karnaugh, un état à haute
impédance du circuit correspond à une case
remplie d'un symbole V-

3.2 Méthode

Le concept d'état à haute impédance
V, lié aux circuits à sortie 3-états, permet

de prolonger les méthodes de
simplification précédentes (§1.6, 1.12 et
2.2):
1. introduire la fonction logique du circuit

à sortie 3-états dans une table de

Karnaugh;

2. appliquer les méthodes propres aux sys¬
tèmes combinatoires sans sortie 3-états
en procédant de sorte que chacun des V
de la table n'appartienne ni à un bloc de
0, ni à un bloc de 1, ni à un bloc qui
dépend d'une variable.

3.3 Exemple
La table de Karnaugh de la figure 16

illustre la simplification par blocs de 0

et de 1 d'une fonction z réalisée par un

"o I C
IL—l —

Fig.16

circuit logique à sortie 3-états. Les

quatre blocs de cette simplification
conduisent à l'équation

z=[a b+ a c] 0 + [â b + âc] (32)

V 1 0 V

1 1 0 0

Fig.17

Dans la table de Karnaugh de la
figure 17, deux blocs, dont les 0 et les 1

ne dépendent que de la variable d, ont
permis de supprimer les quatre blocs
de 0 et de 1 de la simplification précédente.

L'équation de la fonction
devient

z [b] â + [c] â [b + c] â (33)

Fig. 19

[a b] 0 + [n b] I (34)

Le schéma électronique de l'inverseur

à sortie 3-états matérialise les

équations des réseaux

/i(z) a b\ p(z) a b (35)

Fig. 18

3.4 Application: inverseur à sortie
3-états

Le symbole logique de l'inverseur à

sortie 3-états apparaît à la figure 18. La
table de Karnaugh, qui décrit le
fonctionnement de cet opérateur, permet
d'en déduire l'équation

3.5 Application:porte de
transmission

La figure 19 donne le symbole
logique de la porte de transmission. Si

l'on considère a comme la variable
d'entrée et b comme la variable de
commande de cet élément, la table de

Karnaugh de la figure 19 précise les
états de sa variable de sortie c. Le bloc,
dont le 0 et le 1 ne dépendent que de a,
détermine l'équation de c.

c=[b]a (36)

puis celles des réseaux n et p:

n(c) [b]a-,p(c) [b]a (37)

Le schéma électronique de la figure
19 matérialise les relations (37). Par
simple transformation graphique, on
trouve le schéma électronique final de
la porte de transmission. Les rôles
symétriques joués par les variables a et c
de ce schéma indiquent bien qu'il
s'agit d'un élément électronique
bidirectionnel équivalent à un interrupteur,

dont l'ouverture et la fermeture
sont commandés par la variable b.

3.6 Condition impossible

La fonction logique réalisée par un
circuit présente des conditions impossibles

(en anglais: don't happen conditions)

lorsqu'il existe un certain
nombre d'états qui ne peuvent jamais

22 (A 22) Bull. ASE/UCS 75(1984)1, 7 janvier



p

a

b

Fig. 20

se présenter à l'entrée du circuit en
question. Au niveau de la table de
Karnaugh, la condition impossible correspond

à une case remplie d'un tiret (-).
Elle peut être remplacée par 0, 1, V ou
0 et 1 simultanément lors de la synthèse.

4. Circuit préchargé
4.1 Principe de fonctionnement

Un circuit préchargé à 0 est un système

combinatoire dont le fonctionnement

en deux phases dépend de la
variable de précharge p. Lorsque p 1, la
variable de sortie z est préchargée à 0

par conduction du réseau n (fig. 20a).
Lorsque p 0, en fonction du blocage
des réseaux n et p ou de la conduction
du réseau p, z conserve temporairement

l'état 0 grâce à la capacité de sortie

du circuit ou prend l'état 1 par
transmission de l'alimentation.

Pour le circuit préchargé à 1 par
conduction du réseau p, lorsque p 1,

la conservation temporaire de l'état 1

résulte du blocage des deux réseaux et
le passage à l'état 0 de la conduction
du réseau n, lorsque p 0 (fig. 20b).

Un circuit préchargé ne constitue
donc plus un système combinatoire
statique dont la fonction logique reste
constamment disponible mais un
système combinatoire dynamique dont la
fonction logique n'apparaît qu'à
l'annulation de la variable de précharge.

Pour un nombre élevé de variables
et au prix d'une plus grande complexité

d'emploi, le circuit préchargé utilise
approximativement la moitié des
transistors du circuit sans précharge
équivalent.

4.2 Méthode

La table de vérité d'un circuit
préchargé correspond à celle du circuit
sans précharge équivalent pour p 0
et définit l'état de précharge pour p

1. La simplification du circuit s'opère
dans une table de Karnaugh:
1. introduire la fonction logique du circuit

préchargé dans la table de Karnaugh;
2. souligner les 0 ou les 1 de la table relatifs

à la précharge;
3. souligner les 0 ou les 1 de la table qui dif¬

fèrent de la valeur préchargée;
4. appliquer les méthodes propres aux sys¬

tèmes combinatoires sans précharge en
considérant que chacun des 0 ou des 1

non soulignés de la table peut également
correspondre à un état à haute impédance

V; pour les circuits à branches de

transmission, il n'est cependant plus
nécessaire que les blocs dépendant d'une
variable suppriment chacun un bloc de 0

et un bloc de 1; de plus, les branches de
transmission sont superflues dans le

réseau de précharge, le transistor de
précharge assure seul la transmission de la

masse ou de l'alimentation.

4.3 Application:
porte NANDpréchargée à 1

Définie par sa table de Karnaugh
(fig. 21), la porte NAND préchargée à
1 correspond à l'équation

z= [abp]0 + [p] 1 (38)

Le schéma électronique de la porte
matérialise les équations des réseaux

n(z) a b p ; p (z) p (39)

4.4 Application:
porte NAND préc hargée à 0

Effectuée dans la table de Karnaugh
de la figure 22, la simplification de la

a

1 1 0 1

1 2 1 1

b

Fig. 21

a

1 1 1 0 1

0 0 0 0

b

Fig. 22

porte NAND préchargée à 0 conduit à

l'équation de la fonction

z [p]0 + [à p + bp] 1 (40)

puis à celles des réseaux

n(z) p;p(z)= ap+ bp (41)

Le schéma électronique matérialise
les relations (41).

4.5 Minimisation du nombre de
transistors

Dans un circuit préchargé, le
nombre des transistors commandés
par la variable de précharge peut
toujours se réduire à deux. Le schéma
électronique du circuit préchargé se
ramène alors à ces deux transistors et à

l'un des réseaux n ou p du circuit sans
précharge équivalent. Pour la porte
NAND préchargée à 0, l'obtention
d'un schéma de ce type (fig. 23) passe

Fig. 23
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par la mise en évidence de la variable
de précharge pdans la relation (41):

p(z) p(a+ b) (42)

De façon générale, les mises en
évidence opérées dans les équations des
réseaux d'un circuit quelconque
permettent toujours de minimiser le
nombre de transistors du circuit en
question. Cette minimisation s'effectue

cependant par adjonction de lignes
d'interconnexion autres que celles
propres à la fonction, à la masse et à

l'alimentation.

4.6 Systèmes combinatories
dynamiques

La conception de systèmes combi-
natoires dynamiques repose sur l'emploi

de circuits logiques préchargés.
La première façon de procéder [2]

consiste à utiliser le signal généré par
un circuit préchargé à 1 comme
variable d'entrée d'un circuit préchargé à

0. La figure 24 illustre ainsi un système
combinatoire dynamique obtenu par
assemblage d'une porte NAND
préchargée à 1, d'un inverseur préchargé à
1 et d'une porte NAND préchargée
à 0.

La seconde manière de faire [3]
privilégie l'emploi des transistors n au
détriment de celui des transistors p. Elle
revient à n'utiliser que des circuits
préchargés à 1 dont on complémente la
sortie par un inverseur sans précharge.
La figure 25 représente un système
combinatoire dynamique de ce type
qui réalise la même fonction logique
que celui de la figure précédente. Ce
système se compose d'une porte
NAND préchargée à 1, d'une porte
NOR préchargée à 1 et de deux inverseurs

sans précharge.
Dans les systèmes combinatoires

dynamiques considérés, un circuit pré¬

chargé peut se simplifier si toutes ses
variables d'entrée sont de nature
dynamique. Un tel circuit admet la suppression

de l'ensemble des transistors
commandés par la variable de précharge, à

l'exception du transistor qui assure la
précharge. Les deux transistors p
commandés par p de la porte NAND
préchargée à 0 (fig. 24) sont ainsi superflus.

5. Schémas logiques
5.1 Circuit CMOS

Les variables d'entrée d'un circuit
CMOS apparaissent sous la même forme,

vraie ou complémentée, dans les

réseaux net p que dans le terme multiplié

par 0 de l'équation du circuit. La
fonction réalisée par le circuit CMOS
correspond de plus à l'inverse du terme

multiplié par 0. Pour obtenir le
schéma logique d'un circuit CMOS, il
suffit par conséquent de partir de

l'équation du circuit et de représenter
l'inverse du terme multiplié par 0.

L'équation (3) du circuit CMOS de
la figure 3 conduit ainsi au schéma
logique de la figure 26.

5.2 Circuit à branches de
transmission

Le schéma logique d'un circuit à
branches de transmission généralise le

concept de porte de transmission
(§ 3.5) et l'applique à l'ensemble des

branches du circuit.

Fig. 26

a C

c T z c T

âb ab

b ab

1 — T z 1 T

a a

Fig. 27

Une paire de branches de transmission,

déterminée dans la table de
Karnaugh par un bloc dont les 0 et les 1 ne
dépendent que d'une variable, correspond

à une porte de transmission co-
mandée par la variable ou l'expression
qui définit le bloc. La porte de
transmission de la figure 27a représente ainsi

les branches 1 et 4 du circuit de la
figure 12.

Une branche, déterminée dans la
table de Karnaugh par un bloc de 0 ou
par un bloc de 1, correspond à une
porte de transmission qui ne comporte
respectivement que des transistors n

ou des transistors p. Cette porte,
commandée par la variable ou l'expression
qui définit le bloc, est connectée à la
masse ou à l'alimentation. La branche
3 du circuit de la figure 12 conduit ainsi

à la porte de transmission de la figure
27b.

Pour obtenir le schéma logique d'un
circuit à branches de transmission, il
suffit par conséquent de partir de

l'équation du circuit et de représenter
chacun de ses termes par une porte de
transmission commandée par la
variable ou l'expression placée entre
crochets et connectée à la variable ou à la
constante placée hors des crochets.

L'équation (19) du circuit à branches

de transmission de la figure 12 en-
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gendre ainsi le schéma logique de la
figure 27c.

5.3 Circuit à sortie 3-états

Le schéma logique d'un circuit à

sortie 3-états reprend et généralise le

symbolisme adopté pour l'inverseur à

sortie 3-états (§ 3.4). Ce schéma spécifie

en particulier le domaine binaire du
circuit, c'est-à-dire l'ensemble des états
d'entrée pour lesquels sa sortie vaut 0

ou 1.

Pour obtenir le schéma logique d'un
circuit à sortie 3-états sans branches de

transmission, il suffit de partir de

l'équation du circuit, de représenter
l'inverse du terme multiplié par 0 et de

préciser le domaine binaire de la fonction

en calculant la somme logique des

expressions placées entre crochets.
L'équation (32) définit ainsi le domaine

binaire

B(z)= ab + ac + äb+ äc b+ c (43)

et correspond au schéma logique de la
figure 28a.

On peut aussi expliciter le domaine
binaire en procédant à une mise en
évidence dans l'équation du circuit:

z= [b+ c]([a]0 + [ü] 1) (44)

Le schéma logique correspondant
(fig. 28b) découle alors d'un autre terme

multiplié par 0.

Lorsque le circuit à sortie 3-états
comporte des branches de transmission,

on procède par portes de
transmission. L'équation (33) conduit ainsi
au schéma logique de la figure 28c.

—tx>
y a

Fig. 28

Fig. 29

On peut également réécrire l'équation

du circuit en regroupant les

termes qui résultent de blocs dépendant

d'une même variable (équation
33). Le schéma logique correspondant
apparaît à la figure 28d.

5.4 Circuit préchargé

Le schéma logique d'un circuit
préchargé applique le concept de porte de
transmission au réseau de précharge et
le symbolisme des circuits à sortie
3-états à l'autre réseau.

Pour obtenir le schéma logique d'un
circuit préchargé à 1 sans branches de
transmission, il suffit de dessiner une
porte de transmission commandée par
la variable de précharge pet connectée
à 1 puis, à partir de l'équation du
circuit, de représenter l'inverse du terme
multiplié par pen considérant le terme
multiplié par 0 comme domaine binaire.

L'équation (38) de la porte NAND
préchargée à 1 (§ 4.3) correspond ainsi
au schéma logique de la figure 29a.

Le schéma logique d'un circuit
préchargé à 0 sans branches de transmission

se réduit au dessin d'une porte de
transmission commandée par p et
connectée à 0 puis à la représentation,
sous forme d'une fonction inversée, du
terme multiplié par pen considérant le

terme multiplié par 1 comme domaine
binaire. L'équation (40) de la porte
NAND préchargée à 0 (§ 4.4) conduit
ainsi au schéma logique de la figure
29b.

Lorsque le circuit préchargé
comporte des branches de transmission, on
procède par portes de transmission.

5.5 Equivalence fonctionnelle

Opérée dans la table de Karnaugh
de l'inverseur à sortie 3-états (fig. 30),
la simplification par un bloc dépendant

de la variable a conduit à l'équation

Fig. 30

z=[b]a (45)

puis au schéma logique de la figure 30.
Ce circuit, fonctionnellement équivalent

à l'inverseur à sortie 3-états de la
figure 18, comporte toutefois une
variable interne y à supplémentaire.
D'une manière générale, lorsque la
sortie d'un circuit CMOS attaque une
porte de transmission d'un circuit à

branches de transmission, on peut
toujours supprimer une variable interne
en ramenant la porte de transmission
dans le circuit CMOS et obtenir ainsi
un circuit à sortie 3-états. Au niveau
des équations, cela revient à introduire
l'expression du circuit CMOS dans
celle de la porte de transmission. Pour
l'inverseur à sortie 3-états de la figure
30, l'inverseur et la porte de transmission

vérifient respectivement les
relations

y [a] o + [â] 1

z=[b]y

(46)

(47)

L'équation de l'inverseur à sortie
3-états de la figure 18 s'obtient en
substituant la variable y de la relation (47)
par son expression (46):

z- [b] ([a] 0 + [ä] 1)

[a ft]0 + [ä b] 1 (48)

Le circuit à sortie 3-états (fig. 31a),
obtenu par la mise en série de deux
portes de transmission, réalise la fonction

globale représentée dans la table
de Karnaugh de la figure 31b. Effectuée

à l'aide d'un bloc qui dépend de la
variable c, la simplification de cette
fonction détermine l'équation

z— [a b] c (49)

qui correspond au schéma logique de
la figure 31 c. En d'autres termes, il suf-

Bull. SEV/VSE 75(1984)1, 7. Januar (A 25) 25



fit de commander une porte de
transmission par le produit logique des
variables de commande de deux portes
de transmission connectées en série

pour supprimer une variable interne
tout en conservant l'équivalence
fonctionnelle du circuit. Au niveau des

équations, il convient d'introduire
l'expression de la première porte de
transmission dans celle de la seconde.
Dans le cas de la figure 31a, la
suppression de la variable interne y dans
les relations

Fig. 31

y=[a]c

z=[b]y

propres aux deux portes de transmission

conduit bien à l'équation du
circuit à sortie 3-états de la figure 31 c:

z= [b] ([a] c) [ab] c (52)

(50)

(51)
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