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Meéthodes de synthése des systémes
combinatoires CMOS

A. Stauffer

Tout systeme combinatoire, défini par sa
table de vérité, admet des méthodes de syn-
these directe de schémas a transistors
CMOS. Ces méthodes évitent I'usage inter-
médiaire de schémas logiques et générali-
sent le concept de porte de transmission
sous forme de branche de transmission. Elles
permettent de concevoir des circuits a sortie
3-états et des circuits préchargés. Les sche-
mas logiques obtenus ultérieurement ne ser-
vent qu a faciliter la compréhension des fonc-
tions réalisées par les circuits.

Fir jedes kombinatorische System, das
durch seine Wahrheitstabelle definiert ist,
gibt es Methoden zum direkten Entwerfen
der Schaltungen mit CMOS-Transistoren.
Diese Syntheseverfahren gestatten es, das
logische Schema zu umgehen. Sie sind eine
Verallgemeinerung des Konzeptes der Trans-
mission-Gates in Form von Transmission-
Zweigen. Sie ermoglichen es, Schaltungen
mit drei Ausgangszustanden und vorbela-
stete Schaltkreise zu verwirklichen. Das nach-
trdglich erhaltene logische Schema dient nur
der besseren Verstandlichkeit der in der
Schaltung enthaltenen Funktionen.

Ce travail est partiellement financé par la Commission
pour I'encouragement de la recherche scientifique,
credit 1085.1.

Adresse de ’auteur

A. Stauffer, Laboratoire de systémes logiques, EPFL,
16, chemin de Bellerive, 1007 Lausanne.

1. Circuit CMOS
1.1 TransistornMOS

Le symbole électronique du transis-
tor MOS a canal n (nMOS) de la figu-
re 1 regroupe les trois électrodes de cet
élément: le drain a, la grille b et la
source ¢. Lorsqu’on applique un signal
logique sur sa grille, le transistor
nMOS se comporte fonctionnellement
comme un interrupteur placé entre sa
source et son drain. Pour b= 0, le tran-
sistor assure le blocage et correspond a
un interrupteur ouvert. Pour b = 1, il
réalise la conduction et s’apparente a
un interrupteur fermé. Le transistor
nMOS est spécialisé dans la transmis-
sion de la masse.

1.2 Transistor pMOS

La figure 2 donne le symbole élec-
tronique du transistor MOS a canal p
(pMOS). Selon qu’il conduit pour b =
0 ou qu’il bloque pour b = 1, ce tran-
sistor présente un fonctionnement
équivalent a celui d’un interrupteur
fermé ou ouvert. Le transistor pMOS
est spécialisé dans la transmission de
I’alimentation.

1.3 Circuit logique CMOS

Le schéma électronique d’un circuit
logique combinatoire a transistors
MOS complémentaires (CMOS) appa-
rait a la figure 3. Il se compose de deux
réseaux de transistors, respectivement
a canal net a canal p, reliés le premier
a la masse et le second a I’alimenta-
tion. Ces réseaux, formés chacun par
la mise en parallele de branches de
transistors connectés en série, sont

O )

Fig. 2

commandeés par les signaux d’entrée a,
bet cde telle sorte qu’ils ne conduisent
jamais simultanément. La génération
d’un signal de sortie z = 0 résulte de la
conduction du réseau n et du blocage
du réseau p. Celle de z = 1 découle du
blocage du réseau n et de la conduc-
tion du réseau p.

D’une maniere générale, la conduc-
tion d’une branche d’un des réseaux
suffit a assurer la conduction du ré-
seau entier. Le blocage de ce réseau né-
cessite par contre le blocage de chacu-
ne de ses branches.

Inversément, le blocage d’un des
transistors d’une branche suffit a assu-
rer le blocage de la branche entiére. La
conduction de cette branche nécessite
par contre la conduction de I’ensemble
de ses transistors.

*
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Fig. 1

Fig. 3
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1.4 Equations des réseaux n et p
Les équations des réseaux

n(zy=abé+abc (H
p(z)=a+bc+bec (2)

décrivent la disposition topologique
des transistors n et des transistors p de
la fonction z Dans ces équations, cha-
cun des réseaux est défini par la som-
me logique des branches en paralléle,
chaque branche correspond a un pro-
duit logique des transistors connectés
en série et chaque transistor s’exprime
par la variable logique vraie ou com-
plémentée attachée a sa grille.

1.5 Equation de la fonction z

Le fonctionnement du circuit lo-
gique de la figure 3 peut étre représen-
té dans une table de Karnaugh[1, pp.
50...73] qui exprime les valeurs de zen
fonction de celles de a, bet ¢

Chacune des branches du réseau p,
lorsqu’elle conduit, correspond a un
bloc de 1 dans la table. Conformément
au fonctionnement en interrupteur du
transistor pMOS, les branches 1, 2, 3
conduisent respectivement pour a = 0,
pour b=0eté=0,pour b=0etc=0.
Ces branches déterminent ainsi trois
blocs de 1 associés a la variable a, au
produit b cet au produit b ¢ (fig. 4).

Chacune des branches du réseau n,
lorsqu’elle conduit, correspond a un
bloc de 0 dans la table. Compte tenu
du fonctionnement en interrupteur du
transistor nMOS, la conduction est as-
surée pour a = 1, b= 1let ¢ =1
(branche4)etpoura=1,b=1letc=1
(branche 5). Cette conduction définit
ainsi deux blocs de 0 relatifs aux min-
termes a b cet a b c(fig. 4).

L’équation de la fonction z réunit
dans une seule expression les blocs de
0 et les blocs de 1 de la table de Kar-
naugh. Elle réalise la somme logique
des deux mintermes multipliés par 0
avec la variable et les deux produits
multipliés par 1:

z=[abé+ abcl0 ,
+la+bec+ bl 3)

c

@]
]

Les équations (1) et (2) relatives aux
réseaux net p se retrouvent aisément a
partir de I’équation de la fonction z.
En effet, n (z) correspond directement
a ’expression multipliée par 0 et p (z)
découle de [I'expression multipliée
par | lorsqu’on complémente chacune
de ses variables.

1.6 Méthode

L’analyse du circuit combinatoire
précédent nous fournit, pour la tech-

‘nologie CMOS, la méthode de simpli-

fication des fonctions complétement

définies:

1. introduire la fonction logique dans la
table de Karnaugh;

2. rechercher visuellement et encadrer les
blocs de 1 qui correspondent a des impli-
quants premiers de la fonction;

3. rechercher visuellement et encadrer les
blocs de 0 qui correspondent a des impli-
quants premiers de la fonction inverse;

4. marquer d’un astérisque (*) les impli-
quants premiers essentiels de la fonction
et de la fonction inverse;

5. déterminer un polyndme final composé
de I'’ensemble des impliquants premiers
essentiels et d’'un ensemble minimal
d’impliquants premiers non essentiels
destinés a assurer la couverture des | et
des 0 de la table qui ne sont pas inclus
dans I’'un ou I'autre des impliquants pre-
miers essentiels; dans ce polyndme, les
impliquants premiers de la fonction sont
multipliés par 1 et ceux de la fonction in-
verse par 0.

La méthode de simplification pro-
posée (comme toutes celles qui appa-
raitront ultérieurement dans cet ar-
ticle) conduit a un polyndme compor-
tant un nombre minimal de mondmes.
Elle vise donc a minimiser le nombre
de branches du circuit.

1.7 Exemple

On cherche a effectuer la synthése
d’un circuit combinatoire défini par la
forme canonique décimale de sa sortie:

z(a,b,0)=%X1,2,4,5,6 @)
Opérée dans la table de Karnaugh

de la figure 5, la simplification de la
fonction z fait apparaitre quatre impli-
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Fig. 6

quants premiers essentiels et deux im-
pliquants premiers non essentiels. Les
deux polynoémes qui en résultent sont
résumés dans I’équation finale de z

z=[bc+ abé]o

e bEe |20l )

Les équations des réseaux
=bc+abec (6)

b )

découlent de la relation (5). Elles
conduisent au schéma électronique de
la figure 6.

1.8 Application: inverseur

Le symbole logique de I'inverseur
apparait a la figure 7. La table de Kar-
naugh, qui décrit le fonctionnement de
cet opérateur, permet d’en déduire
I’équation

z=1[a]0 +[a]l 8)

Fig.4

Fig.5

Fig.7
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Fig.8

Le schéma électronique de I'inver-
seur matérialise les équations des ré-
seaux

n(z)=a;p(z)=a ©)

1.9 Application: porte NAND

La figure8 donne le symbole lo-
gique de la porte NAND. Opérée dans
la table de Karnaugh, la simplification
de la fonction réalisée par cet opéra-
teur conduit a I’équation

z=[ab]l0+[a+ b]I (10)
puis a celles des réseaux
n(zy=ab;p(zy=a+b (11)

Le schéma ¢lectronique de la porte
matérialise les relations (11).

1.10 Application: porte NOR

La porte NOR, définie par son sym-
bole logique et sa table de Karnaugh
(fig. 9), correspond a I’équation
z=[a+ b0 +[ab]l (12)

Le schéma électronique de cet opé-
rateur matérialise les équations des ré-
seaux

n(z)=a+ b;p(z)=ab (13)

b| o

Fig. 9

Fig. 10

1.11 Condition indifférente

Lorsqu’une fonction logique pré-
sente des conditions indifférentes @
(en anglais: don’t care conditions)
pour certains de ses états d’entrée,
c’est-a-dire qu’elle peut prendre indif-
féremment la valeur 0 ou la valeur 1
pour les états en question, on parle
d’une fonction incomplétement défi-
nie. Au niveau de la table de Kar-
naugh, une condition indifférente
d’une fonction incomplétement défi-
nie correspond a une case remplie d’un
symbole O.

1.12 Méthode

Le concept de condition indifférente
@, 1ié aux fonctions incomplétement
définies, modifie quelque peu la mé-
thode de simplification des circuits lo-
giques CMOS (§ 1.6):

1. introduire la fonction logique incomple-
tement définie dans une table de Kar-
naugh;

2. rechercher visuellement les impliquants
premiers de la fonction et de la fonction
inverse en commengant par encadrer les
blocs de 1 et de 0 qui comportent le plus

grand nombre de cases (ces blocs n’en-
globent que les conditions indifférentes
@ qui permettent d’accroitre leurs di-
mensions);

3. marquer d’un astérisque (¥) les impli-
quants premiers essentiels;

4. déterminer un polyndéme final composé
de I’ensemble des impliquants premiers
essentiels et d’un ensemble minimal
d’impliquants premiers non essentiels
destinés a assurer la couverture des 1 et
des 0 de la table qui ne sont pas inclus
dans I'un ou 'autre des impliquants pre-
miers essentiels; dans ce polyndme, les
impliquants premiers de la fonction sont
multipliés par 1 et ceux de la fonction in-
verse par 0.

1.13 Exemple

On cherche a simplifier la fonction
incompletement définie
z(a,b,c)=%2,4+®1,5,6,7 (14)

En commengant par le plus grand
bloc de 1, la simplification effectuée
dans la table de Karnaugh de la figure
10a nous conduit a la relation
z=[ab+ acl0+[a+bé]l (15)

En partant du plus grand bloc de 0,
on passe par la table de la figure 10b
pour aboutir a I’expression
z=[c+abl0+[ac+ be]l (16)

La matérialisation des deux équa-
tions de la fonction z engendre des

schémas électroniques de complexité
comparable (fig. 11aet 1 1b).

2. Circuit a branches de
transmission
2.1 Branches de transmission

Le schéma électronique du circuit
combinatoire de la figure 12 comporte

a

Fig. 11
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des branches de transmission, c’est-a-
dire des branches qui ne sont plus re-
liées a la masse ou a I’alimentation
mais a une variable logique. Dans les
€quations des réseaux n et p de ce cir-
cuit, chaque branche de transmission
correspond au produit logique des
transistors connectés en série multiplié
par la variable logique:

n(z) =[ablc+[ab]eé (17)

(18)

Représenté dans une table de Kar-
naugh (fig. 13), le fonctionnement du
circuit détermine un bloc qui dépend
de la variable ¢ (branches 1 et 4), un
bloc qui dépend de la variable ¢ (bran-
ches 2 et 5) et un bloc de 1 (branche 3).
L’équation de la fonction z réalise la
somme logique des deux produits et de
la variable relatifs aux trois blocs, mul-
tipliés respectivement par ¢, par ¢ et
par 1:

p(z) =[ablc+[ab]lé+ a

z=[ablc+[ab]é+[a]l (19)

D’une maniére générale, I’équation
d’une fonction z permet toujours de re-
trouver celles de ses réseaux n (z) et p
(2): n (z) correspond aux expressions
de z multipliées par des variables et
par 0; p(z) découle des expressions de
zmultipliées par des variables et par 1,

E -

o]

HIBEBE
— 0

lorsqu’on complémente chacune de
leurs variables placées entre crochets.

2.2 Méthode

Le concept de blocs dépendant
d’une variable, lié aux branches de
transmission, permet de prolonger les
méthodes de simplification des fonc-
tions complétement ou incompléte-
ment définies (§ 1.6 et 1.12):

1. introduire la fonction logique résultant
de la simplification par blocs de O et de 1
dans une table de Karnaugh;

2. rechercher visuellement et encadrer tous
les blocs dont les 0 et les 1 ne dépendent
que d’une variable en éliminant tous
ceux qui sont totalement inclus dans un
bloc plus grand;

3. choisir parmi ces blocs ceux qui permet-
tent de supprimer simultanément un im-
pliquant premier de la fonction et un im-
pliquant premier de la fonction inverse
dans le polynéme final obtenu lors de la
simplification par blocs de O et de |;

4. déterminer un polyndme final composé
de I’ensemble des blocs choisis et des im-
pliquants premiers qui n’ont pas été sup-
primés; dans ce polyndme, les blocs
choisis, les impliquants premiers de la
fonction et les impliquants premiers de
la fonction inverse sont respectivement
multipliés par la variable dont ils dépen-
dent, par | et par 0.

2.3 Exemple

Pour illustrer la méthode, prenons
la fonction

z=[bc+abel0+[bc+bé+ab]ll (20)

qui correspond a une des solutions ob-
tenues lors de la simplification d’une
fonction complétement définie (§1.7).
Introduite dans la table de Karnaugh
de la figure 14, cette fonction admet
deux blocs de quatre cases et trois
blocs de deux cases qui ne dépendent
que d’une variable. Un choix judicieux
parmi ces blocs permet de supprimer
au mieux deux impliquants premiers
de la fonction et deux impliquants pre-
miers de la fonction inverse. La figure
15 propose une des trois solutions pos-
sibles. Cette solution correspond a
I’équation

[e]]
1
|

34»#»

©
I I
b1l /.
S .

a

K

Fig. 13

Fig. 14

Fig. 15

z=[clb+[bcla+[bc]l 210
Elle définit les équations des ré-
seaux

n(z) =[clb+[bda (22)

p(z) =[élb+[bcla+ be (23)

et conduit au schéma électronique in-
diqué.

Pour une fonction donnée, le choix
d’une solution avec ou sans branches
de transmission dépend des critéres
d’intégration. La premiére solution
comporte néanmoins toujours un
nombre plus faible de transistors.

2.4 Propriété

Les équations des réseaux n et p
d’une fonction donnée zet de I'inverse
z de cette fonction sont liées par les re-
lations

n[z(x)] = p[z(x)] (24)

plz(x)] = n[z(x)] (25)
dans lesquelles x; et X; représentent res-
pectivement les variables vraies et
complémentées des fonctions en ques-
tion.

2.5 Exemple

Prenons la fonction de 1’équati6n
(19), son inverse

Bull. SEV/VSE 75(1984)1, 7. Januar
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z=[ab]lc+[ab]lc+[a]O (26)
et illustrons la propriété en vérifiant
que les équations des réseaux de ces
fonctions satisfont bien les relations
(24) et (25). On obtient effectivement

n(zy =[ablc+[ab]é 27
p(z) =[ablc+[abléc+ a (28)
n(z) =[ablc+[ablc+a (29)
p(Z) =lablc+[ab]c (30)

2.6 Application: fonction majorité

Si I’on ne dispose que des variables
sous forme vraie pour réaliser la fonc-
tion majorité de trois variables:

MAIJ (a, b, c) =
[ab+ ac+ bc)o
+lab+ac+ bc]l 31
il est préférable d’effectuer la synthe-se
de la fonction complémentaire
MAIJ (a, b, ¢) puis de inverser. On est
ainsi conduit a l’utilisation d’un inver-
seur au lieu de trois.

3. Circuit a sortie 3-états
3.1 Etat a haute impédance

Le multiplexage entre plusieurs cir-
cuits logiques se simplifie si chacun de
ces circuits est pourvu d’une sortie a
3-états capable de générer un état a
haute impédance V en plus des états
logiques 0 et 1. Au niveau de la table
de Karnaugh, un état a haute impé-
dance du circuit correspond a une case
remplie d’un symbole V.

3.2 Méthode

Le concept d’état a haute impédance
¥, lié aux circuits a sortie 3-états, per-
met de prolonger les méthodes de sim-
plification précédentes (§1.6, 1.12 et
2.2);

1. introduire la fonction logique du circuit
4 sortie 3-états dans une table de Kar-
naugh;

2. appliquer les méthodes propres aux sys-
témes combinatoires sans sortie 3-états
en procédant de sorte que chacun des ¥/
de la table n’appartienne ni a un bloc de
0, ni a un bloc de 1, ni a un bloc qui dé-
pend d’une variable.

3.3 Exemple

La table de Karnaugh de la figure 16
illustre la simplification par blocs de 0
et de 1 d’une fonction zréalisée par un

Fig. 16

circuit logique a sortie 3-états. Les
quatre blocs de cette simplification
conduisent a I’équation

z=lab+acl0+[ab+acll  (32)

Fig. 17

Dans la table de Karnaugh de la fi-
gure 17, deux blocs, dont les 0 et les 1
ne dépendent que de la variable a, ont
permis de supprimer les quatre blocs
de 0 et de 1 de la simplification précé-
dente. L’équation de la fonction de-
vient

z=[bla+[cla=[b+ cla (33)

b
5_{ p
r4
a
a n
V|V _{
bl |10 b—l n
L Jj__J

o
E
i
Q
04#;_(,. .
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Fig. 18

3.4 Application : inverseur a sortie

3-états

Le symbole logique de 'inverseur a
sortie 3-états apparait a la figure 18. La
table de Karnaugh, qui décrit le fonc-
tionnement de cet opérateur, permet
d’en déduire I’équation

" Fig. 19

= [ab]O+[ab]l (34)

Le schéma électronique de I'inver-
seur a sortie 3-états matérialise les
équations des réseaux
n(z)y=ab;p(z)=ab (3%5)
3.5 Application: porte de
transmission

La figure 19 donne le symbole lo-
gique de la porte de transmission. Si
I’'on considére a comme la variable
d’entrée et b comme la variable de
commande de cet élément, la table de
Karnaugh de la figure 19 précise les
états de sa variable de sortie ¢. Le bloc,
dont le O et le 1 ne dépendent que de q,
détermine I’équation de ¢

c=[b]a (36)
puis celles des réseaux n et p:
n(c)=[bla;p(c)=[bla (37)

Le schéma électronique de la figure
19 matérialise les relations (37). Par
simple transformation graphique, on
trouve le schéma électronique final de
la porte de transmission. Les roles sy-
métriques joués par les variables a et ¢
de ce schéma indiquent bien qu’il
s’agit d’'un élément électronique bidi-
rectionnel équivalent & un interrup-
teur, dont 'ouverture et la fermeture
sont commandés par la variable b.

3.6 Condition impossible

La fonction logique réalisée par un
circuit présente des conditions impos-
sibles (en anglais: don’t happen condi-
tions) lorsqu’il existe un certain
nombre d’états qui ne peuvent jamais

22 (A22)
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Fig. 20

se présenter a I’entrée du circuit en
question. Au niveau de la table de Kar-
naugh, la condition impossible corres-
pond a une case remplie d’un tiret ().
Elle peut étre remplacée par 0, 1, V ou
0 et 1 simultanément lors de la synthé-
se.

4. Circuit préchargé
4.1 Principe de fonctionnement

Un circuit préchargé a 0 est un syste-
me combinatoire dont le fonctionne-
ment en deux phases dépend de la va-
riable de précharge p. Lorsque p= 1, la
variable de sortie z est préchargée a 0
par conduction. du réseau n (fig. 20a).
Lorsque p = 0, en fonction du blocage
des réseaux net p ou de la conduction
du réseau p, z conserve temporaire-
ment 1’état 0 grace a la capacité de sor-
tie du circuit ou prend I’état | par
transmission de I’alimentation.

Pour le circuit préchargé a 1 par
conduction du réseau p, lorsque p= 1,
la conservation temporaire de I'état 1
résulte du blocage des deux réseaux et
le passage a I’état 0 de la conduction
du réseau n, lorsque p = 0 (fig. 20b).

Un circuit préchargé ne constitue
donc plus un systéme combinatoire
statique dont la fonction logique reste
constamment disponible mais un sys-
téme combinatoire dynamique dont la
fonction logique n’apparait qu’a ’an-
nulation de la variable de précharge.

Pour un nombre élevé de variables
et au prix d’une plus grande complexi-
té d’emploi, le circuit préchargé utilise
approximativement la moitié des tran-
sistors du circuit sans précharge équi-
valent.

4.2 Méthode

La table de vérité d’un circuit pré-
chargé correspond a celle du circuit
sans précharge équivalent pour p = 0
et définit I’état de précharge pour p =

1. La simplification du circuit s’opere
dans une table de Karnaugh:

1. introduire la fonction logique du circuit
préchargé dans la table de Karnaugh;

2. souligner les 0 ou les 1 de la table relatifs
a la précharge;

3. soulignerles 0 ou les 1 de la table qui dif-
férent de la valeur préchargée;

4. appliquer les méthodes propres aux sys-
témes combinatoires sans précharge en
considérant que chacun des 0 ou des 1
non soulignés de la table peut également
correspondre a un état a haute impédan-
ce V; pour les circuits a branches de
transmission, il n’est cependant plus né-
cessaire que les blocs dépendant d’une
variable suppriment chacun un bloc de 0
et un bloc de 1; de plus, les branches de
transmission sont superflues dans le ré-
seau de précharge, le transistor de pré-
charge assure seul la transmission de la
masse ou de I'alimentation.

4.3 Application:
porte NAND préchargée a |

Définie par sa table de Karnaugh
(fig. 21), la porte NAND préchargée a
1 correspond a I’équation
z=[abp]0+[p]l (38)

Le schéma électronique de la porte
matérialise les équations des réseaux
n(z)=abp:p(z)=p (39)
4.4 Application:
porte NAND préc hargée a 0

Effectuée dans la table de Karnaugh
de la figure 22, la simplification de la

a

|
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Fig. 22

porte NAND préchargée a 0 conduit a
I’équation de la fonction

z=[pl0+[ap+ bp]l (40)
puis a celles des réseaux
n(z)=p;p(z)=ap+bp (41)

Le schéma électronique matérialise
les relations (41).

4.5 Minimisation du nombre de
transistors

Dans un circuit préchargé, le
nombre des transistors commandés
par la variable de précharge peut tou-
jours se réduire a deux. Le schéma
électronique du circuit préchargé se ra-
méne alors a ces deux transistors et a
I’'un des réseaux n ou p du circuit sans
précharge équivalent. Pour la porte
NAND préchargée a 0, I’obtention
d’un schéma de ce type (fig. 23) passe

Fig. 21

Fig. 23
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par la mise en évidence de la variable
de précharge pdans la relation (41):
p(z)= pla+ b) (42)

De fagon générale, les mises en évi-
dence opérées dans les équations des
réseaux d’un circuit quelconque per-
mettent toujours de minimiser le
nombre de transistors du circuit en
question. Cette minimisation s’effec-
tue cependant par adjonction de lignes
d’interconnexion autres que celles pro-
pres a la fonction, a la masse et a I’ali-
mentation.

4.6 Systémes combinatoires
dynamiques

La conception de systémes combi-
natoires dynamiques repose sur ’em-
ploi de circuits logiques préchargeés.

La premiére facon de procéder [2]
consiste a utiliser le signal généré par
un circuit préchargé a 1 comme va-
riable d’entrée d’un circuit préchargé a
0. La figure 24 illustre ainsi un systéme
combinatoire dynamique obtenu par
assemblage d'une porte NAND pré-
chargée a 1, d’un inverseur préchargé a
1 et d’'une porte NAND préchargée
ao.

La seconde manieére de faire [3] pri-
vilégie ’emploi des transistors nau dé-
triment de celui des transistors p. Elle
revient a n’utiliser que des circuits pré-
chargés a 1 dont on complémente la
sortie par un inverseur sans précharge.
La figure 25 représente un systeme
combinatoire dynamique de ce type
qui réalise la méme fonction logique
que celui de la figure précédente. Ce
systtme se compose d’une porte
NAND préchargée a 1, d’'une porte
NOR préchargée a 1 et de deux inver-
seurs sans précharge.

Dans les systéemes combinatoires
dynamiques considérés, un circuit pré-

Fig. 25

chargé peut se simplifier si toutes ses
variables d’entrée sont de nature dyna-
mique. Un tel circuit admet la suppres-
sion de ’ensemble des transistors com-
mandés par la variable de précharge, a
I’exception du transistor qui assure la
précharge. Les deux transistors p com-
mandés par p de la porte NAND pré-
chargée a 0 (fig. 24) sont ainsi super-
flus.

5. Schémas logiques
5.1 Circuit CMOS

Les variables d’entrée d’un circuit
CMOS apparaissent sous la méme for-
me, vraie ou complémentée, dans les
réseaux n et p que dans le terme multi-
plié par 0 de I’équation du circuit. La
fonction réalisée par le circuit CMOS
correspond de plus a I'inverse du ter-
me multiplié par 0. Pour obtenir le
schéma logique d’un circuit CMOS, il
suffit par conséquent de partir de
I’équation du circuit et de représenter
I'inverse du terme multiplié par 0.

L’équation (3) du circuit CMOS de
la figure 3 conduit ainsi au schéma lo-
gique de la figure 26.

5.2 Circuit a branches de
transmission

Le schéma logique d’un circuit a
branches de transmission généralise le
concept de porte de transmission
(§3.5) et 'applique a I’ensemble des
branches du circuit.

OT ol olTlw

Fig. 26

Fig. 27

Une paire de branches de transmis-
sion, déterminée dans la table de Kar-
naugh par un bloc dont les 0 et les 1 ne
dépendent que d’une variable, corres-
pond a une porte de transmission co-
mandée par la variable ou I’expression
qui définit le bloc. La porte de trans-
mission de la figure 27a représente ain-
si les branches 1 et 4 du circuit de la fi-
gure 12.

Une branche, déterminée dans la
table de Karnaugh par un bloc de 0 ou
par un bloc de 1, correspond & une
porte de transmission qui ne comporte
respectivement que des transistors n
ou des transistors p. Cette porte, com-
mandée par la variable ou I’expression
qui définit le bloc, est connectée a la
masse ou a l’alimentation. La branche
3 du circuit de la figure 12 conduit ain-
si a la porte de transmission de la figu-
re 27b.

Pour obtenir le schéma logique d’un
circuit a branches de transmission, il
suffit par conséquent de partir de
I’équation du circuit et de représenter
chacun de ses termes par une porte de
transmission commandée par la va-
riable ou I’expression placée entre cro-
chets et connectée a la variable ou a la
constante placée hors des crochets.

L’équation (19) du circuit a bran-
ches de transmission de la figure 12 en-
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gendre ainsi le schéma logique de la fi-
gure 27c¢.

5.3 Circuit a sortie 3-états

Le schéma logique d’un circuit a
sortie 3-états reprend et généralise le
symbolisme adopté pour I'inverseur a
sortie 3-états (§ 3.4). Ce schéma spéci-
fie en particulier le domaine binaire du
circuit, c’est-a-dire I’ensemble des états
d’entrée pour lesquels sa sortie vaut 0
ou I.

Pour obtenir le schéma logique d’un
circuit a sortie 3-états sans branches de
transmission, il suffit de partir de
I’équation du circuit, de représenter
I'inverse du terme multiplié par 0 et de
préciser le domaine binaire de la fonc-
tion en calculant la somme logique des
expressions placées entre crochets.
L’équation (32) définit ainsi le domai-
ne binaire

B(z)=ab+ac+ab+ ac=b+ ¢ (43)

et correspond au schéma logique de la
figure 28a.

On peut aussi expliciter le domaine
binaire en procédant a une mise en évi-
dence dans I’équation du circuit:
z=[b+ c]([a]0 +[a] ) (44)

Le schéma logique correspondant
(fig. 28b) découle alors d’un autre ter-
me multiplié par 0.

Lorsque le circuit a sortie 3-états
comporte des branches de transmis-
sion, on procéde par portes de trans-
mission. L’équation (33) conduit ainsi
au schéma logique de la figure 28c.
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On peut également réécrire I’équa-
tion du circuit en regroupant les
termes qui résultent de blocs dépen-
dant d’'une méme variable (équation
33). Le schéma logique correspondant
apparait a la figure 28d.

5.4 Circuit préchargé

Le schéma logique d’un circuit pré-
chargé applique le concept de porte de
transmission au réseau de précharge et
le symbolisme des circuits a sortie
3-états a I'autre réseau.

Pour obtenir le schéma logique d’un
circuit préchargé a 1 sans branches de
transmission, il suffit de dessiner une
porte de transmission commandée par
la variable de précharge p et connectée
a 1 puis, a partir de I’équation du cir-
cuit, de représenter I'inverse du terme
multiplié par pen considérant le terme
multiplié par 0 comme domaine binai-
re. L’équation (38) de la porte NAND
préchargée a 1 (§ 4.3) correspond ainsi
au schéma logique de la figure 29a.

Le schéma logique d’un circuit pré-
chargé a 0 sans branches de transmis-
sion se réduit au dessin d’une porte de
transmission commandée par p et
connectée a 0 puis a la représentation,
sous forme d’une fonction inversée, du
terme multiplié par pen considérant le
terme multiplié par | comme domaine
binaire. L’équation (40) de la porte
NAND préchargée a 0 (§ 4.4) conduit
ainsi au schéma logique de la figure
29b.

Lorsque le circuit préchargé com-
porte des branches de transmission, on
procede par portes de transmission.

5.5 Equivalence fonctionnelle

Opérée dans la table de Karnaugh
de I'inverseur a sortie 3-états (fig. 30),
la simplification par un bloc dépen-
dant de la variable a conduit a 1’équa-
tion

(45)

puis au schéma logique de la figure 30.
Ce circuit, fonctionnellement équiva-
lent a I’inverseur a sortie 3-états de la
figure 18, comporte toutefois une va-
riable interne y = a supplémentaire.
D’une maniére générale, lorsque la
sortie d’un circuit CMOS attaque une
porte de transmission d’un circuit a
branches de transmission, on peut tou-
jours supprimer une variable interne
en ramenant la porte de transmission
dans le circuit CMOS et obtenir ainsi
un circuit a sortie 3-états. Au niveau
des équations, cela revient a introduire
I’expression du circuit CMOS dans
celle de la porte de transmission. Pour
I'inverseur a sortie 3-états de la figure
30, l'inverseur et la porte de transmis-
sion vérifient respectivement les rela-
tions

y=1[al0+[a]l (46)

z=[bly (47)

L’équation de l'inverseur a sortie
3-états de la figure 18 s’obtient en sub-
stituant la variable y de la relation (47)
par son expression (46):

z=[b]([a]0 +[a] 1)

=[ab]0+[ab]l (48)

Le circuit a sortie 3-états (fig. 31a),
obtenu par la mise en série de deux
portes de transmission, réalise la fonc-
tion globale représentée dans la table
de Karnaugh de la figure 31b. Effec-
tuée a I’aide d’un bloc qui dépend de la
variable ¢, la simplification de cette
fonction détermine I’équation

z=[ab]c (49)

qui correspond au schéma logique de
la figure 31c. En d’autres termes, il suf-
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fit de commander une porte de trans-
mission par le produit logique des va-
riables de commande de deux portes
de transmission connectées en série
pour supprimer une variable interne
tout en conservant I’équivalence fonc-
tionnelle du circuit. Au niveau des
équations, il convient d’introduire
I’expression de la premiére porte de
transmission dans celle de la seconde.
Dans le cas de la figure 31a, la sup-
pression de la variable interne y dans
les relations

y=la]e (50)

z=[bly (51)

propres aux deux portes de transmis-
sion conduit bien a I’équation du cir-
cuit a sortie 3-états de la figure 31c:

z=[bl(a] g =[ab]c (52)
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