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Subsynchrone Schwingungen und
Resonanzen in elektrischen Maschinen
unter Berücksichtigung des Netzes
und der mechanischen Welle
I.M. Canay

Die Torsionsschwingungen in elektrischen
Maschinen sind nicht nur von
Maschineneigenschaften, sondern auch von den
Gegebenheiten des Netzes sowie der mechanischen

Welle abhängig. Sowohl freie (SSR) als
auch erzwungene Schwingungen von
Synchron- oder Asynchronmaschinen können in

einer einheitlichen Theorie unter Berücksichtigung

der genannten Einflüsse behandelt
werden. Dies wird mit Beispielen erläutert,
und die Grundzüge der Theorie werden kurz
beschrieben.

Les oscillations de torsion dans des machines

électriques ne dépendent pas seulement
des caractéristiques de celles-ci, mais aussi
des conditions du réseau et de l'arbre mécanique.

Les oscillations libres des machines

synchrones ou asynchrones, de même que
leurs oscillations forcées, peuvent être
traitées selon une théorie générale, compte tenu
des dites influences. Les phénomènes sont
éxpliqués à l'aide d'exemples et les fondements

de la théorie sont brièvement décrits.

Der Aufsatz entspricht dem Vortrag von Dr. I.M. Canay

vom 7. Dezember 1982 an der ETHZ. im Rahmen der
Kolloquien des Fachbereiches Elektrische Energietechnik.

Adresse des Autors
Dr. I.M. Canay, BBC Aktiengesellschaft Brown, Boveri &
Cie, Abt. T-EE, 5401 Baden.

1. Beispiele von
Schwingungserscheinungen
Das Thema «Schwingungen in

elektrischen Maschinen» umfasst ein breites

Gebiet und ist ausserdem sehr
mannigfaltig. Daher wird der Problemkreis
zunächst mit drei Beispielen etwas
genauer umrissen. Anschliessend werden
die Grundzüge einer neuen Methode
kurz beschrieben und anhand dieser
Beispiele gezeigt, wie dieses Verfahren
anzuwenden ist.

1.1 Selbsterregte Schwingungen bei
einer Turbogruppe

Zur Reduktion der Leitungsreaktanz

von sehr langen Freileitungen
werden in manchen Ländern (USA,
Australien, Schweden usw.) oft
Seriekondensatoren verwendet. Diese
Lösung ist zwar preiswert, aber nicht
immer problemlos. Sie kann unter
Umständen zu selbsterregten Torsions¬

schwingungen führen. Ein Beispiel
darüber wird in Figur 1 gezeigt. Ein
Turbogenerator im Vollastbetrieb
speist drei Leitungen, wobei die
Hauptleitung zum Netz N\ mit
Seriekondensatoren zu 50% kompensiert
ist. Die unkompensierten Leitungen zu
Ni übertragen mit etwa 1% Strom fast
keine Leistung. Deshalb werden sie bei
t 0 ausgeschaltet. Diese kleine Zu-
standsänderung führt zu einer
gegenseitigen Beeinflussung zwischen dem
elektrischen und dem mechanischen
System der Turbogruppe, d. h. dem
sog. Interaction-Effekt. Die Welle
beginnt zu schwingen, und das Drehmoment

Ti zwischen der Turbine und
dem Generator wächst mit einer
Zeitkonstanten von etwa 1 s. Die Frequenz
dieser Schwingung ist 31,4 Hz. Nach
3,8 s werden die abgeschalteten
Leitungen durch ein Schutzrelais wieder
eingeschaltet; die Torsionsschwingungen

beginnen unverzüglich abzuklingen.
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Fig. 1 Subsynchrone Resonanz bei einem Turbogenerator

Generator:

Xd= 1,95

Xq 1,86
ra 0,0036
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Hier liegt bekanntlich eine
subsynchrone Resonanz «SSR» vor, d. h.
eine Resonanz zwischen dem elektrischen

und dem mechanischen System
unterhalb der Nennfrequenz. Die
Eigenfrequenz des elektrischen
Systems mit abgeschalteten Leitungen zu
Af> ist 32,6 Hz und diejenige der Welle
31,2 Hz. Obwohl die Differenz etwa
1,5 Hz beträgt, tritt eine Resonanz auf.
Man kann verschiedene Fragen
aufwerfen, z. B.:

- Wie gross muss die Abweichung
zwischen den Eigenfrequenzen sein,
damit keine Resonanz auftritt? Wo ist
die Grenze?

- Da eine Anfachung der Schwingungen

vorliegt, muss die resultierende

Dämpfung negativ sein. Wie kann
diese negative Dämpfung elektrischer
Herkunft berechnet werden

Fig. 3 Gegenseitige Beeinflussung bei erzwungenen

Schwingungen

D.M. Dieselmotor

Generator (40 MVA):
Xd 1,2 xi 0,35 xï 0,29

xq 0,7 x^ 0,38 0,03
7d= 0,75 s 7d 0,022 s EH= 1,3 s

Belastung: p= 0,75 + 70,35

2Transformatoren + Leitung: 0,024 + /'0,2

Motor(8 MVA):
Xd 1,28 Xd 0,36 Td 1,0 s

Xq 0,74 EH= 1,15 s

1.2 Selbsterregte Schwingungen bei
einer Asynchronmaschine
Es ist bekannt, dass eine Synchronmaschine

unter gewissen Bedingungen,

wie in Figur 1, pendelt. Weniger
bekannt ist hingegen die Tatsache,
dass auch eine Asynchronmaschine
ein schwingungsfähiges System
darstellt. Deshalb wird das zweite Beispiel
aus dem Bereich der Asynchronmaschinen

gewählt. Gleichzeitig soll
erneut darauf hingewiesen werden, dass
diese zwei Maschinenarten eigentlich
physikalisch gesehen eine Einheit
bilden und in der Theorie gleich behandelt

werden können.
In den Statorkreis einer leerlaufenden

Asynchronmaschine wird plötzlich

ein Ohmscher Widerstand Ar
eingeschaltet (Fig. 2) [1]. Beträgt dieser
Widerstand den löfachen Wert des

Ankerwiderstandes, so führt die
Maschine eine leichte Pendelung aus und
läuft ruhig weiter, wie dies aus der os-
zillografischen Aufnahme des
Ankerstromes in Figur 2a ersichtlich ist. Bei
der Wiederholung dieses Versuches
mit dem 58fachen Wert des
Ankerwiderstandes (Fig. 2b) klingen die am
Anfang entstandenen Pendelungen
nicht mehr ab, sondern werden
angefacht. Diese Schwingungen wären
ebenfalls entstanden, wenn man die
Widerstandsänderung sukzessiv
durchgeführt und am Anfang keinen
grossen Stoss gegeben hätte. Hier liegt
wiederum eine selbsterregte Schwingung

vor. Die Asynchronmaschine
muss in diesem Fall eine ziemlich starke

negative Dämpfung erzeugt haben.
Erhöht man den zusätzlichen Widerstand

Ar noch mehr (Fig. 2c), so
verschwindet dieser Effekt wieder.

Fig. 2 Selbsterregte Schwingungen einer
Asynchronmaschine

Xd 4,26 Xd 0,247 r 0,0228
T£ 0,041 s H 0,607 s

1.3 Erzwungene Pendelungen in einer
isolierten Minenanlage
Ein Minenwerk mit vielen Generatoren

und Motoren kleiner Leistung
(Fig. 3) wurde mit einem grossen
Synchronmotor (8 MVA), welcher eine
Erzmühle antreibt, und einem neuen
Dieselgenerator (40 MVA) erweitert.
Die Erzmühle weist ein Störmoment
mechanischer Herkunft mit der
Frequenz 2,5 Hz auf. Die Störfrequenz des
Zweitakt-Dieselmotors beträgt 2,0 Hz.

Vor der Inbetriebnahme des neuen
Generators wurde die Erzmühle
versuchsweise am bereits vorhandenen
schwachen Netz betrieben; der
Synchronmotor lief ruhig, obwohl er keine
Dämpferwicklung besitzt. Nach der
Inbetriebnahme des neuen Generators

wurde jedoch mit Erstaunen festgestellt,

dass der Synchronmotor
nunmehr mit etwa 2,3 Hz stark pendelt.
Unwillkürlich stellte man Fragen wie:

- Warum pendelt nun der Synchronmotor

so stark?
- Warum ändert sich die Frequenz,

obwohl die mechanische Anregung
2,5 Hz ist?

- Wäre der Fall anders, wenn der
Synchronmotor eine wirksame
Dämpferwicklung hätte? usw.
Die drei Beispiele verdeutlichen,

wie entscheidend das elektrische Netz
und die mechanische Welle das

Schwingungsverhalten des Systems
beeinflussen können. Alle diese Probleme

der Torsionsschwingungen können
in einer einheitlichen Theorie behandelt

werden, in welcher nicht nur die
Maschinen (synchron oder asynchron)
sowie das Netz, sondern auch die
Gegebenheiten der Wellenstränge
berücksichtigt werden können.
Mathematisch gesehen beruht das Verfahren
auf der Ermittlung der Eigenwerte des

ganzen elektromechanischen Systems.
Der Aufbau und die fortlaufende
physikalische Interpretation der
Gleichungen verleihen der vorgestellten
Methode jedoch eine gewisse Transparenz.

2. Theorie zur Behandlung
der Torsionsschwingungen
Führt der Rotor einer Maschine eine

Schwingung mit der Amplitude £ und
der relativen Frequenz A fT/f„ aus
(Fig. 4), so sind alle Grössen des Stators

in diesen pendelndên Rotorkoordinaten

mit Pendelkomponenten
behaftet, unabhängig davon, ob sie in
Wirklichkeit schwingen oder ruhen:

£= ê e^1, £= Re[£] (1)

t: Zeit in rad Ù2nfnt [s]

Beispielsweise weist auch eine
konstante Netzspannung «n in den
pendelnden Rotorkoordinaten mathema-

Fig. 4 Schwingende Rotorkoordinaten
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Fig. 5 Netzkonfiguration

tisch bedingte Pendelanteile AwNd,

A«Nq auf:

AMNd £WNqO, A«Nq ~ £MNdO (2)

Genauso werden die d-q-Kompo-
nenten der Klemmenspannung u, des
Statorstromes i und der Flussverkettung

i//Pendelanteile aufweisen:

Md «dO + AUÜ, Uq — MqO +A«q
id kiO + Aid, iq iqO + Aiq (3)

W Vdo + Al//d, Vq VqO + Al//q

Im Rahmen der erweiterten
Zweiachsentheorie bleibend, können
alle Spannungsgleichungen der
Maschine in den schwingenden
Rotorkoordinaten aufgestellt und lineari-
siert werden. Somit erhält man eine
Grundgleichung in Matrixform [2]:

Aia

A(q -ko
e + (z)"1

p -1 V^deO

1 p V^qeO

Aus Gl. (4) ist ersichtlich, dass die
gesuchten Pendelkomponenten Aid,
Aiq des Statorstromes allein von der
Vorbelastung und der Gesamtimpedanzmatrix

(z) abhängen. Der Lei-
stungsfluss im Netz beeinflusst die
Pendelungen nicht. Wenn die Vorbelastung

und Gesamtimpedanzmatrix (z)
als Summe der Maschinen- und
Netzmatrix bekannt sind, können die
Stromkomponenten A(j, A4, aus Gl. (4)
für jede Pendelfrequenz (p jA)
berechnet werden. Dabei stellt sich die
Frage, wie die Funktionen znQ'A),
xnÜA) der Netzmatrix (Fig. 5) zu
ermitteln sind.

Den Stromkomponenten Aid, Aiq
entspricht in den ruhenden
Statorkoordinaten ein resultierender Stromzeiger

A4, der aus zwei Drehzeigern
besteht:

A_4 _4uper ej 1+x> ' + _4ub ej (i-x)t (5)

£ (4)

Darin sind:

ido, 4)0 Stromkomponenten der Vor¬
belastung

(z) Gesamtimpedanzmatrix
(Fig. 5)

p Variable im Bildbereich der
Laplace-Transformation. (Für
quasistationäre Schwingungen

wird p bekanntlich durch
jA und e durch den
Schwingungszeiger e ersetzt.)

VdeO, Vqeo Von Vorbelastung und Fre¬

quenz abhängige Flusskomponente

VdeO [Xq " Xd(p )] iqO

+ G(p) g(p)

VqcO "fO " [M - Xq(p)] WO

G(p), g{p) Transferfunktionen der Erre¬

gung und des Reglers, falls
eine zusätzliche Erregung in
Abhängigkeit der
Polradschwingungen zugeführt wird

*d(p), (p) Reaktanzoperatoren der Ma¬
schine

i'super mit der übersynchronen Drehfrequenz
(1+A)

4ub mit der untersynchronen Drehfre¬
quenz (1-A)

Dasselbe gilt auch für die Klemmenspannung.

Die von den Maschinenklemmen

aus gesehenen Netzimpedanzen
für diese zwei Frequenzen seien

z^uper, z,ub- Wenn die Netzanalytiker
von dem betreffenden Netz eine sog.
Frequenzanalyse bis zu 2fn liefern, so
sind Zsuper, Zsub bei den Frequenzen
(1+A) und (1-A) bekannt. Bei den
üblichen Verfahren zur Behandlung von
subsynchronen Resonanzen SSR wird
eine solche Analyse bis Nennfrequenz
fn sowieso durchgeführt. Der Mehraufwand

besteht also lediglich darin, dass
die Frequenzanalyse bis 2fn erweitert
wird, um auch zsuper zu erhalten. Es
wurde in [2] bewiesen, dass die gesuchten

Ortskurven zn(JA) und xn(jA) mit
den nunmehr bekannten Impedanzen
z.Uper und Z;ub in folgenden einfachen
Beziehungen stehen:

Zn(JA) ~~ [ZsUb + Zsuper]

j ^
XnOA)

2
fZsi:b ~ Zsuper]

Sie können somit aus diesen bestimmt
werden. Es ist nicht notwendig zu wissen,

wie das Netz gebaut ist. Mit diesen
zwei komplexen Grössen zn(jA), xn(jA)
(oder Zsuper, z,ub) ist das Netz für die
Schwingungsfrequenz A vollständig er-
fasst.

Aus der allgemeinen Gleichung des
Drehmomentes kann hergeleitet wer¬

den, dass in der pendelnden Maschine
ein zusätzliches Drehmoment A 7^ als
Antwort auf diese Pendelungen erzeugt
wird:

AT, =Re[AJJ (7)
AT, VqeO Aiq+ If/deO Ajd

+ G(jA) göA) [4jo £-A(i]
ke(jA) £

In der komplexen Schreibweise der
Wechseigrössen (p jA) ist AT, proportional

dem Schwingungszeiger £ Der
Faktor ke(jA) in Gl. (7) ist ebenfalls eine
komplexe Grösse, und er wird «komplexe

Drehmomentziffer des elektrischen

Systems» genannt. Für den
speziellen Fall konstanter Netzspannung -
d. h. ohne Netzdetails, Kondensatoren,
weitere Maschinen usw. - ist k,QX) in
der Fachliteratur unter dem Begriff
«komplexe Synchronisierziffer»
bekannt, die vor allem von Laible in einer
einwandfreien Form eingeführt worden

ist [3].
Der reelle Anteil K, der komplexen

Drehmomentziffer ke(jX) stellt eine
Federkonstante dar, und D, ist ein
Mass für die elektrische Dämpfung.
Mit K, und D, können also die auf den
Rotor wirkenden Drehmomente des

ganzen elektrischen Systems inklusive
Netz, Seriekondensatoren, Leitungskapazitäten,

Regler usw. erfasst werden.
Figur 6 zeigt als Beispiel den Verlauf

von K, und D, bei einem einfachen
Netz (vgl. Fig. 1). Der Kompensationsgrad

der langen Leitungen wird als
Parameter variiert. Daraus ist ersichtlich,

Fig. 6 Komplexe Drehmomentziffer des elektrischen

Systems ke (y'A) Ke + jXD,
Einfluss der Seriekondensatoren (Maschine aus
Fig. 1)
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Fig. 7 Einfluss der parallelen Leitungen auf Ke
und Z)e

Maschine aus Figur 1

I : Nur eine 50% kompensierte Leitung
II : (I) + eine parallele Leitung
II : (I) + zwei parallele Leitungen

dass die elektrische Dämpfung De in
einem gewissen Frequenzbereich negativ

wird. Dies gilt auch, wenn keine
Kompensation durch Seriekondensatoren

vorliegt (x±/xl 0). Mit wachsendem

Grad der Kompensation
verschiebt sich aber der Bereich der negativen

Dämpfung zu kleinen Frequenzen,
und De wird stärker. Der Einfluss der
parallelen Leitungen auf De und Ke ist
in Figur 7 dargestellt. Die negative
Dämpfung bei der 50% kompensierten
Leitung (I) geht mit dem Einschalten
einer (II) bzw. von zwei (III) unkom-
pensierten Leitungen stark zurück, und
der Bereich verschiebt sich wieder zu
kleinen Pendelfrequenzen. In dieser
Art und Weise können verschiedene
Einflüsse, wie z. B. ohmscher Widerstand,

Leitungskapazität, Regler usw.
untersucht werden.

Die linearen Differentialgleichungen
der aus n-Drehmassen bestehenden
Welle sind in der Matrixgleichung (8)

unter Berücksichtigung der mechanischen

Dämpfungen an Massen und
Ledern zusammengestellt.

H\(p) =2 Hip2 + (Di + D(i-i) i

+ Di(i+l))p+ K;-1 + Ki

K\(p) K,+ Dj(i+i)P

Lormhalber wurde die 2. Masse als
Rotor der elektrischen Maschine
angenommen. Auf der rechten Seite dieser
Zeile steht deshalb das pulsierende
Drehmoment A Te des elektrischen
Systems. Diese Spalte kann selbstverständlich

auch mit anderen Störmomenten

erweitert werden, wie dies z. B.
bei Dieselmotoren der Lall ist. Nach
der Eliminierung von A<5i, Aft, Aft
usw. ergibt sich

kmO'A) e= -A re,

km(jty Km + jA Dm
(9)

Wie ke(jA) ist km(jA) eine
frequenzabhängige, komplexe Grösse. Sie
formuliert die Reaktion des ganzen
Wellenstranges auf die Schwingungen des
Maschinenrotors und wird analogerweise

«komplexe Drehmomentziffer
des mechanischen Systems» genannt.
Km und Dm stellen also das
Reaktionsdrehmoment der Welle dar. Für eine
einzige Drehmasse mit der
Trägheitskonstanten H ist Km -2 HA2. Die
Frequenzabhängigkeit von Km ist in
Figur 8a für die Turbogruppe des

ersten Beispieles (Fig. 1) ohne
Berücksichtigung der mechanischen Dämpfung

aufgetragen (Dm 0). Die
Schnittpunkte der Kurve Km mit der
Abszisse ergeben die Eigenfrequenzen
dieses Wellenstranges. Die Neigung
der Kurve an diesen Lrequenzen liefert
die modale Trägheits- und Federkonstante

der Welle:

Hmod
1 /dK\

4Amod \ dA J mod

Kmod 2A2müd Hmod

(10)

(11)

Hi (P) -Ki(p)

-Ki (p) Hzip) -K2(p)

-K2(P) Hi(p)

S1 Hnip)

Aft

Aft

-A Te

(8)

Aft

-0.01

0.01

dKm
dA

Mode 1 2 3
1

| J 4.0181*10

826.95 1717.19 21963.8 \X. V
10 20 30 40 „ 50 u 60

\ Afn Hz/!/| /!
fm= 19.61 i 31.18 36.44 58.4

Fig. 8 Komplexe Drehmomentziffer des

Wellenstranges km(jX) Km + jXDm
Mechanische Welle aus Figur 1

a ohne mechanische Dämpfungen
b mit mechanischen Dämpfungen

Nach diesem Verfahren können die
modalen Trägheits- und Federkonstanten

der Welle mit Hilfe eines
Tischrechners leicht bestimmt werden.

Bei Berücksichtigung einer
mechanischen Dämpfung erhält man nicht
nur eine Dm-Kurve, sondern auch eine
geringfügige Änderung an Km (Fig.
8b). Die wichtigste Änderung ist das
scheinbare Verschwinden der 3. und
der 4. Eigenfrequenzen der Welle. Für
diese Eigenfrequenzen liegt der Rotor
der elektrischen Maschine in einem
Knotenpunkt der Schwingungsform.
Daher existiert keine gegenseitige
Wirkung (Interaktion) zwischen dem elek-
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trischen und dem mechanischen
System, so dass hinsichtlich der Resonanz

bei diesen Frequenzen kein
Problem besteht.

Die Grundidee der Methode ist
eigentlich in Gl. (9) bereits formuliert.
Auf die Drehmasse des Rotors der
elektrischen Maschine wirkt vom
elektrischen System her ein Drehmoment
kc(j/i)e (Fig. 9), und das ganze mechanische

System erzeugt in entgegengesetzter

Richtung ein Reaktionsdrehmoment

km(jX) e. Bei freien Schwingungen

muss die Summe null sein.

[km(jX) + keüX)] £ 0 (12)

Die Lösung der komplexen
Gleichung

Km+ IQ+jX(Dm + De) 0 (13)

liefert, als £ X+j/T, Eigenfrequenzen
und Zeitkonstanten des ganzen

elektromechanischen Systems. Für
technische Bedürfnisse ist eine
mathematisch exakte Lösung nicht notwendig.

Es ist nämlich bekannt, dass die
Dämpfung, d. h. der imaginäre Teil, in
den normalen Fällen keinen nennenswerten

Einfluss auf den reellen Teil
dieser Gleichung ausübt. Deshalb
reicht es aus, nur die Schnittpunkte der
Kurven IQ und -Km zu suchen (IQ +
Km 0). Diese Schnittpunkte liegen
innerhalb der Ablese-Ungenauigkeit
bei den Eigenfrequenzen des ganzen
elektromechanischen Systems. Ist die
resultierende Dämpfung Dm + De bei
einer dieser Frequenzen negativ, so
wird die Schwingung angefacht; man
spricht von einer subsynchronen
Resonanz zwischen dem mechanischen
und dem elektrischen System.

Für ein Mehrmaschinensystem
kann Gl. (12) in Matrixform aufgestellt

werden.
Bei erzwungenen Schwingungen

wird Gl. (12) auf der rechten Seite ein
Störmoment oder eine entsprechende

Matrix der Störmomente enthalten.
Die Lösung nach £ liefert die Amplitude

und die Phasenlage der Schwingungen
mit den gegebenen Störfrequenzen.

3. Anwendung des
Verfahrens
3.1 Selbsterregte Schwingungen bei
einer Turbogruppe

Für die Anlage nach Figur 1 ist das
Resultat der Rechnungen für die
Federkonstanten IQ, Km und die
Dämpfungen De, Dm in Figur 10

wiedergegeben. Die Kurven I gelten
für den Fall ohne parallele Leitung,
d. h. für die Zeitspanne 0 S t i 3,8 s.

Obwohl die Eigenfrequenz des elektrischen

Systems bei 32,6 Hz liegt (Punkt
D mit der grössten negativen Dämpfung),

schneiden sich die Kurven IQ
und -Km bei 31,4 Hz (Punkt B).

Da die resultierende Dämpfung
(De+Dm) bei dieser Frequenz negativ
ist (B' B"), muss eine subsynchrone
Resonanz mit 31,4 Hz stattfinden, wie
dies in Figur 1 der Fall ist. Nach dem
Einschalten der parallelen Leitungen
bei t 3,8 s gelten die Kurven II und
III. Bei den Schnittpunkten, die sich in
der Frequenz kaum geändert haben, ist
nun die resultierende Dämpfung stark
positiv: Die vorhandenen Schwingungen

klingen ab, eine SSR kann nicht
stattfinden.

Fig. 10 Beurteilung des Schwingungsverhaltens
des Turbogenerators in Figur 1

Bereich F\ Fi :

Resultierende Dämpfung De + Dm < 0

D K

Fig. 11 Beurteilung des Schwingungsverhaltens
der Asynchronmaschine in Figur 2

3.2 Selbsterregte Schwingungen bei
einer Asynchronmaschine

Bei leerlaufendem Asynchronmotor
(Fig. 2) besteht das ganze mechanische
System aus einer einzigen Drehmasse
des Rotors. Km ist also nichts anderes
als -2 HX2. Alle elektrischen und
mechanischen Daten der Maschine sind
aus [1] entnommen worden. Die
mechanische Dämpfung ist vernachlässigbar

klein (Dm 0), das Verhalten
des Motors wird also allein von der
elektrischen Dämpfung bestimmt.

Im ersten Fall mit Ar 16 ra schneiden

sich die Kurven IQ und -Km im
Punkt A bei 3,4 Hz (Fig. 11). Da die
elektrische Dämpfung bei dieser
Frequenz positiv ist, muss die nach dem
Einschalten des Widerstandes Ar
entstandene Pendelung abklingen. Für Ar

58 ra liegt der Schnittpunkt B bei
etwa 1,7 Hz, wobei die elektrische
Dämpfung nun stark negativ geworden

ist. Die Schwingung des Rotors
mit dieser Frequenz wird angefacht,
wie dies im Oszillogramm in Figur 2 zu
sehen ist. Erhöht man den
Zusatzwiderstand Ar noch mehr auf den
278fachen Wert des Ankerwiderstandes,

so verschwindet dieser Effekt,
weil die elektrische Dämpfung wiederum

positiv ist.

3.3 Erzwungene Pendelungen in einer
isolierten Minenanlage
Eine Untersuchung für ein

Mehrmaschinensystem in einem relativ kleinen

Inselnetz muss für verschiedene
Netzzustände durchgeführt werden.
Um das in Figur 3 beschriebene
Phänomen zu erläutern und die Einflüsse
aufzuzeigen, wird an dieser Stelle je-
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Fig. 12 Schwingungsamplitude des Generators
bei einer eigenen Anregung ATc,fc
Nachbildung der Motorwelle mit einer Drehmasse

Motor ausser Betrieb
Motor in Betrieb

doch nur ein Betriebszustand mit zwei
potentiellen Maschinen in Betracht
gezogen und die mechanische Dämpfung

vernachlässigt. Das übrige Netz
soll aus unzähligen kleineren Generatoren

und Motoren bestehen, deren
Pendelungen das Verhalten der zwei
Hauptgruppen (Generator und Motor)
kaum beeinflussen.

In Figur 12 ist die Schwingungsamplitude

des Generators bezogen auf
das Störmoment des Dieselmotors in
Funktion der Frequenz fc aufgetragen.
Wenn die Erzmühle nicht in Betrieb
ist, gilt die gestrichelte Kurve. Die
Eigenfrequenz des Systems liegt bei
1,1 Hz. Die Amplitude der erzwungenen

Schwingungen mit der Störfrequenz

2 Hz des Dieselmotors ist klein,
und der Betrieb ist ruhig (Punkt Gb).

Ist die Erzmühle in Betrieb, so kann
sie bei dieser Anregung ebenfalls pen¬

deln und somit das Verhalten des
Generators beeinflussen. Unter der üblichen

Annahme, in der die ganze Mühle

(Motor) mit einer einzigen
Drehmasse dargestellt wird, ergibt sich die
ausgezogene Kurve in Figur 12. Die
vom Motor ins System gebrachte 2.

Eigenfrequenz lässt sich bei etwa 2,7
Hz erkennen. Aus dem Vergleich der
Kurven geht hervor, dass die vom
Generator verursachten Pendelungen mit
dem Einschalten der Erzmühle für /
<2,6 Hz verbessert und für />2,6 Hz
verschlechtert werden.

Figur 13 gibt in analoger Weise das
Verhalten der Erzmühle bei eigener
Anregung in Funktion der Frequenz
fm wieder. Daraus ist ersichtlich, dass
die Pendelungen der Erzmühle bei der
eigenen Störfrequenz von 2,5 Hz mit
der Inbetriebnahme des grossen Generators

sich nicht verschlechtern dürfen
(Mo — M), also ein Ergebnis, das den
Beobachtungen nicht entspricht!

In der Tat ist das GD2 der Erzmühle
zweimal grösser als dasjenige des
Motors. Zudem ist die Verbindungswelle
zwischen dem Motor und der Mühle
ziemlich elastisch, so dass der ganze
Wellenstrang statt als eine Drehmasse
eher als ein Zweimassensystem mit der
Torsionseigenfrequenz von 10 Hz zu
betrachten ist. Berücksichtigt man diese

etwas verfeinerte Wellenreduktion,
so ergibt sich die Figur 14. Nach
diesem Ergebnis müssen sich die Schwingungen

des Motors bei eigener Anregung

etwa 5,4mal vergrössern, wenn
der neue Generator in Betrieb genommen

wird (Mo — M). Dieses Beispiel
verdeutlicht die Rolle der Wellenreduktion,

die bei solchen Problemen oft
vernachlässigt wird. Deshalb muss
jedesmal genau überprüft werden, ob

Fig. 13 Schwingungsamplitude des Motors bei
eigener Anregung A 7m, Jm

Nachbildung der Motorwelle mit einer Drehmasse

Generator ausser Betrieb
Generator in Betrieb

Fig. 14 Schwingungsamplitude des Motors bei
eigener Anregung A 7m, M
Nachbildung der Motorwelle mit zwei Drehmassen

Generator ausser Betrieb
Generator in Betrieb

Fig. 15 Schwingungen des Motors und des

Generators bei Generatoranregung A 7g, /g
Nachbildung der Motorwelle mit zwei Drehmassen

£MG Schwingungsamplituden des Motors
ßGG Schwingungsamplituden des Generators

die Vereinfachung mit einem
Einmassensystem zulässig ist oder nicht.

In einem System mit mehreren
gleichzeitig wirkenden Störmomenten
führt jeder Rotor eine gemischte
Schwingung aus. Im vorliegenden Fall
pendelt die Erzmühle mit zwei
Frequenzen: 2,5 Hz von der Eigenanregung

und 2,0 Hz von der Fremdanregung

durch den Dieselgenerator. Der
resultierende Schwingungszeiger des
Motors ist also

fM £mm ejWt + £mg ejx-Gt (14)

Eine ähnliche Gleichung gilt auch
für die Schwingungen des Generators.

Die Methode liefert auch die
Schwingungsamplitude êmg (Figur 15)

bezogen auf das Störmoment des
Generators. Sind die Störmomente ATm
und A Tg bekannt, so können die
Schwingungszeiger £mm und £mg
bestimmt und vektoriell addiert werden.
Für > £mg dominiert die
Anregefrequenz des Motors, d. h. in diesem
Beispiel 2,5 Hz. Liegt der Fall êmm <
£mg vor, so müssten die resultierenden
Pendelungen praktisch nur eine
Frequenz von 2 Hz aufweisen. Die
Beobachtungen, dass die Pendelungen im
gemeinsamen Betrieb der beiden
Maschinen etwa 2,3 Hz seien, deuten darauf

hin, dass im vorliegenden Fall Cmm

und £Mg von gleicher Grössenordnung
sind. Durch Interferenz erscheint die
resultierende Pendelung mit 2,3 Hz.

Der Einfluss einer wirksamen
Dämpferwicklung beim Synchronmotor

auf dessen Pendelungen kann
leicht beurteilt werden, wenn die
Rechnung unter Berücksichtigung
einer Dämpferwicklung wiederholt
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Zum Vergleich mit Figur 14

wird. Figur 16 und 17 präsentieren das
neue Resultat. Aus Figur 16 geht
hervor, dass die Schwingungsamplitude
des Motors bei eigener Anregung mit
2,5 Hz mit der Inbetriebnahme des

neuen Generators nun nicht mehr
wachsen, sondern im Gegenteil etwas

Fig. 17 Einfluss der Dämpferwicklung
Zum Vergleich mit Figur 15

zurückgehen wird. Eine leichte Reduktion

ist bei der Amplitude der vom
Dieselgenerator angeregten Schwingung

mit 2 Hz ebenfalls zu erwarten
(Vergleich zwischen Figur 17 und 15).

Diese Beispiele geben einen Überblick

darüber, wie die Schwingungs¬

probleme von Synchron- wie auch von
Asynchronmaschinen sowie von
Systemen mit mehreren Maschinen in
einer einheitlichen Theorie behandelt
werden können. Sie zeigen gleichzeitig,

wie die Torsionsschwingungen
von Maschinen durch die Gegebenheiten

des Netzes und des Wellenstranges
beeinflusst werden. Der Aufbau des

vorgestellten Verfahrens berücksichtigt
diese Verknüpfungen und erlaubt

somit eine gute Zusammenarbeit
zwischen den drei technischen Disziplinen:

Maschine, Netz und Mechanik.
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