Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitatsunternehmen = Bulletin de
I'Association suisse des électriciens, de I'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitatsunternehmen

Band: 74 (1983)

Heft: 5

Artikel: Grafische Editoren fur den Entwurf von VLSI-Systemen

Autor: Weibel, B. / Morf, M.

DOl: https://doi.org/10.5169/seals-904774

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-904774
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Grafische Editoren fiir den Entwurf von

VLSI-Systemen

B. Weibel, M. Morf

Heutige CAD-Systeme sind komplex, schwie-
rig zu unterhalten oder zu erweitern und
daher sehr teuer. Zukdinftige CAD-Software
wird durch moderne Informatikwerkzeuge
effizienter entwickelt und unterhalten werden
konnen. Zuklinftige CAD-Hardware wird
hauptsédchlich wegen der Entwicklung von
VLSI-Chips billiger, schneller und machtiger
werden.

Es wird ein grafischer Editor beschrieben,
und es werden Beispiele von Algorithmen
und Datenstrukturen fir diesen Editor
gezeigt. Anwendungsbeispiele sind
gedruckte Schaltungen sowie Logik-Dia-
gramme, Stick-Diagramme und Layout-Dia-
gramme, die effizientes Entwerfen von VLSI-
Systemen erlauben.

Les systémes actuels de conception assistée
par ordinateur (CAQ) sont complexes, malai-
sés a entretenir ou a développer, donc tres
codteux. Désormais, le logiciel de CAO sera
développé et entretenu plus efficacement
par les moyens modernes de l'informatique
et le matériel deviendra moins codteux, plus
rapide et plus puissant, surtout par le déve-
loppement de puces a intégration a tres
grande échelle. On décrit un éditeur gra-
phique et donne des exemples d‘algorithmes
et de structures de données pour celui-Ci.
Des applications sont les circuits imprimés,
les diagrammes de logique, diagrammes de
stick et diagrammes de layout, permettant
une conception efficace de systemes d'inté-
gration a tres grande échelle.

Dieser Aufsatz entspricht dem Vortrag des erstgenannten
Autors anlasslich des «Fall Meeting 1982 on Computer
Aided Design (CAD)» der IEEE Swiss Section, Chapter on
Solid State Devices and Circuits, am 19. Oktober 1982 in
Bern,

Adressen der Autoren

B. Weibel, Institut fiir Informatik, ETH-Zentrum, 8092
Ziirich

Prof. Dr. M. Morf, Yale University, New Haven, Conn.,
USA

1. CAD-Systeme

Heute erhiltliche CAD-Systeme!)
sind oft komplex und sehr gross (typi-
scherweise einige 10000 Zeilen For-
tran). Da solche Systeme iiber Jahre
gewachsen sind und sich im Laufe der
Zeit spezifischen CAD-Anwendungen
anpassen mussten, fiir welche sie ur-
spriinglich nicht vorgesehen waren,
sind sie nicht hierarchisch strukturiert
und zuwenig modular aufgebaut. Dar-
aus ergibt sich der schwerwiegende
Nachteil, dass diese Systeme nur miih-
sam zu unterhalten und zu erweitern
sind.

Dank moderner Informatikwerk-
zeuge wird es in Zukunft moglich sein,
Software effizienter zu entwickeln und
zu unterhalten. Und gerade dank den
Fortschritten auf dem Gebiet der
hochintegrierten Schaltungen wird in
Zukunft billigere, schnellere und
maéachtigere Hardware entwickelt wer-
den konnen.

Mit fortschreitender Verbesserung
der VLSI-Technologien?) wichst die
Anzahl Transistoren, die auf einem
Chip untergebracht werden koénnen,
sehr rasch. Da die Kosten fiir das Ent-
werfen von Schaltungen nahezu so
schnell wachsen wie die Komplexitét
der Schaltungen zunimmt, ist es not-
wendig, Strukturen mit mdglichst
grosser Regelmassigkeit und méglichst
oft dieselben Strukturen zu verwen-
den. Solche Betrachtungen haben
schon frith zu Ansitzen gefiihrt, bei
denen Standardzellen in Reihen vor-
definiert sind (z.B. Gate-Arrays). Die
Aufgabe des Entwerfens besteht dann
darin, die notigen Gates geeignet zu
plazieren und richtig zu verbinden.

Mit zunehmender Komplexitdt der
Schaltungen ist auch die Notwendig-
keit erkannt worden, CAD-Program-
me zu entwickeln, die beim Schal-
tungsentwurf niitzlich sind. So gibt es
Programme, die versuchen, das eben

') CAD = Computer Aided Design
?) VLSI = Very Large-Scale Integration

erwidhnte Plazieren und Verbinden
von Gates automatisch vorzunehmen.
In anderen Ansidtzen wird versucht,
fiir ganze Klassen von (einfacheren)
VLSI-Architekturen den Vorgang des
Entwerfens zu automatisieren. Die
Tatsache, dass solches automatisches
Entwerfen weniger gute Resultate lie-
fert als eine Optimierung von Hand,
kann sich unter Umstédnden nachteilig
auswirken. Ein vielversprechender
Mittelweg besteht darin, dem Beniitzer
Zwischenresultate des automatischen
Entwerfens zu zeigen und ihm Gele-
genheit zu geben, kritische Bereiche
von Hand zu optimieren und den Ent-
wurf am Schluss zu vervollstandigen.

2. Individuelle
Arbeitsplatzrechner

Die Fortschritte auf dem Gebiet der
Hardware zusammen mit modernen
Methoden der Informatik auf dem Ge-
biet der Software haben in jilingster
Zeit zur Entwicklung von leistungsfa-
higen und kostengiinstigen Arbeits-
platzrechnern gefiithrt. Eine hohere
Programmiersprache und Hilfsmittel
wie interaktive Debugger und Edito-
ren sind in der Lage, den Software-In-
genieur beim Entwickeln von Pro-
grammen so Zu unterstiitzen, dass er in
der gleichen Zeit viel produktiver ist.
Ein stindig fiir den personlichen Ge-
brauch verfiigbares Computersystem
bildet eine ideale Arbeitsumgebung,
wenn durch dessen Einfachheit und
Klarheit und durch entsprechende Un-
terstiitzung mit Systemsoftware eine
bequeme Beniitzung gewihrleistet ist.

Fiir den Einsatz eines Arbeitsplatz-
rechners kommen vor allem Anwen-
dungsgebiete in Frage, bei denen die
direkte Verfiigbarkeit und die Interak-
tivitdit des Computersystems beson-
ders gut ausgeniitzt werden konnen.
Auch beim Entwurf von VLSI-Syste-
men ist es zweckmassig, fiir diejenigen
Teilprobleme, bei denen es auf eine in-
tensive Interaktion zwischen Beniitzer

238 (A 138)

Bull. ASE/UCS 74(1983)5, 5 mars

und Programm ankommt, Losungen
auf einem Arbeitsplatzrechner zu im-
plementieren.

3. Entwurf von
VLSI-Systemen

Es ist iiblich, fiir die Beschreibung
von VLSI-Systemen Darstellungen auf
verschiedenen Stufen zu verwenden.
Wenn alle geometrischen Details einer
ausgelegten Schaltung sichtbar sein
sollen, spricht man von Layout-Dia-
grammen. Wenn nur die Topologie
‘der Verbindungen der Schaltung we-
sentlich ist, kann man sogenannte
Stick-Diagramme verwenden. Als wei-
tere Abstraktion stehen die iiblichen
Schaltungsdiagramme und Logik-Dia-
gramme zur Verfiigung. Beispiele fiir
die verschiedenen Darstellungsformen
sind in [1, Kap. 3.2], einem Standard-
werk iiber VLSI-Systeme, zu finden.

Ein Softwarepaket fiir das interakti-
ve Entwerfen von VLSI-Systemen
kann zum Beispiel folgende Funktio-
nen anbieten: eine Sprache zur Be-
schreibung von Hardware (hardware
description language), die automati-
sche Ubersetzung zwischen dieser
Sprache und Diagrammen in verschie-
denen Darstellungsarten, eine Familie
von Editoren fiir das grafische Bear-
beiten der Diagramme aller Stufen,
Hilfsprogramme fiir Output auf Druk-
ker oder Plotter, verschiedene Simula-
tionsmoglichkeiten, das automatische
Erzeugen von Testmustern und
schliesslich das Berechnen der Masken
aus den Diagrammen. Es ist sogar
moglich, dass ein solches CAD-System
Hilfsmittel zur Verfiigung stellt, um
Schaltungen in verschiedenen Techno-
logien (z.B. als gedruckte Schaltung
oder als integrierte Schaltung) zu im-
plementieren.

Einige Teilaufgaben beim VLSI-
Entwurf eignen sich fiir eine automati-
sche Bearbeitung. Beispielsweise gibt
es Programme, die recht kompakte
Schaltungen erzielen, indem sie Stick-
Diagramme automatisch in Layout-
Diagramme iibersetzen. Fiir andere
Problemkreise ist es gut, wenn der Be-
niitzer die Mdoglichkeit hat, von Hand
zu entwerfen.

4. Systemintegration

Ein CAD-System fiir das Entwerfen
grosser VLSI-Systeme soll dem Beniit-
zer die Moglichkeit geben, seine Schal-
tung in unabhéngige Blocke zu zerle-
gen, um einerseits die Ubersichtlich-

M.

s

Fig. 1

Eine mit dem
VLSI-Editor von Hand
entworfene Karte einer
asynchronen Schnittstelle
als Beispiel fiir eine
gedruckte Schaltung

Links Lotseite,

HEHH |

lll:-a:l‘—'lll.
eooon00e -hkli.:;.

=00000608 a8 8=
—u
—a

e

=—a0000

-

Eﬂ
i

|

i

L

rechts Bestiickungsseite

keit des Entwurfs zu erhdhen und an-
derseits das Aufteilen in lokal zu be-
handelnde Teilprobleme zu ermogli-
chen. Eine solche hierarchische Struk-
turierung der Schaltungen ist aus dem-
selben Grund wiinschenswert, aus
dem das Konzept der Modularisierung
in hoheren Programmiersprachen Ein-
gang gefunden hat: Ein klarer Aufbau,
dessen Struktur sichtbar bleibt, macht
das Entwerfen weniger fehleranfallig.
Zudem ist es einfacher moglich, dass
beim Entwurf eines grossen Systems
mehrere Personen verschiedene Teile
bearbeiten, wenn Einheiten mit genau
umschriebenen Schnittstellen definiert
werden.

Es ist wichtig, dass die verschiede-
nen Komponenten eines CAD-Sy-
stems als zusammenhéngendes Soft-
warepaket gestaltet werden. Die zur
Verfiigung stehenden Programme sol-
len eine Einheit bilden und unterein-
ander vertrédglich sein. Darum muss je-
des Programm sich an dasselbe Kon-
zept der hierarchischen Strukturierung
halten und darf die vom Beniitzer defi-
nierte Unterteilung einer Schaltung
nicht wieder verwischen. Das CAD-
System von INMOS [2] zeigt, dass heu-
te dieser Grundsatz bei der Soft-
ware-Entwicklung befolgt wird.

Ebenfalls dem iibersichtlichen Auf-
bau des CAD-Systems dient ein von
allen Programmen verwendetes Stan-
dardformat, wofiir das Austauschfor-
mat STIF®) ein Beispiel ist [3]. Die
Meinung ist nicht, dass einzelne Pro-
gramme keine anderen Datenstruktu-
ren verwenden diirfen. Die Program-
me kdnnen sogar auf verschiedenen

3) STIF = Structured Interchange Format

Rechnern laufen. Aber die verschiede-
nen Datenstrukturen und Fileformate
miissen einfach konvertierbar sein. Als
gemeinsames Standardformat fiir den
Schaltungsentwurf ist eine symboli-
sche Darstellung auf moglichst hoher
Stufe zu verwenden. Als Grundele-
mente sind etwa Transistoren, Kon-
takte und Verbindungen («Dréhte»)
zu wihlen, welche zwar als Rechtecke
dargestellt werden, aber in der Daten-
struktur nicht in Rechtecke aufgeldst
werden dirfen. Dadurch wird das
Uberpriifen von Schaltungen (z.B. de-
ren Simulation), die in verschiedenen
Darstellungsformen vorliegen, wesent-
lich vereinfacht.

Schliesslich sollen sich Editoren fiir
verschiedené Darstellungsformen
moglichst gleich verhalten, d.h. Befeh-
le, die allen Editoren gemeinsam sind,
sollen fiir den Beniitzer auch gleich
aussehen. Am besten werden die iden-
tischen Befehle als gemeinsamer Kern
gestaltet. Die iibrigen Befehle konnen
je nach Bedarf dazugeladen werden.
Mit diesem Mechanismus der Parame-
trisierung kdnnen dem Editor auch an-
dere (z.B. von der Technologie abhén-
gige) Regeln bekanntgegeben werden.

5. Ein VLSI-Editor

Im folgenden wird ein grafischer
Editor beschrieben, welcher nach ent-
sprechender Parametrisierung fiir das
Entwerfen von VLSI-Systemen auf der
Stufe von Logik-Diagrammen, Stick-
Diagrammen und Layout-Diagram-
men sowie fiir das Entwerfen von ge-
druckten Schaltungen (Fig. 1) geeignet
ist.

Bull. SEV/VSE 74(1983)5, 5. Mérz

(A139) 239

Ein Editor ist ein Programm mit
ausgepragter Interaktivitit. Deshalb
ist ein Arbeitsplatzrechner speziell fiir
diesen Anwendungsbereich geeignet.
Im vorliegenden Fall wird als Hard-
ware der Lilith-Rechner [4] verwendet.
Dieser weist als wesentliche Merkmale
neben einer zentralen Recheneinheit
einen Speicher mit 128 kWort (zu 16
Bit) und eine auswechselbare Disk mit
einer Kapazitdt von 10 MByte auf. Die
Maschine ist mit einem Bildschirm
ausgestattet, der fiir Text und Grafik
gleichermassen geeignet ist. Zusétzlich
zu einer Tastatur ist als Eingabegerit
eine « Maus» mit drei Funktionskndp-
fen angeschlossen. Das Positionieren
auf dem Bildschirm geschieht durch
Bewegen der Maus auf dem Tisch, was
von der Software in Bewegungen auf
dem Bildschirm iibersetzt wird. Die
meisten Befehle werden durch die drei
Funktionsknopfe ausgelost, entweder
direkt beim Betdtigen derselben oder
dann iiber eine flexible Meniitechnik.

Die Software fiir den Lilith-Rechner
wird in der Programmiersprache Mo-
dula-2 [5] geschrieben. Diese Sprache
unterstiitzt durch das darin enthaltene
Modulkonzept den modularen Auf-
bau und die Erweiterbarkeit von Pro-
grammen, und sie erleichtert das Zu-
sammenarbeiten mehrerer Leute bei
der Entwicklung grosser Softwarepa-
kete.

6. Sicht des Beniitzers

Der Beniitzer kann (und soll) seine
Diagramme in Module zerlegen; das
sind Teilbereiche, welche wiederum
aus Teilen zusammengesetzt sein kon-
nen. Umgekehrt kann eine Anzahl

(nicht iberlappender) Module zu
einem neuen Modul zusammengefasst
werden. So ergibt sich eine hierarchi-
sche Unterteilung von der Form einer
Baumstruktur. Es ist moglich, die hier-
archische Unterteilung eines Dia-
gramms im Verlaufe des Entwerfens
zu dndern und neu zu definieren. Die
Schnittstelle der Module besteht aus
einem begrenzenden rechteckigen
Rahmen, der entweder nicht sichtbar
ist oder aber hervorgehoben werden
kann, und aus den Anschlussverbin-
dungen. Dank der hierarchischen
Struktur der Diagramme ist es mog-
lich, verschiedene Stufen der Abstrak-
tion darzustellen, indem von einzelnen
Modulen nur die Umrisse oder aber
auch alle Details gezeigt werden (logi-
cal zooming). Von Modulen kénnen
Kopien hergestellt werden, die aus
einem einzelnen Exemplar oder aus
einer ganzen Reihe (Array) von meh-
reren Modulen bestehen.

In einer Bibliothek hat der Beniitzer
eine Sammlung von Modulen zur Ver-
fiigung, die entweder im System vor-
definiert sind oder die er selber ent-
worfen hat (Fig. 2). Beispiele solcher
Bausteine sind NAND-Gates, Flip-
Flops, Schieberegister oder Speicher-
zellen. Beim Abrufen von Bibliotheks-
modulen kénnen allenfalls noch einige
Parameterwerte angegeben werden,
um eine geeignete Dimensionierung zu
erreichen. Zum Beispiel kann ein Mo-
dul in verschiedenen geometrischen
Ausdehnungen und Formen verfiigbar
sein.

Um die hierarchische Unterteilung
eines Diagramms iibersichtlich darzu-
stellen, kann der Bildschirm in mehre-
re Bereiche (sog. Fenster) aufgeteilt
werden, in welchen verschiedene Aus-
schnitte eines Diagramms unabhéngig

din
Clock
Ydd
N
Pin o
N
5 put =il
NAND
Ground : A oo
p inverter B
Yad
dout

Fig.3 Vergrosserter Ausschnitt aus Figur 2b

voneinander behandelt werden kon-
nen. Die Fenster werden bei Bedarf
neu erzeugt, verandert oder wieder ge-
16scht. Der in einem Fenster sichtbare
Bildausschnitt kann iiber das Dia-
gramm hinweg verschoben werden.
Um das Entwerfen moglichst ange-
nehm zu gestalten, hat der Beniitzer
die Moglichkeit, den Ausschnitt eines
jeden Fensters einzeln mit einem Ver-
grosserungsfaktor zu strecken (Fig. 3).
Dadurch erkennt er Details besser und
kann mit der Maus genauer positionie-
ren. Ebenfalls dem genauen Positio-
nieren dient die Einrichtung eines
(veranderbaren) Rasters auf dem Bild-
schirm, welches die Aufldésung beim
Eingeben von Koordinaten bestimmt.
Die verschiedenen Schichten (Me-
tall, Polysilicon, Diffusion usw.), die
in den verschiedenen VLSI-Technolo-
gien nétig sind, werden auf dem Bild-
schirm durch verschiedene Muster

din| din
Clock L| Clock «
l Vg 4 Vad
B B
Pin——1 [> Pout Pin{¥te i@ T &} Pout
. R NS 8N S \\\m\‘
N—— p inverter —— R N N
Sout a<|—'—L—5in Tour wimp Eeoolpoostilid B Sin
< iivertar NAND adad R g Y
Ground - B & : Ground
p inverter 3 s inverter §
N
>
NAND NXOR \ 3
»?av A2 N
Clock x\§\- NXOR X Clock
I Vdd Vdd
a dout b out
Comparator Cell for Pattern Matching gmetal { polysilicon %diffusion m contact Hf implant
N

Fig.2 Beispiel eines Moduls, mit dem VLSI-Editor, dargestellt als Logik-Diagramm (a) und als Stick-Diagramm (b) [6]

240 (A 140)

Bull. ASE/UCS 74(1983)5, 5 mars

oder Farben (falls ein Farbbildschirm
vorhanden ist) dargestellt.

Der Editor kennt als einfache Arten
von Objekten Linien und Polygone (zu-
sammengesetzte Linien), die immer
einer bestimmten Schicht angehdren.
Die Linien konnen horizontal, vertikal
oder in einem Winkel von 45 Grad ge-
zeichnet werden und sind als Rechtek-
ke dargestellt. Kompliziertere Objekte
sind verschiedene Typen von Transi-
storen und Kontakten, die sich iiber
mehr als eine Schicht erstrecken.

Einige Parameterwerte fiir das
Zeichnen von Objekten sind global
wéhlbar und bleiben solange giiltig,
bis sie neu definiert werden. Beispiels-
weise wird die Schichtzugehdrigkeit
von Linien und Polygonen auf diese
Art gewdhlt. Thre Breite kann fiir jede
Schicht getrennt gesetzt werden.

Das Bestimmen auf dem Bildschirm
sichtbarer Positionen und das Auswdh-
len bereits gezeichneter einzelner Ob-
jekte oder ganzer Bereiche von Objek-
ten geschieht, indem man mit der
Maus die entsprechenden Stellen be-
zeichnet. Die so ausgewéhlten Objekte
dienen dann verschiedenen Operatio-
nen als implizite Argumente.

Es stehen dem Beniitzer verschiede-
ne Grundoperationen fiir das Erzeu-
gen, Plazieren und Abandern von Ob-
jekten zur Verfiigung, welche durch
einfaches Betdtigen der Mauskndpfe
direkt ausgeldst werden konnen. Unter
diesen Grundoperationen befinden
sich das Zeichnen von Linien, Polygo-
nen, Transistoren oder Kontakten so-
wie das Verschieben des gegenwairtig
sichtbaren Bildausschnittes. Ebenso
einfach werden zuvor ausgewahlte Ob-
jekte verschoben oder kopiert. Einzel-
ne Objekte (insbesondere Linien oder
Polygone) konnen gestreckt (d.h. ver-
langert oder verkiirzt) werden, indem
vorher ein Ende des entsprechenden
Objektes ausgewdhlt wird. Zu den
Grundoperationen ist schliesslich
noch das Eingeben von Text (fiir Be-
schriftungen und Kommentare) zu
zéhlen.

Weniger haufig auszufiihrende Ope-
rationen sind dem Beniitzer iiber ver-
schiedene Meniis zugidnglich. So kon-
nen ausgewidhlte Objekte wieder ge-
16scht werden, oder sie konnen (hori-
zontal oder vertikal) gespiegelt oder
(in Einheiten von 90 Grad) gedreht
werden. Die einzelnen Schichten kon-
nen selektiv auf dem Bildschirm ge-
16scht oder wieder sichtbar gemacht
werden. Es kann verlangt werden, dass
Ausschnitte des erstellten Diagramms

aufbereitet werden zum anschliessen-
den Drucken oder Plotten.

7. Wahl der Datenstruktur

Im folgenden wird der Aufbau der
Datenbank fiir den beschriebenen
VLSI-Editor gezeigt. Da auf dem Li-
lith-Rechner zuwenig Speicherplatz
zur Verfiigung steht, um die ganze Be-
schreibung grosser Diagramme im
Speicher zu halten, ist eine Struktur
fiir die Daten auf der Disk gesucht
worden, welche auch fiir den interakti-
ven Betrieb geeignet ist. Im wesentli-
chen geht es darum, grosse Mengen
von Objekten (ndmlich Linien, Poly-
gone, Transistoren oder Kontakte) so
zu strukturieren, dass geniigend
schnell auf einzelne dieser Objekte zu-
gegriffen werden kann.

Die gewidhlte Datenstruktur beruht
auf dem Prinzip der sog. Grid-Files[7].
Der Wertebereich verschiedener Attri-
bute, welche gleichberechtigt sind und
symmetrisch behandelt werden, bildet
einen mehrdimensionalen Suchraum.
Die Grundidee besteht in der Gitter-
Teilung (daher die Bezeichnung Grid-
Files) dieses Suchraumes. Der Zugriff
zu den Objekten erfolgt iiber das Git-
ter-Directory, in welchem die Verin-
derungen der Gitter-Teilung eingetra-
gen werden.

Die Gitter-Teilung liefert dann gute
Resultate, wenn die Objekte durch
eine kleine Anzahl von Attributen cha-
rakterisiert sind, deren Wertebereich
gross ist. Da die darzustellenden Ob-
jekte alle auf Rechtecke mit zusatzli-
chen Attributen zuriickgefiithrt werden
konnen, kommen fiir die vorliegende
Anwendung die horizontale und verti-
kale Koordinate sowie Breite und
Hohe von Rechtecken als Charakteri-
sierung in Frage. Natiirlich besitzen
die Objekte noch weitere Attribute, die
aber nicht zum Aufbau des Suchrau-
mes beitragen.

Diese Datenstruktur ist fiir hdufige
Anderungen geeignet, weil sich die Ge-
stalt der Filestruktur beim Einfiigen
und Loschen von Objekten jeweils der
neuen Situation anpasst. Sie bietet so-
wohl schnellen Zugriff zu einzelnen
Objekten als auch effizientes Behan-
deln von Abfragen fiir ganze Bereiche.
Es ist also einfach, alle Objekte zu be-
stimmen, die in einem bestimmten
Ausschnitt eines Diagramms liegen.
Zu den weiteren Eigenschaften gehort
die gute Speicherausniitzung (70%),
die unabhingig von der Verteilung der
Daten ist.

8. Direktes Priifen der
Entwurfsregeln

Fiir jeden Fabrikationsprozess einer
bestimmten Technologie gibt es Ent-
wurfsregeln, die dem Entwerfen von
Diagrammen geometrische Einschrédn-
kungen auferlegen, um eine problem-
lose Fabrikation von funktionieren-
den Transistoren und Verbindungen
zu garantieren. Zu den Entwurfsregeln
gehort eine Anzahl von Regeln iiber
die Abmessungen (etwa die minimale
Breite) jedes Objektes und eine Anzahl
von Regeln iiber die minimalen Ab-
stinde zwischen den Objekten [1, Kap.
2.6].

Das Priifen der Entwurfsregeln (de-
sign rule checking) wird bis heute
iiblicherweise mit einem separaten
Programm nachtriglich erledigt. Ein
solches Programm ist mit einem gros-
sen Aufwand verbunden, weil zu je-
dem Objekt alle Objekte der unmittel-
baren Umgebung von neuem berech-
net werden miissen. Darum ist es viel
geschickter, das Priifen der Regeln di-
rekt beim Plazieren von Objekten vor-
zunehmen, weil dann die unmittelbare
Umgebung ohnehin bekannt und auf
dem Bildschirm sichtbar ist. Zu diesem
Zweck werden die verschiedenen Re-
geln dem Editor bei dessen Parametri-
sierung bekanntgegeben.

Fiir das FEinhalten der Entwurfsre-
geln stehen dem Beniitzer des VLSI-
Editors Hilfen zur Verfiigung. Wenn
ein Objekt neu erzeugt oder verscho-
ben wird, priift der Editor, ob alle Re-
geln eingehalten worden sind. Ist dies
der Fall, so wird das Objekt auf dem
Bildschirm gezeichnet. Ist jedoch eine
der Regeln verletzt worden, so wird
das Objekt provisorisch gekennzeich-
net, indem es lediglich gestrichelt ge-

‘zeichnet wird. Falls der Beniitzer nicht

sicher ist, kann er nun abfragen, wel-
che der verschiedenen Regeln verletzt
worden ist und welches von den be-
nachbarten Objekten die Regelverlet-
zung verursacht hat. Zudem kann er
sich zeigen lassen, wie nahe an das be-
treffende Objekt irgendein anderes
Objekt (etwa eine Linie auf einer be-
stimmten Schicht) gesetzt werden darf.

9. Schlussbetrachtung

Der beschriebene grafische Editor
ist vergleichbar mit neueren interakti-
ven Editoren fiir das Entwerfen von
VLSI-Chips, z.B. mit dem Programm
ICARUS von Xerox, das in [1, Kap.

Bull. SEV/VSE 74(1983)5, 5. Mérz

(A 141) 241

4.4] beschrieben ist, oder mit dem
Hierarchie-Editor HED und dem Ent-
wurfsprogramm FatFreddy von IN-
MOS, beschrieben in [2]. Er ist Teil
eines integrierten CAD-Systems fiir
den VLSI-Entwurf, welches am Insti-
tut fiir Informatik der ETH Ziirich
entwickelt wird. Mit diesem VLSI-Edi-
tor soll insbesondere gezeigt werden,
dass ein Arbeitsplatzrechner, der iiber
einen begrenzten Speicherausbau, da-

fiir aber iiber eine eigene Disk verfiigt,
fiir die Verarbeitung grosser Daten-
mengen genligt.

Literatur

[1] C. Mead and L. Conway:Introduction to VLSI
systems. Reading/Massachusetts, Addison-Wesley,
1980.

[2] Working material for the advanced course on VLSI
architecture. Bristol, University of Bristol, 1982.

[3] C. Séquin: Standard interchange formats for inte-
grated circuit design. Berkeley, University of Califor-
nia, 1980.

[4] N. Wirth: The personal computer Lilith. In: Micro-
computer system design. Lecture notes in computer
science No. 126. Berlin/Heidelberg/New York,
Springer, 1981.

[5] N. Wirth: Programming in Modula-2. Berlin/Heidel-
berg/New York, Springer, 1982.

[6] M.J. Fosterand H. T. Kung: Design of special-purpo-
se VLSI chips. Example and opinions. (AD-A-081
451)." Pittsburgh, Carnegie-Mellon University, De-
partment of Computer Science, 1979.

[7] J. Nievergelt, H. Hinterberger and K. C. Sevcik: The
gridfile: An adaptable symmetric multi-key file struc-
ture. Berichte des Institutes fiir Informatik No. 46.
Ziirich, ETH, 1981.

242 (A 142)

Bull. ASE/UCS 74(1983)5, 5 mars

	Grafische Editoren für den Entwurf von VLSI-Systemen

