
Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de
l'Association suisse des électriciens, de l'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitätsunternehmen

Band: 74 (1983)

Heft: 5

Artikel: Grafische Editoren für den Entwurf von VLSI-Systemen

Autor: Weibel, B. / Morf, M.

DOI: https://doi.org/10.5169/seals-904774

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-904774
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Grafische Editoren für den Entwurf von
VLSI-Systemen

B. Weibel, M. Morf

Heutige CAD-Systeme sind komplex, schwierig

zu unterhalten oder zu erweitern und
daher sehr teuer. Zukünftige CAD-Software
wird durch moderne Informatikwerkzeuge
effizienter entwickelt und unterhalten werden
können. Zukünftige CAD-Hardware wird
hauptsächlich wegen der Entwicklung von
VLSI-Chips billiger, schneller und mächtiger
werden.
Es wird ein grafischer Editor beschrieben,
und es werden Beispiele von Algorithmen
und Datenstrukturen für diesen Editor
gezeigt. Anwendungsbeispiele sind

gedruckte Schaltungen sowie Logik-Diagramme,

Stick-Diagramme und Layout-Diagramme,

die effizientes Entwerfen von VLSI-

Systemen erlauben.

Les systèmes actuels de conception assistée

par ordinateur (CAO) sont complexes, malaisés

à entretenir ou à développer, donc très
coûteux. Désormais, le logiciel de CAO sera
développé et entretenu plus efficacement

par les moyens modernes de l'informatique
et le matériel deviendra moins coûteux, plus
rapide et plus puissant, surtout par le

développement de puces à intégration à très

grande échelle. On décrit un éditeur
graphique et donne des exemples d'algorithmes
et de structures de données pour celui-ci.

Des applications sont les circuits imprimés,
les diagrammes de logique, diagrammes de
stick et diagrammes de layout, permettant
une conception efficace de systèmes
d'intégration à très grande échelle.

Dieser Aufsatz entspricht dem Vortrag des erstgenannten
Autors anlässlich des «Fall Meeting 1982 on Computer
Aided Design (CAD)» der IEEE Swiss Section, Chapter on
Solid State Devices and Circuits, am 19. Oktober 1982 in

Bern.

Adressen der Autoren
B. Weibel, Institut für Informatik, ETH-Zentrum, 8092
Zürich
Prof. Dr. M. Morf, Yale University, New Haven, Conn.,
USA

1. CAD-Systeme
Heute erhältliche CAD-Systeme1)

sind oft komplex und sehr gross
(typischerweise einige 10 000 Zeilen
Fortran). Da solche Systeme über Jahre
gewachsen sind und sich im Laufe der
Zeit spezifischen CAD-Anwendungen
anpassen mussten, für welche sie

ursprünglich nicht vorgesehen waren,
sind sie nicht hierarchisch strukturiert
und zuwenig modular aufgebaut. Daraus

ergibt sich der schwerwiegende
Nachteil, dass diese Systeme nur mühsam

zu unterhalten und zu erweitern
sind.

Dank moderner Informatikwerkzeuge

wird es in Zukunft möglich sein,
Software effizienter zu entwickeln und
zu unterhalten. Und gerade dank den
Fortschritten auf dem Gebiet der
hochintegrierten Schaltungen wird in
Zukunft billigere, schnellere und
mächtigere Hardware entwickelt werden

können.
Mit fortschreitender Verbesserung

der VLSI-Technologien2) wächst die
Anzahl Transistoren, die auf einem
Chip untergebracht werden können,
sehr rasch. Da die Kosten für das
Entwerfen von Schaltungen nahezu so
schnell wachsen wie die Komplexität
der Schaltungen zunimmt, ist es

notwendig, Strukturen mit möglichst
grosser Regelmässigkeit und möglichst
oft dieselben Strukturen zu verwenden.

Solche Betrachtungen haben
schon früh zu Ansätzen geführt, bei
denen Standardzellen in Reihen
vordefiniert sind (z.B. Gate-Arrays). Die
Aufgabe des Entwerfens besteht dann
darin, die nötigen Gates geeignet zu
plazieren und richtig zu verbinden.

Mit zunehmender Komplexität der
Schaltungen ist auch die Notwendigkeit

erkannt worden, CAD-Programme
zu entwickeln, die beim

Schaltungsentwurf nützlich sind. So gibt es

Programme, die versuchen, das eben

') CAD Computer Aided Design
2) VLSI Very Large-Scale Integration

erwähnte Plazieren und Verbinden
von Gates automatisch vorzunehmen.
In anderen Ansätzen wird versucht,
für ganze Klassen von (einfacheren)
VLSI-Architekturen den Vorgang des
Entwerfens zu automatisieren. Die
Tatsache, dass solches automatisches
Entwerfen weniger gute Resultate
liefert als eine Optimierung von Hand,
kann sich unter Umständen nachteilig
auswirken. Ein vielversprechender
Mittelweg besteht darin, dem Benützer
Zwischenresultate des automatischen
Entwerfens zu zeigen und ihm
Gelegenheit zu geben, kritische Bereiche
von Hand zu optimieren und den
Entwurf am Schluss zu vervollständigen.

2. Individuelle
Arbeitsplatzrechner
Die Fortschritte auf dem Gebiet der

Hardware zusammen mit modernen
Methoden der Informatik auf dem
Gebiet der Software haben in jüngster
Zeit zur Entwicklung von leistungsfähigen

und kostengünstigen
Arbeitsplatzrechnern geführt. Eine höhere
Programmiersprache und Hilfsmittel
wie interaktive Debugger und Editoren

sind in der Lage, den Software-Ingenieur

beim Entwickeln von
Programmen so zu unterstützen, dass er in
der gleichen Zeit viel produktiver ist.
Ein ständig für den persönlichen
Gebrauch verfügbares Computersystem
bildet eine ideale Arbeitsumgebung,
wenn durch dessen Einfachheit und
Klarheit und durch entsprechende
Unterstützung mit Systemsoftware eine
bequeme Benützung gewährleistet ist.

Für den Einsatz eines Arbeitsplatzrechners

kommen vor allem
Anwendungsgebiete in Frage, bei denen die
direkte Verfügbarkeit und die Interaktivität

des Computersystems besonders

gut ausgenützt werden können.
Auch beim Entwurf von VLSI-Systemen

ist es zweckmässig, für diejenigen
Teilprobleme, bei denen es auf eine
intensive Interaktion zwischen Benützer

238 (A 138) Bull. ASE/UCS 74(1983)5, 5 mars



und Programm ankommt, Lösungen
auf einem Arbeitsplatzrechner zu
implementieren.

3. Entwurf von
VLSI-Systemen
Es ist üblich, für die Beschreibung

von VLSI-Systemen Darstellungen auf
verschiedenen Stufen zu verwenden.
Wenn alle geometrischen Details einer
ausgelegten Schaltung sichtbar sein
sollen, spricht man von Layout-Diagrammen.

Wenn nur die Topologie
der Verbindungen der Schaltung
wesentlich ist, kann man sogenannte
Stick-Diagramme verwenden. Als weitere

Abstraktion stehen die üblichen
Schaltungsdiagramme und Logik-Diagramme

zur Verfügung. Beispiele für
die verschiedenen Darstellungsformen
sind in [1', Kap. 3.2], einem Standardwerk

über VLSI-Systeme, zu finden.
Ein Softwarepaket für das interaktive

Entwerfen von VLSI-Systemen
kann zum Beispiel folgende Funktionen

anbieten: eine Sprache zur
Beschreibung von Hardware (hardware
description language), die automatische

Übersetzung zwischen dieser
Sprache und Diagrammen in verschiedenen

Darstellungsarten, eine Familie
von Editoren für das grafische
Bearbeiten der Diagramme aller Stufen,
Hilfsprogramme für Output auf Druk-
ker oder Plotter, verschiedene
Simulationsmöglichkeiten, das automatische
Erzeugen von Testmustern und
schliesslich das Berechnen der Masken
aus den Diagrammen. Es ist sogar
möglich, dass ein solches CAD-System
Hilfsmittel zur Verfügung stellt, um
Schaltungen in verschiedenen Technologien

(z.B. als gedruckte Schaltung
oder als integrierte Schaltung) zu
implementieren.

Einige Teilaufgaben beim VLSI-
Entwurf eignen sich für eine automatische

Bearbeitung. Beispielsweise gibt
es Programme, die recht kompakte
Schaltungen erzielen, indem sie Stick-
Diagramme automatisch in Layout-
Diagramme übersetzen. Für andere
Problemkreise ist es gut, wenn der Be-
nützer die Möglichkeit hat, von Hand
zu entwerfen.

4. Systemintegration
Ein CAD-System für das Entwerfen

grosser VLSI-Systeme soll dem Benüt-
zer die Möglichkeit geben, seine Schaltung

in unabhängige Blöcke zu zerlegen,

um einerseits die Übersichtlich-

Fig. 1

Eine mit dem
VLSI-Editor von Hand
entworfene Karte einer
asynchronen Schnittstelle
als Beispiel für eine
gedruckte Schaltung
Links Lötseite,
rechts Bestückungsseite

keit des Entwurfs zu erhöhen und
anderseits das Aufteilen in lokal zu
behandelnde Teilprobleme zu ermöglichen.

Eine solche hierarchische
Strukturierung der Schaltungen ist aus
demselben Grund wünschenswert, aus
dem das Konzept der Modularisierung
in höheren Programmiersprachen
Eingang gefunden hat: Ein klarer Aufbau,
dessen Struktur sichtbar bleibt, macht
das Entwerfen weniger fehleranfällig.
Zudem ist es einfacher möglich, dass
beim Entwurf eines grossen Systems
mehrere Personen verschiedene Teile
bearbeiten, wenn Einheiten mit genau
umschriebenen Schnittstellen definiert
werden.

Es ist wichtig, dass die verschiedenen

Komponenten eines CAD-Systems

als zusammenhängendes
Softwarepaket gestaltet werden. Die zur
Verfügung stehenden Programme sollen

eine Einheit bilden und untereinander

verträglich sein. Darum muss
jedes Programm sich an dasselbe Konzept

der hierarchischen Strukturierung
halten und darf die vom Benützer
definierte Unterteilung einer Schaltung
nicht wieder verwischen. Das CAD-
System von INMOS [2] zeigt, dass heute

dieser Grundsatz bei der
Software-Entwicklung befolgt wird.

Ebenfalls dem übersichtlichen Aufbau

des CAD-Systems dient ein von
allen Programmen verwendetes
Standardformat, wofür das Austauschformat

STIF3) ein Beispiel ist [3], Die
Meinung ist nicht, dass einzelne
Programme keine anderen Datenstrukturen

verwenden dürfen. Die Programme
können sogar auf verschiedenen

3) STIF Structured Interchange Format

Rechnern laufen. Aber die verschiedenen

Datenstrukturen und Fileformate
müssen einfach konvertierbar sein. Als
gemeinsames Standardformat für den
Schaltungsentwurf ist eine symbolische

Darstellung auf möglichst hoher
Stufe zu verwenden. Als Grundelemente

sind etwa Transistoren, Kontakte

und Verbindungen («Drähte»)
zu wählen, welche zwar als Rechtecke
dargestellt werden, aber in der
Datenstruktur nicht in Rechtecke aufgelöst
werden dürfen. Dadurch wird das
Überprüfen von Schaltungen (z.B.
deren Simulation), die in verschiedenen
Darstellungsformen vorliegen, wesentlich

vereinfacht.
Schliesslich sollen sich Editoren für

verschiedené Darstellungsformen
möglichst gleich verhalten, d.h. Befehle,

die allen Editoren gemeinsam sind,
sollen für den Benützer auch gleich
aussehen. Am besten werden die
identischen Befehle als gemeinsamer Kern
gestaltet. Die übrigen Befehle können
je nach Bedarf dazugeladen werden.
Mit diesem Mechanismus der Parame-
trisierung können dem Editor auch
andere (z.B. von der Technologie abhängige)

Regeln bekanntgegeben werden.

5. Ein VLSI-Editor
Im folgenden wird ein grafischer

Editor beschrieben, welcher nach
entsprechender Parametrisierung für das
Entwerfen von VLSI-Systemen auf der
Stufe von Logik-Diagrammen, Stick-
Diagrammen und Layout-Diagrammen

sowie für das Entwerfen von
gedruckten Schaltungen (Fig. 1) geeignet
ist.

Bull. SEV/VSE 74(1983)5, 5. März (A 139) 239



Ein Editor ist ein Programm mit
ausgeprägter Interaktivität. Deshalb
ist ein Arbeitsplatzrechner speziell für
diesen Anwendungsbereich geeignet.
Im vorliegenden Fall wird als Hardware

der Lilith-Rechner [4] verwendet.
Dieser weist als wesentliche Merkmale
neben einer zentralen Recheneinheit
einen Speicher mit 128 kWort (zu 16

Bit) und eine auswechselbare Disk mit
einer Kapazität von 10 MByte auf. Die
Maschine ist mit einem Bildschirm
ausgestattet, der für Text und Grafik
gleichermassen geeignet ist. Zusätzlich
zu einer Tastatur ist als Eingabegerät
eine «Maus» mit drei Funktionsknöpfen

angeschlossen. Das Positionieren
auf dem Bildschirm geschieht durch
Bewegen der Maus auf dem Tisch, was
von der Software in Bewegungen auf
dem Bildschirm übersetzt wird. Die
meisten Befehle werden durch die drei
Funktionsknöpfe ausgelöst, entweder
direkt beim Betätigen derselben oder
dann über eine flexible Menütechnik.

Die Software für den Lilith-Rechner
wird in der Programmiersprache
Modula-2 [5] geschrieben. Diese Sprache
unterstützt durch das darin enthaltene
Modulkonzept den modularen Aufbau

und die Erweiterbarkeit von
Programmen, und sie erleichtert das
Zusammenarbeiten mehrerer Leute bei
der Entwicklung grosser Softwarepakete.

6. Sicht des Benutzers
Der Benützer kann (und soll) seine

Diagramme in Module zerlegen; das
sind Teilbereiche, welche wiederum
aus Teilen zusammengesetzt sein können.

Umgekehrt kann eine Anzahl

(nicht überlappender) Module zu
einem neuen Modul zusammengefasst
werden. So ergibt sich eine hierarchische

Unterteilung von der Form einer
Baumstruktur. Es ist möglich, die
hierarchische Unterteilung eines

Diagramms im Verlaufe des Entwerfens
zu ändern und neu zu definieren. Die
Schnittstelle der Module besteht aus
einem begrenzenden rechteckigen
Rahmen, der entweder nicht sichtbar
ist oder aber hervorgehoben werden
kann, und aus den Anschlussverbindungen.

Dank der hierarchischen
Struktur der Diagramme ist es möglich,

verschiedene Stufen der Abstraktion

darzustellen, indem von einzelnen
Modulen nur die Umrisse oder aber
auch alle Details gezeigt werden (logical

zooming). Von Modulen können
Kopien hergestellt werden, die aus
einem einzelnen Exemplar oder aus
einer ganzen Reihe (Array) von
mehreren Modulen bestehen.

In einer Bibliothek hat der Benützer
eine Sammlung von Modulen zur
Verfügung, die entweder im System
vordefiniert sind oder die er selber
entworfen hat (Fig. 2). Beispiele solcher
Bausteine sind NAND-Gates, Flip-
Flops, Schieberegister oder Speicherzellen.

Beim Abrufen von Bibliotheksmodulen

können allenfalls noch einige
Parameterwerte angegeben werden,
um eine geeignete Dimensionierung zu
erreichen. Zum Beispiel kann ein Modul

in verschiedenen geometrischen
Ausdehnungen und Formen verfügbar
sein.

Um die hierarchische Unterteilung
eines Diagramms übersichtlich
darzustellen, kann der Bildschirm in mehrere

Bereiche (sog. Fenster) aufgeteilt
werden, in welchen verschiedene
Ausschnitte eines Diagramms unabhängig

voneinander behandelt werden können.

Die Fenster werden bei Bedarf
neu erzeugt, verändert oder wieder
gelöscht. Der in einem Fenster sichtbare
Bildausschnitt kann über das

Diagramm hinweg verschoben werden.
Um das Entwerfen möglichst

angenehm zu gestalten, hat der Benützer
die Möglichkeit, den Ausschnitt eines
jeden Fensters einzeln mit einem Ver-
grösserungsfaktor zu strecken (Fig. 3).
Dadurch erkennt er Details besser und
kann mit der Maus genauer positionieren.

Ebenfalls dem genauen Positionieren

dient die Einrichtung eines
(veränderbaren) Rasters auf dem
Bildschirm, welches die Auflösung beim
Eingeben von Koordinaten bestimmt.

Die verschiedenen Schichten (Metall,

Polysilicon, Diffusion usw.), die
in den verschiedenen VLSI-Technolo-
gien nötig sind, werden auf dem
Bildschirm durch verschiedene Muster

Clock _

Pin- "{>
p inverter

NAND

Q dout

Comparator Cell for Pattern Matching

Clock »v ^wwwwwww«^

-Pout

_ Clock

Pout

implant

Fig. 2 Beispiel eines Moduls, mit dem VLSI-Editor, dargestellt als Logik-Diagramm (a) und als Stick-Diagramm (b) [6]

240 (A140) Bull. ASE/UCS 74(1983)5, 5 mars



oder Farben (falls ein Farbbildschirm
vorhanden ist) dargestellt.

Der Editor kennt als einfache Arten
von Objekten Linien und Polygone
(zusammengesetzte Linien), die immer
einer bestimmten Schicht angehören.
Die Linien können horizontal, vertikal
oder in einem Winkel von 45 Grad
gezeichnet werden und sind als Rechtek-
ke dargestellt. Kompliziertere Objekte
sind verschiedene Typen von Transistoren

und Kontakten, die sich über
mehr als eine Schicht erstrecken.

Einige Parameterwerte für das
Zeichnen von Objekten sind global
wählbar und bleiben solange gültig,
bis sie neu definiert werden. Beispielsweise

wird die Schichtzugehörigkeit
von Linien und Polygonen auf diese
Art gewählt. Ihre Breite kann für jede
Schicht getrennt gesetzt werden.

Das Bestimmen auf dem Bildschirm
sichtbarer Positionen und das Auswählen

bereits gezeichneter einzelner
Objekte oder ganzer Bereiche von Objekten

geschieht, indem man mit der
Maus die entsprechenden Stellen
bezeichnet. Die so ausgewählten Objekte
dienen dann verschiedenen Operationen

als implizite Argumente.
Es stehen dem Benützer verschiedene

Grundoperationen für das Erzeugen,

Plazieren und Abändern von
Objekten zur Verfügung, welche durch
einfaches Betätigen der Mausknöpfe
direkt ausgelöst werden können. Unter
diesen Grundoperationen befinden
sich das Zeichnen von Linien, Polygonen,

Transistoren oder Kontakten
sowie das Verschieben des gegenwärtig
sichtbaren Bildausschnittes. Ebenso
einfach werden zuvor ausgewählte
Objekte verschoben oder kopiert. Einzelne

Objekte (insbesondere Linien oder
Polygone) können gestreckt (d.h.
verlängert oder verkürzt) werden, indem
vorher ein Ende des entsprechenden
Objektes ausgewählt wird. Zu den
Grundoperationen ist schliesslich
noch das Eingeben von Text (für
Beschriftungen und Kommentare) zu
zählen.

Weniger häufig auszuführende
Operationen sind dem Benützer über
verschiedene Menüs zugänglich. So können

ausgewählte Objekte wieder
gelöscht werden, oder sie können
(horizontal oder vertikal) gespiegelt oder
(in Einheiten von 90 Grad) gedreht
werden. Die einzelnen Schichten können

selektiv auf dem Bildschirm
gelöscht oder wieder sichtbar gemacht
werden. Es kann verlangt werden, dass

Ausschnitte des erstellten Diagramms

aufbereitet werden zum anschliessenden

Drucken oder Plotten.

7. Wahl der Datenstruktur
Im folgenden wird der Aufbau der

Datenbank für den beschriebenen
VLSI-Editor gezeigt. Da auf dem Li-
lith-Rechner zuwenig Speicherplatz
zur Verfügung steht, um die ganze
Beschreibung grosser Diagramme im
Speicher zu halten, ist eine Struktur
für die Daten auf der Disk gesucht
worden, welche auch für den interaktiven

Betrieb geeignet ist. Im wesentlichen

geht es darum, grosse Mengen
von Objekten (nämlich Linien,
Polygone, Transistoren oder Kontakte) so

zu strukturieren, dass genügend
schnell auf einzelne dieser Objekte
zugegriffen werden kann.

Die gewählte Datenstruktur beruht
auf dem Prinzip der sog. Grid-Files [7].
Der Wertebereich verschiedener Attribute,

welche gleichberechtigt sind und
symmetrisch behandelt werden, bildet
einen mehrdimensionalen Suchraum.
Die Grundidee besteht in der Gitter-
Teilung (daher die Bezeichnung Grid-
Files) dieses Suchraumes. Der Zugriff
zu den Objekten erfolgt über das

Gitter-Directory, in welchem die
Veränderungen der Gitter-Teilung eingetragen

werden.
Die Gitter-Teilung liefert dann gute

Resultate, wenn die Objekte durch
eine kleine Anzahl von Attributen
charakterisiert sind, deren Wertebereich

gross ist. Da die darzustellenden
Objekte alle auf Rechtecke mit zusätzlichen

Attributen zurückgeführt werden
können, kommen für die vorliegende
Anwendung die horizontale und vertikale

Koordinate sowie Breite und
Höhe von Rechtecken als Charakterisierung

in Frage. Natürlich besitzen
die Objekte noch weitere Attribute, die
aber nicht zum Aufbau des Suchraumes

beitragen.
Diese Datenstruktur ist für häufige

Änderungen geeignet, weil sich die
Gestalt der Filestruktur beim Einfügen
und Löschen von Objekten jeweils der
neuen Situation anpasst. Sie bietet
sowohl schnellen Zugriff zu einzelnen
Objekten als auch effizientes Behandeln

von Abfragen für ganze Bereiche.
Es ist also einfach, alle Objekte zu
bestimmen, die in einem bestimmten
Ausschnitt eines Diagramms liegen.
Zu den weiteren Eigenschaften gehört
die gute Speicherausnützung (70%),
die unabhängig von der Verteilung der
Daten ist.

8. Direktes Prüfen der
Entwurfsregeln
Für jeden Fabrikationsprozess einer

bestimmten Technologie gibt es

Entwurfsregeln, die dem Entwerfen von
Diagrammen geometrische Einschränkungen

auferlegen, um eine problemlose

Fabrikation von funktionierenden
Transistoren und Verbindungen

zu garantieren. Zu den Entwurfsregeln
gehört eine Anzahl von Regeln über
die Abmessungen (etwa die minimale
Breite) jedes Objektes und eine Anzahl
von Regeln über die minimalen
Abstände zwischen den Objekten [1, Kap.
2.6],

Das Prüfen der Entwurfsregeln
(design rule checking) wird bis heute
üblicherweise mit einem separaten
Programm nachträglich erledigt. Ein
solches Programm ist mit einem grossen

Aufwand verbunden, weil zu
jedem Objekt alle Objekte der unmittelbaren

Umgebung von neuem berechnet

werden müssen. Darum ist es viel
geschickter, das Prüfen der Regeln
direkt beim Plazieren von Objekten
vorzunehmen, weil dann die unmittelbare
Umgebung ohnehin bekannt und auf
dem Bildschirm sichtbar ist. Zu diesem
Zweck werden die verschiedenen
Regeln dem Editor bei dessen Parametri-
sierung bekanntgegeben.

Für das Einhalten der Entwurfsregeln

stehen dem Benützer des VLSI-
Editors Hilfen zur Verfügung. Wenn
ein Objekt neu erzeugt oder verschoben

wird, prüft der Editor, ob alle
Regeln eingehalten worden sind. Ist dies
der Fall, so wird das Objekt auf dem
Bildschirm gezeichnet. Ist jedoch eine
der Regeln verletzt worden, so wird
das Objekt provisorisch gekennzeichnet,

indem es lediglich gestrichelt
gezeichnet wird. Falls der Benützer nicht
sicher ist, kann er nun abfragen, welche

der verschiedenen Regeln verletzt
worden ist und welches von den
benachbarten Objekten die Regelverletzung

verursacht hat. Zudem kann er
sich zeigen lassen, wie nahe an das
betreffende Objekt irgendein anderes
Objekt (etwa eine Linie auf einer
bestimmten Schicht) gesetzt werden darf.

9. Schlussbetrachtung
Der beschriebene grafische Editor

ist vergleichbar mit neueren interaktiven

Editoren für das Entwerfen von
VLSI-Chips, z.B. mit dem Programm
ICARUS von Xerox, das in [1, Kap.

Bull. SEV/VSE 74(1983)5, 5. März (A141) 241



4.4] beschrieben ist, oder mit dem
Hierarchie-Editor HED und dem
Entwurfsprogramm FatFreddy von IN-
MOS, beschrieben in [2]. Er ist Teil
eines integrierten CAD-Systems für
den VLSI-Entwurf, welches am Institut

für Informatik der ETH Zürich
entwickelt wird. Mit diesem VLSI-Edi-
tor soll insbesondere gezeigt werden,
dass ein Arbeitsplatzrechner, der über
einen begrenzten Speicherausbau, da¬

für aber über eine eigene Disk verfügt,
für die Verarbeitung grosser
Datenmengen genügt.

Literatur
[1] C. Mead and L. Conway.Introduction to VLSI

systems. Reading/Massachusetts, Addison-Wesley,
1980.

[2] Working material for the advanced course on VLSI
architecture. Bristol, University of Bristol, 1982.

[3] C. Séquin: Standard interchange formats for inte¬
grated circuit design. Berkeley, University of California,

1980.

[4] N. Wirth: The personal computer Lilith. In:
Microcomputer system design. Lecture notes in computer
science No. 126. Berlin/Heidelberg/New York,
Springer, 1981.

[5] N. Wirth: Programming in Modula-2. Berlin/Heidel¬
berg/New York, Springer, 1982.

[6] M. J. Foster and H. T. Kung: Design of special-purpo¬
se VLSI chips. Example and opinions. (AD-A-081
451). Pittsburgh, Carnegie-Mellon University,
Department of Computer Science, 1979.

[7] J. Nievergelt, H. Hinterberger and K. C. Sevcik: The
gridfile: An adaptable symmetric multi-key file structure.

Berichte des Institutes für Informatik No. 46.
Zürich, ETH, 1981.

242 (A 142) Bull. ASE/UCS 74(1983)5, 5 mars


	Grafische Editoren für den Entwurf von VLSI-Systemen

