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CAD für integrierte Schaltungen
W. Hottinger

Die stürmische Entwicklung der Technologie
für integrierte Schaltungen (IC) führt dazu,

dass die bestehenden Möglichkeiten aus
Mangel an geeigneten CAD-Werkzeugen
kaum mehr ausgeschöpft werden können.
Ein CAD-System, welches sich durch
Designsicherheit, hohe Interaktivität und eine
hierarchische Struktur auszeichnet, kann die
Machbarkeit von IC in der Zukunft gewährleisten;
allerdings braucht es dazu eine veränderte
Arbeitsweise der Schaltungsentwickler sowie
eine neue Generation von CAD-Werkzeugen.

Par suite du manque d'outils appropriés pour
la conception assistée par ordinateur (CAO),

il n'est plus guère possible d'épuiser les
possibilités de l'évolution extrêmement rapide de
la technologie des circuits intégrés. Un
système de CAO qui se distingue par sa sûreté
de conception, sa grande interactivité et sa
structure hiérarchique, peut assurer désormais

la confection de ces circuits. Toutefois,
il faut un autre mode de travail des concepteurs

ainsi qu'une nouvelle génération d'outils

de CAO.

Dieser Aufsatz entspricht dem Vortrag des Autors anlässlich

des «Fall Meeting 1982 on Computer Aided Design
(CAD)» der IEEE Swiss Section. Chapter on Solid State
Devices and Circuits, am 19. Oktober 1982 in Bern.

Adresse des Autors
W. Hottinger, Faselec AG, Räffelstrasse 29, 8045 Zürich.

1. Tendenzen der VLSI-
Entwicklung
Die maximale Anzahl Komponenten

auf einer integrierten Schaltung
hat sich in den letzten 20 Jahren im
Durchschnitt pro Jahr beinahe
verdoppelt und erreicht heute über
100 000 Transistoren pro Chip [1], Diese

Komplexität wurde einerseits durch
immer kleinere Geometrien erreicht
(Linienbreiten von 2 bis 4 pm sind
heute üblich), anderseits durch immer
grössere Chipflächen (40 bis 80 mm2).
Die Analyse der technischen Möglichkeiten

und Grenzen zeigt, dass eine
weitere Steigerung der Integrationsdichte

um zwei Zehnerpotenzen im
Bereich des Möglichen liegt [2].

Der Entwicklungsaufwand für
moderne Mikroprozessoren beträgt zurzeit

ein bis einige Dutzend Mannjahre.
Extrapolationen ergeben, dass in
Zukunft mit einigen Hundert, ja einigen
Tausend Mannjahren gerechnet werden

muss [3]. Offensichtlich kann eine
solche Entwicklung nicht stattfinden,
die angestellten Überlegungen machen
jedoch klar, dass der Fortschritt in
Schaltungsintegration nicht mehr nur
durch die Technologie begrenzt ist,
sondern vielmehr durch die Produktivität

der Entwickler.

2. Kritik der heutigen
CAD-Systeme
Die heutigen Methoden zur

Entwicklung von integrierten Schaltungen
entstanden in der Zeit, wo ein IC einige

zehn bis einige hundert Elemente
umfasste. VLSI (Very Large Scale
Integration) darf aber nicht einfach als

«grosser IC» verstanden werden,
sondern verlangt eine veränderte Design-
Methodik und eine Anpassung an die
neuen Randbedingungen, welche no-
tabene durch die Halbleiter geschaffen
wurden.

Gegen 1970 entstanden die ersten
CAD-Programme für IC Design. Es

handelte sich um Programme zur
Schaltungsanalyse, um Logiksimulatoren

und um Layoutprogramme. Bald
darauf folgten Programme, welche
geometrische und elektrische Designfehler

entdecken konnten (DRC:
Design Rule Checking; ERC: Electrical
Rule Checking). Sie waren, der Zeit
entsprechend, auf optimalen Einsatz
der teuren Computer zugeschnitten,
aber kaum auf die Bedürfnisse der
Benutzer. Die Eingabe geschah mittels
Lochkarten, die Verarbeitung erfolgte
«Batch»-weise, und die Resultate wurden

in Tabellenform dargestellt. So
vertauschte der Designer seinen
Laborplatz mit einem Kartenstanzer. Mit
der Zeit lösten interaktive graphische
Editoren die Layoutprogramme ab,
alle anderen Programme blieben
Batch, die meisten bis heute.

Alle Verbesserungen und Erweiterungen

der Programme fielen zudem
über kurz oder lang dem exponentiel-
len Wachstum der Schaltungskomplexität

zum Opfer. Die strikte Trennung
zwischen elektrischem Design einerseits

und Layout anderseits - vor allem
in den USA - zementiert die Struktur
des CAD. Oft laufen die Programme
auf verschiedenen Computern, und
falls überhaupt Information von
einem Programm zum nächsten
weitergegeben werden kann, dann
muss diese meistens verändert werden.
Nur in wenigen Fällen wurde
versucht, ein CAD-System zu schaffen,
welches von der Simulation bis zur fertig

getesteten Schaltung eine einzige
Datenbasis benutzt und kompatible
Schnittstellen zwischen den
Designschritten hat, um so die Wahrscheinlichkeit

von Designfehlern drastisch
zu reduzieren.

Bei den meisten heute erhältlichen
Systemen [4] kann die Identität von
elektrischem und geometrischem
Design erst am Layout durch Pattern-
erkennung und Extraktion von elektrischer

Information überprüft werden.
Die nötigen Korrekturen müssen dann
am fertig optimierten Layout erfolgen.
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Es scheint, dass CAD für VLSI
nicht durch Evolution der bestehenden

Programme, sondern nur durch
Revolution der Entwicklungsmethoden

erreicht werden kann. Wenn man
allerdings drei der wichtigsten
Neuerungen der letzten Jahre betrachtet,
zeigt sich, dass nur eine davon einen
wirklichen Durchbruch erreichte.
1. Die Verwendung von regelmässigen

Strukturen wie RAM (Random
Access Memory), ROM (Read Only
Memory) und PLA (Programmable
Logic Array) könnte die
Entwicklungszeiten in gewissen Grenzen
halten, da solche Strukturen
verhältnismässig einfach durch
Computerprogramme generiert werden
können. Obwohl diese Tatsache
allgemein anerkannt wird, haben
selbst die modernsten und komplexesten

Schaltungen einen enttäuschend

niedrigen Regularitätsfak-
tor [5]. (Als Regularitätsfaktor
bezeichnet man das Verhältnis der
Gesamtzahl der Elemente auf einer
Schaltung zur Anzahl der manuell
ausgelegten Elemente.)

2. Seit längerer Zeit wird die Automatisierung

von Plazierung und
Verbindung von einzelnen Layoutteilen

untersucht. Obwohl sehr viel
grundlegende Arbeit geleistet wurde

und obwohl manche Resultate
beeindruckend sind, ist das Echo
enttäuschend gering. Automatisches

Design liefert in den weitaus
meisten Fällen wesentlich weniger
dichte Layouts als manuelle Arbeit,
zudem verschlechtert sich die Qualität

stark mit zunehmender
Komplexität.

3. Synchrone Logik bildet die
Ausnahme in dieser Reihe. Obwohl
asynchrone Logik die Zeit besser
nutzen kann (ein Ereignis kann zu
jeder beliebigen Zeit erfolgen, nicht
nur als Folge eines Clocksignals
wie in synchronen Systemen),
haben die Schwierigkeiten, welche
grosse asynchrone Systeme in der
Entwicklung, im Austesten und in
der Endkontrolle bereiten, dazu
geführt, dass das Konzept der
synchronen Logik weltweit verwendet
wird.
Die wichtigsten Nachteile der

gängigsten CAD-Systeme sind also:
schlechte «man-machine interfaces»;
ungenügende Designsicherheit wegen
fehlender oder schlechter
Programmkompatibilität; lange Zeiten für
Fehlerrückmeldungen. Die ernsteste
Beeinträchtigung liegt aber darin, dass
die heutigen CAD-Werkzeuge keine

angemessene Methodik unterstützen.
Der Designer wird geradezu ermutigt,
auf der niedrigst möglichen Ebene zu
arbeiten: mit grafischen Editoren
direkt am geometrischen Layout, mit
Simulatoren an Transistoren oder
Gattern. Werkzeuge, um abstrakte
Darstellungen zu erfassen und zu manipulieren,

fehlen weitgehend. Ein CAD-
System, welches die Möglichkeit bietet,

eine Aufgabe durch Gliederung in
Teilaufgaben zu vereinfachen und
übersichtlicher zu gestalten, existiert
bis heute nicht.

3. Anforderungen an
künftige CAD-Systeme
Die Ziele einer neuen Methodik für

VLSI-Design müssen sein:

A) Ein möglichst grosses Mass an Design¬
sicherheit wird gewährleistet.

B) Alle Entwicklungsstufen (vom Pflich¬
tenheft bis zur Endkontrolle) sind
beinhaltet.

C) Die Möglichkeiten der Technologie
werden optimal ausgenützt.

D) Die Produktivität der Designer wird
verbessert.

E) Die Befriedigung der Designer wird er¬

höht.
F) Die Einführung von effizienter CAD-

Software ist möglich.

Am einfachsten lassen sich die nötigen

Kompromisse erklären, wenn man
die zwei Extreme der möglichen CAD-
Systeme betrachtet:

3.1 Vollautomatisches CAD (Fig. 1A)

Alle Schritte zwischen den verschiedenen

Stadien werden durch
Computerprogramme vollautomatisch aus¬

geführt. Ein solches System (es wird
als «Silicon-Compiler» bezeichnet)
erfüllt A, B und D sehr gut, C sehr
schlecht. Die Auswirkung auf E und F
ist stark von der Implementierung
abhängig. Silicon-Compiler sind heute
erst im Forschungsstadium [6], bis zu
ihrem Einsatz dürften noch einige Jahre

vergehen.

3.2 Manuelles CAD (Fig. 1B)

Alle Schritte werden manuell ausgeführt,

die Richtigkeit des Designs wird
durch Programme geprüft. Die
Forderungen B und C würden gut, D und E
schlecht erfüllt. Die Designsicherheit
kann nur durch konsequentes «top-
down Design» wirklich garantiert werden.

4. Hierarchie
Die Komplexität der heutigen

Schaltungen bewirkt, dass entweder
lange Entwicklungszeiten in Kauf
genommen werden müssen oder aber die
Fläche schlecht genutzt wird. Nur
durch Reduktion der Komplexität
kann eine signifikante Verbesserung
erreicht werden.

Die Struktur eines Systems
bestimmt dessen Komplexität. Zur
Illustration mag der Vergleich zwischen
einer hoch strukturierten Schaltung
(z.B. 64 k RAM) und einer unstrukturierten

Schaltung (Mikroprozessor der
ersten Generation) dienen. Obwohl die
Speicherschaltung etwa zehnmal mehr
Transistoren enthält, ist die Entwicklung

verhältnismässig einfach, da eine
einzige Entscheidung 65 536 Transistoren

beeinflusst, statt nur einige we-
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Fig. 2 Layout und Struktur eines hierarchischen Blocks Begin
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nige. Regelmässige Strukturen vereinfachen

also ein System, in vielen Fällen

genügen sie aber den
Geschwindigkeitsanforderungen nicht.

Eine andere Möglichkeit, die
Komplexität zu kontrollieren, ist die
Abstraktion, d.h. das Ersetzen eines
Elementes durch ein einfacheres, welches
nur noch die Wechselwirkung mit der
Aussenwelt definiert, aber keinen
Inhalt mehr besitzt (Black Box). Abstraktion

kann die Datenmenge, welche nötig

ist, um ein Element zu beschreiben,
um Grössenordnungen reduzieren.
Beinahe alle gängigen CAD-Systeme
verwenden Abstraktion auf der einen
oder anderen Stufe («Stickdiagrams»,
Gates usw.). Erst durch konsequent
wiederholte (hierarchische) Abstraktion

ist es aber möglich, beliebig
komplexe Systeme in den Griff zu bekommen.

Ein Block im hierarchisch organisierten

Design besteht aus einer
Anzahl untergeordneter Blöcke, welche
durch Leitungen miteinander verbunden

sind, und aus Anschlusspunkten
für Signale zur Aussenwelt. Die
untergeordneten Blöcke sind selbst wieder
in derselben Art aufgebaut. Jeder
Block im Layout muss definierte
Grenzen besitzen, welche nicht durch
Leitungen oder andere Blockgrenzen
überkreuzt werden dürfen. Auf dieser
Grenze müssen auch die Anschlusspunkte

für Verbindungen nach der
Aussenwelt liegen.

Die Blockgrenzen und die Lage der
Anschlüsse werden ihrerseits bestimmt
durch das interne Layout, d.h. durch
die Anordnung der untergeordneten
Blöcke und deren Verbindungen.

Zu jedem Block gehört demnach
eine Beschreibung seiner Struktur und
eine Beschreibung seiner Geometrie

(Fig. 2). Die strukturelle Beschreibung
muss enthalten:

den Namen des Blocks,
die Namen der Signale zur Aussenwelt,
die Namen der untergeordneten Blöcke
und
die Beziehung der untergeordneten Blök-
ke (Netzwerk).

Die geometrische Beschreibung muss
enthalten:

die Koordination der Blockgrenzen,
die Koordination der Anschlusspunkte,
die geometrische Anordnung der
untergeordneten Blöcke und
die geometrische Anordnung der internen

Verbindungen.

Es ist aber durchaus denkbar, dass
weitere Information gespeichert werden

kann, wie z.B. Leistungsaufnahme,
Kommentare, Designstatus usw.

In einem hierarchischen System wird
immer ein Verlust an Dichte zu erwarten

sein, da die Blockgrenzen einen
Teil der verfügbaren Fläche beanspruchen.

Je kleiner ein Block ist, um so
grösser wird auch die «verschwendete»

Fläche. Anderseits wird durch die
Reduktion der Komplexität das
Design stark vereinfacht und dadurch
beschleunigt.

5. Interaktivität
Im direkten Dialog mit dem Computer

können die Resultate jeder
einzelnen Operation unmittelbar überprüft

und fehlerhafte Eingaben sofort
korrigiert werden. Es ist allerdings
wesentlich, dass die Datenmengen, welche

verarbeitet werden müssen,
möglichst klein sind, andernfalls werden
die Antwortzeiten zu lang. Das
hierarchische CAD-System erfüllt diese
Bedingungen optimal, es ist denkbar,
neben der Syntax auch die elektrische

und geometrische Richtigkeit des
Designs in Echtzeit zu überprüfen.

Für die Verbindungen zwischen
einzelnen Blöcken werden im allgemeinen

nur zwei, höchstens drei Masken
verwendet, dadurch verringert sich die
Anzahl der relevanten Layoutregeln
drastisch. DRC kann unter Umständen

sogar trivial sein
Für eine Technologie sei die minimal

zugelassene Linienbreite 2d, der
minimale Abstand zweier Linien auch
2d. Durch die Wahl eines Gitters mit
der Maschenweite 4d kann jede Verletzung

von Layoutregeln automatisch
ausgeschlossen werden (Fig. 3). Die
Verifikation, ob eine Verbindung
zwischen zwei Blöcken elektrisch richtig
ist, kann durch einen Vergleich der
den entsprechenden Anschlusspunkt
zugeordneten Signalnamen gemacht
werden. Interaktivität kann aber auch
dazu benutzt werden, dem Ingenieur
seine fast vergessene Umgebung wieder

näherzubringen. Es ist nicht
einzusehen, weshalb die Skizze eines
Schaltschemas in Text umgewandelt werden

Fig. 3 Einfache Methode zur Einhaltung der
Layout-Regeln

236 (A136) Bull. ASE/UCS 74(1983)5, 5 mars



muss, um für einen Computer akzeptabel

zu sein; mit einem geeigneten
grafischen Editor könnte dasselbe Schema
am Bildschirm gezeichnet und mit
einem Simulationsprogramm direkt
evaluiert werden. Die Ausgabe der
Resultate könnte dann auch in grafischer
Darstellung geschehen, anstatt in
Form von Tabellen. Diese Art von
Arbeiten, welche man als «graphie
breadboarding» bezeichnen könnte,
hat in einem hierarchischen System
seine besondere Berechtigung, da die
Komplexität der einzelnen Blöcke
klein gehalten werden kann und damit
auch die Rechenzeit der Simulationsprogramme.

Über kurz oder lang wird automatisches

Design (DA: Design Automation)

eingeführt werden müssen. Auch
hier könnte sich hierarchische CAD
als optimale Umgebung erweisen.

Wenn ein Block nur aus wenigen,
beispielsweise maximal 50 untergeordneten

Blöcken aufgebaut ist, wird
automatisches Layout realistisch.
Interaktive DA-Programme könnten
zudem die Geschwindigkeit des Computers

kombinieren mit der Fähigkeit des

Menschen, Zusammenhänge zu erkennen.

6. Implementation eines
hierarchischen
VLSI-Layout-Systems
Falls die Steigerung der Integration

von VLSI im gleichen Tempo weitergeht

wie bisher, dann sind 1990
Schaltungen mit 10 Mio Komponenten zu
erwarten. Ein VLSI-System muss diese
Datenmenge effizient behandeln können.

Die Forderung nach Interaktivität
bedeutet, dass farbige Bildschirme

mit hoher Auflösung und hoher Bandbreite

(Geschwindigkeit) eingesetzt
werden müssen. Sobald CAD alle
Designstufen umfasst, muss pro Entwickler

ein Bildschirm zur Verfügung ste¬

hen; dies lässt sich durch dezentralisierte

Intelligenz (Workstations) einfacher

und kostengünstiger lösen als
durch «Monstercomputer». Ein
zentraler Computer wird gebraucht für
die Speicherverwaltung von Bibliotheken,

zur Kommunikation unter den
Designern und als Rechner für Batch-
verarbeitung (z.B. Postprocessor für
Maskenherstellung usw.).

Als Eingabe ins Layoutsystem muss
eine strukturelle elektrische Beschreibung

zur Verfügung stehen. Diese
Beschreibung muss schon hierarchisch
organisiert sein. Idealerweise wären
die verschiedenen hierarchischen Ebenen

des elektrischen Netzwerks
(Transistor-, Gate-, Register-Transfer- und
funktionelle Beschreibung) in einer
einzigen Datenbasis vorhanden, heute
existiert aber noch kein Simulator, der
eine so grosse Spannweite von
Beschreibungen akzeptiert [4].

Im Moment können «Mixed
Mode»-Simulatoren verwendet werden,

wie SPLICE oder DIANA [7],
Diese vereinigen Schaltungsanalyse
und logische Simulation in einem
Programm, zudem können «Macros»
gebildet werden, um die Hierarchie
wiederzugeben. Als erstes muss nun
die hierarchische Struktur aufgebaut
werden (Baumstruktur); dann ist es

möglich, die elektrische Beschreibung
in ein symbolisches Layout umzusetzen.

In dieser Darstellung werden
gewisse Vereinfachungen gemacht;
Verbindungen werden nur als Linien
gezeichnet und Kontakte z.B. als Kreuze
dargestellt.

Die Eingabe der Daten erfolgt in
einer adäquaten Sprache (SLDL: Symbolic

Layout Description Language)
oder natürlich grafisch. Es scheint
sinnvoll, die Designfreiheit zu
beschränken und z.B. nur orthogonale
Figuren zuzulassen, dadurch wird die
Implementation von Echtzeit-DRC
stark vereinfacht. Im symbolischen
Editor besteht die Möglichkeit für
verschiedene Darstellungen des Layouts;

insbesondere wird es möglich sein,
Information aus allen tieferen hierarchischen

Ebenen einzubeziehen, d.h. das

Layout mit mehr und mehr Details zu
zeigen (logical zooming).

Die Abgrenzung der Blöcke darf
keine zu grossen Flächenverluste
verursachen. Dies kann erreicht werden,
wenn individuelle Grenzen für
verschiedene Masken zugelassen werden
und diese aus mehreren unzusammenhängenden

Gebieten bestehen dürfen.
Für die Beschreibung der untersten

Hierarchiestufe, nämlich des wirklichen

geometrischen Layouts, ist SLDL
nicht geeignet, weil:
- keine symbolische Darstellung mehr

möglich ist;
- geometrische Figuren kein elektrisches

Äquivalent haben müssen;
- die Beschränkung auf orthogonale

Figuren zu restriktiv ist.
Der geometrische Editor und seine

Sprache (GLDL: Geometrie Layout
Description Language) sollen aus
Gründen der Benutzerfreundlichkeit
möglichst viel Ähnlichkeit mit SLDL
haben, aber mehr Freiheiten zulassen
(Polygone mit beliebigen Winkeln,
Kreise, Test usw.).
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