Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitatsunternehmen = Bulletin de
I'Association suisse des électriciens, de I'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitatsunternehmen

Band: 73 (1982)

Heft: 3

Artikel: Zweidimensionale Rechner : Theorie und Beispiele

Autor: Egbersen, A. P. J.

DOl: https://doi.org/10.5169/seals-904928

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-904928
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Zweidimensionale Rechner—-Theorie und Beispiele

A.P.J. Engbersen

681.323:519.763;

Will man in der Bildverarbeitung mit Echtzeitbetrieb arbeiten, so miissen dazu zweidimensional konzipierte Rechner verwendet werden.
Dabei wird sehr oft «Parallelismus» angewendet. Es soll hier die Theorie der parallelen und zweidimensionalen Rechnersysteme vorgestellt werden.

Pour faire du traitement d’image en temps réel, il est necessaire de développer un processeur con¢u pour opérer en deux dimensions. Le
concept de «parallélisme» est alors trés souvent utilisé. On présente ici la théorie des processeurs qui travaillent en paralléle et en deux dimensions.

1. Einleitung

Mit diesem Artikel soll versucht werden, den Leser in die
Theorie der zweidimensionalen Rechnersysteme einzufiihren
und ihm gleichzeitig einen kleinen Uberblick zu verschaffen.
Er soll zudem anhand einiger kleinerer Systeme, welche in den
vergangenen Jahren entwickelt worden sind, die hier auftre-
tenden speziellen Probleme und deren Losungsversuche ken-
nenlernen. Den Hauptteil des Artikels bilden jedoch die Er-
kldrungen der Begriffe Vektorprozessor, Paralleler Prozessor,
sowie Assoziativer Prozessor und Feldrechner (Array Pro-
Zessor).

2. Klassifikation

Die Gliederung der verschiedenen Rechnertypen nach topo-
logischen Gesichtspunkten ist aus Komplexititsgriinden un-
moglich. Ein Beispiel: Wird im Rechner eine Anderung vor-
genommen, etwa um den Datenfluss effizienter zu gestalten,
so konnte sich seine Klasse in der topologischen Gliederung
dndern.

Aus diesem Grunde hat Flynn [1] bereits im Jahre 1972 ein
Gliederungsschema entwickelt, in welchem der Rechner die
Funktion eines Verarbeitungsinstrumentes fiir Daten- und
Befehlsfliisse iibernimmt, welche nach seiner Darstellung je
eine einfache oder mehrfache (= parallele) Struktur aufweisen.
Somit ergeben sich die im folgenden beschriebenen vier Klas-
sen:

— Einfacher Befehlsfluss, Einfacher Datenfluss (Single In-
struction, Single Data; SISD): Bei solchen Maschinen wird
pro Befehl immer genau ein Datenelement in ein neues umge-
wandelt. Es werden keine zusitzlichen Funktionen ausgefiihrt.
Makroskopisch betrachtet, arbeiten fast alle heute verfiigbaren
(einfachen) Mikroprozessoren nach diesem Prinzip. Mikro-
skopisch gesehen, tiberlappen sich der Befehlsabholzyklus eines
Befehls und die (interne) Verarbeitung des vorhergehenden
Befehls, dies aber entspricht dann einer MISD-Struktur.

— Mehrfacher Befehlsfluss, Einfacher Datenfluss (Multiple
Instruction, Single Data; MISD) : In einer derartigen Maschine
werden in einer Zeitspanne T durch n verschiedene Prozessoren
auf n sequentiellen Datenelementen » (im Prinzip) verschiedene
Befehle ausgefiihrt. Grundlegend dabei ist, dass in der niachsten
Zeitspanne T der Prozessor i (1 =i < n) wieder den genau
gleichen Befehl wie in der vorhergegangenen Zeitspanne aus-
fiihrt, diesmal aber auf dem Datenelement (i — 1). Es werden
also alle Daten immer wieder um einen Prozessor weiter ver-
schoben, dhnlich der Fliessbandarbeit in einer Fabrik. Diese
Struktur nennt man auch «Pipelining».

— Einfacher Befehlsfluss, Mehrfacher Datenfluss (Single
Instruction, Multiple Data; SIMD): Zu dieser Klasse zihlen
unter anderem die Feldrechner und vor allem Rechner, die in
der Bildverarbeitung eingesetzt werden. Das diesen Maschinen
zugrundeliegende Prinzip ist folgendes: Auf verschiedenen

122 (A 70)

Datenelementen fiihren mehrere Rechner in einer Zeitspanne T
gleichzeitig jeweils den gleichen Befehl aus — oder sie belassen
die Datenelemente géinzlich unveridndert. Beispiele zu dieser
Struktur werden spiter noch behandelt.

— Mehrfacher Befehlsfluss, Mehrfacher Datenfluss (Multiple
Instruction, Multiple Data; MIMD): Maschinen dieser Art
bestehen meist aus vielen zusammengesetzten, aber unabhin-
gigen Prozessoren, wobei jeder einzelne gemiiss seinem eigenen
Programm seine Daten verarbeitet. Es gibt viele Moglichkei-
ten, diese Prozessoren zu synchronisieren und untereinander
kommunizieren zu lassen, um damit ein zusammenhiingendes
System zu erhalten. Im allgemeinen sind MIMD-Maschinen
durch einen gewaltigen zusitzlichen Arbeitsaufwand fiir die
Interprozesskommunikation gekennzeichnet und deshalb in
ihrer Leistung beschrinkt.

Es liegt auf der Hand, dass die vier beschriebenen Klassen
eine jeweils andere Speicher- und DatenfluBstruktur aufweisen
miissen (Fig. 1). So geniigt bei den SISD-Maschinen ein Spei-
cher, der sowohl der Daten- als auch der Befehlsspeicherung
dient, wahrend SIMD-Maschinen nur mit einem mehrfach
zugdnglichen (multiple access) Speicher oder mit je einem
Arbeitsspeicher fiir die Datenspeicherung pro Prozessor wirt-
schaftlich sind. Bei den MIMD-Maschinen verhilt es sich wie

D B
SISD: l I
D; = Daten
P Bj = Befehl
1 Pj= Prozessor
MISD: B
D —+ - e —e — —»
Pi |} P2 [dews | Pi [isen | Ph
131 D} IBz DY IB. +D} IB,,
SIMD: 101 JDZ lDi an
Pq Py sine Pj ees| Pp
i i 1 L .
D} D> D; Dn
MIMD: D4 jB1 D2 132 Dj lBi Dn an
P1 P2 oo Pj - Pn

loi 10’2 lD'i th

Fig. 1 Klassifikation nach Flynn

Bull. ASE/UCS 73(1982)3, 6 février

bei den SIMD-Maschinen, wobei zusitzlich die Befehlsspeiche-
rung wie die Datenspeicherung behandelt werden muss.

Die Probleme, die auftreten, wenn mehrere Prozessoren in
einer derartigen Struktur die gleichen Daten bendtigen, erfor-
dern ausgekliigelte und oft komplizierte Verfahren zur Bewdl-
tigung der DatenfluBsteuerung. Gemiss einer kiirzlich aufge-
stellten Behauptung von M. Duff ist die Datenflul3steuerung
und die Datenverteilung das grdsste Problem der heutigen
Bildverarbeitung [2].

Die nachfolgende Liste stellt eine kurze Ubersicht der ver-
schiedenen Arten von Rechnerstrukturen dar. Sie ist nicht
vollstindig und soll vor allem dem interessierten Leser ermog-
lichen, in der einschlidgigen Literatur nachzuschlagen.

1. Vektor-Befehlsrechner

a) Speicher zu Speicher (CDS STAR-100)
b) Register zu Register (Cray Research: Cray-1)

2. Ensembles (Zusammenschaltungen von zwei oder
mehreren Rechnern)

(Burroughs: ILLIAC, PEPE)
(ICL: Distributed Array Processor DAP)

3. Assoziative Feldrechner

(Goodyear Aerospace Corporation: STARAN)
(Sanders Associates: OMEN)

4. Algorithmische Feldrechner

(IBM 3829)

5. Algorithmische Minifeldrechner
(CSP Inc.: Macro Arithmetic Processor)

6. Spezielle Entwiirfe

(CLIP4: Cellular Logic Image Processor)
(LPPP: Local Parallel Pattern Processor, TOSHIBA)
(FLIP: Flexible Image Processor)

3. Rechnerstrukturen

Mit der vorstehenden Einteilung als Leitfaden kénnen die
verschiedenen Arten von Rechnertypen erldutert werden. Aus-
gehend vom einfachsten Rechner, dem Vektorprozessor, wird
durch sukzessive Erweiterung des Systems, der Parallele Pro-
zessor, der Assoziative Prozessor und schliesslich der Array
Prozessor erklart.

3.1 Vektorprozessor

Wenn man die Vektorrechnung betrachtet, féllt sofort auf,
dass viele Berechnungen aus der elementweisen, unabhingigen
Manipulation von Vektorkomponenten bestehen. Unter der
Voraussetzung, dass diese Manipulationen geniigend unab-
hiingig sind, konnen diese auch in einem speziell dafiir konzi-
pierten Rechner durchgefiihrt werden: Wenn man ndmlich
fiir jedes Datenelement des Vektors einen kleinen Prozessor
vorsieht, kann eine solche Manipulation gleichzeitig auf allen
Elementen durchgefiihrt werden. Dabei werden sowohl Pro-
zesszeit als auch Instruktionen eingespart. Der Rechner wird
wegen seiner Operationsweise Vektorprozessor genannt.

Im allgemeinen besteht ein Vektorrechner aus mehreren
parallel arbeitenden Prozessoren. Dabei berechnet jeder Pro-
zessor aus zwei «Ausgangsvektoren» gemiss einer vorgegebe-
nen Instruktion (z.B. Multiplikation) einen neuen Vektor.
Unabhiingig von diesem Teilergebnis kann das Endergebnis
noch abhingig sein von einem sog. Maskenvektor.

In Figur 2 ist eine Vektorinstruktion des STAR-100-Rech-
ners zusammen mit den Ausgangs-, Ergebnis- und Masken-

Bull. SEV/VSE 73(1982)3, 6. Februar

vektoren dargestellt. In der Instruktion sind Felder fiir Opera-
tionscode, Vektoradressen und Maske vorgesehen. Die Funk-
tionsweise sollte anhand dieser Darstellung klar sein.

Es gibt drei Griinde fir die Einfiilhrung von Vektorrech-
nern: Erstens erlaubt ein derartiger Rechner kiirzere Pro-
gramme, weil viele Jump-, Lade-, Speicher- und Testinstruk-
tionen eingespart werden konnen. So braucht man z.B. auf
«Vektorebene» keine Schleifen mehr zu programmieren. Dies
fiithrt zur Verringerung der notwendigen Speicherkapazitét
und der Bandbreite des Instruktionspfades (weniger Instruk-
tionen pro Zeiteinheit). Zweitens erlaubt diese Struktur eine
parallele Verarbeitung, die eine Beschleunigung der Pro-
gramme zur Folge hat, und drittens ist die Vektornotation flr
gewisse wissenschaftliche Berechnungen besonders geeignet.

3.2 Paralleler Prozessor

Der parallele Prozessor ist hinsichtlich der Struktur dem
Vektorrechner nahe verwandt. Derartige Prozessoren sind
sowohl nach SIMD- als auch nach MIMD-Prinzipien gebaut.
Im Gegensatz zum Vektorrechner zeichnet sich der parallele
Prozessor vor allem durch die Verkniipfung der Nachbar-
elemente aus. Solche Verkniipfungen erméglichen z.B., dass
Prozesse in den Rechnerelementen voneinander abhingig
werden oder dass Daten «durchgegeben» werden konnen.

In SIMD-Strukturen liuft im Prinzip in jedem Element
dasselbe Programm ab. Dies geschieht jedoch auf Daten, die
entweder von Nachbarn oder von einer externen Quelle stam-
men. Ob eine bestimmte Instruktion von einem Element aus-
gefiihrt wird, kann unter anderem vom Ergebnis der Nachbar-
elemente abhingig gemacht werden., Damit ist gegeniiber dem
Vektorrechner eine zusitzliche Dimension gewonnen. MIMD-
Strukturen konnen zusitzlich in jedem Element einen andern
Algorithmus ausfiihren.

Bei der Besprechung des CLIP-4-Rechners wird ein Bei-
spiel einer parallelen Struktur angefiihrt werden, bei welcher
die Berechnungen in einem Element vom Ergebnis von dessen
Nachbarn abhéngig sind.

Parallele Prozessoren bewihren sich im allgemeinen nur,
wenn die auszufiihrenden Algorithmen ausreichend unabhén-
gig sind. Es ist klar, dass durch die parallele Ausfiithrung in
giinstigen Fillen sehr viel Zeit eingespart werden kann. Wenn
jedoch die Unabhingigkeit der Prozesse nicht gewdhrleistet
ist, wird die zusitzliche Arbeit fiir die Interprozesskommunika-
tion sehr schnell zum Engpass.

Vektor Befehl (STAR-100):
[op.code[operand 1(A)[operand 2(B)Joperand 3(C)[mask]

ad]as]

[b1]b2[b3]b4a[b5][b6]

mask: [o]1Jo]1]1]

Inhalt des Registers C nach zB. Multiplikation:

>

w

o

c: [c1]az"b2][c3]ad*ba[a5*b5]

Fig. 2 Vektorbefehl (STAR-100)

(A71) 123

[NamE [GEmaLt [NiNts] Datensatzbeschreibung

o [s]

¢} 1 ”Suchdaten”

I 0 l 1] 0]Maske
Peter 30 1 1 o h
Chris 20 2 1 o}
Gaby 35 3 1 1 > Aufldser
Helga 21 4 1 (o]
Silvia 5 5 1 (o] ¢
Toni 90 6 1 (o]
% = 1 Liste
Hilde 35 7 1 1
Guy 10 8 1 o] J o/
Datensatz Maske Er-
gebnis

Fig. 3 Logik eines Assoziativen Prozessors

3.3 Assoziativer Prozessor

Der assoziative Prozessor ist eigentlich eine spezielle Aus-
filhrung des parallelen Prozessors: Eine Gruppe von N Daten-
elementen (z.B. Datensitze oder Records) wird N unabhin-
gigen Prozessorelementen zugefiihrt. Alle Prozessorelemente
testen gemdss einem Kriterium die gleichen Felder der ihnen
zugefiihrten Datenelemente und fiihren ihre Ja- oder Nein-
Entscheidung einem sog. «Match Resolver» (Koinzidenzauf-
16ser) zu. Dieser erstellt aus den Entscheidungen mit Hilfe
eines Adressauflosers (Address Resolver) eine Adressliste der-
jenigen Datenelemente, die das Kriterium erfiillen. In Figur 3
ist dieses System schematisch dargestellt.

Der assoziative Prozessor ist fiir die elektronische Daten-
verarbeitung ein sehr niitzliches Instrument, wenn man be-
denkt, dass bei Suchprozessen in Datenbanken sehr viele
Datenelemente auf ihren Inhalt hin iiberpriift werden miissen.
Stellt ein assoziativer Prozessor die Adressen der benstigten
Daten fiir den Hauptrechner bereit, funktioniert das ganze
System wesentlich effizienter.

Da die Elemente eines assoziativen Rechners relativ einfach
sind, werden viele Versuche unternommen, Speicher zu bauen,
mit pro Speicherzelle eingebauten, assoziativen Eigenschaften
[3; 4; 5].

3.4 Feldrechner (Array Processor)

Der Feldrechner ist aus dem parallelen Prozessor entstan-
den. An der richtigen Stelle eingesetzt, ist der Feldrechner ein
sehr leistungsstarkes Instrument.

Im Gegensatz zur linearen Struktur des Parallelen Prozes-
sors besitzt der Feldrechner eine zweidimensionale Struktur.
Die Elemente des Rechners sind wie jene einer Matrix ange-
ordnet. Verkniipfungen mit den umliegenden vier oder acht
Nachbarn verleihen dem Rechner seine grosse Leistung: Er-
gebnisse konnen weitergegeben werden; Berechnungen der
einzelnen Elemente auch von Ergebnissen der Nachbarelemente
abhingig sein.

Feldrechner konnen sowohl eine SIMD- als auch eine
MIMD-Struktur aufweisen. Dies hingt hiufig nur von der
Programmierung ab. Solche Rechner finden hauptsichlich im

124 (A72)

Bereich der Bildverarbeitung (Mustererkennung) sowie bei
der geophysischen Datenverarbeitung und in komplizierten
wissenschaftlichen Berechnungen Verwendung.

Figur 4 zeigt z. B., wie eine Matrixmultiplikation in nur drei
Zyklen mit neun Prozessorelementen ausgefiihrt werden kann.

4. Programmierung

Die Programmierung dieser Prozessorstrukturen bildet bis
heute die grosste Schwierigkeit und ist sehr wahrscheinlich der
Hauptgrund dafiir, dass Feldrechner und parallele Prozessoren
noch immer kein Gemeingut in den heutigen Rechenzentren
sind.

Bis jetzt hat die Programmierung sich nur fiir spezielle An-
wendungen bewihrt, und Versuche, allgemein verwendbare
Programme zu schreiben, sind immer an der Tatsache ge-
scheitert, dass der grosste Teil der Programme nicht in einen
fir Parallele Rechner optimalen Code umgewandelt werden
kann.

5. Spezielle Prozessoren fiir die zweidimensionale
Signalverarbeitung

Zum Abschluss dieses Aufsatzes sollen noch zwei spezielle
Strukturen fiir die Signalverarbeitung gefiihrt werden. Beide
konnen als MIMD-Maschinen betrachtet werden, obwohl bei
der ersten Maschine (CLIP-4) eine SIMD-Betrachtungsweise
sinnvoller erschiene.

Beispiel:

Nehmen wir einen Rechner mit einer Matrix von 3 x 3 Prozessoren,
die je vier Register aufweisen: areg, hreg, creg, treg.

In diesem Fall koennen wir eine Matrixmultiplikation in drei
Schritte durchfuehren:

Algorithmus:

Set: creg:=o0;
breg(i,j)=bli,j);
areg(i,j)=ali,j); Initiation
Shift: Ith-row of "A’ left I-1 columns:
Jth-column of 'B’ up J-1 rows;
do k=1 to 3;
Multiply : treg=areg*breg;
add : creg=creg+treg;
shift . areg right one row;
breg down one column;
enddo;
Let:

A: al a2 a3 B: b1 b4 b7
a4 a5 a6 b2 b5 b8
a7 a8 a9 b3 b6 b9

Nach der Initiation, ist der Inhalt der Register:

areg: al a2 a3 breg: b1 b5 b9
ab a6 a4 b2 b6 b7
a9 a7 a8 b3 b4 b8

Nach der Ausfuehrung einer Schleife:

creg: al*b1 a2*bs a3*b9
a5*b2 ab6*b6 ad*b7
a9*b3 a7*b4 a8*b8

areg: a3 al a2 breg: b3 b4 b8
a4 a5 ab b1 b5 b9
a8 a9 a7 b2 b6 b7

Fig. 4 Beispiel einer Matrixmultiplikation eines parallelen Prozessors
Die Initiation in Shift bedeutet: I-te Zeile von A um (I — 1)
Kolonnen nach links verschieben ; J-te Kolonne von B um

(J — 1) Zeilen nach oben verschieben

Bull. ASE/UCS 73(1982)3, 6 février

Die erste Maschine ist sehr geeignet fiir Mustererkennung
in digitalen Bildern; sie ist eine spezielle Ausfithrung des Feld-
rechners.

Die zweite Maschine ist geeigneter fiir rekursive Prozesse
und ist entsprechend sehr flexibel und umstrukturierbar. Beide
Maschinen sind tatsdchlich schon gebaut worden, und einige
Resultate sind bereits vorhanden [6; 7].

6. CLIP-4 (Cellular Logic Image Processor)

Figur 5 stellt die Logik der CLIP-4-Maschine dar. Fiir den
Aufbau eines Rechners, der ein Bild von N x M Bildelementen
verarbeitet, braucht man im Prinzip N X M Prozessorelemente.
Unterteilt man jedoch das ganze Bild in kleinere Bilder, so
kann man diese auch sukzessiv verarbeiten. Dabei besteht ein
Prozessorelement aus einem programmierbaren Bitprozessor
(BP), einem 32-Bit-Speicher (D) und verschiedenen 1/O-Lei-
tungen.

Ein Array von diesen Elementen kann im Speicher entweder
bis zu 32 Ein-Bit-Bilder oder bis zu vier Grauwertbilder (mit
je acht Bit pro Bildpunkt) abspeichern. Ein Dateneingang (A)
(entweder von externem oder internem Speicher) und ein Ein-
gang (P) (von internem Speicher oder bestimmt durch eine
Funktion der Nachbarn) sind als Eingdnge vorhanden. Als
Ausginge sind Leitungen zum internen Speicher (D) und zum
Nachbarn (N) vorgesehen. Beide Ausginge sind mittels zweier
Operationscode-Eingénge (Fd, Fn) separat programmierbar.
Eine zusitzliche Programmierung fiir arithmetische Opera-
tionen ist iiber Anschluss R moglich.

Figur 6 zeigt eine Anwendung des Rechners flir Bildver-
arbeitung: Eine schwarze Figur (dargestellt durch «1») auf
weissem Hintergrund («0») wird so verarbeitet, dass nur die
Grenzelemente der Figur iibrigbleiben (Contour Extraction).
Diese Operation benétigt fiir das ganze Bild vier Schritte.
Der Prozessor eignet sich fiir Ein-Bit-Bilder ziemlich gut, ist
jedoch fiir Grauwertbilder nicht optimal. Es hat bis jetzt an
einer einigermassen guten Implementation fiir ein ganzes Bild
gefehlt, da ein solches ohne weiteres eine Million Bildpunkte
umfassen kann.

7. FLIP (Flexible Image Processor)

Dieses System besteht aus 16 Mikroprozessoren, die mittels
eines ausgekliigelten Bussystems miteinander verbunden wer-
den konnen. Jeder Prozessor hat zwei Eingangsgatter, die ent-
weder an einem von zwei Speicherausgingen oder an einem
beliebigen Ausgang eines anderen Prozessors angeschlossen
werden konnen. Um eine optimale Geschwindigkeit zu errei-
chen, hat jeder Prozessor einen privaten Ausgangsbus, um
Buszuteilungen und die damit verbundenen Probleme aus-
klammern zu konnen.

Diese Struktur ermdglicht die Verarbeitung der Daten ent-
sprechend dem «Rechengraphen» (Fig. 7). Eine Geschwindig-
keitserhohung wird durch Parallelismus in den verschiedenen
Pfaden des Graphen erreicht.

Die grosse Flexibilitit des Rechners wird durch die kom-
plizierte und wiederholte Adressierung fiir den Speicher bei
Bildverarbeitungsaufgaben leider beeintriachtigt.

8. Schlussbemerkung

Anhand zweier Beispiele sind die Strukturen und ihre Pro-
bleme erldutert worden. Der Datenfluss und die Adressierung
des Speichers bilden die momentan grossten Schwierigkeiten

Bull. SEV/VSE 73(1982)3, 6. Februar

DATEN DATEN ENABLE
IN AUS B
A
D
32 bit
FUNKTION 41;0 J
X o] A A
D
D | e
INPUT T N _ .
GATING P —
ZU DEN
4‘I-|:N NACHBARN
CARRY
G
VON DEN
NACHBARN R SPEICHER
TAKT
Fig. 5 Ein CLIP-4-Prozessorelement
contour extraction:
picture ‘in’ Bn=-A ‘or’ of all Bd=P.A
as data: neighbors
(A) (N) (P) (D)
00000O00O0 1111111 1111111 0000000O0
0100100 1011011 1111111 0100100
0111110 17000001 1111111 0111110
11711110 0000001 11700111 17100110
0111100 1000011 1111111 0111100
1000000 0111111 17111111 17000000
Fig. 6 Contour Extraction

Die Figur umfasst einen Ausschnitt aus einem Bild. Fir jedes
Bit steht ein Prozessor zur Verfiijgung. In einem ersten Schritt
wird jeder Prozessor iiber seinen Dateneingang A mit «seinem»
Bit geladen. Uber Ausgang D wird das Bit in den Speicher D
geschrieben, zwecks weiterer Verwendung. Am Ausgang N wird
das inverse Bit erzeugt. Im zweiten Schritt wird liber den Block
«input gating» mittels der logischen «Oder»-Funktion am Ein-
gang P des Bitprozessors BP ein «Oder» aller Nachbarn des
Prozessors erzeugt. Im dritten Schritt wird dieser Eingang P
mittels der logischen « Und»-Funktion mit dem Originalbit (das
seit dem ersten Schritt im Speicher steht) verkniipft und das
Ergebnis in den Speicher geschrieben. Im vierten Schritt wird
das Ergebnis aus dem Speicher zum Datenausgang geleitet

Formel:
x=Cx (a+8) / (ox (a+c))
Bus 1 Speicher —
Bus 2 Modul
A Cc
e + —1 x
—U
— ./
— X
A o
pm o + m— X
L c

Fig. 7 Aufbau von fiinf FLIP-Elementen gemiiss Rechengraph

(A73) 125

und stehen einer effizienten Echtzeitverarbeitung bei noch
tragbaren Kosten im Wege.

Der Verfasser arbeitet zurzeit daran, unter anderem durch
tiefgehende Analyse der erwiinschten Datenfliisse, einige Ver-
besserungen zu erreichen. Interessenten, die sich weiter orien-
tieren mochten, sei der Artikel von K. J. Thurber [8] empfohlen.

Literatur

[1] M.J. Flynn: Some computer organizations and their effectiveness. IEEE Trans.
C 21(1972)9, p. 948...960.

[2] M.J.B. Duff a.o.: Special computer architectures for pattern recognition and
image processing. Proceedings of the 5th International Conference on Pattern
Recognition, Miami Beach, Florida, 1...4 december 1980; vol. 2, p. 510...515.

[3] W.H. Kautz: An augmented content-addressed memory array for implemen-
tation with large-scale integration. Journal of the Association for Computing
Machinery 18(1971)1, p. 19...33.

[4] L.D. Wald: An associative memory using large-scale integration. Proceedings
of the National Aerospace Electronics Conference, New York, May 18...20,
1970; p. 277...281.

[5]1 R.R. Kessler a.o.: Development of an LSI associative processor. US National
Technical Information Service, Air Force Report, No. AFAL-TR-70-142, 1970.

[6] M.J.B. Duff: Review of the CLIP image processing system. National Computer
Conference 1978, Anaheim/California, June 5...8, 1978. AFIPS Conference
Proceedings 47(1978).

[71 P. Gremmar, I.Ischen and K. Luetjen: FLIP: A multiprocessor system for
image processing. Karlsruhe, Forschungsinstitut fiir Informationsverarbeitung
und Mustererkennung.

[8]1 K.J. Thurber and L.D. Wald: Associative and parallel processors. Computing
Surveys 7(1975)4, p. 215...255.

Adresse des Autors

A.P.J. Engbersen, IBM Ziirich Forschungslaboratorium, 8803 Riischlikon,
und Institut fiir Automatik, ETH Ziirich, 8092 Ziirich.

126 (A 74)

Bull. ASE/UCS 73(1982)3, 6 février

	Zweidimensionale Rechner : Theorie und Beispiele

