
Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de
l'Association suisse des électriciens, de l'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitätsunternehmen

Band: 73 (1982)

Heft: 3

Artikel: Zweidimensionale Rechner : Theorie und Beispiele

Autor: Egbersen, A. P. J.

DOI: https://doi.org/10.5169/seals-904928

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-904928
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Zweidimensionale Rechner-Theorie und Beispiele
A.P.J. Engbersen

681.323:519.763;
Will man in der Bildverarbeitung mit Echtzeitbetrieb arbeiten, so müssen dazu zweidimensional konzipierte Rechner verwendet werden.

Dabei wird sehr oft «Parallelismus » angewendet. Es soll hier die Theorie der parallelen und zweidimensionalen Rechnersysteme vorgestellt werden.

Pour faire du traitement d'image en temps réel, il est nécessaire de développer un processeur conçu pour opérer en deux dimensions. Le
concept de «parallélisme » est alors très souvent utilisé. On présente ici la théorie des processeurs qui travaillent en parallèle et en deux dimensions.

1. Einleitung
Mit diesem Artikel soll versucht werden, den Leser in die

Theorie der zweidimensionalen Rechnersysteme einzuführen
und ihm gleichzeitig einen kleinen Überblick zu verschaffen.
Er soll zudem anhand einiger kleinerer Systeme, welche in den

vergangenen Jahren entwickelt worden sind, die hier auftretenden

speziellen Probleme und deren Lösungsversuche
kennenlernen. Den Hauptteil des Artikels bilden jedoch die
Erklärungen der Begriffe Vektorprozessor, Paralleler Prozessor,
sowie Assoziativer Prozessor und Feldrechner (Array
Prozessor).

2. Klassifikation
Die Gliederung der verschiedenen Rechnertypen nach topo-

logischen Gesichtspunkten ist aus Komplexitätsgründen
unmöglich. Ein Beispiel: Wird im Rechner eine Änderung
vorgenommen, etwa um den Datenfluss effizienter zu gestalten,
so könnte sich seine Klasse in der topologischen Gliederung
ändern.

Aus diesem Grunde hat Flynn [1] bereits im Jahre 1972 ein
Gliederungsschema entwickelt, in welchem der Rechner die
Funktion eines Verarbeitungsinstrumentes für Daten- und
Befehlsflüsse übernimmt, welche nach seiner Darstellung je
eine einfache oder mehrfache parallele) Struktur aufweisen.
Somit ergeben sich die im folgenden beschriebenen vier Klassen:

- Einfacher Befehlsfluss, Einfacher Datenfluss (Single
Instruction, Single Data; SISD) ; Bei solchen Maschinen wird
pro Befehl immer genau ein Datenelement in ein neues
umgewandelt. Es werden keine zusätzlichen Funktionen ausgeführt.
Makroskopisch betrachtet, arbeiten fast alle heute verfügbaren
(einfachen) Mikroprozessoren nach diesem Prinzip.
Mikroskopisch gesehen, überlappen sich der Befehlsabholzyklus eines
Befehls und die (interne) Verarbeitung des vorhergehenden
Befehls, dies aber entspricht dann einer MISD-Struktur.

- Mehrfacher Befehlsfluss, Einfacher Datenfluss Multiple
Instruction, Single Data; MISD): In einer derartigen Maschine
werden in einer Zeitspanne T durch n verschiedene Prozessoren
auf n sequentiellen Datenelementen n (im Prinzip) verschiedene
Befehle ausgeführt. Grundlegend dabei ist, dass in der nächsten
Zeitspanne T der Prozessor i (1 S / SS n) wieder den genau
gleichen Befehl wie in der vorhergegangenen Zeitspanne
ausführt, diesmal aber auf dem Datenelement (i — 1). Es werden
also alle Daten immer wieder um einen Prozessor weiter
verschoben, ähnlich der Fliessbandarbeit in einer Fabrik. Diese
Struktur nennt man auch «Pipelining».

- Einfacher Befehlsfluss, Mehrfacher Datenfluss (Single
Instruction, Multiple Data; SIMD); Zu dieser Klasse zählen
unter anderem die Feldrechner und vor allem Rechner, die in
der Bildverarbeitung eingesetzt werden. Das diesen Maschinen
zugrundeliegende Prinzip ist folgendes: Auf verschiedenen

Datenelementen führen mehrere Rechner in einer Zeitspanne T
gleichzeitig jeweils den gleichen Befehl aus - oder sie belassen
die Datenelemente gänzlich unverändert. Beispiele zu dieser
Struktur werden später noch behandelt.

- Mehrfacher Befehlsfluss, Mehrfacher Datenfluss (Multiple
Instruction, Multiple Data; MIMD); Maschinen dieser Art
bestehen meist aus vielen zusammengesetzten, aber unabhängigen

Prozessoren, wobei jeder einzelne gemäss seinem eigenen
Programm seine Daten verarbeitet. Es gibt viele Möglichkeiten,

diese Prozessoren zu synchronisieren und untereinander
kommunizieren zu lassen, um damit ein zusammenhängendes
System zu erhalten. Im allgemeinen sind MIMD-Maschinen
durch einen gewaltigen zusätzlichen Arbeitsaufwand für die
Interprozesskommunikation gekennzeichnet und deshalb in
ihrer Leistung beschränkt.

Es liegt auf der Hand, dass die vier beschriebenen Klassen
eine jeweils andere Speicher- und Datenflußstruktur aufweisen
müssen (Fig. 1). So genügt bei den SISD-Maschinen ein Speicher,

der sowohl der Daten- als auch der Befehlsspeicherung
dient, während SIMD-Maschinen nur mit einem mehrfach
zugänglichen (multiple access) Speicher oder mit je einem
Arbeitsspeicher für die Datenspeicherung pro Prozessor
wirtschaftlich sind. Bei den MIMD-Maschinen verhält es sich wie

D B

SISD:

MISD:

D-
P2

• I
i

B-| »Di IB2 »

Di Daten
p Bj Befeh 1

Pi Prozessor
I
D'

1 —•
1

Pi Pn

TD'2 k D'j tßn

SIMD: Dn D2

P1 P2 Pi Pn

T 4— I

Dj *D2 D'j Dp

MIMD: ,Di iBi iD2 1B2 |Dj iBj iDn |Bn
|"i |°i jun |l

P1 P2 Pi Pn

loi Id2 lo; Ion

Fig. 1 Klassifikation nach Flynn

122 (A 70) Bull. ASE/UCS 73(1982)3, 6 février

bei den SIMD-Maschinen, wobei zusätzlich die Befehlsspeiche-

rung wie die Datenspeicherung behandelt werden muss.

Die Probleme, die auftreten, wenn mehrere Prozessoren in

einer derartigen Struktur die gleichen Daten benötigen, erfordern

ausgeklügelte und oft komplizierte Verfahren zur Bewältigung

der Datenflußsteuerung. Gemäss einer kürzlich

aufgestellten Behauptung von M. Duff ist die Datenflußsteuerung

und die Datenverteilung das grösste Problem der heutigen

Bildverarbeitung [2].
Die nachfolgende Liste stellt eine kurze Übersicht der

verschiedenen Arten von Rechnerstrukturen dar. Sie ist nicht

vollständig und soll vor allem dem interessierten Leser ermöglichen,

in der einschlägigen Literatur nachzuschlagen.

1. Vektor-Befehlsrechner

a) Speicher zu Speicher (CDS STAR-100)
b) Register zu Register (Cray Research : CrayM

2. Ensembles (Zusammenschaltungen von zwei oder

mehreren Rechnern)

(Burroughs: ILLIAC, PEPE)

(ICL: Distributed Array Processor DAP)

3. Assoziative Feldrechner

(Goodyear Aerospace Corporation: STARAN)
(Sanders Associates: OMEN)

4. Algorithmische Feldrechner

(IBM 3829)

5. Algorithmische Minifeldrechner

(CSP Inc.: Macro Arithmetic Processor)

6. Spezielle Entwürfe

(CLIP 4: Cellular Logic Image Processor)

(LPPP: Local Parallel Pattern Processor, TOSHIBA)

(FLIP: Flexible Image Processor)

3. Rechnerstrukturen

Mit der vorstehenden Einteilung als Leitfaden können die

verschiedenen Arten von Rechnertypen erläutert werden.

Ausgehend vom einfachsten Rechner, dem Vektorprozessor, wird

durch sukzessive Erweiterung des Systems, der Parallele

Prozessor, der Assoziative Prozessor und schliesslich der Array

Prozessor erklärt.

3.1 Vektorprozessor

Wenn man die Vektorrechnung betrachtet, fällt sofort auf,

dass viele Berechnungen aus der elementweisen, unabhängigen

Manipulation von Vektorkomponenten bestehen. Unter der

Voraussetzung, dass diese Manipulationen genügend

unabhängig sind, können diese auch in einem speziell dafür

konzipierten Rechner durchgeführt werden: Wenn man nämlich

für jedes Datenelement des Vektors einen kleinen Prozessor

vorsieht, kann eine solche Manipulation gleichzeitig auf allen

Elementen durchgeführt werden. Dabei werden sowohl

Prozesszeit als auch Instruktionen eingespart. Der Rechner wird

wegen seiner Operationsweise Vektorprozessor genannt.

Im allgemeinen besteht ein Vektorrechner aus mehreren

parallel arbeitenden Prozessoren. Dabei berechnet jeder

Prozessor aus zwei «Ausgangsvektoren» gemäss einer vorgegebenen

Instruktion (z.B. Multiplikation) einen neuen Vektor.

Unabhängig von diesem Teilergebnis kann das Endergebnis

noch abhängig sein von einem sog. Maskenvektor.

In Figur 2 ist eine Vektorinstruktion des STAR-100-Rech-

ners zusammen mit den Ausgangs-, Ergebnis- und Masken¬

vektoren dargestellt. In der Instruktion sind Felder für
Operationscode, Vektoradressen und Maske vorgesehen. Die
Funktionsweise sollte anhand dieser Darstellung klar sein.

Es gibt drei Gründe für die Einführung von Vektorrechnern:

Erstens erlaubt ein derartiger Rechner kürzere

Programme, weil viele Jump-, Lade-, Speicher- und Testinstruktionen

eingespart werden können. So braucht man z.B. auf

«Vektorebene» keine Schleifen mehr zu programmieren. Dies

führt zur Verringerung der notwendigen Speicherkapazität

und der Bandbreite des Instruktionspfades (weniger Instruktionen

pro Zeiteinheit). Zweitens erlaubt diese Struktur eine

parallele Verarbeitung, die eine Beschleunigung der

Programme zur Folge hat, und drittens ist die Vektornotation für

gewisse wissenschaftliche Berechnungen besonders geeignet.

3.2 Paralleler Prozessor

Der parallele Prozessor ist hinsichtlich der Struktur dem

Vektorrechner nahe verwandt. Derartige Prozessoren sind

sowohl nach SIMD- als auch nach MIMD-Prinzipien gebaut.

Im Gegensatz zum Vektorrechner zeichnet sich der parallele

Prozessor vor allem durch die Verknüpfung der Nachbarelemente

aus. Solche Verknüpfungen ermöglichen z.B., dass

Prozesse in den Rechnerelementen voneinander abhängig

werden oder dass Daten «durchgegeben» werden können.

In SIMD-Strukturen läuft im Prinzip in jedem Element

dasselbe Programm ab. Dies geschieht jedoch auf Daten, die

entweder von Nachbarn oder von einer externen Quelle stammen.

Ob eine bestimmte Instruktion von einem Element

ausgeführt wird, kann unter anderem vom Ergebnis der Nachbarelemente

abhängig gemacht werden. Damit ist gegenüber dem

Vektorrechner eine zusätzliche Dimension gewonnen. MIMD-
Strukturen können zusätzlich in jedem Element einen andern

Algorithmus ausführen.
Bei der Besprechung des CLIP-4-Rechners wird ein

Beispiel einer parallelen Struktur angeführt werden, bei welcher

die Berechnungen in einem Element vom Ergebnis von dessen

Nachbarn abhängig sind.

Parallele Prozessoren bewähren sich im allgemeinen nur,

wenn die auszuführenden Algorithmen ausreichend unabhängig

sind. Es ist klar, dass durch die parallele Ausführung in

günstigen Fällen sehr viel Zeit eingespart werden kann. Wenn

jedoch die Unabhängigkeit der Prozesse nicht gewährleistet

ist, wird die zusätzliche Arbeit für dielnterprozesskommunika-

tion sehr schnell zum Engpass.

Vektor Befehl (STAR 100):

|op.code|operand1(A)loperand2(B)loperand3(C)|mask|

A: |a11a2|a3|a4[a 51

B. |b1|b2|b3|bA|b5|b6|

C: |cl | c2| c3|c41c5|

MASK: 1 0 | 1 1 0 M | 1 |

Inhalt des Registers C nach zB. Multiplikation:

C: | c1 Ia2*b2| c3 |a4"b4|a5'b5l

Fig. 2 Vektorbefehl (STAR-100)

Bull. SEV/VSE 73(1982)3, 6. Februar (A 71) 123

NAME GEHALT PERSONAL¬
NUMMER

0 35 0

0 1 0

Peter 30 1

Chris 20 2

Gaby 35 3

Helga 21 4

Silvia 5 5

Toni 90 6

Hilde 35 7

Guy 10 8

'Suchdaten"

Maske

1 0 \
1 0

1 1

1 0

1 0

1 0

1

1

1

0

Auflöser

Liste

Datensatz Maske Er¬
gebnis

Fig. 3 Logik eines Assoziativen Prozessors

3.3 Assoziativer Prozessor

Der assoziative Prozessor ist eigentlich eine spezielle
Ausführung des parallelen Prozessors : Eine Gruppe von N
Datenelementen (z.B. Datensätze oder Records) wird N unabhängigen

Prozessorelementen zugeführt. Alle Prozessorelemente
testen gemäss einem Kriterium die gleichen Felder der ihnen
zugeführten Datenelemente und führen ihre Ja- oder Nein-
Entscheidung einem sog. «Match Resolver» (Koinzidenzauf-
löser) zu. Dieser erstellt aus den Entscheidungen mit Hilfe
eines Adressauflösers (Address Resolver) eine Adressliste
derjenigen Datenelemente, die das Kriterium erfüllen. In Figur 3

ist dieses System schematisch dargestellt.
Der assoziative Prozessor ist für die elektronische

Datenverarbeitung ein sehr nützliches Instrument, wenn man
bedenkt, dass bei Suchprozessen in Datenbanken sehr viele
Datenelemente auf ihren Inhalt hin überprüft werden müssen.
Stellt ein assoziativer Prozessor die Adressen der benötigten
Daten für den Hauptrechner bereit, funktioniert das ganze
System wesentlich effizienter.

Da die Elemente eines assoziativen Rechners relativ einfach
sind, werden viele Versuche unternommen, Speicher zu bauen,
mit pro Speicherzelle eingebauten, assoziativen Eigenschaften
[3; 4; 5],

3.4 Feldrechner (Array Processor)

Der Feldrechner ist aus dem parallelen Prozessor entstanden.

An der richtigen Stelle eingesetzt, ist der Feldrechner ein
sehr leistungsstarkes Instrument.

Im Gegensatz zur linearen Struktur des Parallelen Prozessors

besitzt der Feldrechner eine zweidimensionale Struktur.
Die Elemente des Rechners sind wie jene einer Matrix
angeordnet. Verknüpfungen mit den umliegenden vier oder acht
Nachbarn verleihen dem Rechner seine grosse Leistung:
Ergebnisse können weitergegeben werden; Berechnungen der
einzelnen Elemente auch von Ergebnissen der Nachbarelemente
abhängig sein.

Feldrechner können sowohl eine SIMD- als auch eine
MIMD-Struktur aufweisen. Dies hängt häufig nur von der
Programmierung ab. Solche Rechner finden hauptsächlich im

Bereich der Bildverarbeitung (Mustererkennung) sowie bei
der geophysischen Datenverarbeitung und in komplizierten
wissenschaftlichen Berechnungen Verwendung.

Figur 4 zeigt z.B., wie eine Matrixmultiplikation in nur drei
Zyklen mit neun Prozessorelementen ausgeführt werden kann.

4. Programmierung
Die Programmierung dieser Prozessorstrukturen bildet bis

heute die grösste Schwierigkeit und ist sehr wahrscheinlich der
Hauptgrund dafür, dass Feldrechner und parallele Prozessoren
noch immer kein Gemeingut in den heutigen Rechenzentren
sind.

Bis jetzt hat die Programmierung sich nur für spezielle
Anwendungen bewährt, und Versuche, allgemein verwendbare
Programme zu schreiben, sind immer an der Tatsache
gescheitert, dass der grösste Teil der Programme nicht in einen
für Parallele Rechner optimalen Code umgewandelt werden
kann.

5. Spezielle Prozessoren für die zweidimensionale
Signalverarbeitung

Zum Abschluss dieses Aufsatzes sollen noch zwei spezielle
Strukturen für die Signalverarbeitung geführt werden. Beide
können als MIMD-Maschinen betrachtet werden, obwohl bei
der ersten Maschine (CLIP-4) eine SIMD-Betrachtungsweise
sinnvoller erschiene.

Beispiel:
Nehmen wir einen Rechner mit einer Matrix von 3x3 Prozessoren,
die je vier Register aufweisen: areg, breg, creg, treg.
In diesem Fall koennen wir eine Matrixmultiplikation in drei
Schritte durchfuehren:

Algorithmus:

Set:

Shift.

creg: o;
breg(i.j) b(i,j);
areg(i,j) a(i,j);
Ith row of 'A'
Jth-column of

left 1-1 columns;
'B' up J-1 rows;

Initiation

do k 1 to 3;
Multiply
add
shift

enddo;

A:

treg areg*breg;
creg creg + treg;
areg right one row;

breg down one column;

a1 a2 a3
a4 a5 a6
a7 a8 a9

b1 b4 b7
b2 b5 b8
b3 b6 b9

Nach der Initiation, ist der Inhalt der Register

areg: a1 a2 a3 breg:a1 a2 a3
a5 a6 a4
a9 a7 a8

b1 b5 b9
b2 b6 b7
b3 b4 b8

Nach der Ausfuehrung einer Schleife:

creg:

areg:

a1 *b1
a5*b2
a9*b3

a3 a1 a2
a4 a5 a6
a8 a9 a7

a2*b5
a6*b6
a7*b4

breg:

a3*b9
a4*b7
a8*b8

b3 b4 b8
b1 b5 b9
b2 b6 b7

Fig. 4 Beispiel einer Matrixmultiplikation eines parallelen Prozessors
Die Initiation in Shift bedeutet: I-te Zeile von A um (I - 1)
Kolonnen nach links verschieben; J-te Kolonne von B um
(J — 1) Zeilen nach oben verschieben

124 (A 72) Bull. ASE/UCS 73(1982)3, 6 février

Die erste Maschine ist sehr geeignet für Mustererkennung

in digitalen Bildern; sie ist eine spezielle Ausführung des

Feldrechners.

Die zweite Maschine ist geeigneter für rekursive Prozesse

und ist entsprechend sehr flexibel und umstrukturierbar. Beide

Maschinen sind tatsächlich schon gebaut worden, und einige

Resultate sind bereits vorhanden [6; 7].

6. CLIP-4 (Cellular Logic Image Processor)

Figur 5 stellt die Logik der CLIP-4-Maschine dar. Für den

Aufbau eines Rechners, der ein Bild von NxM Bildelementen

verarbeitet, braucht man im Prinzip NxM Prozessorelemente.

Unterteilt man jedoch das ganze Bild in kleinere Bilder, so

kann man diese auch sukzessiv verarbeiten. Dabei besteht ein

Prozessorelement aus einem programmierbaren BitProzessor

(BP), einem 32-Bit-Speicher (D) und verschiedenen I/O-Lei-
tungen.

Ein Array von diesen Elementen kann im Speicher entweder

bis zu 32 Ein-Bit-Bilder oder bis zu vier Grauwertbilder (mit

je acht Bit pro Bildpunkt) abspeichern. Ein Dateneingang (A)
(entweder von externem oder internem Speicher) und ein

Eingang (P) (von internem Speicher oder bestimmt durch eine

Funktion der Nachbarn) sind als Eingänge vorhanden. Als

Ausgänge sind Leitungen zum internen Speicher (D) und zum
Nachbarn (N) vorgesehen. Beide Ausgänge sind mittels zweier

Operationscode-Eingänge (Fd, Fn) separat programmierbar.
Eine zusätzliche Programmierung für arithmetische Operationen

ist über Anschluss R möglich.
Figur 6 zeigt eine Anwendung des Rechners für

Bildverarbeitung: Eine schwarze Figur (dargestellt durch «1») auf
weissem Hintergrund («0») wird so verarbeitet, dass nur die

Grenzelemente der Figur übrigbleiben (Contour Extraction).
Diese Operation benötigt für das ganze Bild vier Schritte.

Der Prozessor eignet sich für Ein-Bit-Bilder ziemlich gut, ist

jedoch für Grauwertbilder nicht optimal. Es hat bis jetzt an

einer einigermassen guten Implementation für ein ganzes Bild
gefehlt, da ein solches ohne weiteres eine Million Bildpunkte
umfassen kann.

7. FLIP (Flexible Image Processor)
Dieses System besteht aus 16 Mikroprozessoren, die mittels

eines ausgeklügelten Bussystems miteinander verbunden werden

können. Jeder Prozessor hat zwei Eingangsgatter, die
entweder an einem von zwei Speicherausgängen oder an einem

beliebigen Ausgang eines anderen Prozessors angeschlossen

werden können. Um eine optimale Geschwindigkeit zu erreichen,

hat jeder Prozessor einen privaten Ausgangsbus, um

Buszuteilungen und die damit verbundenen Probleme
ausklammern zu können.

Diese Struktur ermöglicht die Verarbeitung der Daten
entsprechend dem «Rechengraphen» (Fig. 7). Eine
Geschwindigkeitserhöhung wird durch Parallelismus in den verschiedenen

Pfaden des Graphen erreicht.
Die grosse Flexibilität des Rechners wird durch die

komplizierte und wiederholte Adressierung für den Speicher bei

Bildverarbeitungsaufgaben leider beeinträchtigt.

8. Schlussbemerkung
Anhand zweier Beispiele sind die Strukturen und ihre

Probleme erläutert worden. Der Datenfluss und die Adressierung
des Speichers bilden die momentan grössten Schwierigkeiten

DATEN DATEN ENABLE

Fig. 5 Ein CLIP-4-Prozessoreiement

contour extraction:

picture 'in'
as data:

(Al

Bn -I A

(N)

'or' of all
neighbors

(P)

Bd P. A

(D)

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

0 1 0 0 1 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 0 0 1 0 0
0 1 1 1 1 1 0 1 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0
1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 0 0 1 1 0

0 1 1 1 1 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0
1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

Fig. 6 Contour Extraction
Die Figur umfasst einen Ausschnitt aus einem Bild. Für jedes
Bit steht ein Prozessor zur Verfügung. In einem ersten Schritt
wird jeder Prozessor über seinen Dateneingang A mit «seinem»
Bit geladen. Über Ausgang D wird das Bit in den Speicher D
geschrieben, zwecks weiterer Verwendung. Am Ausgang N wird
das inverse Bit erzeugt. Im zweiten Schritt wird über den Block
«input gating» mittels der logischen «Oder»-Funktion am
Eingang P des Bitprozessors BP ein «Oder» aller Nachbarn des

Prozessors erzeugt. Im dritten Schritt wird dieser Eingang P

mittels der logischen «Und»-Funktion mit dem Originalbit (das
seit dem ersten Schritt im Speicher steht) verknüpft und das
Ergebnis in den Speicher geschrieben. Im vierten Schritt wird
das Ergebnis aus dem Speicher zum Datenausgang geleitet

Formel:
X C x (A + B)/(dx (a + c))

A

B

./.

Fig. 7 Aufbau von fünf FLIP-Elementen gemäss Rechengraph

Bull. SEV/VSE 73(1982)3, 6. Februar (A 73) 125

und stehen einer effizienten Echtzeitverarbeitung bei noch
tragbaren Kosten im Wege.

Der Verfasser arbeitet zurzeit daran, unter anderem durch
tiefgehende Analyse der erwünschten Datenflüsse, einige
Verbesserungen zu erreichen. Interessenten, die sich weiter orientieren

möchten, sei der Artikel von K. J. Thurber [8] empfohlen.

Literatur
[1] M.J. Flynn: Some computer organizations and their effectiveness. IEEE Trans.

C 21(1972)9, p. 948...960.
[2] M.J.B. Duff a.o.: Special computer architectures for pattern recognition and

image processing. Proceedings of the 5th International Conference on Pattern
Recognition, Miami Beach, Florida, 1...4 december 1980; vol. 2, p. 510...515.

[3] W. H. Kautz: An augmented content-addressed memory array for implemen¬
tation with large-scale integration. Journal of the Association for Computing
Machinery 18(1971)1, p. 19...33.

[4] L. D. Wald: An associative memory using large-scale integration. Proceedings
of the National Aerospace Electronics Conference, New York, May 18...20,
1970; p. 277...281.

[5] R.R. Kessler a.o.: Development of an LSI associative processor. US National
Technical Information Service, Air Force Report, No. AFAL-TR-70-142, 1970.

[6] M. J.B. Duff: Review of the CLIP image processing system. National Computer
Conference 1978, Anaheim/California, June 5...8, 1978. AFIPS Conference
Proceedings 47(1978).

[7] P. Gremmar, I. Ischen and K. Luetjen: FLIP: A multiprocessor system for
image processing. Karlsruhe, Forschungsinstitut für Informationsverarbeitung
und Mustererkennung.

[8] K.J. Thurber and L.D. Wald: Associative and parallel processors. Computing
Surveys 7(1975)4, p. 215...255.

Adresse des Autors
A.P.J. Engbersen, IBM Zürich Forschungslaboratorium, 8803 Rüschlikon,
und Institut für Automatik, ETH Zürich, 8092 Zürich.

126 (A 74) Bull. ASE/UCS 73(1982)3, 6 février

	Zweidimensionale Rechner : Theorie und Beispiele

