Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitatsunternehmen = Bulletin de
I'Association suisse des électriciens, de I'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitatsunternehmen

Band: 73 (1982)

Heft: 2

Artikel: APL : ein unabhangiges und leistungsfahiges Werkzeug zur
Beschleunigung der Entwicklung von dialogorientierten Systemen

Autor: Hartmann, U.

DOl: https://doi.org/10.5169/seals-904915

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-904915
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

und von Kundeninformationen usw. im geographischen Kon-
text wirtschaftlich sind. Das Vorhandensein der Kundeninfor-
mationen, der Informationen iiber die Betriebsmittel des Nieder-
spannungs- und Mittelspannungsnetzes sowie der Informatio-
nen iiber die geographische Lage dieser Betriebsmittel und
Kunden fordert geradezu auf, die Daten zu verkniipfen. So ist
es durchaus denkbar, dass in spiterer Zukunft von dem Haus-

anschluss des einzelnen Kunden bis zur entsprechenden Orts-
netzstation und von dort iiber das Mittelspannungsnetz bis
zum Umspannwerk Verkniipfungen geschaffen und ausgewer-
tet werden konnen.

Adresse der Autoren

W. Ferenz, Dipl.-Ing., und M. K. Hoffmann, Dipl.-Ing., Abteilung Daten-
verarbeitung der Schleswag Aktiengesellschaft, D-2370 Rendsburg.

APL - ein unabhéngiges und leistungsfihiges Werkzeug
zur Beschleunigung der Entwicklung von dialogorientierten Systemen

Von U. Hartmann

Die heutige Situation in der EDV ist einerseits durch ein laufend
verbessertes Preis|Leistungs-Verhdltnis charakterisiert. Dadurch wer-
den immer mehr neue EDV-Projekte wirtschaftlich interessant. Ande-
rerseits verzogert der Mangel an Programmierern die Realisierung
weiterer EDV-Projekte. Aus dieser Diskrepanz ergibt sich ein soge-
nannter Anwendungsstau. APL (A Programming Language) passt
ideal in diese Situation, indem diese Sprache gegeniiber den konven-
tionellen héheren Programmiersprachen etwas mehr Rechenzeit kon-
sumiert, hingegen die Programmierproduktivitiit erheblich steigert.
Ein breites Feld von Anwendungen in Elektrizititsunternehmen kann
mit APL gelést werden. Eine Auswahl von Beispielen aus verschieden-
sten Gebieten wie Administration, Planung, Technik, Graphik und
Transaktionen zeigt die universellen Méglichkeiten von APL.

1. Einleitung

Die kontinuierliche Verbesserung des Preis/Leistungs-Ver-
héltnisses auf dem Computer-Hardware-Sektor lisst immer
neue Anwendungen fiir eine EDV-Realisierung interessant
erscheinen. Die Zahl moglicher Anwendungen nimmt somit
dauernd zu. Andererseits ist seit lingerer Zeit generell festzu-
stellen, dass fiir die Software-Entwicklung nur ungeniigend
Programmierkapazitit verfiigbar ist. Dadurch entsteht ein An-
wendungsstau, d.h., die Zahl der zu realisierenden Anwendun-
gen nimmt laufend zu und kann kaum abgebaut werden.

Die am weitesten verbreiteten htheren Programmierspra-
chen FORTRAN, COBOL und PL/1 waren seinerzeit ein
wichtiger Schritt zur Verbesserung der Programmierprodukti-
vitit gegeniiber dem Programmieren in Assembler. Neben
den erwihnten Sprachen kann heute fiir die verschiedensten
speziellen Anwendungsbereiche auf entsprechend zugeschnit-
tene, anwendungsorientierte Sprachen zugegriffen werden. Es
wird deshalb kurz begriindet, weshalb APL neben all den be-
stehenden Programmiersprachen als universelle Sprache vor-
gestellt und deren weitere Verbreitung unterstiitzt werden soll.

Untersuchungen [1], [2] haben ergeben, dass rund 509,
aller Programme nur ca. 2 %, der Systemressourcen benotigen.
So ist es naheliegend, nach Mdglichkeiten zu suchen, diesen
grossen Anteil seltener benutzter Programme derart zu reali-
sieren, dass die Programmerstellung moglichst effizient vor-
genommen werden kann. Dagegen wird in Kauf genommen,
dass die Ausfithrung dieser Programme unter Umstinden
rechenzeitintensiver als in einer anderen Sprache wird.

APL bietet mit seiner sehr prignanten und méichtigen Sym-
bolik genau diese gewiinschten Moglichkeiten. So lisst sich
die Produktivitit in der Phase der Programmerstellung gegen-
iiber konventionellen héheren Programmiersprachen etwa im

56 (B12)

La situation actuelle en informatique est caractérisée d’une part
par amélioration constante de la relation prix/performances, qui fait
apparaitre de plus en plus de projets informatiques comme économique-
ment intéressants. Par ailleurs, la pénurie de programmeurs empéche
de réaliser de nouveaux projets. Cette situation a pour conséquence
un «bouchon» dans le domaine des applications. APL (A Program-
ming Language) s’adapte parfaitement a cette situation car ce langage
consomme un peu plus de temps de calcul que les langages conven-
tionnels supérieurs de programmation, mais augmente considérable-
ment la productivité de la programmation. APL permet de résoudre
une vaste gamme d’applications dans les entreprises d’énergie élec-
trique. Les possibilités universelles d’ APL sont présentées a la lumiére
d’exemples sélectionnés de différents domaines comme I'administra-
tion, la planification, la technique, la graphique et les transactions.

Verhiltnis 6:1 verbessern, und die Schreibarbeit nimmt eben-
falls im gleichen Verhéltnis ab [1], [7]. APL wird nicht iiber-
setzt, sondern mit Hilfe eines Interpreters direkt ab Quellen-
code verarbeitet, wodurch die Programme rechenzeitintensiver
werden konnen.

2. Entstehung und Verbreitung

APL heisst A Programming Language» und wurde von
K.E. Iverson 1962 mit der Absicht verdffentlicht [3], eine
systematische Notation fiir die Vektor-Algebra zu definieren,
die gleichzeitig gestattet, Algorithmen einzufiihren. Dieses
formale System in Form einer Operatorensprache ist als uni-
verselle Programmiersprache fiir Applikationen aus den ver-
schiedensten Gebieten geeignet.

Die Erweiterung von Operatoren auf Felder beliebigen
Ranges sowie die Verallgemeinerung von Vektor- und Matrix-
Operationen lehnen sich an entsprechende bekannte mathema-
tische Operationen an. Diese Tatsache muss betont werden,
damit klar wird, dass die Arbeit mit APL wesentlich auf einem
mathematischen Vorstellungsvermégen aufbaut, wie dies fiir
Vektor- und Matrizenrechnung {iblich ist. Mit dieser Aussage
wird die universelle Einsatzmdglichkeit von APL keineswegs
in Abrede gestellt.

Nach FORTRAN, COBOL und PL/1 ist APL in den USA
und Kanada eine der am weitesten verbreiteten Programmier-
sprachen. Die meisten der bekannten Computerhersteller bieten
heute APL-Ubersetzer auf ihren Systemen an. Grosse Time-
sharing-Netze in den USA offerieren ebenfalls die Moglich-
keiten der Benutzung von APL. APL eignet sich aber nicht
nur als Sprache auf GroBsystemen (wie z.B. Univac 1100 oder
IBM/370), sondern ist zum Teil auch auf Tischrechnern wie

Bull. ASE/UCS 73(1982)2, 23 janvier

IBM 5110 [1] und dem Prozessrechner IBM/7 [10] installiert
worden. Eine der ersten Implementationen von APL wurde
bereits 1968 auf dem System IBM 1130 als IBM-Produkt zur
Verfiigung gestellt [16].

3. Eigenschaften von APL

Es besteht nicht die Absicht, eine Einfiihrung in die Benut-
zung von APL zu geben; dazu existiert geniigend Literatur,
z.B. [4]. Hingegen sollen die Grundprinzipien von APL soweit
erkliart werden, dass die Auswirkungen auf das Programmieren
und die Unterschiede zu anderen Sprachen diskutiert werden
konnen. Einige Schwichen und deren Gewichtung im Rahmen
der Programmierung in APL werden ebenfalls gestreift.

3.1 Zeichensatz

Neben den in hoheren Programmiersprachen iiblichen Zei-
chen benotigt APL vor allem iiber 60 Operatoren als spezielle
Symbole. Einige dieser Operatoren werden dabei als soge-
nannte Overstruck Character aus zwei Spezialzeichen gebildet.
Auf der Schreibmaschine geschieht dies durch Schreiben des
ersten Zeichens, anschliessend Backspace und Schreiben des
zweiten Zeichens. Zum Beispiel setzt sich der Operator & (sor-
tieren) aus den Zeichen A und | zusammen. Diese Darstel-
lungsweise kann in gewissen Fillen zu Schwierigkeiten fiithren,
z.B. wenn die Eingabe eines Backspace als Loschung des vor-
angehenden Zeichens interpretiert wird.

Der besondere Zeichensatz von APL bietet aber grundsétz-
lich keine Probleme bei der Implementierung von APL. Die
tiblicherweise als schreibende Terminals eingesetzten Kugel-
kopfschreibmaschinen konnen mit dem entsprechenden APL-
Kugelkopf ausgeriistet werden. Moderne Bildschirmterminals
werden einfach mit einem zweiten Character-Generator aus-
geriistet und sind dann zwischen ASCII- und APL-Zeichensatz
umschaltbar, z.B. Tektronix 4013 oder Silent TI-700.

In gewissen Implementationen von APL wird die Notwen-
digkeit des besonderen APL-Zeichensatzes dadurch umgangen,
dass ein sogenannter Digraph-Mode [17] definiert wird. Dabei
wird ein besonderes Umschaltzeichen (z.B. $) festgelegt, und
alle speziellen APL-Operatoren werden durch diese Umschalt-
zeichen, gefolgt von einer mehr oder weniger aussagefihigen
Buchstabenkombination, dargestellt. Diese Variante stellt aber
nur ein Notbehelf dar, denn durch eine solche Schreibweise
wird die Lesbarkeit und Ubersichtlichkeit von APL-Aus-
driicken sehr eingeschrinkt.

3.2 Daten

In APL werden nur zwei Typen von Daten, nimlich Zahlen
oder Zeichenketten, unterschieden. Im Gegensatz zu den be-
kannten hoheren Programmiersprachen wird vom Beniitzer
keine Unterscheidung zwischen Integer-, Real- und Boolschen
Variablen verlangt. Diese frither aus Hardwaregriinden not-
wendige Differenzierung ist heute nicht mehr von derselben
Bedeutung. In APL wird die Konversion von einer Zahlen-
darstellung in die andere widhrend der Programmausfiihrung
automatisch vorgenommen.

Texte sind immer Vektoren oder Matrizen, wobei jeweils
ein Zeichen einer Vektor- oder Matrixkomponente entspricht
und individuell ansprechbar ist.

Als Datenstrukturen sind in APL Skalare, Vektoren, Ma-
trizen und mehrdimensionale Matrizen vorgesehen. Eine Va-

Bull. SEV/VSE 73(1982)2, 23. Januar

riable muss nie im voraus deklariert werden; Typ oder Struk-
tur ergeben sich bei der Zuweisung von Werten. Eine Variable
besteht aus einem Dimensionsvektor zur Beschreibung der
Datenstruktur sowie dem eigentlichen Datenvektor mit den
Werten. Die Tatsache, dass die Struktur von Daten dynamisch
verdndert werden kann und auch nicht deklariert werden muss,
ist als besondere Stdrke der Dialogsprache APL zu werten.

Moglichkeiten zum Ansprechen von Teilen einer bestimm-
ten Datenstruktur werden spiter aufgezeigt. Wie auch in
hoheren Programmiersprachen blich, konnen Komponenten
von Vektoren und Matrizen durch Indizieren von Variablen
angesprochen werden.

Hohere Datenstrukturen wie z.B. Listenstrukturen sind
in APL nicht explizit vorgesehen, konnen aber auf einfache
Art selbst programmiert werden und sind auch in gewissen
APL-Implementationen verfligbar. Rekursive Strukturen sind
in [13] beschrieben. Die Verkniipfung von Abfragesprachen
mit APL erlaubt den generellen Zugriff auf Datenbanken [12].

3.3 Operationen
3.3.1 Elementaroperationen und Ausdriicke

Ausdriicke dienen dazu, Operanden zu transformieren und
miteinander zu verkniipfen. Zwei Unterschiede gegeniiber
anderen Programmiersprachen sind offensichtlich. So erfolgt
die Interpretation eines Ausdruckes von rechts nach links, was
eine gewisse Angewohnung erfordert. Ebenfalls im Unterschied
zu den {iblicherweise giiltigen Vorrangregeln zwischen ver-
schiedenen Operatoren gibt es in APL keine Vorrangregeln,
d.h., samtliche Operatoren werden mit gleicher Prioritdt ab-
gearbeitet. Auch diese Regel ist ungewohnt. Eine andere Prio-
rititenordnung der Operatoren ist aber kaum sinnvoll, da
entsprechende Regeln auch fiir den Programmierer nur miih-
sam erlernt und damit richtig angewendet wiirden.

Die Verarbeitung von Ausdriicken bezieht sich ganz gene-
rell auf jede Struktur, wenn gewisse Konformitdatsbedingungen
erfiillt sind. So wird im Beispiel eines Ausdruckes
"N+ B
nicht nur eine skalare Addition von zwei Werten ausgefiihrt,
sondern abhidngig von der Datenstruktur von A und B, kann
es sich auch um die Addition von Vektoren, Matrizen oder
mehrdimensionalen Matrizen handeln.

3.3.2 Strukturoperationen

Das Grundkonzept der dynamischen Definition von Daten
durch Struktur und zugehérige Werte berechtigt nicht nur die
Werte, sondern auch die Struktur von Daten nach Belieben
zu dndern. Eine Fiille von entsprechenden Strukturoperationen
gestatten, die Reduktion, das innere und dussere Produkt,
Neustrukturierung, Aneinanderreihen, Komprimieren und
Expandieren, die Bildung von Indexmengen, die Zugehdrigkeit
zu Mengen, Sortieren, Entschliisseln, Verschliisseln, Forma-
tieren von Daten vorzunehmen. Diese Strukturoperatoren
stellen eine wesentliche Erweiterung gegeniiber den bekannten
Programmiersprachen dar und erlauben in sehr vielen Féllen
die Verarbeitung von Feldern anstelle des Schreibens von
programmierten Schleifen zur Ausiibung einer bestimmten
Operation auf die einzelnen Elemente einer Variablen.

3.3.3 Beispiele

Zwei ganz einfache Beispiele sollen die MGglichkeiten dieses
Konzeptes erldutern.

B 13) 57

In einer Matrix U von 3 Zeilen und 4 Kolonnen sind die
Energieumsitze pro Spannungsebene (3 Spannungsebenen)
und Quartal (4 Quartale) gespeichert.

I 10 8 ? 11 1

U+~ | 40 SS 35 30 |
| 88 70 70 87 |

Der einfache Befehl einer Reduktion entlang der ersten
Koordinate in der Form
«/01 W

138 133 112 128

liefert die totalen Umsidtze pro Quartal.

Der Ausdruck

rou
11 SS 88
liefert die maximalen Umsitze pro Spannungsebene. Die Ein-
fachheit dieser Operation zeigt klar die Unterschiede zu den
konventionellen Programmiersprachen.

Ein weiteres Beispiel bezieht sich auf die Anwendung des
inneren Produktes. Die Definition des inneren Produktes ist
von der Matrizenrechnung der Mathematik abgeleitet worden,
indem Zeilen und Spalten komponentenweise durch Multipli-
kationen und anschliessende Addition miteinander verkniipft
werden. Die Darstellung der Matrix-Multiplikation fiir zwei
Matrizen A und B lautet deshalb in APL
A-.xB

Anstelle der Operatoren + - X kann im allgemeinen Fall
eines inneren Produktes eine beliebige andere Kombination
von Elementaroperatoren stehen. Im folgenden Beispiel wird
das innere Produkt dazu verwendet, die Existenz und Position
eines Namens in einer gegebenen Namenliste zu ermitteln. Mit
TX als Namenliste kann iiber das innere Produkt (hier A - =)
und den Indexgenerator diese Aufgabe auf einfache Weise
gelost werden.

ALPHA |
TX « | BETA |
GARMMA |
| DELTA |

CoTXA.=S 12'GAMMA')11

Als Resultat dieses Ausdruckes erhidlt man 3, da GAMMA
auf der 3. Zeile von TX zu finden ist.

3.4 Programmstrukturen
3.4.1 Anweisungen

Neben der Wertzuweisung (<), die mehrfach pro Zeile
vorkommen kann, und der Sprunganweisung (—) sind Eingabe
und Ausgabe durch das Zeichen Quad ([]) definiert. []J steht
dabei als dummy-Variable an einer beliebigen Stelle eines Aus-
druckes. Bei der Interpretation eines solchen Ausdruckes wird
beim Antreffen von [] auf Input gewartet. Alle eingegebenen
Werte werden als Daten dieses Ausdruckes weiter verwendet.
Das Symbol [] fiir die Ausgabe kann auch mehrfach innerhalb
einer Zeile stehen, beispielsweise um Zwischenresultate eines
Ausdruckes zu erhalten.

3.4.2 Prozeduren

APL kennt das Konzept von Prozeduren, die als externe
Prozeduren zu verstehen sind, mit lokalen und globalen Varia-
blen arbeiten konnen und nicht mehr als zwei explizite Para-
meter aufweisen diirfen. Diese Prozeduren heissen in APL
Funktionen und kdnnen voll rekursiv verwendet werden. Aus-
serdem kann eine Funktion gleichwertig zu den bekannten
APL-Operatoren in Ausdriicken an beliebiger Stelle stehen.

58 (B 14)

Die Verwendung von Prozeduren gestattet eine klare, modu-
lare Programmierung, sofern die Verwendung von globalen
Variablen restriktiv gehandhabt wird.

3.4.3 Strukturierte Programmierung

Mit der Methode der strukturierten Programmierung ver-
sucht man, die Idee, das Verhalten und die Dynamik eines
Programmes sichtbar zu machen [4]. APL kommt diesen Be-
strebungen entgegen, da sehr pridgnante Ausdriicke iiberall
dort moglich sind, wo Operatoren auf Datenstrukturen und
nicht nur auf Skalare angewendet werden. Obwohl die iiblichen
Elemente wie «repeat», «while do» oder «if else» fehlen, lassen
sich strukturierte Abldufe mit den vorhandenen Moglichkeiten
programmieren.

3.5 Dialogfihigkeit

APL kann durch Umschalten zwischen Rechnermodus und
Funktionsdefinition jederzeit fiir die direkte Ausfiihrung der
Ausdriicke oder die Definition neuer Programme verwendet
werden. Der Umstand, dass APL iiber einen Interpreter aus-
gefiihrt wird, bedingt keine Programmumwandlung wihrend
der Programmentwicklung und gibt eine volle Transparenz
mit exakter Fehleranzeige wahrend der Programmausfiihrung.

Ein Editor ist in APL fest implementiert. Funktionen kon-
nen so wahrend der Ausfiihrung verdndert werden, und auch
Daten konnen bei Programm-Stops nach Belieben abgerufen
und ebenfalls verindert werden.

Die Verbindung von APL zum Betriebssystem ist mittels
vorgegebenen Systemkommandos und Systemfunktionen reali-
siert. Uber das Konzept der Arbeitsbereiche (workspace) wird
in APL die gesamte Programm- und Datenverwaltung unter
Beriicksichtigung der Probleme des Datenschutzes und der
Datensicherheit gelGst.

All diese Eigenschaften tragen dazu bei, dass die volle Aus-
richtung auf Dialogapplikationen in APL sehr gut unterstiitzt
wird und dass durch die gleichzeitige Definition von Editor
und Systembefehlen innerhalb APL eine Portabilitit angeboten
werden kann, die dem Programmierer die Arbeit auf verschie-
denen Systemen vereinheitlicht und damit wesentlich verein-
facht.

4. Anwendungen

Das universelle Konzept von APL gestattet den Einsatz
dieser Sprache in den verschiedensten Anwendungsgebieten.
Die hier angegebenen Beispiele lassen sich natiirlich immer
auch in einer anderen Programmiersprache l16sen.

4.1 Administration

Die Planung iiber mehrere Jahre, wie z.B. die Investitions-
planung [6], ist ein dynamischer Prozess, der laufenden Ande-
rungen unterworfen ist. Fiir die Ausfithrung solcher Planungs-
rechnungen eignet sich APL ausgezeichnet [7].

Die Budgetierung gilt als typisches Beispiel einer Anwen-
dung, die relativ selten benotigt wird, dann aber rasche Reak-
tion und eine grosse Flexibilitdt erfordert. Eine Losung in APL
kann diese Gesichtspunkte beriicksichtigen. Neben den lau-
fenden Eingaben von Budgetzahlen im Dialog konnen jederzeit
Teile des Budgets und besondere Summierungen verlangt wer-
den. Spezielle Auswertungen sind so einfach zu programmieren,
dass auch die Quartalergebnisse liber dieses Budget-Programm-
system in APL verarbeitet werden.

Bull. ASE/UCS 73(1982)2, 23 janvier

Wird die Budgetrechnung mit der Ergebnisrechnung ge-
koppelt, so kdnnen zusitzlich Umsatz, Absatz und Kosten
gezielt analysiert werden [7].

4.2 Message-System

Oft ist es schwierig, dem Benutzer den Ablauf einer trans-
aktionsorientierten Applikation geniigend klar veranschauli-
chen zu konnen. Hier bietet sich APL an, um mit Prototypen
von Applikationen den Transaktionsaufbau und -ablauf experi-
mentell vorzufithren. Damit ist es moglich, Fehler und Schwi-
chen eines Transaktionssystems bereits in der Designphase zu
eliminieren [2].

Der Verkehr zwischen Rechenzentrum und Bildschirm-
beniitzern kann durch die Verbreitung von wichtigen Meldun-
gen iiber das tdgliche Betriebsgeschehen verbessert werden.
Sind die entsprechenden Informationen in APL gespeichert,
so kann tiber die einfache Funktion DI jede Information von

jedem Terminal aus abgerufen werden.

v DI N
(11 (N=e\T[31)='8')7011T
v

4.3 Technische Applikationen

Ein bekanntes Beispiel stellt die Extrapolation von Zeit-
reihen mit Hilfe von APL dar. Verschiedene Modelle kénnen
iiber entsprechende numerische Methoden der Kurvenapproxi-
mation angepasst, statistische Grossen konnen ermittelt wer-
den, und damit kann eine Extrapolation vorgenommen werden.

Derartige Rechnungen verlangen neben der Moglichkeit,
Alternativen schnell und ohne grossen Arbeitsaufwand durch-
zufiihren, auch leicht dnderbare und erweiterungsfihige Pro-
gramme, was von APL in ausgezeichneter Weise unterstiitzt
wird [11].

Die Methode von Box-Jenkins wird in [8] als vollstdndiger
Satz von APL-Programmen beschrieben. Diese wurden am
Beispiel des Elektrizititsverbrauches in Finnland iiberpriift.

Die Klassifizierung von Daten in wenige repréisentative
Klassen wird durch die Methoden der Cluster-Analyse abge-
deckt. Solche Verfahren arbeiten mit Matrix-Operationen und
Mengenbildungen und eignen sich z.B. fiir die Berechnung
von charakteristischen Lastkurven.

Andere Applikationen aus dem technischen Sektor eignen
sich in dhnlicher Weise fiir eine Realisierung mittels APL.
Unter Umstidnden kann auch nur die Entwicklung eines Algo-
rithmus in APL vorgenommen werden, um anschliessend das
ausgetestete Verfahren z.B. in FORTRAN umzusetzen (State
estimation).

4.4 Graphische Anwendungen

Der Operator s ermdglicht den Dialog im reinen ASCII-
Zeichensatz zwischen System und Terminal. Damit erhélt man
auch in APL die vollstindige Transparenz auf der Ebene des
Kontrollzeichensatzes eines bestimmten Terminals. Das fol-
gende Beispiel zeigt die entsprechende Koordinatentransfor-
mation, um fiir ein graphisches Terminal (Tektronix 4013)
eine graphische Ausgabe zu erhalten. Das Koordinatenpaar
(x, y) wird mit der terminalspezifischen Matrix M multipliziert.

132 0 0 0_1 |
Me 196 0 1 0732
132 0 0_1 0
| 64 1 0732 0 |

v ReX KOTRAM Y
1) ResMe e %1,XsYsL(Xa V) 032
v
3

Bull. SEV/VSE 73(1982)2, 23. Januar

Spezielle graphische Software ist kaum notwendig und kann
in komplexeren Anwendungen als Package individuell ent-
wickelt werden [9]. Ein Anwendungsbeispiel stellt die graphi-
sche Darstellung der Transaktionsrate iiber einen Tag dar.
Mit Hilfe von Strukturoperatoren werden Mittelwerte, Minima
und Maxima gebildet, die als Verlauf dargestellt werden.

In analoger Weise kann die Verwendung von g als Input-
Operator die Koordinaten des Crosshair Cursor liefern. An-
wendungsgebiete sind z.B. der Aufbau von Pldnen fiir elek-
trische Netzschemas oder die Netzplantechnik durch inter-
aktive Definitionen von Knotenpunkten und Verbindungen
am graphischen Terminal. Gleichzeitig werden Texte und
Daten eingegeben, um etwa mit dem CPM-Algorithmus
Projekte durchzurechnen [6].

4.5 Instruktion

Ausbildung und Instruktion via Terminal haben den Vor-
teil, dass jedermann an seinem Arbeitsplatz und auch zu frei
wihlbaren Zeiten einzelne Ausbildungsschritte durcharbeiten
kann. Fiir den Instruktor ergeben sich bei Anderungen keine
Probleme fiir die Verteilung von neuen Informationen, und
Instruktionen sind dauernd auf dem aktuellen Stand. Neben
besonderen Softwaresystemen (ASET bei UNIVAC) eignet sich
auch APL fiir diese Aufgaben [15]. In [6] wird ein Trainings-
system zur Vertiefung der APL-Kenntnisse beschrieben.

4.6 Beweise

Die Korrektheitsbeweise von Programmen sind heute noch
sehr umfangreich. Zwei Eigenschaften von APL, namlich die
Reduktion von Operatoren auf einige wenige sowie die Be-
schreibung von Definitions- und Wertebereich in APL, erlauben
grundsitzlich Korrektheitsbeweise von APL-Programmen
mittels APL-Beweissequenzen durchzufiihren [4], [14].

5. Zukunft

Die Basispublikation zu APL von Iverson erschien 1962 [3],
also vor bald 20 Jahren. Die heutige Situation von APL kann
im Hinblick auf zukiinftige Entwicklungen wie folgt beurteilt
werden:

— APL ist beziiglich Hardware auf besondere Ein- und Aus-
gabemoglichkeiten angewiesen, und die interpretative Verar-
beitung ergibt eine relativ starke Prozessor- und Arbeits-
speicherbelastung durch APL-Anwendungen.

— Einige Eigenschaften von APL wie die Rechts-nach-
links-Interpretation von Ausdriicken und der stark mathema-
tische Hintergrund bedingen ein Umdenken des Programmie-
rers. Als Basis muss eine grosse Vertrautheit in der Arbeit mit
Matrizen und ein entsprechendes Vorstellungsvermogen vor-
ausgesetzt werden.

— Fiir neue sprachorientierte Rechnerarchitekturen ist das
Konzept der APL-Sprache besonders geeignet. Mit der Ein-
filhrung spezieller Prozessoren werden heute giiltige Ein-
schrinkungen in der Anwendung von APL in Zukunft weg-
fallen [5].

— Die grossen Leistungssteigerungen bei den Kleinrechnern
werden auch dort in Zukunft verstirkt den Einsatz von APL
moglich machen.

— Die spezielle, mathematisch orientierte Denkweise in
APL wird voraussichtlich dazu fiihren, dass auch in Zukunft
nicht jedermann in APL programmieren wird. Die Dialog-
moglichkeiten von APL lassen jedoch eine zunehmende Ver-

(B 15) 59

wendung von APL-Software erwarten. Diese muss aber von
professionellen APL-Programmierern erstellt werden und kann
dann dem Systembenutzer zur Verfiigung gestellt werden.

In diesem Rahmen ist in Zukunft mit einer zunehmenden
Verbreitung von APL als universelle Programmiersprache zu
rechnen.

Literatur

[1] APL, ein Instrument zur Erhéhung der Produktivitit, IBM-Bulletin Nr. 113,
April 1979.

[2] Modelle und Prototypen fiir Anwendungsprogramme, IBM-Bulletin Nr. 120,
Juli 1980.

[3] Iverson, K.E.: A Programming Language, New York, 1962.
[4] Giloi, W.K.: Programmieren in APL, Berlin, 1977.
[S]1 Giloi, W.K.: Rechnerarchitektur, Berlin, 1981.

[6] Nass, K.W.: APL/1100 — eine erstaunliche Programmiersprache und ihre
universellen Anwendungen, Datascope Heft 29, 1979.

Création du réseau numérique ENEL

Par D. Bisci, A. Schiavi et O. Venturini

Es wird auf die grundlegenden Konzeptionskriterien hingewiesen,
die bei der Schaffung des Datennetzes der Ente Nazionale per I’Energia
Elettrica (ENEL) zur Anwendung gelangten, ferner auf die den Com-
puteranwendern gebotenen Dienste sowie die globale Architektur des
Netzes. Spezieller Nachdruck wird auf die Beurteilung der Leistungen
und auf die seit der Inbetriebnahme des Netzes gewonnene Erfahrung
gelegt. Schliesslich wird kurz auf die Erweiterungspline des ENEL-
Netzes eingegangen.

1. Introduction

Du fait de ’augmentation considérable du nombre des ap-
plications de traitement a distance et de 1’augmentation du
nombre des installations de terminaux de données qui en est
résultée ces derniéres années, ENEL a reconsidéré I’ensemble
de la structure de son systéme de transmission de données a
I’échelle nationale. '

Il fallait répondre a trois exigences fondamentales:

— Placcés des terminaux au centre informatique ENEL im-
planté & Milan, ou deux systémes principaux sont consacrés
au calcul technique et scientifique,

— Pinterconnexion des ordinateurs régionaux ENEL pour
assurer un échange des données entre différents secteurs régio-
naux,

- la commutation de messages entre le siége social de ENEL
implanté & Rome et les huit départements régionaux, y com-
pris la transmission numérique en facsimile & grande vitesse.

Dés la fin de 1979, il apparut clairement que le simple sys-
téme de multiplexage temporel n’était plus suffisant pour faire
face a la demande croissante de liaisons de transmission de
données, surtout pour ce qui concerne le premier point men-
tionné ci-dessus. La manque de souplesse du réseau et le coiit
¢élevé des liaisons de transmission de données, chacune étant
affectée a une application spécifique, en étaient les principaux
inconvénients.

C’est pourquoi la décision fut prise de construire un réseau
de données intégré selon le principe d’un partage des ressources
de communication entre différents utilisateurs, applications
et terminaux.

Le plan de mise au point de ce réseau a I’échelle nationale
visait deux objectifs principaux: premiérement, la possibilité

60 (B 16)

[7]1 Govil, C. P.: Kaufminnische Anwendungen mit APL, Datascope Heft 35, 1980.
[8] Kaltio, S.: A system for time series analysis, ITS-Meeting March 26-30, 1979,
Nottingham University.
[9]1 Niehoff, W.H., Jones, A.L.: An APL approach to presentation graphics, IBM
Systems Journal, No. 3, 198.
[10] Alfonseca, M. et al: An APL interpreter and system for a small computer,
IBM Systems Journal, No. 1, 1977.
[11] Fricke, W.: Bevolkerungs- und Arbeitsplatzprojektion mit APL, IBM-Nach-
richten Nr. 248, Februar 1980.
[12] Blaser, A., Lehmann, H.: Abfragesprachen in Datenbanken, IBM-Nachrichten
Nr. 251, Oktober 1980.
[13] Gull, W.E., Jenkins, M.A.: Recursive Data Structures in APL, CACM Vol
22/1, Januar 1979.
[14] Iverson, K. E.: Notation as a tool of thought, CACM Vol 23/8, August 1980.
[15] Spoeistra, J.: APL in Computer assisted instruction, a selecting mechanism,
APL 80, Amsterdam, 1980.
[16] Berry, P.: APL/1130 Primer, White Plains, 1968.
[17] APL System, Programmer Reference, UNIVAC UP-8139.

Adresse des Autors
U. Hartmann, dipl. Math. ETH, Bernische Kraftwerke AG, 3000 Bern 25.

pour la transmission de données

Cet article indique les critéres de conception fondamentaux qui
ont été retenus pour la création du réseau de données de I’Ente Na-
zionale per I’Energia Elettrica (ENEL), les services fournis aux utili-
sateurs d’ordinateurs ainsi que I’architecture globale du réseau. L’éva-
luation des performances et Iexpérience acquise depuis la mise en
exploitation du réseau sont particuliérement soulignés. Enfin, le plan
d’expansion future du réseau ENEL est briévement évoqué.

de sélectionner le service de calcul désiré a partir du terminal
utilisateur ou a partir de I'ordinateur principal demandeur en
cas de communications d’ordinateur principal & ordinateur
principal ; deuxiémement, la réalisation de voies de communi-
cations se prétant a un trafic intensif, de fagon a optimiser le
rapport colit-bénéfice de la transmission de données.

2. Critéres de conception de base

Les contraintes les plus importantes dont il a fallu tenir
compte dans la conception du réseau furent:

— la nécessité de desservir un large éventail de terminaux
utilisateurs et d’ordinateurs principaux, d’ou un large éven-
tail de protocoles de bout en bout,

la possibilité limitée de prévoir la demande a long terme
de voies de transmission de données dans de nombreuses
applications nouvelles.

11 a donc fallu aborder les travaux d’études de fagon ouverte
pour s’assurer que le réseau pourrait étre étendu d’une
facon commode, tout en commengant par une absolue
transparence a 1’égard des utilisateurs, tout au moins au
cours des phases initiales.

Les spécifications du réseau de données ENEL furent donc
fondées sur les principes suivants:

une structure de base capable de prendre en charge le proto-
cole CCITT X.25 dans les stades de son évolution future,
la possibilité d’effectuer une simple commutation de circuits
«transparente» tant en mode synchrone qu’en mode asyn-
chrone,

la possibilité d’effectuer un contréle d’erreurs et une con-
centration statistique pour les utilisateurs en mode asyn-
chrone.

Bull. ASE/UCS 73(1982)2, 23 janvier

	APL : ein unabhängiges und leistungsfähiges Werkzeug zur Beschleunigung der Entwicklung von dialogorientierten Systemen

