
Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de
l'Association suisse des électriciens, de l'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitätsunternehmen

Band: 73 (1982)

Heft: 2

Artikel: APL : ein unabhängiges und leistungsfähiges Werkzeug zur
Beschleunigung der Entwicklung von dialogorientierten Systemen

Autor: Hartmann, U.

DOI: https://doi.org/10.5169/seals-904915

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-904915
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


und von Kundeninformationen usw. im geographischen Kontext

wirtschaftlich sind. Das Vorhandensein der Kundeninformationen,

der Informationen über die Betriebsmittel des Nieder-
spannungs- und Mittelspannungsnetzes sowie der Informationen

über die geographische Lage dieser Betriebsmittel und
Kunden fordert geradezu auf, die Daten zu verknüpfen. So ist
es durchaus denkbar, dass in späterer Zukunft von dem Haus-

anschluss des einzelnen Kunden bis zur entsprechenden
Ortsnetzstation und von dort über das Mittelspannungsnetz bis
zum Umspannwerk Verknüpfungen geschaffen und ausgewertet

werden können.

Adresse der Autoren
W. Ferenz, Dipl.-Ing., und M.K. Hoffmann, Dipl.-Ing., Abteilung
Datenverarbeitung der Schleswag Aktiengesellschaft, D-2370 Rendsburg.

APL- ein unabhängiges und leistungsfähiges Werkzeug
zur Beschleunigung der Entwicklung von dialogorientierten Systemen
Von U. Hartmann

Die heutige Situation in der ED V ist einerseits durch ein laufend
verbessertes Preis/Leistungs- Verhältnis charakterisiert. Dadurch werden

immer mehr neue EDV-Projekte wirtschaftlich interessant.
Andererseits verzögert der Mangel an Programmierern die Realisierung
weiterer EDV-Projekte. Aus dieser Diskrepanz ergibt sich ein
sogenannter Anwendungsstau. APL (A Programming Language) passt
ideal in diese Situation, indem diese Sprache gegenüber den
konventionellen höheren Programmiersprachen etwas mehr Rechenzeit
konsumiert, hingegen die Programmierproduktivität erheblich steigert.
Ein breites Feld von Anwendungen in Elektrizitätsunternehmen kann
mit APL gelöst werden. Eine Auswahl von Beispielen aus verschiedensten

Gebieten wie Administration, Planung, Technik, Graphik und
Transaktionen zeigt die universellen Möglichkeiten von APL.

1. Einleitung
Die kontinuierliche Verbesserung des Preis/Leistungs-Verhältnisses

auf dem Computer-Hardware-Sektor lässt immer
neue Anwendungen für eine EDV-Realisierung interessant
erscheinen. Die Zahl möglicher Anwendungen nimmt somit
dauernd zu. Andererseits ist seit längerer Zeit generell
festzustellen, dass für die Software-Entwicklung nur ungenügend
Programmierkapazität verfügbar ist. Dadurch entsteht ein
Anwendungsstau, d.h., die Zahl der zu realisierenden Anwendungen

nimmt laufend zu und kann kaum abgebaut werden.
Die am weitesten verbreiteten höheren Programmiersprachen

FORTRAN, COBOL und PL/1 waren seinerzeit ein
wichtiger Schritt zur Verbesserung der Programmierproduktivität

gegenüber dem Programmieren in Assembler. Neben
den erwähnten Sprachen kann heute für die verschiedensten
speziellen Anwendungsbereiche auf entsprechend zugeschnittene,

anwendungsorientierte Sprachen zugegriffen werden. Es
wird deshalb kurz begründet, weshalb APL neben all den
bestehenden Programmiersprachen als universelle Sprache
vorgestellt und deren weitere Verbreitung unterstützt werden soll.

Untersuchungen [1], [2] haben ergeben, dass rund 50%
aller Programme nur ca. 2 % der Systemressourcen benötigen.
So ist es naheliegend, nach Möglichkeiten zu suchen, diesen

grossen Anteil seltener benutzter Programme derart zu
realisieren, dass die Programmerstellung möglichst effizient
vorgenommen werden kann. Dagegen wird in Kauf genommen,
dass die Ausführung dieser Programme unter Umständen
rechenzeitintensiver als in einer anderen Sprache wird.

APL bietet mit seiner sehr prägnanten und mächtigen
Symbolik genau diese gewünschten Möglichkeiten. So lässt sich
die Produktivität in der Phase der Programmerstellung gegenüber

konventionellen höheren Programmiersprachen etwa im

La situation actuelle en informatique est caractériség d'une part
par l'amélioration constante de la relation prix/performances, qui fait
apparaître de plus en plus de projets informatiques comme économiquement

intéressants. Par ailleurs, la pénurie de programmeurs empêche
de réaliser de nouveaux projets. Cette situation a pour conséquence
un «bouchon» dans le domaine des applications. APL (A Programming

Language) s'adapte parfaitement à cette situation car ce langage
consomme un peu plus de temps de calcul que les langages
conventionnels supérieurs de programmation, mais augmente considérablement

la productivité de la programmation. APL permet de résoudre
une vaste gamme d'applications dans les entreprises d'énergie
électrique. Les possibilités universelles d'APL sont présentées à la lumière
d'exemples sélectionnés de différents domaines comme l'administration,

la planification, la technique, la graphique et les transactions.

Verhältnis 6:1 verbessern, und die Schreibarbeit nimmt ebenfalls

im gleichen Verhältnis ab [1], [7], APL wird nicht übersetzt,

sondern mit Hilfe eines Interpreters direkt ab Quellencode

verarbeitet, wodurch die Programme rechenzeitintensiver
werden können.

2. Entstehung und Verbreitung
APL heisst «A Programming Language» und wurde von

K.E. Iverson 1962 mit der Absicht veröffentlicht [3], eine
systematische Notation für die Vektor-Algebra zu definieren,
die gleichzeitig gestattet, Algorithmen einzuführen. Dieses
formale System in Form einer Operatorensprache ist als
universelle Programmiersprache für Applikationen aus den
verschiedensten Gebieten geeignet.

Die Erweiterung von Operatoren auf Felder beliebigen
Ranges sowie die Verallgemeinerung von Vektor- und Matrix-
Operationen lehnen sich an entsprechende bekannte mathematische

Operationen an. Diese Tatsache muss betont werden,
damit klar wird, dass die Arbeit mit APL wesentlich auf einem
mathematischen Vorstellungsvermögen aufbaut, wie dies für
Vektor- und Matrizenrechnung üblich ist. Mit dieser Aussage
wird die universelle Einsatzmöglichkeit von APL keineswegs
in Abrede gestellt.

Nach FORTRAN, COBOL und PL/1 ist APL in den USA
und Kanada eine der am weitesten verbreiteten Programmiersprachen.

Die meisten der bekannten Computerhersteller bieten
heute APL-Übersetzer auf ihren Systemen an. Grosse
Timesharing-Netze in den USA offerieren ebenfalls die Möglichkeiten

der Benutzung von APL. APL eignet sich aber nicht
nur als Sprache auf Großsystemen (wie z. B. Univac 1100 oder
IBM/370), sondern ist zum Teil auch auf Tischrechnern wie

56 (B 12) Bull. ASE/UCS 73(1982)2, 23 janvier



IBM 5110 [1] und dem Prozessrechner IBM/7 [10] installiert
worden. Eine der ersten Implementationen von APL wurde
bereits 1968 auf dem System IBM 1130 als IBM-Produkt zur
Verfügung gestellt [16].

3. Eigenschaften von APL

Es besteht nicht die Absicht, eine Einführung in die Benutzung

von APL zu geben; dazu existiert genügend Literatur,
z.B. [4]. Hingegen sollen die Grundprinzipien von APL soweit

erklärt werden, dass die Auswirkungen auf das Programmieren
und die Unterschiede zu anderen Sprachen diskutiert werden

können. Einige Schwächen und deren Gewichtung im Rahmen
der Programmierung in APL werden ebenfalls gestreift.

3.1 Zeichensatz

Neben den in höheren Programmiersprachen üblichen
Zeichen benötigt APL vor allem über 60 Operatoren als spezielle

Symbole. Einige dieser Operatoren werden dabei als
sogenannte Overstruck Character aus zwei Spezialzeichen gebildet.
Auf der Schreibmaschine geschieht dies durch Schreiben des

ersten Zeichens, anschliessend Backspace und Schreiben des

zweiten Zeichens. Zum Beispiel setzt sich der Operator t
(sortieren) aus den Zeichen A und | zusammen. Diese
Darstellungsweise kann in gewissen Fällen zu Schwierigkeiten führen,
z. B. wenn die Eingabe eines Backspace als Löschung des

vorangehenden Zeichens interpretiert wird.
Der besondere Zeichensatz von APL bietet aber grundsätzlich

keine Probleme bei der Implementierung von APL. Die
üblicherweise als schreibende Terminals eingesetzten
Kugelkopfschreibmaschinen können mit dem entsprechenden APL-
Kugelkopf ausgerüstet werden. Moderne Bildschirmterminals
werden einfach mit einem zweiten Character-Generator
ausgerüstet und sind dann zwischen ASCII- und APL-Zeichensatz
umschaltbar, z.B. Tektronix 4013 oder Silent TI-700.

In gewissen Implementationen von APL wird die Notwendigkeit

des besonderen APL-Zeichensatzes dadurch umgangen,
dass ein sogenannter Digraph-Mode [17] definiert wird. Dabei
wird ein besonderes Umschaltzeichen (z.B. S) festgelegt, und
alle speziellen APL-Operatoren werden durch diese Umschaltzeichen,

gefolgt von einer mehr oder weniger aussagefähigen

Buchstabenkombination, dargestellt. Diese Variante stellt aber

nur ein Notbehelf dar, denn durch eine solche Schreibweise

wird die Lesbarkeit und Übersichtlichkeit von APL-Aus-
drücken sehr eingeschränkt.

3.2 Daten

In APL werden nur zwei Typen von Daten, nämlich Zahlen
oder Zeichenketten, unterschieden. Im Gegensatz zu den
bekannten höheren Programmiersprachen wird vom Benützer
keine Unterscheidung zwischen Integer-, Real- und Boolschen
Variablen verlangt. Diese früher aus Hardwaregründen
notwendige Differenzierung ist heute nicht mehr von derselben

Bedeutung. In APL wird die Konversion von einer
Zahlendarstellung in die andere während der Programmausführung
automatisch vorgenommen.

Texte sind immer Vektoren oder Matrizen, wobei jeweils
ein Zeichen einer Vektor- oder Matrixkomponente entspricht
und individuell ansprechbar ist.

Als Datenstrukturen sind in APL Skalare, Vektoren,
Matrizen und mehrdimensionale Matrizen vorgesehen. Eine Va¬

riable muss nie im voraus deklariert werden; Typ oder Struktur

ergeben sich bei der Zuweisung von Werten. Eine Variable
besteht aus einem Dimensionsvektor zur Beschreibung der
Datenstruktur sowie dem eigentlichen Datenvektor mit den
Werten. Die Tatsache, dass die Struktur von Daten dynamisch
verändert werden kann und auch nicht deklariert werden muss,
ist als besondere Stärke der Dialogsprache APL zu werten.

Möglichkeiten zum Ansprechen von Teilen einer bestimmten

Datenstruktur werden später aufgezeigt. Wie auch in
höheren Programmiersprachen üblich, können Komponenten
von Vektoren und Matrizen durch Indizieren von Variablen
angesprochen werden.

Höhere Datenstrukturen wie z.B. Listenstrukturen sind
in APL nicht explizit vorgesehen, können aber auf einfache
Art selbst programmiert werden und sind auch in gewissen

APL-Implementationen verfügbar. Rekursive Strukturen sind
in [13] beschrieben. Die Verknüpfung von Abfragesprachen
mit APL erlaubt den generellen Zugriff auf Datenbanken [12].

3.3 Operationen

3.3.1 Elementaroperationen und Ausdrücke

Ausdrücke dienen dazu, Operanden zu transformieren und
miteinander zu verknüpfen. Zwei Unterschiede gegenüber
anderen Programmiersprachen sind offensichtlich. So erfolgt
die Interpretation eines Ausdruckes von rechts nach links, was
eine gewisse Angewöhnung erfordert. Ebenfalls im Unterschied

zu den üblicherweise gültigen Vorrangregeln zwischen
verschiedenen Operatoren gibt es in APL keine Vorrangregeln,
d.h., sämtliche Operatoren werden mit gleicher Priorität
abgearbeitet. Auch diese Regel ist ungewohnt. Eine andere

Prioritätenordnung der Operatoren ist aber kaum sinnvoll, da

entsprechende Regeln auch für den Programmierer nur mühsam

erlernt und damit richtig angewendet würden.
Die Verarbeitung von Ausdrücken bezieht sich ganz generell

auf jede Struktur, wenn gewisse Konformitätsbedingungen
erfüllt sind. So wird im Beispiel eines Ausdruckes

x • s

nicht nur eine skalare Addition von zwei Werten ausgeführt,
sondern abhängig von der Datenstruktur von A und B, kann
es sich auch um die Addition von Vektoren, Matrizen oder
mehrdimensionalen Matrizen handeln.

3.3.2 Strukturoperationen

Das Grundkonzept der dynamischen Definition von Daten
durch Struktur und zugehörige Werte berechtigt nicht nur die
Werte, sondern auch die Struktur von Daten nach Belieben

zu ändern. Eine Fülle von entsprechenden Strukturoperationen
gestatten, die Reduktion, das innere und äussere Produkt,
Neustrukturierung, Aneinanderreihen, Komprimieren und
Expandieren, die Bildung von Indexmengen, die Zugehörigkeit
zu Mengen, Sortieren, Entschlüsseln, Verschlüsseln, Formatieren

von Daten vorzunehmen. Diese Strukturoperatoren
stellen eine wesentliche Erweiterung gegenüber den bekannten

Programmiersprachen dar und erlauben in sehr vielen Fällen
die Verarbeitung von Feldern anstelle des Schreibens von
programmierten Schleifen zur Ausübung einer bestimmten
Operation auf die einzelnen Elemente einer Variablen.

3.3.3 Beispiele

Zwei ganz einfache Beispiele sollen die Möglichkeiten dieses

Konzeptes erläutern.

Bull. SEV/VSE 73(1982)2, 23. Januar (B 13) 57



In einer Matrix U von 3 Zeilen und 4 Kolonnen sind die

Energieumsätze pro Spannungsebene (3 Spannungsebenen)
und Quartal (4 Quartale) gespeichert.

i io e 7 n i

U - I 40 55 35 30 I

l 83 70 70 87 I

Der einfache Befehl einer Reduktion entlang der ersten
Koordinate in der Form

•'t 1 ju
138 133 112 128

liefert die totalen Umsätze pro Quartal.
Der Ausdruck
r --u

11 55 88

liefert die maximalen Umsätze pro Spannungsebene. Die
Einfachheit dieser Operation zeigt klar die Unterschiede zu den

konventionellen Programmiersprachen.
Ein weiteres Beispiel bezieht sich auf die Anwendung des

inneren Produktes. Die Definition des inneren Produktes ist

von der Matrizenrechnung der Mathematik abgeleitet worden,
indem Zeilen und Spalten komponentenweise durch Multiplikationen

und anschliessende Addition miteinander verknüpft
werden. Die Darstellung der Matrix-Multiplikation für zwei

Matrizen A und B lautet deshalb in APL
G-. *B

Anstelle der Operatoren + • x kann im allgemeinen Fall
eines inneren Produktes eine beliebige andere Kombination
von Elementaroperatoren stehen. Im folgenden Beispiel wird
das innere Produkt dazu verwendet, die Existenz und Position
eines Namens in einer gegebenen Namenliste zu ermitteln. Mit
TX als Namenliste kann über das innere Produkt (hier /\ • —)

und den Indexgenerator diese Aufgabe auf einfache Weise

gelöst werden.

I GLPHG I
TX - I BETG I

I CGMUG I

I DEL TG I

<.rX~.-5 1» 'GGMT1B ' t 1

Als Resultat dieses Ausdruckes erhält man 3, da GAMMA
auf der 3. Zeile von TX zu finden ist.

3.4 Programmstrukturen

3.4.1 Anweisungen

Neben der Wertzuweisung (•<-), die mehrfach pro Zeile
vorkommen kann, und der Sprunganweisung (-Q sind Eingabe
und Ausgabe durch das Zeichen Quad (jj) definiert. [] steht
dabei als dummy-Variable an einer beliebigen Stelle eines
Ausdruckes. Bei der Interpretation eines solchen Ausdruckes wird
beim Antreffen von Q auf Input gewartet. Alle eingegebenen
Werte werden als Daten dieses Ausdruckes weiter verwendet.
Das Symbol Q für die Ausgabe kann auch mehrfach innerhalb
einer Zeile stehen, beispielsweise um Zwischenresultate eines

Ausdruckes zu erhalten.

3.4.2 Prozeduren

APL kennt das Konzept von Prozeduren, die als externe
Prozeduren zu verstehen sind, mit lokalen und globalen Variablen

arbeiten können und nicht mehr als zwei explizite
Parameter aufweisen dürfen. Diese Prozeduren heissen in APL
Funktionen und können voll rekursiv verwendet werden.
Ausserdem kann eine Funktion gleichwertig zu den bekannten

APL-Operatoren in Ausdrücken an beliebiger Stelle stehen.

Die Verwendung von Prozeduren gestattet eine klare, modu-
lare Programmierung, sofern die Verwendung von globalen
Variablen restriktiv gehandhabt wird.

3.4.3 Strukturierte Programmierung

Mit der Methode der strukturierten Programmierung
versucht man, die Idee, das Verhalten und die Dynamik eines

Programmes sichtbar zu machen [4], APL kommt diesen
Bestrebungen entgegen, da sehr prägnante Ausdrücke überall
dort möglich sind, wo Operatoren auf Datenstrukturen und
nicht nur auf Skalare angewendet werden. Obwohl die üblichen
Elemente wie «repeat», «while do» oder «if eise» fehlen, lassen

sich strukturierte Abläufe mit den vorhandenen Möglichkeiten
programmieren.

3.5 Dialogfähigkeit

APL kann durch Umschalten zwischen Rechnermodus und
Funktionsdefinition jederzeit für die direkte Ausführung der
Ausdrücke oder die Definition neuer Programme verwendet
werden. Der Umstand, dass APL über einen Interpreter
ausgeführt wird, bedingt keine Programmumwandlung während
der Programmentwicklung und gibt eine volle Transparenz
mit exakter Fehleranzeige während der Programmausführung.

Ein Editor ist in APL fest implementiert. Funktionen können

so während der Ausführung verändert werden, und auch
Daten können bei Programm-Stops nach Belieben abgerufen
und ebenfalls verändert werden.

Die Verbindung von APL zum Betriebssystem ist mittels
vorgegebenen Systemkommandos und Systemfunktionen realisiert.

Über das Konzept der Arbeitsbereiche (workspace) wird
in APL die gesamte Programm- und Datenverwaltung unter
Berücksichtigung der Probleme des Datenschutzes und der
Datensicherheit gelöst.

All diese Eigenschaften tragen dazu bei, dass die volle
Ausrichtung auf Dialogapplikationen in APL sehr gut unterstützt
wird und dass durch die gleichzeitige Definition von Editor
und Systembefehlen innerhalb APL eine Portabilität angeboten
werden kann, die dem Programmierer die Arbeit auf verschiedenen

Systemen vereinheitlicht und damit wesentlich vereinfacht.

4. Anwendungen
Das universelle Konzept von APL gestattet den Einsatz

dieser Sprache in den verschiedensten Anwendungsgebieten.
Die hier angegebenen Beispiele lassen sich natürlich immer
auch in einer anderen Programmiersprache lösen.

4.1 Administration

Die Planung über mehrere Jahre, wie z. B. die Investitionsplanung

[6], ist ein dynamischer Prozess, der laufenden
Änderungen unterworfen ist. Für die Ausführung solcher
Planungsrechnungen eignet sich APL ausgezeichnet [7],

Die Budgetierung gilt als typisches Beispiel einer Anwendung,

die relativ selten benötigt wird, dann aber rasche Reaktion

und eine grosse Flexibilität erfordert. Eine Lösung in APL
kann diese Gesichtspunkte berücksichtigen. Neben den
laufenden Eingaben von Budgetzahlen im Dialog können jederzeit
Teile des Budgets und besondere Summierungen verlangt werden.

Spezielle Auswertungen sind so einfach zu programmieren,
dass auch die Quartalergebnisse über dieses Budget-Programmsystem

in APL verarbeitet werden.

58 (B 14) Bull. ASE/UCS 73(1982)2, 23 janvier



Wird die Budgetrechnung mit der Ergebnisrechnung
gekoppelt, so können zusätzlich Umsatz, Absatz und Kosten

gezielt analysiert werden [7],

4.2 Message-System

Oft ist es schwierig, dem Benutzer den Ablauf einer
transaktionsorientierten Applikation genügend klar veranschaulichen

zu können. Hier bietet sich APL an, um mit Prototypen

von Applikationen den Transaktionsaufbau und -ablauf
experimentell vorzuführen. Damit ist es möglich, Fehler und Schwächen

eines Transaktionssystems bereits in der Designphase zu

eliminieren [2].
Der Verkehr zwischen Rechenzentrum und Bildschirm-

benützern kann durch die Verbreitung von wichtigen Meldungen

über das tägliche Betriebsgeschehen verbessert werden.

Sind die entsprechenden Informationen in APL gespeichert,

so kann über die einfache Funktion DI jede Information von
jedem Terminal aus abgerufen werden.

v DI N

m (N-sriju-'t'i/nir
V

4.3 Technische Applikationen

Ein bekanntes Beispiel stellt die Extrapolation von
Zeitreihen mit Hilfe von APL dar. Verschiedene Modelle können

über entsprechende numerische Methoden der Kurvenapproximation

angepasst, statistische Grössen können ermittelt werden,

und damit kann eine Extrapolation vorgenommen werden.

Derartige Rechnungen verlangen neben der Möglichkeit,
Alternativen schnell und ohne grossen Arbeitsaufwand
durchzuführen, auch leicht änderbare und erweiterungsfähige

Programme, was von APL in ausgezeichneter Weise unterstützt
wird [11].

Die Methode von Box-Jenkins wird in [8] als vollständiger
Satz von APL-Programmen beschrieben. Diese wurden am

Beispiel des Elektrizitätsverbrauches in Finnland überprüft.
Die Klassifizierung von Daten in wenige repräsentative

Klassen wird durch die Methoden der Cluster-Analyse
abgedeckt. Solche Verfahren arbeiten mit Matrix-Operationen und

Mengenbildungen und eignen sich z.B. für die Berechnung

von charakteristischen Lastkurven.
Andere Applikationen aus dem technischen Sektor eignen

sich in ähnlicher Weise für eine Realisierung mittels APL.
Unter Umständen kann auch nur die Entwicklung eines

Algorithmus in APL vorgenommen werden, um anschliessend das

ausgetestete Verfahren z.B. in FORTRAN umzusetzen (State

estimation).

4.4 Graphische Anwendungen

Der Operator b ermöglicht den Dialog im reinen ASCII-
Zeichensatz zwischen System und Terminal. Damit erhält man

auch in APL die vollständige Transparenz auf der Ebene des

Kontrollzeichensatzes eines bestimmten Terminals. Das

folgende Beispiel zeigt die entsprechende Koordinatentransformation,

um für ein graphisches Terminal (Tektronix 4013)

eine graphische Ausgabe zu erhalten. Das Koordinatenpaar
(x, y) wird mit der terminalspezifischen Matrix M multipliziert.

I 32 0 0 0 1 I

M - I 96 0 1 0"32 I

I 32 0 0 1 0 I

I 64 1 0"32 0 I

V R-X KOTRan Y

Ii) R-.n*.«i.x.r.icx.v>*32

Spezielle graphische Software ist kaum notwendig und kann
in komplexeren Anwendungen als Package individuell
entwickelt werden [9], Ein Anwendungsbeispiel stellt die graphische

Darstellung der Transaktionsrate über einen Tag dar.

Mit Hilfe von Strukturoperatoren werden Mittelwerte, Minima
und Maxima gebildet, die als Verlauf dargestellt werden.

In analoger Weise kann die Verwendung von o als Input-
Operator die Koordinaten des Crosshair Cursor liefern.
Anwendungsgebiete sind z.B. der Aufbau von Plänen für
elektrische Netzschemas oder die Netzplantechnik durch
interaktive Definitionen von Knotenpunkten und Verbindungen

am graphischen Terminal. Gleichzeitig werden Texte und

Daten eingegeben, um etwa mit dem CPM-Algorithmus
Projekte durchzurechnen [6].

4.5 Instruktion

Ausbildung und Instruktion via Terminal haben den Vorteil,

dass jedermann an seinem Arbeitsplatz und auch zu frei
wählbaren Zeiten einzelne Ausbildungsschritte durcharbeiten

kann. Für den Instruktor ergeben sich bei Änderungen keine

Probleme für die Verteilung von neuen Informationen, und
Instruktionen sind dauernd auf dem aktuellen Stand. Neben

besonderen Softwaresystemen (ASET bei UNIVAC) eignet sich

auch APL für diese Aufgaben [15], In [6] wird ein Trainingssystem

zur Vertiefung der APL-Kenntnisse beschrieben.

4.6 Beweise

Die Korrektheitsbeweise von Programmen sind heute noch

sehr umfangreich. Zwei Eigenschaften von APL, nämlich die

Reduktion von Operatoren auf einige wenige sowie die

Beschreibung von Definitions- und Wertebereich in APL, erlauben

grundsätzlich Korrektheitsbeweise von APL-Programmen
mittels APL-Beweissequenzen durchzuführen [4], [14].

5. Zukunft
Die Basispublikation zu APL von Iverson erschien 1962 [3],

also vor bald 20 Jahren. Die heutige Situation von APL kann

im Hinblick auf zukünftige Entwicklungen wie folgt beurteilt
werden :

- APL ist bezüglich Hardware auf besondere Ein- und

Ausgabemöglichkeiten angewiesen, und die interpretative
Verarbeitung ergibt eine relativ starke Prozessor- und
Arbeitsspeicherbelastung durch APL-Anwendungen.

- Einige Eigenschaften von APL wie die Rechts-nach-

links-Interpretation von Ausdrücken und der stark mathematische

Hintergrund bedingen ein Umdenken des Programmierers.

Als Basis muss eine grosse Vertrautheit in der Arbeit mit
Matrizen und ein entsprechendes Vorstellungsvermögen
vorausgesetzt werden.

- Für neue sprachorientierte Rechnerarchitekturen ist das

Konzept der APL-Sprache besonders geeignet. Mit der

Einführung spezieller Prozessoren werden heute gültige
Einschränkungen in der Anwendung von APL in Zukunft
wegfallen [5].

- Die grossen Leistungssteigerungen bei den Kleinrechnern
werden auch dort in Zukunft verstärkt den Einsatz von APL
möglich machen.

- Die spezielle, mathematisch orientierte Denkweise in
APL wird voraussichtlich dazu führen, dass auch in Zukunft
nicht jedermann in APL programmieren wird. Die
Dialogmöglichkeiten von APL lassen jedoch eine zunehmende Ver-

Bull. SEV/VSE 73(1982)2, 23. Januar (B 15) 59



Wendung von APL-Software erwarten. Diese muss aber von
professionellen APL-Programmierern erstellt werden und kann
dann dem Systembenutzer zur Verfügung gestellt werden.

In diesem Rahmen ist in Zukunft mit einer zunehmenden
Verbreitung von APL als universelle Programmiersprache zu
rechnen.

Literatur
[1] APL, ein Instrument zur Erhöhung der Produktivität, IBM-Bulletin Nr. 113,

April 1979.
[2] Modelle und Prototypen für Anwendungsprogramme, IBM-Bulletin Nr. 120,

Juli 1980.
[3] Iverson, K.E.: A Programming Language, New York, 1962.
[4] Giloi, W.K.: Programmieren in APL, Berlin, 1977.
[5] Giloi, W.K.: Rechnerarchitektur, Berlin, 1981.
[6] Nass, K. W.: APL/1100 - eine erstaunliche Programmiersprache und ihre

universellen Anwendungen, Datascope Heft 29, 1979.

[7] Govil, C. P.: Kaufmännische Anwendungen mit APL, Datascope Heft 35,1980.
[8] Kaltio, S.: A system for time series analysis, ITS-Meeting March 26-30, 1979,

Nottingham University.
[9] Niehoff, W.H., Jones, A.L.: An APL approach to presentation graphics, IBM

Systems Journal, No. 3, 1980.
[10] Alfonseca, M. et al: An APL interpreter and system for a small computer,

IBM Systems Journal, No. 1, 1977.
[11] Fricke, W.: Bevölkerungs- und Arbeitsplatzprojektion mit APL, IBM-Nach¬

richten Nr. 248, Februar 1980.
[12] Blaser, A., Lehmann, H.: Abfragesprachen in Datenbanken, IBM-Nachrichten

Nr. 251, Oktober 1980.
[13] Gull, IV.E., Jenkins, M.A.: Recursive Data Structures in APL, CACM Vol

22/1, Januar 1979.
[14] Iverson, K.E.: Notation as a tool of thought, CACM Vol 23/8, August 1980.
[15] Spoelstra, J.: APL in Computer assisted instruction, a selecting mechanism,

APL 80, Amsterdam, 1980.
[16] Berry, P.: APL/1130 Primer, White Plains, 1968.
[17] APL System, Programmer Reference, UNIVAC UP-8139.

Adresse des Autors
U. Hartmann, dipl. Math. ETH, Bernische Kraftwerke AG, 3000 Bern 25.

Création du réseau numérique EN EL pour la transmission de données
Par D. Bisci, A. Schiavi et O. Venturini

Es wird auf die grundlegenden Konzeptionskriterien hingewiesen,
die bei der Schaffung des Datennetzes der Ente Nazionale per VEnergia
Elettrica ENEL) zur Anwendung gelangten, ferner aufdie den
Computeranwendern gebotenen Dienste sowie die globale Architektur des
Netzes. Spezieller Nachdruck wird aufdie Beurteilung der Leistungen
und auf die seit der Inbetriebnahme des Netzes gewonnene Erfahrung
gelegt. Schliesslich wird kurz auf die Erweiterungspläne des ENEL-
Netzes eingegangen.

1. Introduction
Du fait de l'augmentation considérable du nombre des

applications de traitement à distance et de l'augmentation du
nombre des installations de terminaux de données qui en est
résultée ces dernières années, ENEL a reconsidéré l'ensemble
de la structure de son système de transmission de données à
l'échelle nationale.

Il fallait répondre à trois exigences fondamentales:

- l'accès des terminaux au centre informatique ENEL
implanté à Milan, où deux systèmes principaux sont consacrés

au calcul technique et scientifique,

- l'interconnexion des ordinateurs régionaux ENEL pour
assurer un échange des données entre différents secteurs régionaux,

- la commutation de messages entre le siège social de ENEL
implanté à Rome et les huit départements régionaux, y compris

la transmission numérique en facsimile à grande vitesse.

Dès la fin de 1979, il apparut clairement que le simple
système de multiplexage temporel n'était plus suffisant pour faire
face à la demande croissante de liaisons de transmission de
données, surtout pour ce qui concerne le premier point
mentionné ci-dessus. La manque de souplesse du réseau et le coût
élevé des liaisons de transmission de données, chacune étant
affectée à une application spécifique, en étaient les principaux
inconvénients.

C'est pourquoi la décision fut prise de construire un réseau
de données intégré selon le principe d'un partage des ressources
de communication entre différents utilisateurs, applications
et terminaux.

Le plan de mise au point de ce réseau à l'échelle nationale
visait deux objectifs principaux: premièrement, la possibilité

Cet article indique tes critères de conception fondamentaux qui
ont été retenus pour la création du réseau de données de l'Ente
Nazionale per VEnergia Elettrica ENEL), les services fournis aux
utilisateurs d'ordinateurs ainsi que l'architecture globale du réseau.
L'évaluation des performances et l'expérience acquise depuis la mise en
exploitation du réseau sont particulièrement soulignés. Enfin, le plan
d'expansion future du réseau ENEL est brièvement évoqué.

de sélectionner le service de calcul désiré à partir du terminal
utilisateur ou à partir de l'ordinateur principal demandeur en
cas de communications d'ordinateur principal à ordinateur
principal ; deuxièmement, la réalisation de voies de communications

se prêtant à un trafic intensif, de façon à optimiser le

rapport coût-bénéfice de la transmission de données.

2. Critères de conception de base

Les contraintes les plus importantes dont il a fallu tenir
compte dans la conception du réseau furent:

- la nécessité de desservir un large éventail de terminaux
utilisateurs et d'ordinateurs principaux, d'où un large éventail

de protocoles de bout en bout,

- la possibilité limitée de prévoir la demande à long terme
de voies de transmission de données dans de nombreuses

applications nouvelles.
Il a donc fallu aborder les travaux d'études de façon ouverte

pour s'assurer que le réseau pourrait être étendu d'une
façon commode, tout en commençant par une absolue

transparence à l'égard des utilisateurs, tout au moins au
cours des phases initiales.
Les spécifications du réseau de données ENEL furent donc
fondées sur les principes suivants:

- une structure de base capable de prendre en charge le proto¬
cole CCITT X.25 dans les stades de son évolution future,

- la possibilité d'effectuer une simple commutation de circuits
«transparente» tant en mode synchrone qu'en mode
asynchrone,

- la possibilité d'effectuer un contrôle d'erreurs et une
concentration statistique pour les utilisateurs en mode
asynchrone.

60 (B 16) Bull. ASE/UCS 73(1982)2, 23 janvier


	APL : ein unabhängiges und leistungsfähiges Werkzeug zur Beschleunigung der Entwicklung von dialogorientierten Systemen

