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Modéle mathématique et méthode d’optimisation
des productions d’énergie réactive dans un réseau électrique

G. Cartina

621 31:519.876.5;

En s’appuyant sur la méthode de Newton, ’article propose une nouvelle méthode pour I’optimisation des productions d’énergie réactive dans

un réseau électrique qui s’avére trés efficace.

Auf der Grundlage der Methode von Newton wird eine neue, sehr leistungsfihige Methode zur Optimierung der Produktion von Blindenergie

in elektrischen Netzen vorgestellt.

1. Introduction

Ces derniéres années de nombreuses études ont paru au
sujet de I'optimisation de la production de I’énergie réactive
et de la répartition économique des sources réactives dans les
réseaux a haute et moyenne tension. Des méthodes fort diffé-
rentes sur le plan des moyens mathématiques ont €t€ présen-
tées [1...5] qui ont toutes le méme but de minimiser les colts
des productions d’énergie réactive et les pertes d’énergie active.

A cause de leur prix, les condensateurs représentent des
sources de puissance réactive économiques méme dans les
réseaux a basse tension. D’autre part, ces condensateurs doi-
vent satisfaire aux multiples exigences concernant le réglage
de la tension, le niveau des harmoniques présentées dans le
réseau, la qualité de 1’énergie fournie etc.

Le modeéle rigoureux du probléme général d’optimisation
inclut un grand nombre de données caractérisant le réseau et
la variation des charges réactives dans le temps. Le mod¢le
doit également inclure d’autres facteurs, le plus important
étant le coit de la «centrale électrique d’équivalence» pour
couvrir les pertes actives dues au transit réactif au pointe de
charge, dont la valeur est trés controversée.

Par conséquent, la solution du probléme, dans le cas le
plus général, est trés complexe; la plupart des travaux ne pren-
nent en considération que les pertes d’énergie active pour un
palier de puissances donné. Toutefois, la charge réactive varie
normalement d’une fagon plus ou moins significative en fonc-
tions du temps.

L’introduction des méthodes mathématiques pour la con-
duite et la gestion des réseaux électriques permet une déter-
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Fig. 1 Schéma du réseau électrique étudié
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mination blus exacte de nombreux facteurs caractérisant le
réseau et les charges transitées. L’estimation d’état du réseau
est faite aujourd’hui en minimisant un critére d’écart entre les
mesures obtenues du processus et les valeurs du modéle mathé-
matique [6].

L’utilisation des valeurs moyennes a et des écarts type o
des puissances réactives Q (), considérées comme variables de
temps aléatoires s’avére plus raisonnable. L’article présente un
modéle mathématique complet et une méthode rapide per-
mettant de contribuer efficacement & la solution de ce probléme.
Les performances et les limites en sont discutées. On présente
également la maniére d’utilisation du sous-programme FLE-
POMIN pour l'optimisation des productions d’énergie réac-
tive. Finalement on donne une étude paramétrique de la com-
pensation de I’énergie réactive dans un réseau électrique.

2. Le modéle mathématique d’optimisation
et I’analyse de celui-ci

2.1 L’architecture du réseau

On considére un réseau radial, ou maillé fonctionnant radial,
dont les nceuds sont numérotés de 0 4 n (fig. 1). La désignation
de chaque ligne est celle du nceud suivant. Dans la figure 1 on
a noté encore par g; la puissance réactive du nceud j, par x;j
la puissance des condensateurs installés au neeud j, par Qi la
puissance réactive circulant dans le trongon 7, par Xi la puis-
sance des condensateurs installés en aval du nceud i, par r; la
résistance électrique du transformateur du nceud j et par Ri
la résistance électrique du trongon i. Pour la configuration de
la figure 1, on a les relations

X1 =x1+ X2+ x3 + x4+ x5 + X + X7 + X8
Xo = x2 + x3 + x4 + x5 + x¢ + X7 + X8 (¢))

Xs=x5s+0+0+0

Xg = x8

ou, sous la forme matricielle,

[X] = [4] [x] )
ot [X]=[X1 X2 X3...Xslt; [x] = [x1x2x3...x8]t et (Ga)
f1111111
1111111
111100
(4] = [x,1] = triee (3b)
o 100
11
11
(A27) 27



L’indice # marque la transposée de la matrice respective. La
méme matrice caractérise la relation entre les puissances réac-
tives des postes g; et les puissances réactives des trongons Q;:

[Q] = [4] [4] @

Pour écrire la matrice [4], on peut utiliser I’algorithme
suivant :

— on compléte une colonne aprés lautre, a partir de la
premiére jusqu’a la derniére;

— pour la colonne #, on remonte du nceud i vers le nceud
d’alimentation du réseau par le chemin le plus court. Pour
tous les trongons rencontrés on introduit «1», pour les autres
«On.

Dans I'ordinateur, I’architecture du réseau est représentée
par la matrice [NI] dont les éléments sont définis par les
nceuds de départ de chaque trongon. Dans le cas de la figure 1

[NI]=[0123442T7])

et la matrice [4] s’écrit en utilisant le schéma logique de la
figure 2.

En ce qui concerne les puissances réactives Qi, on pose
q — 0, O — QM dans le programme; le schéma logique cor-
respondant est donné dans la figure 3.

2.2 Les composantes des frais totaux actualisés

Dans un réseau é€lectrique on cherche normalement ’opti-
mum des puissances réactives en vue du minimum des frais
totaux actualisés. Le modéle mathématique tient donc compte
[7]1:

— du coiit des pertes d’énergie active dans le réseau et dans
les condensateurs;

— du colit de la centrale électrique d’équivalence des pertes
actives a la pointe de charge;

— du colt des investissements correspondants

2.2.1 L’énergie active économisée par la compensation

Si, dans le réseau considéré, on compense chaque usager
au niveau du jeu de barres B.T. avec xi, { = 1...n, et si les
pertes spécifiques dans les condensateurs sont pe, le gain
d’énergie active pour une journée a pour expression

m=24 n
. — 2 § — 2
WJ =Z Z( 2qu lxj.inz a Fi + 2 Qlj l)J(iz Xi Ri — De x1)
n
j=1i=1 (5)

F Matrice[ A]

Fig. 2 Schéma logique pour écrire la matrice [A4]
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Fig. 3 Schéma logique pour écrire la matrice
des circulations de puissance réactives [Qi]

Sil’on discrétise les puissances des condensateurs (xi, Xi) et
les puissances réactives demandées (gij, Qi;) dans des unités
€lémentaires standardisées u« (par exemple u = 15 kvar,
25 kvar, etc.), on peut écrire

xt =xi'u; Xi =X u ©)
qi; = qi’ u; Qi = O’ u

En utilisant également la propriété des grandeurs statistiques
que la moyenne d’une somme est égale & la somme des moyen-
nes [3]

Dau=mag >0y =m0 (7)
j=1 i=1

la relation (5) devient finalement

n

2 _ -
WJ=’Z‘]—:2 E [(Zini~X12)ri+(2Q1Xi—Xi2)R1—
f=i Un? ®)
TPy Xi]

Le colit actualisé de ces pertes d’énergie aura pour expres-
sion [2]

Z [(2 qi Xi — xi2) ri +
i=1 . )
+ @01 Xi— X)) Ry — po-Un x|

Dans ces relations g; et ai sont les valeurs moyennes des
variables gi (¢) et Qi (¢) dans le temps, B, le prix de revient du
kWh perdu, Nt le nombre des heures de fonctionnement par
année et

u
Un

2
CpE = 10-3 ka, ﬂa. NI 5

6
ka=2 (1 +a)k
k=1

(10)

un coefficient d’actualisation avec a, le taux d’actualisation.

2.2.2 La centrale d’équivalence

Par la compensation des puissances réactives les pertes
actives diminuent au point que la puissance de la centrale peut
étre réduite. Le colt de la «centrale d’équivalence» est
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E—l k G U2
(C 03 ﬁ S
1=l

2 Un®
+ (2 Qimax Xi — Xi%) Ri — pe " xi]

[(2 gimax Xi — Xiz) ri +
(11

ot k=1—Wa(l +a)t (12)

W, étant le taux de la valeur résiduelle, f un coefficient de
corrélation, G le prix de revient du kW installé dans la centrale
électrique de pointe, gimax €t Qimax les puissances réactives
au maximum de la charge. Avec une précision suffisante on
peut écrire [3]

-— 2 i ” —
Jimax ~ {gi (1 + ;L) = 0Oi (i (13)

100

ol i (9%) est I’écart type de la variable de temps aléatoire
qi (2).

2.2.3 L’investissement pour la compensation

Si I’on admet que le colit des condensateurs est propor-
tionnel aux puissances réactives, le coiit de I'investissement est

n n
I=3yx'=y2xy=yu
i=1

(14)

i=1

ou y est le prix de revient du kvar installé dans les conden-
sateurs.

Le bénéfice obtenu par la compensation de ’énergie réactive
a donc pour expression

B=Cpre + Ccg—I=

D e —- (15)
=>@grixi—Arixi® + 001 Ri Xi — AR Xi® — axy)

i=1

2
o 0 =2G 0+, G =10075G

Un?

a =yu-+pi, p’ =De P

kaﬁa u? v
a = 108 NIU—nz, A=G +a
;o (s
o —(1+2——100)ﬁk

L’analyse de la relation (15) montre logiquement que I’intro-
duction de la compensation de I’énergie réactive se traduit par
la diminution des pertes actives, la diminution de I'investisse-
ment dans la centrale d’équivalence et 'augmentation de I'in-
vestissement dans les condensateurs. On remarque que le
calcul des pertes d’énergie comme le calcul du bénéfice de la
compensation implique la détermination des valeurs moyennes
des puissances réactives pour chaque trongon. On peut déter-
miner ces valeurs soit & partir des courbes de charges des
usagers, soit A partir de leur énergie réactive. On peut égale-
ment prendre des valeurs connues pour des cas similaires,
calculées auparavant ou données dans la littérature [3].

3. Méthodes de solution
3.1 La méthode de Fletcher-Powell (FLEPOMIN)

La méthode de Newton, bien qu’elle soit supérieure aux
méthodes du gradient, présente I’inconvénient d’évaluations
et d’inversions répétées de la matrice hessienne dont les élé-
ments sont définis par

Hiyj = 0% F/O xi 0 x; (16)
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F étant la fonction objectif. Pour éviter ce désavantage des
méthodes ont été mises au point [8], pour lesquelles la relation
générale

X0H) — x) A0 H-1(X®) G (X®)
devient X®&+1) = Y@) — k) H (X)) G (X&)

a7
(18)

ol X est le point courant dans I’approximation (k), A% le
pas défini de maniére que F (X®*1) soit minimum, G (X&)
le gradient au point X® et ou H(X®) représente une approxi-
mation de la matrice H-1 (X®) [8].

Ainsi, pour une fonction objectif quadratique de n variables
dans la méthode Fletcher-Powell [8], en partant d’une matrice
initiale (en général la matrice unitaire) par des modifications
successives de celle-ci, le minimum est atteint en »n itérations,
car Hy = H-1; au voisinage du minimum on peut écrire

Xumin = X0+ — Y® — F-1 (X&) G (X®) =

— X — Hk(X®) G (XW) (15

Pour I'utilisation du sous-programme FLEPOMIN [9], il
est nécessaire d’écrire un sous-programme FUNCT permettant
de calculer la valeur de la fonction objectif et de ses dérivées
partielles en un point donné. Ce sous-programme comporte 4
arguments formels (X, G, F, N) donnant, respectivement, la
valeur du point courant, la valeur des dérivées partielles de la
fonction-objectif et la valeur de la fonction & minimiser au
point courant ainsi que le nombre des variables.

Comme on veut maximiser le bénéfice B de la relation (15)
et que le programme FLEPOMIN permet de minimiser une
fonction quelconque de n variables, on met F = — B. En
utilisant les équations (3) et (4) on a

0 Xi/0 xx = Ai,x et 0 Xi%/0 xx = 2 Xi Ai,x (20)

et les dérivées partielles de la fonction objectif ont pour ex-
pression
oF

Gx = T xx = —a—BEkrk—FZArkxk—

R @n
— > (O Ri Qs As,x — 2 4 Ri Asx X3)

i=1

FUNCT
[COMMON A7, R,RM.X.XM,Q,QM |

[ Cdlculer: XM=AX]

Calculer: F
( rela;ion (22))

Calcuter: G(I)
(relation (24))

IsN

¥ NON
RETURN

oui

Fig. 4 Organigramme pour le sous-programme FUNCT
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Avec les notations R =r, RM =R, Q =g, OM = O,
TT = 0, RL = 4, Al = a, le schéma logique de calcul pour
le sous-programme FUNCT est donné dans la figure 4.

3.2 La méthode de la matrice diagonale

Pour maximiser la fonction F = B on utilise une relation
similaire a I’équation (17). Dans ce cas, les dérivées partielles
ont pour expression

0B

DB (K) = Gk = m = Gok b 5 (22)
— 2/lrkxk~ ZAZRiXiAi,k
) N B i=1
ol: Gok = Oriqx + 0 > Ri Qi Ai,x — a; k = l..n (23)

1=i

En tenant compte des équations (20), les éléments de la matrice
hessienne ont pour expressions

START

\30nnées: ND,NF,UUN,G,KA B,GK,S,
PC L.ICITQP

L Calculer les constantes |
| .-

DBN=DBN +DB(1)
NX(IEINTEGER(PAS +H 1)) DI

ré
.Restrictions violdes” |

Imprimer: NB=ND
Imprimer: Revenu nul f«—

Calculer : F= Revenu
Imprimer: F, X

STOP

Fig. 5 Schéma logique de calcul pour la méthode de la matrice diagonale

ND Nombre des unités des condensateurs disponibles
NF Nombre des heures de fonctionnement par année
U=u La puissance, en kvar, d’une unité élémentaire
UN...Un Tension nominale du réseau, en kV

G Prix de revient d’un kW installé dans une centrale
électrique de pointe

KA = ka Le coefficient d’actualisation
B=p Coefficient de corrélation (& 0,8)
CC =6  Prix de revient du kvar installé dans les

condensateurs
S = o (%) Ecart type de la variable aléatoire g (¢)
L Longueur des céibles

PC = p. Pertes spécifiques d’énergie dans les condensateurs
IC Type des cables
IT Type des transformateurs
QP Puissance réactive au nceud I
RK (I) Restriction de puissance pour le nceud 1
30 (A 30)

2B c . :
Hy,j :m=—212R1A1,]’A1‘,k,J= l.n;, j#k
Ty 4)
2
Hix — gxf; =_2,1rk_zzzRiAi,k (25)

i=1
L’analyse des relations (24) et (25) met en évidence que

2 B
0 xk?-

& B l -

8xk8xj

Cette situation est due, d’une part, au fait que les résistances
des transformateurs sont beaucoup plus grandes que celles des
cables et, d’autre part, au fait que la valeur de la constante A
(équation 15) est trés grande par rapport a I’unité.

En raison de la relation (26) on peut considérer la matrice
H, avec une bonne approximation, comme une matrice dia-

B
[103]

100

50
0

=9

5100 10200°

Fig. 6 Variation du gain B en fonction du prix
de revient de la centrale d’équivalence G
Pa Prix de revient du kWh perdu
y Prix de revient du kvar de condensateurs installé

B
103]

50 100 150 ¥

Fig. 7 Variation du gain B en fonction du prix
de revient du kvar y
Pa Prix de revient du kWh perdu
G Prix de revient du kW installé de la centrale d’équivalence

ncl% 1=——98‘;g;” 1001%]

50

251 25100

25 50 150 200 ¥

Fig. 8 Variation du niveau de compensation
en fonction du prix de revient du kvar

G Prix de revient du kW installé de la centrale d’équivalence
Pa Prix de revient du kWh perdu
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gonale. L’inversion de cette matrice est alors trés simple et la
méthode est rapidement convergente. Cette situation se re-
trouve dans de nombreux cas de programmation quadratique
en énergétique.

Comme les solutions doivent étre des quantités entiéres, il
est nécessaire d’introduire dans le programme un parameétre
PAS, représentant la profondeur de ’avancement. Ce pas est
nécessaire en présence de restrictions et dans le voisinage de
la solution optimale et il est calculé par rapport a la norme
du vecteur AX = X®&+1) — x®&) NVX. La figure 5 donne le
schéma logique de calcul pour la méthode proposée, la mé-
thode de la matrice diagonale.

Si la méthode FLEPOMIN permet la solution du probléme
en I’absence de restrictions, la méthode proposée permet de
déterminer la solution méme en présence de restrictions.
L’avantage de la méthode de la matrice diagonale est encore
plus évident en ce qui concerne la rapidité. Il est intéressant
de remarquer que la présence des termes G, ka, fla €t Ny dans
I’expression de la fonction objectif contribue a I’accélération
de la convergence.

4. Etude paramétrique de la compensation

Il est intéressant d’étudier les effets économiques impliqués
par I'introduction de la compensation, c’est-a-dire de mettre
en évidence I'influence des paramétres de la fonction objectif
sur la valeur du gain obtenu. Pour cela on a fait varier les
principaux paramétres du programme: le prix de revient du
kvar installé dans les condensateurs (), le prix de revient du
kWh perdu (Ba) et le prix de revient du kW installé dans la
centrale d’équivalence (G). Les conclusions de cette étude
paramétrique pour un réseau moyenne tension avec 10 postes
entre 400 et 1000 kvar sont les suivantes:

— lorsque le prix de revient des condensateurs augmente,
leur installation est moins économique (fig. 6, 7), mais cette
influence n’est pas linéaire;

— le gain obtenu est proportionnel au prix de I’énergie
perdue. On obtient un revenu B, d{i uniquement a la centrale
d’équivalence pour fa = 0, y = 0 (fig. 7);

— Paugmentation du prix de revient du kW installé dans
la centrale d’équivalence favorise plus que proportionnellement
I'installation de condensateurs plus coiteux (fig. 6);

— le niveau de la compensation optimum (#¢) dépend essen-
tiellement des valeurs des paramétres y, fa et G; si 'augmen-
tation de y diminue ce niveau, ’augmentation de fa augmente
la puissance des condensateurs installés (fig. 8).

Dans les figures 6 a 8, les valeurs des parameétres sont
données en monnaie roumaine (100 lei ~ 43.50 fr.s.), et les
valeurs moyennes sont considérées par rapport aux normes
roumaines.

5. Conclusions

La méthode proposée a été testée pour différentes valeurs
de paramétres. Afin de pouvoir la comparer avec d’autres
méthodes, le méme probléme a été traité par différentes mé-
thodes. Les résultats obtenus sont favorables a la méthode de
la matrice diagonale surtout en ce qui concerne la rapidité.

Pour les problémes de programmation quadratique pour
lesquels on peut négliger les termes non-diagonaux de la
matrice hessienne, la méthode proposée s’avere trés efficace.
En énergétique il existe d’autres exemples ou la matrice hes-
sienne peut étre réduite 4 une matrice diagonale.
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