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Modèle mathématique et méthode d'optimisation
des productions d'énergie réactive dans un réseau électrique
G. Cârtina

621 31:519.876.5;

En s'appuyant sur la méthode de Newton, l'article propose une nouvelle méthode pour l'optimisation des productions d'énergie réactive dans

un réseau électrique qui s'avère très efficace.

Auf der Grundlage der Methode von Newton wird eine neue, sehr leistungsfähige Methode zur Optimierung der Produktion von Blindenergie

in elektrischen Netzen vorgestellt.

1. Introduction
Ces dernières années de nombreuses études ont paru au

sujet de l'optimisation de la production de l'énergie réactive

et de la répartition économique des sources réactives dans les

réseaux à haute et moyenne tension. Des méthodes fort
différentes sur le plan des moyens mathématiques ont été présentées

[1...5] qui ont toutes le même but de minimiser les coûts

des productions d'énergie réactive et les pertes d'énergie active.

A cause de leur prix, les condensateurs représentent des

sources de puissance réactive économiques même dans les

réseaux à basse tension. D'autre part, ces condensateurs

doivent satisfaire aux multiples exigences concernant le réglage

de la tension, le niveau des harmoniques présentées dans le

réseau, la qualité de l'énergie fournie etc.

Le modèle rigoureux du problème général d'optimisation
inclut un grand nombre de données caractérisant le réseau et

la variation des charges réactives dans le temps. Le modèle

doit également inclure d'autres facteurs, le plus important
étant le coût de la «centrale électrique d'équivalence» pour
couvrir les pertes actives dues au transit réactif au pointe de

charge, dont la valeur est très controversée.

Par conséquent, la solution du problème, dans le cas le

plus général, est très complexe; la plupart des travaux ne prennent

en considération que les pertes d'énergie active pour un

palier de puissances donné. Toutefois, la charge réactive varie

normalement d'une façon plus ou moins significative en fonctions

du temps.
L'introduction des méthodes mathématiques pour la

conduite et la gestion des réseaux électriques permet une déter¬

mination plus exacte de nombreux facteurs caractérisant le

réseau et les charges transitées. L'estimation d'état du réseau

est faite aujourd'hui en minimisant un critère d'écart entre les

mesures obtenues du processus et les valeurs du modèle

mathématique [6],
L'utilisation des valeurs moyennes Q et des écarts type a

des puissances réactives Q(t), considérées comme variables de

temps aléatoires s'avère plus raisonnable. L'article présente un

modèle mathématique complet et une méthode rapide
permettant de contribuer efficacement à la solution de ce problème.

Les performances et les limites en sont discutées. On présente

également la manière d'utilisation du sous-programme FLE-

POMIN pour l'optimisation des productions d'énergie réactive.

Finalement on donne une étude paramétrique de la

compensation de l'énergie réactive dans un réseau électrique.

2. Le modèle mathématique d'optimisation
et l'analyse de celui-ci
2.1 L'architecture du réseau

On considère un réseau radial, ou maillé fonctionnant radial,

dont les nœuds sont numérotés de 0 à n (fig. 1). La désignation
de chaque ligne est celle du nœud suivant. Dans la figure 1 on

a noté encore par q\ la puissance réactive du nœud j, par Xj

la puissance des condensateurs installés au nœud y, par ßi la

puissance réactive circulant dans le tronçon i, par Xi la

puissance des condensateurs installés en aval du nœud /, par rj la

résistance électrique du transformateur du nœud j et par R,

la résistance électrique du tronçon i. Pour la configuration de

la figure 1, on a les relations

Xl XI + X2 + x3 + Xi + X5 + Xe + XT + Xg

X2 X2 + X3 + Xi + Xg + Xg + XT + Xg (1)

Xg xg 0 T 0 T 0

Xg *8

ou, sous la forme matricielle,

[X] [A] [x] (2)

où [X] [Xi X'î X3...Xg]t; M [xl x2 x3...x8]t et (3a)

lllilll"lilllii11110 0

1110 0

10 0 0
o 10 0

i i

Û4] [AK.I]

Fig. 1 Schéma du réseau électrique étudié 1_

(3b)
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L'indice t marque la transposée de la matrice respective. La
même matrice caractérise la relation entre les puissances réactives

des postes q\ et les puissances réactives des tronçons Qi :

[ß] [A] [q]

1=1

£
(4)

QM(I )=0

Pour écrire la matrice [A], on peut utiliser l'algorithme
suivant :

- on complète une colonne après l'autre, à partir de la
première jusqu'à la dernière;

- pour la colonne i, on remonte du nœud i vers le nœud
d'alimentation du réseau par le chemin le plus court. Pour
tous les tronçons rencontrés on introduit «1», pour les autres
«0».

Dans l'ordinateur, l'architecture du réseau est représentée
par la matrice [NI] dont les éléments sont définis par les
nœuds de départ de chaque tronçon. Dans le cas de la figure 1

[NI] [0 1 2 3 4 4 2 7]t

et la matrice [A] s'écrit en utilisant le schéma logique de la
figure 2.

En ce qui concerne les puissances réactives Qi, on pose
<7 -* Q, Q -* QM dans le programme; le schéma logique
correspondant est donné dans la figure 3.

2.2 Les composantes des frais totaux actualisés

Dans un réseau électrique on cherche normalement l'optimum

des puissances réactives en vue du minimum des frais
totaux actualisés. Le modèle mathématique tient donc compte
[7]:

- du coût des pertes d'énergie active dans le réseau et dans
les condensateurs;

- du coût de la centrale électrique d'équivalence des pertes
actives à la pointe de charge;

- du coût des investissements correspondants

2.2.1 L'énergie active économisée par la compensation
Si, dans le réseau considéré, on compense chaque usager

au niveau du jeu de barres B.T. avec xi, i l...n, et si les
pertes spécifiques dans les condensateurs sont pc, le gain
d'énergie active pour une journée a pour expression

m 24 n

w'-2 2(2* -Hj-ii-i (5)

H
I QM(I) QMIIHAH.K)- QlJÏl

[>W|

Flg. 3 Schéma logique pour écrire la matrice
des circulations de puissance réactives [Qi]

Si l'on discrétise les puissances des condensateurs (jci, Xi) et
les puissances réactives demandées (qu, Qu) dans des unités
élémentaires standardisées u (par exemple u 15 kvar,
25 kvar, etc.), on peut écrire

xi Xi u; Xi Xi u

qij qu' «; Qu Qu' u ®
En utilisant également la propriété des grandeurs statistiques
que la moyenne d'une somme est égale à la somme des moyennes

[3]

2 dil m qi 2 ßu m Qi
j=i j=i
la relation (5) devient finalement

n
ÎTllfî \ v f — —Wj TfF 2-, L(2 qi Xi ~~ *'2) n + (2 01 ~ Xi2) Ri ~

Un2 ]IT«

(7)

(8)
-Pc

Le coût actualisé de ces pertes d'énergie aura pour expression

[2]

„2
Cpb 10 3 ka /L Nt £ 2 2 [(2 qi xi — xi2) n +

i l

+ (2 Qi Xi - Xi2) Ri - pc m]
(9)

Dans ces relations qi et Qi sont les valeurs moyennes des
variables qi (t) et Q i (t) dans le temps, ßd le prix de revient du
kWh perdu, Nt le nombre des heures de fonctionnement par
année et

ka — 2d
k 1

(10)

Fig. 2 Schéma logique pour écrire la matrice [A]

un coefficient d'actualisation avec a, le taux d'actualisation.

2.2.2 La centrale d'équivalence

Par la compensation des puissances réactives les pertes
actives diminuent au point que la puissance de la centrale peut
être réduite. Le coût de la «centrale d'équivalence» est
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(11)
CcE 10 3 k ß G y 2

j^(2 max Xi — Xi2) /*i

i 1

^

+ (2 Oi max Xi Xi3) Ri Pc ^
Xij

où k l-Wn(l +a)~6 (12)

Wn étant le taux de la valeur résiduelle, ß un coefficient de

corrélation, G le prix de revient du kW installé dans la centrale

électrique de pointe, qi max et Q\ max les puissances réactives

au maximum de la charge. Avec une précision suffisante on

peut écrire [3]

<7imax ^1 + jqq
^ fi di (13)

où ai (%) est l'écart type de la variable de temps aléatoire

qi (0-

2.2.3 L'investissement pour la compensation

Si l'on admet que le coût des condensateurs est proportionnel

aux puissances réactives, le coût de l'investissement est

i 2 / xi' *i> / y
i 1 i 1

(14)

où y est le prix de revient du kvar installé dans les condensateurs.

Le bénéfice obtenu par la compensation de l'énergie réactive

a donc pour expression

B Cpe + CcE — /
II

2 (ß 91 ri xi ~ 2 ri Xi2 -{- 8 Qi Ri Xi — X Ri Xi2 — axi)
(15)

où : 9 2 (G' er' + a),

a y u + p' A,

k». ße. «2

G' 10-3 — G

p =p

X

Un2

u

G' + a

F étant la fonction objectif. Pour éviter ce désavantage des

méthodes ont été mises au point [8], pour lesquelles la relation

générale

A<k+i) X<k> - 2<k> H-1 (X<k>) G (X<k>) (17)

devient X<k^< A<k> - 2<k> H (A'k>) G (X<k>) (18)

où JLk> est le point courant dans l'approximation (k), 2<k> le

pas défini de manière que F (X(k+1>) soit minimum, G(Ar(k))

le gradient au point X'k> et où H(Xtk>) représente une approximation

de la matrice H-1 (X{ky) [8].

Ainsi, pour une fonction objectif quadratique de n variables

dans la méthode Fletcher-Powell [8], en partant d'une matrice

initiale (en général la matrice unitaire) par des modifications
successives de celle-ci, le minimum est atteint en n itérations,

car Hn H1; au voisinage du minimum on peut écrire

X<k+i) x<U - H-i (X<k>) G (Z<k))

jr<k> - Hk (Z<k») G (A<k>)
(19)

Pour l'utilisation du sous-programme FLEPOMIN [9], il
est nécessaire d'écrire un sous-programme FUNCT permettant
de calculer la valeur de la fonction objectif et de ses dérivées

partielles en un point donné. Ce sous-programme comporte 4

arguments formels (X, G, F, N) donnant, respectivement, la

valeur du point courant, la valeur des dérivées partielles de la

fonction-objectif et la valeur de la fonction à minimiser au

point courant ainsi que le nombre des variables.

Comme on veut maximiser le bénéfice B de la relation (15)

et que le programme FLEPOMIN permet de minimiser une

fonction quelconque de n variables, on met F — B. En

utilisant les équations (3) et (4) on a

8 Xi/8 Xk Ai, k et 8 XF/8 xk 2 Xi Ai, k (20)

et les dérivées partielles de la fonction objectif ont pour
expression

Gk
8 F
8 Xk

— G — 0 <7k rk "h 2 X fk Xk

(21)

— ^ (8 Ri Qi Ai, k — 2 X Ri Ai, k Xi)

L'analyse de la relation (15) montre logiquement que
l'introduction de la compensation de l'énergie réactive se traduit par
la diminution des pertes actives, la diminution de l'investissement

dans la centrale d'équivalence et l'augmentation de

l'investissement dans les condensateurs. On remarque que le

calcul des pertes d'énergie comme le calcul du bénéfice de la

compensation implique la détermination des valeurs moyennes
des puissances réactives pour chaque tronçon. On peut
déterminer ces valeurs soit à partir des courbes de charges des

usagers, soit à partir de leur énergie réactive. On peut également

prendre des valeurs connues pour des cas similaires,

calculées auparavant ou données dans la littérature [3].

3. Méthodes de solution
3.1 La méthode de Fletcher-Powell (FLEPOMIN)

La méthode de Newton, bien qu'elle soit supérieure aux

méthodes du gradient, présente l'inconvénient d'évaluations

et d'inversions répétées de la matrice hessienne dont les

éléments sont définis par

r NON

RETURN

Ha e2 F/a xi o Xj (16) Fig. 4 Organigramme pour le sous-programme FUNCT
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Avec les notations R r, RM R, Q q, QM Q,
TT 9, RL X, Al a, le schéma logique de calcul pour
le sous-programme FUNCT est donné dans la figure 4.

3.2 La méthode de la matrice diagonale

Pour maximiser la fonction F B on utilise une relation
similaire à l'équation (17). Dans ce cas, les dérivées partielles
ont pour expression

DB(K) Gk= -lB Gok -à Xk
— 2 X rk Xk — 2 A 2 Ri Xi Ai, k

(22)

où: Gok 6ruqk + 0^ Ri Qi Ai,k — a; k \...n (23)
1 =i

En tenant compte des équations (20), les éléments de la matrice
hessienne ont pour expressions

Hk. j
a2 b

8xk8xs ~ Ai,k, j - j^k
i=1 (24)

Hk,k
g2 B
8 xk2

— 2 lrk — 2 X Ri 1 (25)

L'analyse des relations (24) et (25) met en évidence que

82B
8 Xk 8 Xj

«
82B
8 xk2 (26)

Cette situation est due, d'une part, au fait que les résistances
des transformateurs sont beaucoup plus grandes que celles des
câbles et, d'autre part, au fait que la valeur de la constante 1

(équation 15) est très grande par rapport à l'unité.
En raison de la relation (26) on peut considérer la matrice

H, avec une bonne approximation, comme une matrice dia-

Calculer : F Revenu
Imprimer: F,X

STOP

Fig. 7 Variation du gain B en fonction du prix
de revient du kvar y

ß& Prix de revient du kWh perdu
G Prix de revient du kW installé de la centrale d'équivalence

Fig. 6 Variation du gain B en fonction du prix
de revient de la centrale d'équivalence G

/?a Prix de revient du kWh perdu
y Prix de revient du kvar de condensateurs installé

H. „Restrictions violées77!

HImprimer: NB=ND H

•»Hlmprimer: Revenu nul IH

5100 10200°

C STARTr\ Données : ND,NF,U,UN,G,KA.B,GK,S,/
\ PC. L.IC.IT.QP /

Fig. 5 Schéma logique de calcul pour la méthode de la matrice diagonale
ND Nombre des unités des condensateurs disponibles
NF Nombre des heures de fonctionnement par année
U u La puissance, en kvar, d'une unité élémentaire
UN... Un Tension nominale du réseau, en kV
G Prix de revient d'un kW installé dans une centrale

électrique de pointe
KA Ara Le coefficient d'actualisation
B ß Coefficient de corrélation (^ 0,8)
CC <5 Prix de revient du kvar installé dans les

condensateurs
S a %) Ecart type de la variable aléatoire q (f)
L Longueur des câbles
PC pc Pertes spécifiques d'énergie dans les condensateurs
IC Type des câbles
IT Type des transformateurs
QP Puissance réactive au nœud I
RK (I) Restriction de puissance pour le nœud I

Fig. 8 Variation du niveau de compensation
en fonction du prix de revient du kvar
G Prix de revient du kW installé de la centrale d'équivalence
/la Prix de revient du kWh perdu

_Qçomp
Qtot 100[%]

G=5100
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gonale. L'inversion de cette matrice est alors très simple et la

méthode est rapidement convergente. Cette situation se

retrouve dans de nombreux cas de programmation quadratique
en énergétique.

Comme les solutions doivent être des quantités entières, il
est nécessaire d'introduire dans le programme un paramètre
PAS, représentant la profondeur de l'avancement. Ce pas est

nécessaire en présence de restrictions et dans le voisinage de

la solution optimale et il est calculé par rapport à la norme
du vecteur AX X,k '11 — X<k), NVX. La figure 5 donne le

schéma logique de calcul pour la méthode proposée, la
méthode de la matrice diagonale.

Si la méthode FLEPOMIN permet la solution du problème

en l'absence de restrictions, la méthode proposée permet de

déterminer la solution même en présence de restrictions.

L'avantage de la méthode de la matrice diagonale est encore

plus évident en ce qui concerne la rapidité. Il est intéressant

de remarquer que la présence des termes G, k.à, /?a et Nt dans

l'expression de la fonction objectif contribue à l'accélération
de la convergence.

4. Etude paramétrique de la compensation

Il est intéressant d'étudier les effets économiques impliqués

par l'introduction de la compensation, c'est-à-dire de mettre

en évidence l'influence des paramètres de la fonction objectif
sur la valeur du gain obtenu. Pour cela on a fait varier les

principaux paramètres du programme: le prix de revient du

kvar installé dans les condensateurs (y), le prix de revient du

kWh perdu (ßa,) et le prix de revient du kW installé dans la

centrale d'équivalence (G). Les conclusions de cette étude

paramétrique pour un réseau moyenne tension avec 10 postes

entre 400 et 1000 kvar sont les suivantes:

- lorsque le prix de revient des condensateurs augmente,
leur installation est moins économique (fig. 6, 7), mais cette

influence n'est pas linéaire ;

- le gain obtenu est proportionnel au prix de l'énergie

perdue. On obtient un revenu B:l dû uniquement à la centrale

d'équivalence pour /?a 0, y 0 (fig. 7) ;

- l'augmentation du prix de revient du kW installé dans

la centrale d'équivalence favorise plus que proportionnellement
l'installation de condensateurs plus coûteux (fig. 6) ;

- le niveau de la compensation optimum (rtc) dépend
essentiellement des valeurs des paramètres y, ß& et G; si l'augmentation

de y diminue ce niveau, l'augmentation de ßa augmente
la puissance des condensateurs installés (fig. 8).

Dans les figures 6 à 8, les valeurs des paramètres sont

données en monnaie roumaine (100 lei «a 43.50 fr.s.), et les

valeurs moyennes sont considérées par rapport aux normes
roumaines.

5. Conclusions

La méthode proposée a été testée pour différentes valeurs

de paramètres. Afin de pouvoir la comparer avec d'autres

méthodes, le même problème a été traité par différentes
méthodes. Les résultats obtenus sont favorables à la méthode de

la matrice diagonale surtout en ce qui concerne la rapidité.
Pour les problèmes de programmation quadratique pour

lesquels on peut négliger les termes non-diagonaux de la

matrice hessienne, la méthode proposée s'avère très efficace.

En énergétique il existe d'autres exemples où la matrice
hessienne peut être réduite à une matrice diagonale.
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