
Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de
l'Association suisse des électriciens, de l'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitätsunternehmen

Band: 72 (1981)

Heft: 23

Artikel: Echtzeit-Betriebssysteme

Autor: Mühlemann, K.

DOI: https://doi.org/10.5169/seals-905178

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-905178
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Echtzeit- Betriebssysteme
Von K. Mühlemann

681.3.014

Echtzeit-Betriebssysteme teilen die gemeinsamen Betriebsmittel (Prozessoren, Speicher, Peripheriegeräte, Daten, Files, Programme usw.)
den Benutzern des Computersystems unter Einhaltung zeitlicher Bedingungen zu. Je nach Zielsetzung muss das Betriebssystem optimiert werden
können. Dies erschwert die Normungsanstrengungen, welche am ehesten im Bereich des Betriebssystemskerns Erfolgsaussichten haben. Dessen

Aufgaben, d.h. die Synchronisation, die Prozessverwaltung, die Ein-/Ausgabe, die Kommunikation und die Ausnahmebehandlung, werden für
den allgemeinen Fall eines Computernetzwerkes bestehend aus Multiprozessorknoten dargestellt.

Les systèmes d'exploitation en temps-réel affectent les ressources communes (processeurs, mémoires, périphériques, données, fichiers,
programmes, etc.) aux utilisateurs du système d'ordinateur tout en remplissant des conditions temporelles. Le système d'exploitation doit être opti-
malisable selon le but qui lui est attribué. Cela rend difficile les efforts de normalisation. Ceux-ci ont le plus de chance de réussir dans le domaine
du noyau du système d'exploitation. Les tâches de celui-ci, c'est-à-dire la synchronisation, la gestion des processus, des entrées et sorties, la
communication et le traitement des exceptions, sont présentées pour le cas général d'un réseau d'ordinateurs composé de nœuds multi-ordinateurs.

1. Einleitung
Unter einem Betriebssystem versteht man jene grundlegenden

Softwarekomponenten, die zur effizienten und geordneten
Zuteilung der gemeinsamen Betriebsmittel an die Benützer des

Computersystems dienen. Das Betriebssystem bildet das Interface

zwischen dem Computersystem und dem Benützer.
Man unterscheidet zwischen physikalischen Betriebsmitteln

(z.B. Prozessoren, Speichern, Ein-/Ausgabe-Geräten und
Verbindungsnetzwerken) und logischen Betriebsmitteln (z.B. Daten,

Files und Programmen). Bei der Verwaltung der gemeinsamen

Betriebsmittel verfolgen die Betriebssysteme eine
Strategie, die auf den Verwendungszweck des Computersystems
ausgerichtet ist. Damit soll die Zuteilung jenes Betriebsmittels

optimiert werden, das kosten- oder anwendungsbedingt am
besten ausgenützt werden muss. In der Vergangeheit war das

oft die Zentraleinheit des Computersystems. Seit dank der

Mikroprozessortechnik immer leistungsfähigere Zentraleinheiten

zu günstigen Preisen verfügbar werden, verschiebt sich
der Akzent mehr zu den weiterhin teuren Speicher- und
Peripherieeinheiten. In einem Datenbanksystem kann aber durchaus

der rasche Zugang zu den Daten gegenüber der Speicheroder

Peripherieausnützung in den Vordergrund rücken.
Bei einem £cA?z<?/7-Betriebssystem erwartet man zudem,

dass es auf Ereignisse reagieren kann, die in einer bestimmten
zeitlichen Beziehung stehen. Insbesondere gilt das für Signale

von ausserhalb des Computersystems, die nicht über längere
Zeit gültig bleiben. Die computerisierte Messwerterfassung
und Regelung liefern typische Beispiele. Echtzeitprobleme
treten überdies bei der Ein-/Ausgabe auf. In gewissem Sinne
kann man also alle Betriebssysteme als Echtzeit-Betriebs-
systeme auffassen.

Für einen wirksamen Computereinsatz ist ein Betriebssystem

unabdingbar. In ihm liegen die Flexibilität und damit
die Benützerfreundlichkeit verankert. Eine Normung wäre
daher sehr willkommen. Leider existieren, abgesehen von den

Interessenskonflikten der Computerhersteller, mehrere
Schwierigkeiten, die eine Normung behindern :

a) Die Betriebsmittel, zu deren Verwaltung das Betriebssystem

dient, sind in den wenigsten Fällen genormt.
b) Betriebssysteme müssen auf ihre Anwendung zugeschnitten

werden.

c) Die Forschung über Betriebssysteme steht noch am
Anfang [1],

Eine Vereinheitlichung sollte jedoch bei den Konzepten auf
der Stufe des Kernbetriebssystems möglich sein. Das
Kernbetriebssystem bildet die unterste Schicht des Betriebssystems.

Es löst Grundaufgaben und ist damit weitgehend von Strategiefragen

unabhängig. In den meisten Fällen hat das

Kernbetriebssystem einen relativ geringen Umfang, seine Effizienz
ist jedoch entscheidend für die Leistungsfähigkeit des Gesamtsystems.

Aus diesem Grund wird das Kernbetriebssystem auch
heute noch meist in Assembly-Sprache geschrieben, während
die oberen Hierarchiestufen eines Betriebssystems oft in höheren

Computersprachen programmiert werden (Tabelle I).

2. Aufgaben eines Kernbetriebssystems
Das Kernbetriebssystem bildet die Grundlage für den Aufbau

der höheren Betriebssystemstufen und für die Implementierung

höherer Computersprachen. Konkret bedeutet dies die

Unterstützung mehrerer Benützer in einem Computersystem.
Diese Vervielfachung der Benützer ist wesentlich, um (trotz der

durch die mechanischen Peripheriegeräte bedingten Wartezeiten)

eine hohe Betriebsmittelausnützung zu gewährleisten.
Während nämlich ein Benützer auf eine neue Eingabe wartet,
kann durchaus ein anderer Benützer die arithmetischen Fähigkeiten

einer Zentraleinheit ausnützen. Im Computerjargon
werden die erwähnten Benützer als Tasks oder Prozesse
bezeichnet. Die Grundaufgabe des Kernbetriebssystems besteht
also in der Unterstützung gleichzeitiger Prozesse.

In der Vergangenheit teilten sich die gleichzeitigen Prozesse

meist in eine einzige Zentraleinheit. Die Beschränkung auf eine

einzige Zentraleinheit ist jedoch künstlich, da eine Zentraleinheit

ein Betriebsmittel wie jedes andere ist und vervielfacht

Gegenüberstellung von Kernbetriebssystem und höheren
Hierarchiestufen eines Betriebssystems Tabelle l

Kernbetriebssystem Höhere
Betriebssystemstufen

Aufgaben Prozeßsynchronisation
Prozessverwaltung
Ein-/Ausgabe
Kommunikation
Ausnahmebehandlung

Prozeßsteuerung
(Scheduling)
Speicherverwaltung
Filesystem
Datenbanksystem
usw.

Programmiersprache Assembly höhere Sprache

Charakter strategieunabhängig strategieabhängig

Umfang klein gross

Bull. SEV/VSE 72(1981)23, 5. Dezember (A 707) 1245



werden kann. Dass dies selten geschah, hatte mehrere Gründe :

Die Kosten der Zentraleinheiten waren hoch, und die Verwaltung

mehrerer Zentraleinheiten im Betriebssystem bot grosse
Schwierigkeiten. Im weiteren war es infolge des technischen
Fortschritts möglich, mit geringem Aufwand erhebliche
Leistungssteigerungen mit einer einzigen Zentraleinheit zu
realisieren. Heute stehen jedoch leistungsfähige und preisgünstige

Mikroprozessoren als Zentraleinheiten zur Verfügung, und
Leistungssteigerungen einzelner Zentraleinheiten erfordern
einen unverhältnismässigen Aufwand. Durch Multiprozessoren
sind deshalb Vorteile wie höhere Leistungen, erhöhte
Zuverlässigkeit, grössere Verfügbarkeit und modulares
Systemwachstum absehbar geworden.

Damit erhielt auch die Arbeit an den Multiprozessor-
Betriebssystemen neuen Auftrieb. Eine von der Europäischen
Gemeinschaft geförderte Anstrengung findet im TC 8 on Real
Time Operating Systems des European Workshop on Industrial

Computer Systems (EWICS) statt. Es ist das Ziel dieses

Komitees, Richtlinien und systemunabhängige Konzepte zu
entwickeln, um beim Aufbau von Echtzeit-Betriebssystemen
maximale Zuverlässigkeit und Übertragbarkeit zu erzielen [2],
Die bisherige Arbeit konzentrierte sich auf das Kernbetriebssystem,

das inzwischen weitgehend abgeschlossen ist. Bei der

Behandlung wurde konsequent der Multiprozessorfall
angenommen, aus dem der Einprozessorfall durch Spezialisierung
unmittelbar hergeleitet werden kann.

Im folgenden wird eine Übersicht über die erzielten Resultate

vermittelt. Zunächst befasst sich die Darstellung mit dem

eng gekoppelten Multiprozessor, in dem die Prozesse über
gemeinsame Variable in einem gemeinsamen Speicher kooperieren.

Darauf folgt die Verallgemeinerung auf ein lose gekoppeltes

Netzwerk, in dem die Prozesse über Datenkanäle
kommunizieren. Da die Netzwerkknoten aus eng gekoppelten
Multiprozessoren bestehen können, gelten die Ergebnisse für
den offenbar allgemeinsten Fall eines Computersystems. Die
in der Praxis wichtigen Spezialfälle, nämlich das Netzwerk,
bestehend aus Einprozessorsystemen, das Multiprozessor-
system und das Einprozessorsystem sind dabei also gleich
mitbehandelt.

2.1 Prozeßsynchronisation

Die Zusammenarbeit zwischen gleichzeitigen Prozessen

beruht auf einem gegenseitigen Informationsaustausch. Dabei
müssen gewisse zeitliche Einschränkungen eingehalten werden.
Die Massnahmen zur Realisierung dieser Einschränkungen
werden als Prozeßsynchronisation bezeichnet. Zwei typische
Synchronisationsarten sind das Produzenten/Konsumenten-
Verhältnis und der gegenseitige Ausschluss.

Beim Produzenten/Konsumenten-Verhältnis erzeugt ein

Produzentenprozess Information, die von einem Konsumen-
tenprozess weiterverwendet wird. Dies ist aber erst nach Ab-
schluss der Informationsproduktion möglich. Der Konsument
muss so lange warten.

Ein gegenseitiger Ausschluss ist nötig, wenn sich mehrere
Prozesse über eine Anzahl gemeinsamer Variablen verständigen.

Während die gemeinsamen Variablen von einem Prozess

verändert werden, können sie sich kurzzeitig in einem nicht
konsistenten Übergangszustand befinden. Greift zu diesem

Zeitpunkt ein anderer Prozess zu den gemeinsamen Variablen

zu, so könnte er falsche Schlüsse ziehen. Man muss deshalb

dafür sorgen, dass nur solche Prozesse gleichzeitig zu den ge-

INC(syel,info) DEC(syel ,info)

\
Synchronisationselement syel

Fig. 1 Synchronisationselement und Synchronisationsoperationen

meinsamen Variablen zugreifen, die dadurch nicht irregeleitet
werden können. Die anderen Prozesse müssen temporär vom
Zugriff ausgeschlossen werden.

Für die Behandlung der Synchronisation auf der
Kernbetriebssystemstufe bestehen eine ganze Reihe von Vorschlägen.

Diese eignen sich entweder besonders gut für das

Produzenten/Konsumenten-Verhältnis, wie etwa die Meldungssynchronisation

[3 ; 4], oder aber für den gegenseitigen Ausschluss,
wie etwa die Semaphore [5; 6], Das TC 8 on Real Time Operating

Systems schlägt hingegen ein Synchronisationssystem

vor, das die Vorteile der Meldungs- und der Semaphorsynchro-
nisation vereinigt. Dieser Vorschlag beruht auf einer Art Mailbox,

welche Synchronisationselement genannt wird [2; 7]. Die
Synchronisationsoperationen werden aus historischen Gründen

mit INC und DEC bezeichnet.

Die Operation INC (syel, info) übergibt das Informationselement

info an das Synchronisationselement syel. Die
entsprechende Operation DEC (syel, info) fordert ein
Informationselement info vom Synchronisationselement syel an
(Fig. 1). Liegt wenigstens ein Informationselement vor, so

wird es aus dem Synchronisationselement herausgelöst, und
der anfordernde Prozess fährt fort. Ist das Synchronisationselement

jedoch leer, so erfolgt eine Prozessumschaltung. Der
anfordernde Prozess gibt seinen Prozessor zugunsten eines

andern Prozesses auf, der zum Fortfahren bereit ist. Die
Operation DEC wird dann zu einem späteren Zeitpunkt vollendet,
wenn nämlich das erforderliche Informationselement verfügbar
wird.

Mittels eines Synchronisationselementes kann unmittelbar
ein Produzenten/Konsumenten-Verhältnis mit einem unendlichen

Meldungspuffer realisiert werden (Fig. 2). In dieser

Hinsicht ist INC/DEC also der Meldungssynchronisation
ähnlich.

Wenn ein Synchronisationselement mit «dummy»-Information

operiert, so entspricht es einem Semaphor. Eine kritische
Sektion beispielsweise, bei der ein Prozess alle andern aus-

schliesst, kann mit einem Synchronisationselement mutex
realisiert werden, das mit einem dummy-Informationselement
initialisiert ist. Das dummy-Informationselement hat dabei

Produzent

repeat
produce (info);
INC (buf, info)

forever

Konsument

repeat
DEC (buf, info) ;

consume (info)
forever

Fig. 2 Produzenten/Konsumenten-Verhältnis realisiert mit INC/DEC

1246 (A 708) Bull. ASE/UCS 72(1981)23, 5 décembre



die Bedeutung eines Passierscheins, der dem Prozess, der ihn
besitzt, den Zugriff zu den gemeinsamen Variablen erlaubt
(Fig. 3).

Wie an anderer Stelle [8] gezeigt wurde, erlaubt INC/DEC
alle bekannten Synchronisationssysteme nachzubilden.
Insbesondere gilt das auch für die strukturierten Synchronisationssysteme

höherer Sprachen, wie Monitore [9], kritische Regionen,

bedingte kritische Regionen und Events [4]. Kürzlich
wurde auch gezeigt [10], dass INC/DEC sich zur Realisierung
der mächtigen Ada-Rendez-vous-Synchronisation [11] eignet.
Damit genügt INC/DEC offenbar der Anforderung an das

Kernbetriebssystem, als Grundlage für die Realisierung höherer

Programmiersprachen zu dienen.

2.2 Prozessverwaltung

In der Darstellung der Synchronisation wurden impliziert
drei Prozesszustände unterschieden, nämlich laufend, blok-
kiert und bereit. Ein laufender Prozess verfügt über einen

Prozessor und macht Verarbeitungsfortschritte. In einem Multi-
prozessorsystem mit N Prozessoren können maximal N
Prozesse laufend sein. Ein blockierter Prozess kann aus Gründen
der Synchronisation nicht fortfahren. Einem bereiten Prozess
fehlt einzig der Prozessor, um mit der Verarbeitung fortfahren
zu können. In Figur 4 sind diese Prozesszustände und die
Übergänge zwischen ihnen dargestellt.

Für gewisse einfache Betriebssysteme genügen diese drei
Prozesszustände. Die vorliegenden Prozesse besitzen dann
statischen Charakter, d.h. während der ganzen Systemlebensdauer

sind dieselben Prozesse vorhanden.
Soll das Computersystem jedoch dynamisch verwaltet werden,

so muss es möglich sein, neue Prozesse einzuführen oder
bisherige Prozesse zu entfernen. Dies wird als Prozessverwaltung

bezeichnet. Eine besonders wichtige Aufgabe der
Prozessverwaltung besteht darin, einen bereits bestehenden Prozess

zeitweilig von der Bearbeitung auszuschliessen. Da er in den

aktiven Prozesszuständen (laufend, blockiert und bereit)
entweder bereits läuft oder jederzeit zum Laufen kommen kann,
muss er aus den aktiven Prozesszuständen entfernt werden.
Diese Operation heisst DEACTIVATE. Sie überträgt einen

spezifizierten aktiven Prozess in den inaktiven Prozesszustand.
Der Prozess ist dadurch der kurzfristigen Prozeßsteuerung
durch die Synchronisationsoperationen entzogen. Er kann zu
einem späteren Zeitpunkt durch ACTIVATE wieder aktiviert
werden. Die Operationen DEACTIVATE und ACTIVATE
sind erforderlich, um Speicherverwaltung und Ausnahmebehandlung

auf höheren Betriebssystemstufen zu realisieren.
Die Übergänge zwischen dem inaktiven und dem Undefinierten

Prozesszustand dienen zur endgültigen Vernichtung
bestehender Prozesse bzw. zur Erzeugung neuer Prozesse.

Die entsprechenden Operationen sind DELETE und CREATE.
Der Vollständigkeit halber seien noch die Operationen

RETIRE und TERMINATE erwähnt, mittels derer sich ein
laufender Prozess selbst deaktivieren bzw. vernichten kann.

2.3 Ein-/Ausgabe

Unter Ein-/Ausgabe versteht man den Transport von
Information über die Grenze des Computersystems. Bei der Eingabe
erfolgt der Informationstransport von einer Informationsquelle
zum Computersystem. Die Ausgabe bezeichnet umgekehrt den

Informationstransport vom Computersystem zu einer
Informationssenke.

DEC (mutex, dummy) ;

critical section;
INC (mutex, dummy);

Fig. 3 Kritische Sektion realisiert mit INC/DEC

Die Ein-/Ausgabe Hesse sich ideal lösen, wenn die Peripheriegeräte

als Prozessoren des Computersystems aufgefasst werden
könnten. Diese Prozessoren würden einerseits den
Informationstransport durchführen und könnten andererseits die
Operationen des Kernbetriebssystems ausführen. Die Ein-/Ausgabe-
Aufträge könnten also mittels der besprochenen
Synchronisationsoperationen an die Ein-/Ausgabe-Prozesse übergeben werden,

die auf den Peripheriegeräte-Prozessoren laufen.
Aus Mangel an Normung bei Bussen, Schnittstellen und

Betriebssystemen ist man bis heute leider noch nicht so weit.
Deshalb ist man kurzfristig gezwungen, das angestrebte
Verhalten mit Hilfe der Zentraleinheiten des Computersystems zu
simulieren. Die mangelnden Datenverarbeitungsfähigkeiten der
Peripheriegeräte äussern sich dann in Form von Interruptroutinen.

Diese kann man als Prozessorleistung interpretieren,
welche die Peripheriegeräte von den Zentraleinheiten ausleihen.
Figur 5 stellt die grundsätzliche Ein-/Ausgabe-Struktur dar.
Diese gilt sowohl für die Ein- wie auch für die Ausgabe. Der
Benützerprozess teilt dem Ein-/Ausgabe-Prozess mittels INC
seinen Ein-/Ausgabe-Auftrag mit. Dabei bezeichnet rtnsyel ein
Synchronisationselement, auf dem die Beendigung der Ein-/
Ausgabe gemeldet werden soll.

Wenn der Ein-/Ausgabe-Prozess einen Auftrag erhalten hat,
startet er eine Interruptroutine, welche den Transfer selbständig,

im Gegentakt mit der Hardware durchführt. Die Beendigung

des Transfers wird dem Ein-/Ausgabe-Prozess mittels
INC (devint, dummy) auf dem Synchronisationselement devint
gemeldet. Darauf können die Antwortparameter über das

Fig. 4 Prozesszustände und Zustandsänderungen

Bull. SEV/VSE 72(1981)23, 5. Dezember (A 709) 1247



Benlitzerprozess E/fl-Prozess Interruptroutine

INC(devext,[pa_r,rtnsyel ] )-»-DEC(devext,[par,rtnsyel ])
request_interrupt—

DEC(rtnsyel,rtnpar>

r
fc-wa itj nterrupt-

p-^x>mplete^—

DEC(de\rint,dummy)-*-INC(devint,dummy) startJO- —»-waiUIO

INC(rtnsyeI ,rtnpar) hardware_activity

J

Hardware

request_i nterrupt

Fig. 5

Ein-/Ausgabe-Struktur

Synchronisationselement rtnsyel an den Bentitzerprozess
übergeben werden.

2.4 Notifikation
Ein heute noch kaum bearbeitetes Gebiet ist die Behandlung

von Interrupts in einem Multiprozessorsystem. Als Beispiel
diene die Ein-/Ausgabe des vorhergehenden Abschnittes. Trifft
ein Geräteinterrupt ein, so sollte man für dessen Behandlung
einen Prozessor auswählen, der auf möglichst tiefer Priorität
arbeitet oder eventuell gar nichts zu tun hat. Da sich in einem

Multiprozessorsystem die Situation laufend verändert, kann
dieser geeignetste Prozessor zwischen zwei aufeinanderfolgenden

Interrupts ändern. Es sollte also möglich sein, die Interrupts

dynamisch umzuleiten.
Ein ähnlich gelagertes Problem stellt die Prozessverdrängung

(Preemption) dar. Eine Prozessverdrängung sollte
stattfinden, wenn durch INC oder ACTIVATE ein Prozess bereit

wird, der höhere Priorität besitzt als der mit der momentan
tiefsten Priorität laufende Prozess. Die beiden Prozesse
vertauschen dann ihre. Rollen.

Für die Prozessverdrängung ist jedoch die Mitarbeit des

Prozessors nötig, auf dem der zu verdrängende Prozess läuft.
Dieser Prozessor muss ja den Context des alten Prozesses

retten, damit dieser zu einem späteren Zeitpunkt fortfahren
kann. Man muss also die Aufmerksamkeit des betreffenden
Prozessors gewinnen. Dies kann nur über das Interruptsystem
geschehen; es stellt die einzige Möglichkeit dar, asynchron in
die Prozessausführung einzugreifen. Zur Unterscheidung von
den Geräteinterrupts wurde diese Art von Interrupt vom TC 8

on Real Time Operating Systems Notifikation getauft. Auch
hier ist zu beachten, dass der Notifikationsstimulus dynamisch
zum Zielprozessor geleitet werden muss, da sich die Situation
im Multiprozessorsystem fortlaufend ändert.

Eine weitere Art von Interprozessornotifikation ist erforderlich,

um einen laufenden Prozess zu deaktivieren. Auch in
diesem Fall wird die Aufmerksamkeit des ausführenden Prozessors

durch den Notifikationsstimulus erzwungen. Der
Prozessor deaktiviert darauf den auf ihm laufenden Prozess. Die
Notifikation muss berücksichtigen, dass in einem Multiprozessorsystem

die Identität des ausführenden Prozessors dynamisch
ändern kann.

Die dynamische Zuteilung der Notifikationsstimuli muss
zudem noch Konflikte zwischen mehreren gleichzeitig
anstehenden Notifikationsaufträgen lösen. Reine Softwarelösungen
sind zuwenig effizient. Vielmehr sollten die hardwarenahen
Interrupts und Notifikationen auch mit einer Hardwarelösung
behandelt werden. Ein Vorschlag [8; 12] verwendet eine mikro-

programmierte Notifikationseinheit für die Zuteilung der
Notifikationen. Neue Entwicklungen auf dem Multiprozessorgebiet
sind sich der Notifikationsfragen bewusst. So sieht der Entwurf
zum P896 Busstandard [13] Mittel zur Realisierung der
Notifikation vor. Die Zuteilung von Notifikationsstimuli ist
eindeutig ein neues Erfordernis der Multiprozessoren. In einem
Einprozessorsystem entfällt die Prozessorauswahl, da ja nur
eine einzige Zentraleinheit existiert.

2.5 Ausnahmebehandlung

Unter einer Ausnahme versteht man eine Abweichung vom
normalen Ablauf eines Prozesses. Die Annahme kann die Folge
eines Fehlers in der Hardware oder der Software sein,
beispielsweise ein Bitfehler im Speicher oder eine Division durch
null. Die Ausnahme selbst ist aber kein Fehler. Sie stellt
vielmehr ein erwartetes Verhalten dar und wurde deshalb im
Computersystem auch entdeckt.

Das Kernbetriebssystem muss Mittel zur Verfügung stellen,

um eine Ausnahme behandeln zu können. Es geht dabei darum,

den richtigen «Exception Handler» zur Ausführung zu
bringen. Die Identität des richtigen Exception Handlers hängt
von der Art der Ausnahme, ihrer Entdeckung und ihrer
Ursache ab. Ist die Ausnahmeursache ein Fehlverhalten der

Rechnerhardware, so wird im allgemeinen das Betriebssystem
die nötige Rekonfiguration des Computersystems vornehmen,
den Fehler beheben und die Instandsetzungsaktionen anfordern.

Handelt es sich jedoch um ein Fehlverhalten der
Anwendungssoftware, so wird ein geeigneter Exception Handler aus
der Anwendungssoftware eingesetzt werden. Höhere
Programmiersprachen wie Ada [11] sehen vor, dass eine Ausnahme
stufenweise in der Anwendungssoftware nach oben gereicht
wird, bis ein geeigneter Handler gefunden wird.

Diese Methode ist erfolgreich, wenn die Entdeckung der
Ausnahme in demselben Prozess erfolgt, der die Ausnahme
verursacht hat. Ist jedoch die Ausnahme von einem andern
Prozess verursacht worden, so sollte sie auch in jenem Prozess

behandelt werden. Es muss deshalb eine Möglichkeit existieren,
eine Ausnahmebedingung an einen andern Prozess weiterzuleiten.

Ada sieht zu diesem Zweck die Ausnahme FAILURE
vor, die explizit in einem andern Prozess angezeigt werden
kann. In einem Einprozessorsystem ist dies einfach zu lösen,
da der betreffende Prozess ja sicher nicht läuft, während ein
anderer Prozess die Ausnahme entdeckt. In einem
Multiprozessorsystem kann der betreffende Prozess jedoch laufen. Im
Notifikationsmechanismus sind Mittel vorzusehen, die den

laufenden Prozess auf die Ausnahme aufmerksam machen.

1248 (A 710) Bull. ASE/UCS 72(1981)23, 5 décembre



3. Netzwerkbetriebssystem
In einem lose gekoppelten Netzwerk kann die Kooperation

zwischen den einzelnen Prozessen nicht mit den beschriebenen

Synchronisations- und Prozessverwaltungsoperationen organisiert

werden. Diese setzen nämlich den Zugang zu den
Prozessdeskriptoren und den Synchronisationselementen in einem
gemeinsamen Speicher voraus. Ein systemweiter gemeinsamer
Speicher existiert jedoch in einem Netzwerk nicht mehr. Trotzdem

wäre es vorteilhaft, netzwerkweit mit den bereits beschriebenen

Operationen arbeiten zu können.
Diese Möglichkeit bietet sich mit einer Verallgemeinerung

der Kernbetriebssystemoperationen [8; 14; 15]. Diese werden

zur Unterscheidung durch die Vorsilbe GEN- ergänzt. Anstelle

von INC, DEC, ACTIVATE, DEACTIVATE usw. arbeitet
man dann mit GENINC, GENDEC, GENACTIVATE,
GENDEACTIVATE usw. Diese Operationen besitzen die in
Figur 6 dargestellte Struktur. Bei ihrer Ausführung wird
zunächst entschieden, ob das anzusprechende Objekt sich im
eigenen Netzwerkknoten befindet. In diesem Fall kann direkt
die Originaloperation eingesetzt werden, also INC, DEC,
ACTIVATE, DEACTIVATE usw. Andernfalls wird der Auftrag

über ein lokal verfügbares Synchronisationselement (dis)
an das Kommunikationssystem weitergeleitet. In den meisten
Fällen ist die Angelegenheit für den ausführenden Prozess

damit erledigt (Fig. 6a). Einzig in den Fällen, in denen ein

Antwortparameter erwartet wird, folgt noch eine DEC-Ope-
ration auf ein lokales, für jeden Prozess existierendes
Synchronisationselement (priv) (Fig. 6b). Wenn die Operation
abgeschlossen ist, kann der aufrufende Prozess die Antwortparameter

lokal auf dem Synchronisationselement priv entgegennehmen.

Wenn das Kommunikationssystem den Auftrag vom lokalen

Synchronisationselement dis übernommen hat, durchläuft
dieser die verschiedenen Schichten des Kommunikationssystems

nach den bekannten Methoden [16]. Fragen des

Routing und der Flowcontrol werden entschieden. Schliesslich

erfolgt die Übermittlung des Auftrages mittels Ein-/Ausgabe
über die vorhandenen Kommunikationskanäle. Dabei werden
eventuell mehrere Netzwerkknoten durchquert. Am
Bestimmungsort liefert das Kommunikationssystem die Aufträge an
das Kernbetriebssystem ab. Stellvertreterprozesse führen dann
die übermittelten Aufträge aus.

In dieser Weise kann das Kernbetriebssystem auf ein Netzwerk

ausgedehnt werden. Man beachte, dass die erwähnten
Methoden keine Voraussetzungen über die Netzwerkstruktur
oder die Art der Vermittlung (Linien-, Meldungs- oder
Paketvermittlung) treffen. Zudem ist die Transparenz der Kommunikation

gewährleistet. Der Auftraggeberprozess spezifiziert
die angesprochenen Objekte (Synchronisationselemente und
Prozesse) per Namen und unabhängig von ihrem Aufenthaltsort

im Netzwerk. Damit entspricht der Vorschlag den
Anforderungen, die an ein modernes Netzwerkbetriebssystem gestellt
werden.

4. Schlussfolgerungen
Betriebssysteme müssen auf ihren Verwendungszweck

zugeschnitten werden und widersetzen sich deshalb einer
Normung. Die Optimierung betrifft jedoch nur die obersten Schichten

des Betriebssystems. Prinzipiell wäre das Kernbetriebssystem,

welches Grundaufgaben erfüllt, also normbar. Die
Normung des Kernbetriebssystems scheitert heute jedoch an

Fig. 6 Struktur der verallgemeinerten Kernbetriebssystemoperationen
im Netzwerk

opx INC, ACTIVATE, DEACTIVATE, DELETE
opy DEC, CREATE

der fehlenden Normung bei den Betriebsmitteln und an den
bis vor kurzem fehlenden Kenntnissen über Multiprozessor-
systeme. In diesem Artikel werden die Konzepte des vom
TC 8 on Real Time Operating Systems entwickelten
Kernbetriebssystems dargelegt. Es ist konsequent auf den Multi-
prozessorfall ausgerichtet und kann auf ein Netzwerkbetriebssystem

verallgemeinert werden. Zwar ist aus den erwähnten
Gründen bisher keine Normung erfolgt, doch erlaubt das

Betriebssystem zumindest eine Übertragbarkeit der Konzepte.
Längerfristig ist eine Realisierung des Kernbetriebssystems auf
dem Silizium der Prozessorchips vorzusehen. Bei der
Prozessorinitialisierung kann dann die Systemart, Einprozessor,
Multiprozessor und/oder Netzwerk, konfiguriert werden.
Dadurch kann die Effizienz je nach Systemart optimiert werden,
ohne die Bedeutung der Kernbetriebssystemoperationen zu
verändern.

Literatur
[1] D.A. Anderson: Operating systems. Computer 14(1981)6, p. 69...82.
[2] Technical committee on real time operating systems: Up to date report. Euro¬

pean Workshop on Industrial Computer Systems, September 1978; paper
OP/SYS 1-1-7.

[3] P. Brinch Hansen: The nucleus of a multiprogramming system. Communications
of the Association for Computing Machinery 13(1970)4, p. 238...241,250.

[4] P. Brinch Hansen: Operating system principles. Englewood Cliffs, N.J., Pren¬
tice-Hall, 1973.

[5] E. W. Dijkstra: Co-operating sequential processes. Out of 'Programming lan¬
guages', lectures given in Villard-de-Lans, edited by F. Genuys. London &
New York, Academic Press, 1968, p. 43...112.

[6] E.W. Dijkstra: The structure of the ' THE'-multiprogramming system.
Communications of the Association for Computing Machinery 11(1968)5,
p. 341...346.

[7] G. Schrott: Common elementary synchronisation functions for an operating
system kernel. European Workshop on Industrial Computer Systems, January
1976; paper OP/SYS II-3-1.

[8] K. Mühlemann: Ein Beitrag zur Synchronisation in Mehrprozessorsystemen
und Computernetzwerken. Dissertation der Eidgenössischen Technischen
Hochschule Zürich Nr. 6520, 1980.

[9] C.A.R. Hoare: Monitors: an operating system structuring concept.
Communications of the Association for Computing Machinery 17(1974)10, p. 549. ..557.

[10] K. Mühlemann: Towards an implementation of Ada rendezvous synchroniza¬
tion. Euromicro Symposium on Microprocessing and Microprogramming,
Paris, 1981. Implementing functions: microprocessors and firmware. Amsterdam

a.o., North-Holland Publishing Company, p. 289...302.
[11] Reference manual for the Ada programming language. United States Depart¬

ment of Defense, proposed standard document, July 1980.
[12] K. Mühlemann: Towards interrupt assignment for multiple processors. Euro-

micro Symposium on Microprocessing and Microprogramming, London,
1980. Microprocessor systems. Amsterdam a.o., North-Holland Publishing
Company, p. 157...166.

[13] J. D. Nicoud: Bus normalisés pour microprocesseurs. Bull. SEV/VSE 72(1981)
23, p. 1231...1234.

[14] K. Mühlemann: Communication between processors without shared memory.
Joint Meeting ACM/IEEE on Interconnected Small Processors, Bern, November

21st, 1978.
[15] K. Mühlemann: Towards a model of communication. European Workshop on

Industrial Computer Systems, April 1979; paper OP/SYS II-14-1.
[16] ISO/TC97/SC: Reference model of open systems interconnection. N 227,

June 1979.

Adresse des Autors
Dr. K. Mühlemann, ASE-CSEE (Association Suisse des Electriciens —

Centre Suisse d'Essais des Composants Electroniques), ruelle Vaucher 22,
2000 Neuchâtel.

Bull. SEV/VSE 72(1981)23, 5. Dezember (A 711) 1249


	Echtzeit-Betriebssysteme

