Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitatsunternehmen = Bulletin de
I'Association suisse des électriciens, de I'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitatsunternehmen

Band: 72 (1981)

Heft: 23

Artikel: Echtzeit-Betriebssysteme

Autor: Muhlemann, K.

DOl: https://doi.org/10.5169/seals-905178

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-905178
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Echtzeit-Betriebssysteme
Von K. Miihlemann

681.3.014

Echtzeit-Betriebssysteme teilen die gemeinsamen Betriebsmittel (Prozessoren, Speicher, Peripheriegerdte, Daten, Files, Programme usw.)
den Beniitzern des Computersystems unter Einhaltung zeitlicher Bedingungen zu. Je nach Zielsetzung muss das Betriebssystem optimiert werden
konnen. Dies erschwert die Normungsanstrengungen, welche am ehesten im Bereich des Betriebssystemskerns Erfolgsaussichten haben. Dessen
Aufgaben, d.h. die Synchronisation, die Prozessverwaltung, die Ein-| Ausgabe, die Kommunikation und die Ausnahmebehandlung, werden fiir
den allgemeinen Fall eines Computernetzwerkes bestehend aus Multiprozessorknoten dargestellt.

Les systémes d’exploitation en temps-réel affectent les ressources communes (processeurs, mémoires, périphériques, données, fichiers, pro-
grammes, etc.) aux utilisateurs du systéme d’ordinateur tout en remplissant des conditions temporelles. Le systéme d’exploitation doit étre opti-
malisable selon le but qui lui est attribué. Cela rend difficile les efforts de normalisation. Ceux-ci ont le plus de chance de réussir dans le domaine
du noyau du systéme d’exploitation. Les tdaches de celui-ci, c’est-a-dire la synchronisation, la gestion des processus, des entrées et sorties, la com-
munication et le traitement des exceptions, sont présentées pour le cas général d’un réseau d’ordinateurs composé de neuds multi-ordinateurs.

1. Einleitung

Unter einem Betriebssystem versteht man jene grundlegen-
den Softwarekomponenten, die zur effizienten und geordneten
Zuteilung der gemeinsamen Betriebsmittel an die Beniitzer des
Computersystems dienen. Das Betriebssystem bildet das Inter-
face zwischen dem Computersystem und dem Beniitzer.

Man unterscheidet zwischen physikalischen Betriebsmitteln
(z.B. Prozessoren, Speichern, Ein-/Ausgabe-Geriten und Ver-
bindungsnetzwerken) und logischen Betriebsmitteln (z.B. Da-
ten, Files und Programmen). Bei der Verwaltung der gemein-
samen Betriebsmittel verfolgen die Betriebssysteme eine Stra-
tegie, die auf den Verwendungszweck des Computersystems
ausgerichtet ist. Damit soll die Zuteilung jenes Betriebsmittels
optimiert werden, das kosten- oder anwendungsbedingt am
besten ausgeniitzt werden muss. In der Vergangeheit war das
oft die Zentraleinheit des Computersystems. Seit dank der
Mikroprozessortechnik immer leistungsfihigere Zentralein-
heiten zu giinstigen Preisen verfiigbar werden, verschiebt sich
der Akzent mehr zu den weiterhin teuren Speicher- und Peri-
pherieeinheiten. In einem Datenbanksystem kann aber durch-
aus der rasche Zugang zu den Daten gegeniiber der Speicher-
oder Peripherieausniitzung in den Vordergrund riicken.

Bei einem Echizeit-Betriebssystem erwartet man zudem,
dass es auf Ereignisse reagieren kann, die in einer bestimmten
zeitlichen Beziehung stehen. Insbesondere gilt das fiir Signale
von ausserhalb des Computersystems, die nicht iiber l4ngere
Zeit giiltig bleiben. Die computerisierte Messwerterfassung
und Regelung liefern typische Beispiele. Echtzeitprobleme
treten iiberdies bei der Ein-/Ausgabe auf. In gewissem Sinne
kann man also alle Betriebssysteme als Echtzeit-Betriebs-
systeme auffassen. .

Fiir einen wirksamen Computereinsatz ist ein Betriebs-
system unabdingbar. In ihm liegen die Flexibilitdt und damit
die Beniitzerfreundlichkeit verankert. Eine Normung wire
daher sehr willkommen. Leider existieren, abgesehen von den
Interessenskonflikten der Computerhersteller, mehrere Schwie-
rigkeiten, die eine Normung behindern:

a) Die Betriebsmittel, zu deren Verwaltung das Betriebs-
system dient, sind in den wenigsten Fillen genormt.

b) Betriebssysteme miissen auf ihre Anwendung zugeschnit-
ten werden.

¢) Die Forschung iiber Betriebssysteme steht noch am An-
fang [1].

Eine Vereinheitlichung sollte jedoch bei den Konzepten auf
der Stufe des Kernbetriebssystems moglich sein. Das Kern-
betriebssystem bildet die unterste Schicht des Betriebssystems.

Bull. SEV/VSE 72(1981)23, 5. Dezember

Es 16st Grundaufgaben und ist damit weitgehend von Strategie-
fragen unabhingig. In den meisten Fillen hat das Kern-
betriebssystem einen relativ geringen Umfang, seine Effizienz
ist jedoch entscheidend fiir die Leistungsfiahigkeit des Gesamt-
systems. Aus diesem Grund wird das Kernbetriebssystem auch
heute noch meist in Assembly-Sprache geschrieben, wiahrend
die oberen Hierarchiestufen eines Betriebssystems oft in hohe-
ren Computersprachen programmiert werden (Tabelle I).

2. Aufgaben eines Kernbetriebssystems

Das Kernbetriebssystem bildet die Grundlage fiir den Auf-
bau der hoheren Betriebssystemstufen und fiir die Implemen-
tierung hoherer Computersprachen. Konkret bedeutet dies die
Unterstiitzung mehrerer Beniitzer in einem Computersystem.
Diese Vervielfachung der Beniitzer ist wesentlich, um (trotz der
durch die mechanischen Peripheriegerite bedingten Warte-
zeiten) eine hohe Betriebsmittelausniitzung zu gewéhrleisten.
Wihrend nimlich ein Beniitzer auf eine neue Eingabe wartet,
kann durchaus ein anderer Beniitzer die arithmetischen Fahig-
keiten einer Zentraleinheit ausniitzen. Im Computerjargon
werden die erwihnten Beniitzer als Tasks oder Prozesse be-
zeichnet. Die Grundaufgabe des Kernbetriebssystems besteht
also in der Unterstiitzung gleichzeitiger Prozesse.

In der Vergangenheit teilten sich die gleichzeitigen Prozesse
meist in eine einzige Zentraleinheit. Die Beschrankung auf eine
einzige Zentraleinheit ist jedoch kiinstlich, da eine Zentral-
einheit ein Betriebsmittel wie jedes andere ist und vervielfacht

Gegeniiberstellung von Kernbetriebssystem und hoheren

Hierarchiestufen eines Betriebssystems Tabelle I
Kernbetriebssystem Hohere
Betriebssystemstufen
Aufgaben ProzeBsynchronisation ProzeBsteuerung
Prozessverwaltung (Scheduling)
Ein-/Ausgabe Speicherverwaltung
Kommunikation Filesystem
Ausnahmebehandlung Datenbanksystem
usw.
Programmier- | Assembly hohere Sprache
sprache
Charakter strategieunabhéngig strategieabhingig
Umfang klein gross
(A707) 1245

werden kann. Dass dies selten geschah, hatte mehrere Griinde:
Die Kosten der Zentraleinheiten waren hoch, und die Verwal-
tung mehrerer Zentraleinheiten im Betriebssystem bot grosse
Schwierigkeiten. Im weiteren war es infolge des technischen
Fortschritts moglich, mit geringem Aufwand erhebliche Lei-
stungssteigerungen mit einer einzigen Zentraleinheit zu reali-
sieren. Heute stehen jedoch leistungsfdhige und preisgiinstige
Mikroprozessoren als Zentraleinheiten zur Verfiigung, und
Leistungssteigerungen einzelner Zentraleinheiten erfordern
einen unverhéltnisméssigen Aufwand. Durch Multiprozessoren
sind deshalb Vorteile wie hohere Leistungen, erhohte Zuver-
lassigkeit, grossere Verfiigbarkeit und modulares System-
wachstum absehbar geworden.

Damit erhielt auch die Arbeit an den Multiprozessor-
Betriebssystemen neuen Auftrieb. Eine von der Européischen
Gemeinschaft geforderte Anstrengung findet im TC 8 on Real
Time Operating Systems des European Workshop on Indus-
trial Computer Systems (EWICS) statt. Es ist das Ziel dieses
Komitees, Richtlinien und systemunabhédngige Konzepte zu
entwickeln, um beim Aufbau von Echtzeit-Betriebssystemen
maximale Zuverlissigkeit und Ubertragbarkeit zu erzielen [2].
Die bisherige Arbeit konzentrierte sich auf das Kernbetriebs-
system, das inzwischen weitgehend abgeschlossen ist. Bei der
Behandlung wurde konsequent der Multiprozessorfall ange-
nommen, aus dem der Einprozessorfall durch Spezialisierung
unmittelbar hergeleitet werden kann.

Im folgenden wird eine Ubersicht iiber die erzielten Resul-
tate vermittelt. Zundchst befasst sich die Darstellung mit dem
eng gekoppelten Multiprozessor, in dem die Prozesse iiber
gemeinsame Variable in einem gemeinsamen Speicher koope-
rieren. Darauf folgt die Verallgemeinerung auf ein lose gekop-
peltes Netzwerk, in dem die Prozesse iiber Datenkanile kom-
munizieren. Da die Netzwerkknoten aus eng gekoppelten
Multiprozessoren bestehen konnen, gelten die Ergebnisse fiir
den offenbar allgemeinsten Fall eines Computersystems. Die
in der Praxis wichtigen Spezialfille, nimlich das Netzwerk,
bestehend aus Einprozessorsystemen, das Multiprozessor-
system und das Einprozessorsystem sind dabei also gleich mit-
behandelt.

2.1 Prozefsynchronisation

Die Zusammenarbeit zwischen gleichzeitigen Prozessen
beruht auf einem gegenseitigen Informationsaustausch. Dabei
miissen gewisse zeitliche Einschrinkungen eingehalten werden.
Die Massnahmen zur Realisierung dieser Einschrinkungen
werden als ProzeBsynchronisation bezeichnet. Zwei typische
Synchronisationsarten sind das Produzenten/Konsumenten-
Verhéltnis und der gegenseitige Ausschluss.

Beim Produzenten/Konsumenten-Verhéltnis erzeugt ein
Produzentenprozess Information, die von einem Konsumen-
tenprozess weiterverwendet wird. Dies ist aber erst nach Ab-
schluss der Informationsproduktion moglich. Der Konsument
muss so lange warten.

Ein gegenseitiger Ausschluss ist n6tig, wenn sich mehrere
Prozesse iiber eine Anzahl gemeinsamer Variablen verstandi-
gen. Wihrend die gemeinsamen Variablen von einem Prozess
verdndert werden, konnen sie sich kurzzeitig in einem nicht
konsistenten Ubergangszustand befinden. Greift zu diesem
Zeitpunkt ein anderer Prozess zu den gemeinsamen Variablen
zu, so konnte er falsche Schliisse ziehen. Man muss deshalb
dafiir sorgen, dass nur solche Prozesse gleichzeitig zu den ge-

1246 (A 708)

INC(syel,info)

N

DEC(syel,info)

Synchronisationselement syel

Fig. 1 Synchronisationselement und Synchronisationsoperationen

meinsamen Variablen zugreifen, die dadurch nicht irregeleitet
werden konnen. Die anderen Prozesse miissen tempordr vom
Zugriff ausgeschlossen werden.

Fiir die Behandlung der Synchronisation auf der Kern-
betriebssystemstufe bestehen eine ganze Reihe von Vorschli-
gen. Diese eignen sich entweder besonders gut fiir das Produ-
zenten/Konsumenten-Verhéltnis, wie etwa die Meldungssyn-
chronisation [3; 4], oder aber fiir den gegenseitigen Ausschluss,
wie etwa die Semaphore [5; 6]. Das TC 8 on Real Time Oper-
ating Systems schldgt hingegen ein Synchronisationssystem
vor, das die Vorteile der Meldungs- und der Semaphorsynchro-
nisation vereinigt. Dieser Vorschlag beruht auf einer Art Mail-
box, welche Synchronisationselement genannt wird [2; 7]. Die
Synchronisationsoperationen werden aus historischen Griin-
den mit INC und DEC bezeichnet.

Die Operation INC (syel, info) tibergibt das Informations-
element info an das Synchronisationselement syel. Die ent-
sprechende Operation DEC (syel, info) fordert ein Informa-
tionselement info vom Synchronisationselement syel an
(Fig. 1). Liegt wenigstens ein Informationselement vor, so
wird es aus dem Synchronisationselement herausgeldst, und
der anfordernde Prozess fihrt fort. Ist das Synchronisations-
element jedoch leer, so erfolgt eine Prozessumschaltung. Der
anfordernde Prozess gibt seinen Prozessor zugunsten eines
andern Prozesses auf, der zum Fortfahren bereit ist. Die Ope-
ration DEC wird dann zu einem spéteren Zeitpunkt vollendet,
wenn namlich das erforderliche Informationselement verfiigbar
wird.

Mittels eines Synchronisationselementes kann unmittelbar
ein Produzenten/Konsumenten-Verhéltnis mit einem unend-
lichen Meldungspuffer realisiert werden (Fig.?2). In dieser
Hinsicht ist INC/DEC also der Meldungssynchronisation
dhnlich.

Wenn ein Synchronisationselement mit «dummy»-Informa-
tion operiert, so entspricht es einem Semaphor. Eine kritische
Sektion beispielsweise, bei der ein Prozess alle andern aus-
schliesst, kann mit einem Synchronisationselement mutex rea-
lisiert werden, das mit einem dummy-Informationselement
initialisiert ist. Das dummy-Informationselement hat dabei

Produzent Konsument

repeat
produce (info);
INC (buf, info)
forever

repeat
DEC (buf, info);
consume (info)
forever

Fig. 2 Produzenten/Konsumenten-Verhiltnis realisiert mit INC/DEC

Bull. ASE/UCS 72(1981)23, 5 décembre

die Bedeutung eines Passierscheins, der dem Prozess, der ihn
besitzt, den Zugriff zu den gemeinsamen Variablen erlaubt
(Fig. 3).

Wie an anderer Stelle [8] gezeigt wurde, erlaubt INC/DEC
alle bekannten Synchronisationssysteme nachzubilden. Insbe-
sondere gilt das auch fiir die strukturierten Synchronisations-
systeme hoherer Sprachen, wie Monitore [9], kritische Regio-
nen, bedingte kritische Regionen und Events [4]. Kiirzlich
wurde auch gezeigt [10], dass INC/DEC sich zur Realisierung
der michtigen Ada-Rendez-vous-Synchronisation [11] eignet.
Damit geniigt INC/DEC offenbar der Anforderung an das
Kernbetriebssystem, als Grundlage fiir die Realisierung hohe-
rer Programmiersprachen zu dienen.

2.2 Prozessverwaltung

In der Darstellung der Synchronisation wurden impliziert
drei Prozesszustinde unterschieden, ndmlich laufend, blok-
kiert und bereit. Ein Jaufender Prozess verfiigt iiber einen Pro-
zessor und macht Verarbeitungsfortschritte. In einem Multi-
prozessorsystem mit N Prozessoren konnen maximal N Pro-
zesse laufend sein. Ein blockierter Prozess kann aus Griinden
der Synchronisation nicht fortfahren. Einem bereiten Prozess
fehlt einzig der Prozessor, um mit der Verarbeitung fortfahren
zu konnen. In Figur 4 sind diese Prozesszustinde und die
Uberginge zwischen ihnen dargestellt.

Fiir gewisse einfache Betriebssysteme geniigen diese drei
Prozesszustinde. Die vorliegenden Prozesse besitzen dann
statischen Charakter, d.h. widhrend der ganzen Systemlebens-
dauer sind dieselben Prozesse vorhanden.

Soll das Computersystem jedoch dyramisch verwaltet wer-
den, so muss es moglich sein, neue Prozesse einzufiihren oder
bisherige Prozesse zu entfernen. Dies wird als Prozessverwal-
tung bezeichnet. Eine besonders wichtige Aufgabe der Prozess-
verwaltung besteht darin, einen bereits bestehenden Prozess
zeitweilig von der Bearbeitung auszuschliessen. Da er in den
aktiven Prozesszustdnden (laufend, blockiert und bereit) ent-
weder bereits lauft oder jederzeit zum Laufen kommen kann,
muss er aus den aktiven Prozesszustinden entfernt werden.
Diese Operation heisst DEACTIVATE. Sie iibertrdgt einen
spezifizierten aktiven Prozess in den inaktiven Prozesszustand.
Der Prozess ist dadurch der kurzfristigen ProzeBsteuerung
durch die Synchronisationsoperationen entzogen. Er kann zu
einem spiteren Zeitpunkt durch ACTIVATE wieder aktiviert
werden. Die Operationen DEACTIVATE und ACTIVATE
sind erforderlich, um Speicherverwaltung und Ausnahmebe-
handlung auf hoheren Betriebssystemstufen zu realisieren.

Die Ubergiinge zwischen dem inaktiven und dem undefi-
nierten Prozesszustand dienen zur endgiiltigen Vernichtung
bestehender Prozesse bzw. zur Erzeugung neuer Prozesse.
Die entsprechenden Operationen sind DELETE und CREATE.

Der Vollstindigkeit halber seien noch die Operationen
RETIRE und TERMINATE erwihnt, mittels derer sich ein
laufender Prozess selbst deaktivieren bzw. vernichten kann.

2.3 Ein-|Ausgabe

Unter Ein-/Ausgabe versteht man den Transport von Infor-
mation iiber die Grenze des Computersystems. Bei der Eingabe
erfolgt der Informationstransport von einer Informationsquelle
zum Computersystem. Die Ausgabe bezeichnet umgekehrt den
Informationstransport vom Computersystem zu einer Infor-
mationssenke.

Bull. SEV/VSE 72(1981)23, 5. Dezember

DEC (mutex, dummy);
critical section;
INC (mutex, dummy);

Fig. 3 Kiritische Sektion realisiert mit INC/DEC

Die Ein-/Ausgabe liesse sich ideal 16sen, wenn die Peripherie-
gerite als Prozessoren des Computersystems aufgefasst werden
konnten. Diese Prozessoren wiirden einerseits den Informa-
tionstransport durchfiihren und konnten andererseits die Ope-
rationen des Kernbetriebssystems ausfiihren. Die Ein-/Ausgabe-
Auftrige konnten also mittels der besprochenen Synchronisa-
tionsoperationen an die Ein-/Ausgabe-Prozesse iibergeben wer-
den, die auf den Peripheriegerite-Prozessoren laufen.

Aus Mangel an Normung bei Bussen, Schnittstellen und
Betriebssystemen ist man bis heute leider noch nicht so weit.
Deshalb ist man kurzfristig gezwungen, das angestrebte Ver-
halten mit Hilfe der Zentraleinheiten des Computersystems zu
simulieren. Die mangelnden Datenverarbeitungsfihigkeiten der
Peripheriegerite dussern sich dann in Form von Interrupt-
routinen. Diese kann man als Prozessorleistung interpretieren,
welche die Peripheriegerite von den Zentraleinheiten ausleihen.
Figur 5 stellt die grundsitzliche Ein-/Ausgabe-Struktur dar.
Diese gilt sowohl fiir die Ein- wie auch fiir die Ausgabe. Der
Beniitzerprozess teilt dem Ein-/Ausgabe-Prozess mittels INC
seinen Ein-/Ausgabe-Auftrag mit. Dabei bezeichnet rtnsyel ein
Synchronisationselement, auf dem die Beendigung der Ein-/
Ausgabe gemeldet werden soll.

Wenn der Ein-/Ausgabe-Prozess einen Auftrag erhalten hat,
startet er eine Interruptroutine, welche den Transfer selbstin-
dig, im Gegentakt mit der Hardware durchfiihrt. Die Beendi-
gung des Transfers wird dem Ein-/Ausgabe-Prozess mittels
INC (devint, dummy) auf dem Synchronisationselement devint
gemeldet. Darauf konnen die Antwortparameter iiber das

N aktiv /
~o -

Fig. 4 Prozesszustinde und Zustandsinderungen

(A709) 1247

Beniitzerprozess E/A-Prozess

Interruptroutine

Hardware Fig. 5

INC(devext,[par,rtnsyel])-»DEC(devext,[par,rtnsyel])

DEC(rtnsyel,rtnpar)<—INC(rtnsyel,rtnpar)

N

Synchronisationselement rtnsyel an den Beniitzerprozess iiber-
geben werden.

2.4 Notifikation

Ein heute noch kaum bearbeitetes Gebiet ist die Behandlung
von Interrupts in einem Multiprozessorsystem. Als Beispiel
diene die Ein-/Ausgabe des vorhergehenden Abschnittes. Trifft
ein Geriteinterrupt ein, so sollte man fiir dessen Behandlung
einen Prozessor auswihlen, der auf moglichst tiefer Prioritét
arbeitet oder eventuell gar nichts zu tun hat. Da sich in einem
Multiprozessorsystem die Situation laufend verdndert, kann
dieser geeignetste Prozessor zwischen zwei aufeinanderfolgen-
den Interrupts dndern. Es sollte also moglich sein, die Inter-
rupts dynamisch umzuleiten.

Ein dhnlich gelagertes Problem stellt die Prozessverdrin-
gung (Preemption) dar. Eine Prozessverdringung sollte statt-
finden, wenn durch INC oder ACTIVATE ein Prozess bereit
wird, der hohere Prioritdt besitzt als der mit der momentan
tiefsten Prioritdt laufende Prozess. Die beiden Prozesse ver-
tauschen dann ihre. Rollen.

Fiir die Prozessverdringung ist jedoch die Mitarbeit des
Prozessors notig, auf dem der zu verdridngende Prozess liuft.
Dieser Prozessor muss ja den Context des alten Prozesses
retten, damit dieser zu einem spiteren Zeitpunkt fortfahren
kann. Man muss also die Aufmerksamkeit des betreffenden
Prozessors gewinnen. Dies kann nur iiber das Interruptsystem
geschehen; es stellt die einzige Moglichkeit dar, asynchron in
die Prozessausfithrung einzugreifen. Zur Unterscheidung von
den Geriteinterrupts wurde diese Art von Interrupt vom TC 8
on Real Time Operating Systems Notifikation getauft. Auch
hier ist zu beachten, dass der Notifikationsstimulus dynamisch
zum Zielprozessor geleitet werden muss, da sich die Situation
im Multiprozessorsystem fortlaufend dndert.

Eine weitere Art von Interprozessornotifikation ist erforder-
lich, um einen laufenden Prozess zu deaktivieren. Auch in die-
sem Fall wird die Aufmerksamkeit des ausfithrenden Prozes-
sors durch den Notifikationsstimulus erzwungen. Der Pro-
zessor deaktiviert darauf den auf ihm laufenden Prozess. Die
Notifikation muss beriicksichtigen, dass in einem Multiprozes-
sorsystem die Identitét des ausfithrenden Prozessors dynamisch
dndern kann.

Die dynamische Zuteilung der Notifikationsstimuli muss
zudem noch Konflikte zwischen mehreren gleichzeitig anste-
henden Notifikationsauftrigen 10sen. Reine Softwareldsungen
sind zuwenig effizient. Vielmehr sollten die hardwarenahen
Interrupts und Notifikationen auch mit einer Hardwarelosung
behandelt werden. Ein Vorschlag [8; 12] verwendet eine mikro-

1248 (A 710)

request_interrupt——swait_interrupt<e—request_interrupt

[~Gompletey—|

8 DEC(devi nt,dummy)<e-INC(devint,dummy) start_IO—A—bwaiLIO A

Ein-/Ausgabe-Struktur

)

=

hardware_activity

N A

programmierte Notifikationseinheit fiir die Zuteilung der Noti-
fikationen. Neue Entwicklungen auf dem Multiprozessorgebiet
sind sich der Notifikationsfragen bewusst. So sieht der Entwurf
zum P896 Busstandard [13] Mittel zur Realisierung der Noti-
fikation vor. Die Zuteilung von Notifikationsstimuli ist ein-
deutig ein neues Erfordernis der Multiprozessoren. In einem
Einprozessorsystem entféllt die Prozessorauswahl, da ja nur
eine einzige Zentraleinheit existiert.

2.5 Ausnahmebehandlung

Unter einer Ausnahme versteht man eine Abweichung vom
normalen Ablauf eines Prozesses. Die Annahme kann die Folge
eines Fehlers in der Hardware oder der Software sein, bei-
spielsweise ein Bitfehler im Speicher oder eine Division durch
null. Die Ausnahme selbst ist aber kein Fehler. Sie stellt viel-
mehr ein erwartetes Verhalten dar und wurde deshalb im
Computersystem auch entdeckt.

Das Kernbetriebssystem muss Mittel zur Verfiigung stellen,
um eine Ausnahme behandeln zu konnen. Es geht dabei dar-
um, den richtigen «Exception Handler» zur Ausfithrung zu
bringen. Die Identitidt des richtigen Exception Handlers hdngt
von der Art der Ausnahme, ihrer Entdeckung und ihrer Ur-
sache ab. Ist die Ausnahmeursache ein Fehlverhalten der
Rechnerhardware, so wird im allgemeinen das Betriebssystem
die notige Rekonfiguration des Computersystems vornehmen,
den Fehler beheben und die Instandsetzungsaktionen anfor-
dern.

Handelt es sich jedoch um ein Fehlverhalten der Anwen-
dungssoftware, so wird ein geeigneter Exception Handler aus
der Anwendungssoftware eingesetzt werden. Hohere Program-
miersprachen wie Ada [11] sehen vor, dass eine Ausnahme
stufenweise in der Anwendungssoftware nach oben gereicht
wird, bis ein geeigneter Handler gefunden wird.

Diese Methode ist erfolgreich, wenn die Entdeckung der
Ausnahme in demselben Prozess erfolgt, der die Ausnahme
verursacht hat. Ist jedoch die Ausnahme von einem andern
Prozess verursacht worden, so sollte sie auch in jenem Prozess
behandelt werden. Es muss deshalb eine Moglichkeit existieren,
eine Ausnahmebedingung an einen andern Prozess weiterzu-
leiten. Ada sieht zu diesem Zweck die Ausnahme FAILURE
vor, die explizit in einem andern Prozess angezeigt werden
kann. In einem Einprozessorsystem ist dies einfach zu 16sen,
da der betreffende Prozess ja sicher nicht lduft, wihrend ein
anderer Prozess die Ausnahme entdeckt. In einem Multipro-
zessorsystem kann der betreffende Prozess jedoch laufen. Im
Notifikationsmechanismus sind Mittel vorzusehen, die den
laufenden Prozess auf die Ausnahme aufmerksam machen.

Bull. ASE/UCS 72(1981)23, 5 décembre

3. Netzwerkbetriebssystem

In einem lose gekoppelten Netzwerk kann die Kooperation
zwischen den einzelnen Prozessen nicht mit den beschriebenen
Synchronisations- und Prozessverwaltungsoperationen organi-
siert werden. Diese setzen ndmlich den Zugang zu den Prozess-
deskriptoren und den Synchronisationselementen in einem
gemeinsamen Speicher voraus. Ein systemweiter gemeinsamer
Speicher existiert jedoch in einem Netzwerk nicht mehr. Trotz-
dem wire es vorteilhaft, netzwerkweit mit den bereits beschrie-
benen Operationen arbeiten zu kdnnen.

Diese Moglichkeit bietet sich mit einer Verallgemeinerung
der Kernbetriebssystemoperationen [8; 14; 15]. Diese werden
zur Unterscheidung durch die Vorsilbe GEN- erginzt. Anstelle
von INC, DEC, ACTIVATE, DEACTIVATE usw. arbeitet
man dann mit GENINC, GENDEC, GENACTIVATE,
GENDEACTIVATE usw. Diese Operationen besitzen die in
Figur 6 dargestellte Struktur. Bei ihrer Ausfiihrung wird zu-
nédchst entschieden, ob das anzusprechende Objekt sich im
eigenen Netzwerkknoten befindet. In diesem Fall kann direkt
die Originaloperation eingesetzt werden, also INC, DEC,
ACTIVATE, DEACTIVATE usw. Andernfalls wird der Auf-
trag uber ein lokal verfiigbares Synchronisationselement (dis)
an das Kommunikationssystem weitergeleitet. In den meisten
Féllen ist die Angelegenheit fiir den ausfithrenden Prozess
damit erledigt (Fig. 6a). Einzig in den Fillen, in denen ein
Antwortparameter erwartet wird, folgt noch eine DEC-Ope-
ration auf ein lokales, fiir jeden Prozess existierendes Synchro-
nisationselement (priv) (Fig. 6b). Wenn die Operation abge-
schlossen ist, kann der aufrufende Prozess die Antwortpara-
meter lokal auf dem Synchronisationselement priv entgegen-
nehmen.

Wenn das Kommunikationssystem den Auftrag vom loka-
len Synchronisationselement dis iibernommen hat, durchlduft
dieser die verschiedenen Schichten des Kommunikations-
systems nach den bekannten Methoden [16]. Fragen des
Routing und der Flowcontrol werden entschieden. Schliesslich
erfolgt die Ubermittlung des Auftrages mittels Ein-/Ausgabe
tiber die vorhandenen Kommunikationskanile. Dabei werden
eventuell mehrere Netzwerkknoten durchquert. Am Bestim-
mungsort liefert das Kommunikationssystem die Auftrige an
das Kernbetriebssystem ab. Stellvertreterprozesse fiihren dann
die libermittelten Auftrige aus.

In dieser Weise kann das Kernbetriebssystem auf ein Netz-
werk ausgedehnt werden. Man beachte, dass die erwidhnten
Methoden keine Voraussetzungen iiber die Netzwerkstruktur
oder die Art der Vermittlung (Linien-, Meldungs- oder Paket-
vermittlung) treffen. Zudem ist die Transparenz der Kommu-
nikation gewihrleistet. Der Auftraggeberprozess spezifiziert
die angesprochenen Objekte (Synchronisationselemente und
Prozesse) per Namen und unabhédngig von ihrem Aufenthalts-
ort im Netzwerk. Damit entspricht der Vorschlag den Anfor-
derungen, die an ein modernes Netzwerkbetriebssystem gestellt
werden.

4. Schlussfolgerungen

Betriebssysteme miissen auf ihren Verwendungszweck zu-
geschnitten werden und widersetzen sich deshalb einer Nor-
mung. Die Optimierung betrifft jedoch nur die obersten Schich-
ten des Betriebssystems. Prinzipiell wire das Kernbetriebs-
system, welches Grundaufgaben erfiillt, also normbar. Die
Normung des Kernbetriebssystems scheitert heute jedoch an

Bull. SEV/VSE 72(1981)23, 5. Dezember

GEN-opy

N

q GEN-opx b

—<

2.

INC(dis,[opys...])

opx INC(dis,[opx,...]) opy DEC(priv,...)

il

Fig. 6 Struktur der verallgemeinerten Kernbetriebssystemoperationen
im Netzwerk

opx = INC, ACTIVATE, DEACTIVATE, DELETE
opy = DEC, CREATE

der fehlenden Normung bei den Betriebsmitteln und an den
bis vor kurzem fehlenden Kenntnissen iiber Multiprozessor-
systeme. In diesem Artikel werden die Konzepte des vom
TC 8 on Real Time Operating Systems entwickelten Kern-
betriebssystems dargelegt. Es ist konsequent auf den Multi-
prozessorfall ausgerichtet und kann auf ein Netzwerkbetriebs-
system verallgemeinert werden. Zwar ist aus den erwihnten
Griinden bisher keine Normung erfolgt, doch erlaubt das
Betriebssystem zumindest eine Ubertragbarkeit der Konzepte.
Léngerfristig ist eine Realisierung des Kernbetriebssystems auf
dem Silizium der Prozessorchips vorzusehen. Bei der Prozes-
sorinitialisierung kann dann die Systemart, Einprozessor,
Multiprozessor und/oder Netzwerk, konfiguriert werden. Da-
durch kann die Effizienz je nach Systemart optimiert werden,
ohne die Bedeutung der Kernbetriebssystemoperationen zu
veriandern.

Literatur

[1] D.A. Anderson: Operating systems. Computer 14(1981)6, p. 69...82.

[2] Technical committee on real time operating systems: Up to date report. Euro-
pean Workshop on Industrial Computer Systems, September 1978; paper
OP/SYS I-1-7.

[3] P. Brinch Hansen: The nucleus of a multiprogramming system. Communica-
tions of the Association for Computing Machinery 13(1970)4, p. 238...241, 250.

[4] P. Brinch Hansen: Operating system principles. Englewood Cliffs, N.J., Pren-
tice-Hall, 1973.

[5]1 E. W. Dijkstra: Co-operating sequential processes. Out of ‘ Programming lan-
guages’, lectures given in Villard-de-Lans, edited by F, Genuys. London &
New York, Academic Press, 1968, p. 43...112.

[6] E.W. Dijkstra: The structure of the ‘THE’-multiprogramming system.
Communications of the Association for Computing Machinery 11(1968)5,
p. 341...346.

[7]1 G. Schrott: Common elementary synchronisation functions for an operating
system kernel. European Workshop on Industrial Computer Systems, January
1976; paper OP/SYS II-3-1.

[8] K. Miihlemann: Ein Beitrag zur Synchronisation in Mehrprozessorsystemen
und Computernetzwerken. Dissertation der Eidgendssischen Technischen
Hochschule Ziirich Nr. 6520, 1980.

[9]1 C.A.R. Hoare: Monitors: an operating system structuring concept. Commu-
nications of the Association for Computing Machinery 17(1974)10, p. 549...557.

[10] K. Miihlemann: Towards an implementation of Ada rendezvous synchroniza-
tion. Euromicro Symposium on Microprocessing and Microprogramming,
Paris, 1981. Implementing functions: microprocessors and firmware. Amster-
dam a.o., North-Holland Publishing Company, p. 289...302.

[11] Reference manual for the Ada programming language. United States Depart-
ment of Defense, proposed standard document, July 1980.

[12] K. Miihlemann: Towards interrupt assignment for multiple processors. Euro-
micro Symposium on Microprocessing and Microprogramming, London,
1980. Microprocessor systems. Amsterdam a.o., North-Holland Publishing
Company, p. 157...166.

[13] J.D. Nicoud: Bus normalisés pour microprocesseurs. Bull. SEV/VSE 72(1981)
23, p. 1231...1234.

[14] K. Miihlemann: Communication between processors without shared memory.
Joint Meeting ACM/IEEE on Interconnected Small Processors, Bern, Novem-
ber 21st, 1978.

[15] K. Miihlemann: Towards a model of communication. European Workshop on
Industrial Computer Systems, April 1979; paper OP/SYS 1I-14-1.

[16] ISO/TC 97/SC: Reference model of open systems interconnection. N 227,
June 1979.

Adresse des Autors

Dr. K. Miihlemann, ASE-CSEE (Association Suisse des Electriciens —
Centre Suisse d’Essais des Composants Electroniques), ruelle Vaucher 22,
2000 Neuchatel.

(A711) 1249

	Echtzeit-Betriebssysteme

