Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitatsunternehmen = Bulletin de
I'Association suisse des électriciens, de I'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitatsunternehmen

Band: 72 (1981)

Heft: 23

Artikel: Normalisation de systemes d'exploitation des ordinateurs

Autor: Gagnebin, T.

DOl: https://doi.org/10.5169/seals-905177

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-905177
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Normalisation de systémes d'exploitation des ordinateurs

Par Th. Gagnebin

1. Introduction

Alors que le débat sur la normalisation des langages de
programmation les plus courants est loin d’étre clos, il s’étend
aujourd’hui aux systémes d’exploitation (S.E.). En effet, une
standardisation dans ce domaine est aussi importante que dans
celui des langages pour plusieurs raisons:

— Langages et systémes sont liés: les S.E. imposent certaines
restrictions ou offrent leurs propres extensions aux langages de pro-
grammation qu’ils supportent.

— Les S.E. créent un environnement logiciel complexe.

— Ils suscitent des méthodes de travail et des habitudes, notam-
ment par le langage de commande et les possibilités qu’ils offrent.

— Chaque S.E. a sa propre représentation des informations sur
les principaux supports d’informations magnétiques.

Passer d’un systéme 4 un autre colite cher, or ’évolution
technique dans le domaine des microordinateurs impose un
rythme d’évolution du logiciel sans précédent. Se concentrer
sur le développement et diminuer ’effort de maintenance du
logiciel sont d’une nécessité vitale. Atteindre ces objectifs ne
se fait pas au hasard, et la normalisation des S.E. n’est qu’un
des aspects de ce probléme. L’exposé qui va suivre a pour but
d’évaluer ce qu’une normalisation pourrait apporter, ainsi
que de dégager des tendances a la lumiere des expériences pas-
sées et de I’état actuel du probléme.

Pour illustrer I'importance du probléme, il faut rappeler
que le projet ADA, un des plus significatifs du point de vue
des normes, est essentiellement motivé par la constatation que
malgré une augmentation considérable des frais de logiciel du
DOD1Y) ($3,5-10° en 1974), un pourcentage toujours plus
important de ces frais est englouti dans la maintenance (80 %).
Dans I’ensemble des services du DOD, on utilisait en 1974
environ 400 langages différents et 200 systémes différents!

Ces chiffres justifient largement la décision de définir une
norme interne avec effet contraignant y compris pour les four-
nisseurs de matériel. Dans I’optique du DOD, ADA ne sera
pas seulement un langage de programmation normé mais aussi
le langage de base de parties importantes de ce qui est actuelle-
ment du domaine des S.E. La notion de «<ADA Programming
Support Environment» (APSE) définit un interface standard
sur un systéme hote. En ce sens, ADA concerne cet exposé et
est, de plus, une des meilleures synthéses actuelles d’idées
apparues dés les années 1970. Deux de ces idées ont particu-
liérement marqué I’informatique actuelle, & savoir la program-
mation structurée et la notion de portabilité.

Avant d’entrer dans le vif du sujet, il est important de don-
ner quelques définitions.

2. Définitions
Un systéme d’exploitation d’ordinateur (S.E.) est:

— un interface de base entre le logiciel et le matériel, caractérisé
par un ensemble de fonctions fondamentales,

- une technique de réponse aux événements de ’environnement
matériel (par exemple en temps réel ou en temps partagé),

— une collection de programmes et un langage de commande
permettant de développer et maintenir le logiciel et de gérer les in-
formations (filers, éditeurs, compilateurs, etc.),

1) DOD = Department of Defence (USA).

Bull. SEV/VSE 72(1981)23, 5. Dezember

006.44:681.3;

— tout S.E. largement utilisé est de plus un réservoir d’applica-
tions diverses et un moyen d’échanger efficacement du logiciel.

Principales caractéristiques d’un S.E.:

— supporte ou non les processus concurrents (multi-tache),

— supporte le déroulement de plus d’un programme a la fois
(multi-programmable)

— supporte plus d’un utilisateur a la fois (multi-utilisateur),

— nature du moniteur: séquentiel, en temps réel, en temps par-
tagé,

— organisation de I’espace de travail, en particulier sur disque:
structure d’arbre, structure de liste simplement chainée, structure a
accés aléatoire, structure en blocs contigus, etc.,

— liste des fonctions du systéme et moyens d’y accéder,

— nature du langage de commande du syst¢me: par mots-clés,
par touches de fonction, par menu a structure arborescente, par
langage conventionnel,

— étendue et nature du logiciel implémenté ou disponible,

— faculté d’adaptation a un autre hardware.

Notion de portabilité

I1 est souhaitable qu’un méme programme puisse tourner
sur différents ordinateurs pour des raisons d’économie: beau-
coup d’utilisateurs ont plus d’un type de machine, ils rempla-
cent d’anciens mode¢les, parfois ils échangent entre eux des
programmes. On ne peut pratiquement envisager la porta-
bilité de programmes que s’ils sont écrits en un langage abstrait
qui cache au mieux les différences entre ordinateurs. Des pro-
grammes écrits dans un méme langage sont rendus portables
de différentes manieres:

— il existe un compilateur unique mais modifiable au niveau du
générateur de codes pour chaque machine. Le compilateur en ques-
tion doit étre congu spécialement pour séparer les parties d’analyse
du langage et la génération de codes.

— il existe un compilateur pour chaque machine. Ceci n’est
envisageable que pour quelques langages normés trés répandus.

— il existe une machine virtuelle unique, supportant le compila-
teur, qui peut efficacement étre simulée sur différentes machines.

Pour qu’un S.E. soit portable, il faut non seulement qu’il
soit écrit comme un programme portable mais que ses inter-
faces au hardware soient bien délimités et paramétrables.

3. Fondements et objectifs d’'une normalisation

La politique en mati¢re de logiciel des constructeurs de
matériel est souvent fermée pour des raisons protectionnistes.
Le logiciel est parfois insuffisamment adapté aux besoins du
développement, surtout s’il s’agit d’'un développement destiné
a du matériel concurrent. En imposant aux utilisateurs des
particularités plus ou moins intéressantes, les constructeurs
escomptent s’assurer la fidélité de leur clientéle.

Le résultat de cette politique est I’émergence de familles de
systémes dont les ancétres (encore vivants) sont parfois des
systémes provenant de constructeurs, parfois des systémes déve-
loppés par des utilisateurs industriels ou universitaires. Leurs
points communs qui intéressent en matiére de normalisation
est qu’ils tentent d’ignorer le plus possible les caractéristiques
propres a tel ou tel constructeur. Il s’ensuit que toute norme
en matiére de S.E. devrait avoir (entre autres) pour objectif:

(A703) 1241

— de promouvoir une conception logique des périphériques les
plus courants et de 'environnement matériel en général (par exemple
associer une notion de fichier ou de volume & une imprimante ou
une console, voire a la mémoire),

— promouvoir des définitions de certains outils généraux comme
des éditeurs, des «linker», des «filer», etc. Ces définitions devraient
comporter des listes exhaustives de fonctions attendues ainsi que
des détails de réalisation,

— définir les fonctions élémentaires d’accés aux périphériques les
plus courants (horloge, écrans, imprimantes, disques, lignes de com-
munication, etc.),

— définir les fonctions et les entrées des moniteurs ainsi que les
procédures d’interfagage des «drivers»,

— définir un ensemble cohérent de structures logiques sur les
supports d’informations magnétiques,

— proposer des niveaux de sophistication a I'intérieur d’une
famille compatible de S.E. (du mono-utilisateur jusqu’au gestion-
naire de base de données),

— proposer une méthodologie de I’échange d’informations et de
logiciel.

Un programme d’une telle ambition aurait des retombées
intéressantes s’il aboutissait:

— il favoriserait la mobilité du personnel informatique,

— il pourrait servir de référence aux constructeurs de périphéri-
ques ou d’autre matériel,

— il fournirait un cadre de base pour le développement de sys-
témes particuliers ou de systémes expérimentaux, directement uti-
lisable,

— il favoriserait 'intégration future de nouveaux éléments maté-
riels.

Nous sommes bien loin d’un tel objectif.

Pour prendre le probléme de la normalisation par un coté
plus terre 2 terre, regardons si des systémes actuels pourraient
constituer une norme de facto acceptable malgré leurs imper-
fections. Pour ce faire, examinons les raisons du succés de

quelques systémes en jetant un coup d’ceil sur le passé récent.

4. La situation des années 70

A cette époque, quelques grands constructeurs dominent le
marché. La plupart du temps, chaque type d’ordinateur d’un
méme constructeur dispose de son propre S.E. incompatible
en grande partie avec le modele voisin. Des programmes de
conversion permettent les transferts entre systémes; le logiciel,
souvent en assembleur, n’est pas transportable. De plus, 1’acces
aux ordinateurs est difficile car ils sont isolés dans les «centres
de calcul». Deux faits font évoluer la situation: 1’arrivée des
microprocesseurs et la prise de conscience de la valeur des
langages structurés.

Les grands laboratoires industriels et universitaires vont
rapidement se trouver confrontés aux problémes suivants:
plusieurs sites de développement hétérogenes avec difficultés
de communication; dispersion d’efforts de «cross develop-
ment»; utilisation de petits systémes promus par les construc-
teurs de microprocesseurs, d’un confort d’emploi douteux et
nécessitant souvent I’écriture de logiciel de développement
complémentaire.

Au «Computing Science Research Center» des Bell Labo-
ratories, des recherches sur la portabilité des programmes
avaient déja abouti a 1’écriture de PFORT, programme qui
vérifie automatiquement qu’une source FORTRAN est con-
forme aux normes ANSI de I’époque. Cependant, confrontés
a leurs problémes de développement, les chercheurs réalisérent
que les S.E. des machines étaient un obstacle aussi important
a la portabilité que leur architecture hardware. Ils prirent donc
I’'option de développer leur propre S.E.: UNIX. La premiére

1242 (A 704)

implémentation de UNIX fut réalisée sur PDP-11 (1972) et
fut menée de front avec I’écriture du langage structuré C.
Bientot C tourna sur un Honeywell 6000 et sur IBM 370. Les
programmes écrits sur PDP-11 tournérent sans difficultés sur
les autres systémes. Ces succes encouragérent le projet d’écrire
une version portable de UNIX en langage C. Elle fut réalisée
sur un Interdata 8/32 (32 bits) en 6 mois (1977).

A TEPFZ, au début des années 70, une intense activité de
promotion de PASCAL conduit N. Wirth aux USA. 1l y ren-
contre un écho beaucoup plus favorable & PASCAL qu’en
Europe, au point que plusieurs universités développent et
distribuent des compilateurs PASCAL. K. Bowles, professeur
a I’Université de San Diego, entreprend un projet de diffusion
de PASCAL basé sur un S.E. écrit lui-méme en PASCAL et
dont la portabilité se fonde sur I’existence d’une machine vir-
tuelle et d’un noyau minimal d’entrée-sortie (BIOS) proche de
celui du déja célebre CP/M. Son approche suscite un vif intérét
surtout de la part des utilisateurs de microprocesseurs moins
répandus que les 8080 ou Z80. Vers 1979, le systéme est repris
sur une base commerciale par Softech Microsystems qui con-
tinue son développement en essayant de fonder une base nor-
meée (P-code de la machine virtuelle a partir de la version IV.0).

On ne peut pas parler de norme sans mentionner CP/M.
Ce petit systéme, dérivé amélioré d’ISIS d’Intel est apparu a
I’époque de la mise sur le marché du Z80. Il est écrit en assem-
bleur 8080, compatible avec celui du Z80. Son sort est intime-
ment lié au succés de ces deux processeurs. Une importante
quantité de logiciel en assembleur, des applications commer-
ciales, des traitements de textes, les compilateurs des principaux
langages de programmation sont disponibles sous CP/M.

Ce rappel de I’évolution illustre les fondements d’une nor-
malisation de S.E.: large diffusion, portabilité.

5. Nouvelles exigences

Avec I’évolution actuelle vers les 16 et 32 bits, de nouveaux
problémes logiciels apparaissent avec beaucoup plus d’acuité:
I’utilisation rationnelle de la puissance de calcul et de I’espace
d’adressage, la synchronisation de processus et le partage de
ressources. On constate deux faits:

1. Aucun des langages évolués classiques n’apporte une
solution fiable aux problémes dits «temps réel»;

2. Les S.E. offerts par certains grands constructeurs ont les
primitives nécessaires mais ne sont pas publics ni adaptables
a un environnement autre que la machine pour laquelle ils
sont faits.

Pour combler ces lacunes, de nouveaux langages apparais-
sent: CHILL, PASCAL concurrent, mCP, MODULA, POR-
TAL, ADA, pour n’en citer que quelques-uns (dont 2 suisses!)
et de nouveaux S.E., dont par exemple MP/M issu de CP/M,
RMX 80/86 d’INTEL, SOLO de Brinch Hansen, etc.

Parmi les systémes adaptés au nouveau contexte, UNIX a
I’avantage d’étre issu d’un environnement 16 bits, multi-utili-
sateur. Il est particuliérement bien placé pour devenir un
standard de développement. Deux firmes importantes 1’ont
choisi comme outil de développement de base: Zilog va re-
construire le systéme pour le Z8000 en le nommant Zeus. Le
systéme d’accés aux fichiers sera étendu de maniére a éviter
que deux utilisateurs modifient simultanément le méme fichier,
et la souplesse d’interfagage des CRT sera augmentée. White-
smiths Ltd. a développé une implémentation de UNIX pour

Bull. ASE/UCS 72(1981)23, 5 décembre

mini- et microordinateurs. Appelé IDRIS, ce systéme est spé-
cialement congu pour les machines bas de gamme. Il faut
cependant 60 kbit de code du type PDP-11 pour supporter la
partie résidente du systéme et la plus grande passe du compila-
teur C. Zeus-UNIX-IDRIS pourraient former le noyau d’une
famille compatible de systémes.

6. Systémes a vocation spécifique

Un nombre important d’applications utilisent des systémes
hotes, mais substituent en fait leur propre organisation des
disques a celle de I’héte. Il s’agit de certaines bases de données.
Parmi celles-ci, il faut mentionner la premiére d’entre elles a
étre normalisée (ANSI Standard X11.1-1977). Il s’agit de
MUMPS, créée en 1966 dans le Laboratory of Computer
Science du Massachusetts General Hospital & Boston. Le labo-
ratoire s’était donné pour tiche de créer un systéme répondant
aux exigences suivantes:

— travailler sur un mini-ordinateur,

— disposer d’une base de données multi-utilisateurs, structurée
hiérarchiquement, '

— travailler en time-sharing,

— offrir un puissant outil de manipulation de chaines de carac-
teres

— disposer d’un langage de commande simple utilisable par des
non-professionnels de I'informatique.

Le résultat fut le MHG Ultility Multi-Programming System,
un systéme autonomé, et un langage (MUMPS). Divers dia-
lectes de ce langage furent implémentés sur différents matériel
et un Users Group (MUG) fut créé. Un MUMPS Dévelop-
ment Committee (MDC) fut créé également, dont le travail
aboutit a la normalisation du langage.

Aujourd’hui, des versions mono-utilisateur existent pour
8080 ou Z80, distribuées par divers constructeurs (IMSAI,
Cromemco, Sol, Northstar). Les techniques utilisées par les
implémenteurs de MUMPS sur différents microprocesseurs
les ont amenées a une portabilité toujours plus raffinée qui
a pour conséquence de rendre le systéme plus facile a main-
tenir, en particulier en vue du remplacement des disquettes
par des disques Winchester.

7. Résumé de quelques S.E. répandus

CP/M: Mono-tiche, mono-utilisateur; processeurs Intel
8080, 8088, 8086 et Zilog Z80. Systéme séquentiel, organisa-
tion disque a accés aléatoire. Interface aux périfériques par
un BIOS écrit par I'implémenteur et accédé par une «Jump
tablen.

Langage systéme par mots clés. Presque tous les compila-
teurs courants sont disponibles, ils sont souvent écrits en as-
sembleur et génerent du code machine. Beaucoup de logiciel
d’application ainsi que des éditeurs et du traitement de texte
sont disponibles. La faculté d’adaptation 4 un autre hardware
est faible, vu le peu de portabilité du logiciel.

MP/M: comme CP/M, sauf multi-tiches, multi-utilisateurs.

p-UCSD: mono-tiche, mono-utilisateur (version II). Toute-
fois, IBS a développé un hardware sur lequel le systtme UCSD
tourne en version multi-utilisateur. A partir de la version 1V,
ce systeme reste mono-utilisateur, mais supporte 1’écriture de
processus concurrents, sans que le langage systéme, ni l'inter-
face aux périfériques ne soivent revus.

Le systéme est séquentiel, bien que dans le langage PAS-
CAL, le multi-tasking soit possible avec une synchronisation

Bull. SEV/VSE 72(1981)23, 5. Dezember

par sémaphores. Organisation de I’espace-disque: blocs con-
tigus gérés par un algorithme d’allocation dynamique. Nature
du «langage systéme»: menu a structure arborescente. Logiciel
disponible: langage PASCAL étendu, FORTRAN 77, BASIC
évolué, annoncé: COBOL. Le logiciel d’application disponible
croit trés vite et il existe deux Users Groups (USUS USA et
USUS UK), par I'intermédiaire desquels du logiciel gratuit est
obtenable.

Faculté d’adaptation trés élevée par I’existence d’une ma-
chine virtuelle en plus d’un BIOS du type CP/M. La machine
virtuelle est simulée avec les processeurs suivants: Z80, 8080,
DEC PDP-11 et LSI-11, 6502, 6800, 9900, bientot 8086,
Z.8000, 68000. De plus, il existe des processeurs exécutant
directement le code de la machine virtuelle (Western Digital).

UNIX: Multi-utilisateur, multi-programmable, géré en
time-sharing. Organisation disque basée sur une structure
d’arbre.

Langage systéme utilisant des symboles spéciaux, dont une
caractéristique essentielle est la possibilit¢ de définir des
«tuyaux de programmes». Etendue du logiciel disponible:
plusieurs versions de certains langages, les langages courants,
beaucoup de logiciel d’application, beaucoup de logiciel de
communication, le langage C pour I’écriture de systéme.
Faculté d’adaptation a un autre hardware: se fait en écrivant
I’ensemble des routines I/O et un générateur de code pour le
compilateur C (pour autant qu’il n’existe pas sur le matériel
cible). Ce travail est plus complexe que I’adaptation du systéme
p—UCSD par exemple, vu que la notion de machine virtuelle
n’existe pas pour UNIX. La portabilité résulte d’'une bonne
conception du générateur de code du compilateur de C.

8. Conclusions

Les objectifs d’une normalisation des S. E. sont indépendants
d’autres soucis normatifs fondamentaux: communication, bus
et langages de programmation. Ces derniers, en particulier,
peuvent étre distribués sur différents S.E. Etant donné que les
S.E. existants ne comprennent pas encore systématiquement
un interface universel de communication directe, il est néces-
saire de transmettre I’information par support magnétique.
Les formulaires de commande de logiciel prennent aujourd’hui
Tallure d’une table a plusieurs entrées dont 1’une est le format
des supports magnétiques, comme par exemple pour la com-
mande du systéme p—-UCSD ou du mCP.

Le prix de développement et de diffusion du logiciel pour-
rait étre diminué efficacement en réduisant le nombre d’entrées
dans la table. Ce probléme est en fait trés complexe vu la
diversité des configurations hardware et 1’étendue du spectre
des tailles en kbit des S.E. existants. Il est vraisemblable cepen-
dant que deux familles de S.E. coexisteront: ceux destinés aux
petites machines genre home computer et ceux destinés aux
professionnels de I'informatique.

Dans la premiére catégorie, il existe une norme de fait avec
CP/M.‘II est cependant a craindre que CP/M ne parvienne pas
a rompre ses liens avec les processeurs 8080-8088-Z80. Le
systéme p—UCSD est mieux adapté a une plus large diffusion et
devrait concentrer les nouveaux développements ou méme
prendre en charge des logiciels existants sur d’autres systémes
du méme genre pour favoriser le transfert futur vers des sys-
témes plus performants basés sur des matériels a 16 bits.

Dans la deuxiéme catégorie, il existe aussi une norme de
fait avec UNIX. Des efforts sont actuellement faits pour ame-

(A705) 1243

ner un véritable UNIX sur matériel 8 bits. (Il existe des pseudo-
UNIX mono-utilisateur, qui n’ont de UNIX que le langage
de commande, mais ne permettent pas d’échange de logiciel
avec la communauté des utilisateurs de UNIX.)

Quoiqu’il en soit, dans le contexte des 16 et 32 bits, UNIX
se répand rapidement. Cependant, tant que ADA n’est pas
sérieusement sur le marché, il est trop tot pour faire des pro-
nostics. ADA est déja distribué en version micro-ADA par
des maisons de logiciel ou des constructeurs aux USA, sur
des systémes issus de la philosophie du p—~UCSD. D’autre
part, il n’est pas exclu que la notion de APSE ne conduise pas
en fait a la définition peut-&tre plus formelle d’un S.E. nor-
malisé.

Bibliographie

[1] B. Weiner and D. Swartz: Adapting UNIX to a 16-bit microcomputer. Elec-
tronics 54(1981)6, p. 120...124.

[2] P.J. Plauger and M.S. Krieger: UNIX-like software runs on mini- and micro-
computers. Electronics 54(1981)6, p. 125...129.

[3]1 S.C. Johnson and D.M. Ritchie: UNIX time-sharing system: Portability of C
programs and the UNIX-system. Bell Syst. Techn. J. 57(1978)6, p. 2021...2048.

[4] P.J. Plauger and M.S. Krieger: C-language’s grip on hardware makes sense
for small computers. Electronics 54(1981)6, p. 129...133.

[5] R.J. Rothstein: MUMPS: une épidémie qui s’étend. Paninformatic —(1980)1,
p-19...21 + Nr. 2, p. 6+38.

[6] R.T. Walters and S. L. Johnson: Strategy for an extensible microcomputer-based
MUMPS system for private practice. IEEE Symposium on Computer Applica-
tion in Medical Care (1979), p. 457...463.

[7]1 P. Brinch Hansen: The architecture of concurrent programs. Englewood Cliffs,
N.J., Prentice-Hall. 1977.

Adresse de I’auteur
Th. Gagnebin, Hermes Precisa International, 8, rue des pécheurs, 1400 Yverdon.

1244 (A 706)

Bull. ASE/UCS 72(1981)23, 5 décembre

	Normalisation de systèmes d'exploitation des ordinateurs

