
Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de
l'Association suisse des électriciens, de l'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitätsunternehmen

Band: 72 (1981)

Heft: 23

Artikel: Normalisation de systèmes d'exploitation des ordinateurs

Autor: Gagnebin, T.

DOI: https://doi.org/10.5169/seals-905177

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-905177
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Normalisation de systèmes d'exploitation des ordinateurs
Par Th. Gagnebin

1. Introduction
Alors que le débat sur la normalisation des langages de

programmation les plus courants est loin d'être clos, il s'étend

aujourd'hui aux systèmes d'exploitation (S.E.). En effet, une
standardisation dans ce domaine est aussi importante que dans

celui des langages pour plusieurs raisons :

- Langages et systèmes sont liés: les S.E. imposent certaines
restrictions ou offrent leurs propres extensions aux langages de
programmation qu'ils supportent.

- Les S.E. créent un environnement logiciel complexe.

- Ils suscitent des méthodes de travail et des habitudes, notamment

par le langage de commande et les possibilités qu'ils offrent.

- Chaque S.E. a sa propre représentation des informations sur
les principaux supports d'informations magnétiques.

Passer d'un système à un autre coûte cher, or l'évolution
technique dans le domaine des microordinateurs impose un

rythme d'évolution du logiciel sans précédent. Se concentrer

sur le développement et diminuer l'effort de maintenance du

logiciel sont d'une nécessité vitale. Atteindre ces objectifs ne

se fait pas au hasard, et la normalisation des S.E. n'est qu'un
des aspects de ce problème. L'exposé qui va suivre a pour but
d'évaluer ce qu'une normalisation pourrait apporter, ainsi

que de dégager des tendances à la lumière des expériences passées

et de l'état actuel du problème.
Pour illustrer l'importance du problème, il faut rappeler

que le projet ADA, un des plus significatifs du point de vue
des normes, est essentiellement motivé par la constatation que
malgré une augmentation considérable des frais de logiciel du

DOD1) ($ 3,5 • 109 en 1974), un pourcentage toujours plus

important de ces frais est englouti dans la maintenance (80 %).
Dans l'ensemble des services du DOD, on utilisait en 1974

environ 400 langages différents et 200 systèmes différents
Ces chiffres justifient largement la décision de définir une

norme interne avec effet contraignant y compris pour les

fournisseurs de matériel. Dans l'optique du DOD, ADA ne sera

pas seulement un langage de programmation normé mais aussi

le langage de base de parties importantes de ce qui est actuellement

du domaine des S.E. La notion de «ADA Programming
Support Environment» (APSE) définit un interface standard

sur un système hôte. En ce sens, ADA concerne cet exposé et

est, de plus, une des meilleures synthèses actuelles d'idées

apparues dès les années 1970. Deux de ces idées ont
particulièrement marqué l'informatique actuelle, à savoir la programmation

structurée et la notion de portabilité.
Avant d'entrer dans le vif du sujet, il est important de donner

quelques définitions.

2. Définitions
Un système d'exploitation d'ordinateur (S.E.) est:

- un interface de base entre le logiciel et le matériel, caractérisé

par un ensemble de fonctions fondamentales,

- une technique de réponse aux événements de l'environnement
matériel (par exemple en temps réel ou en temps partagé),

- une collection de programmes et un langage de commande
permettant de développer et maintenir le logiciel et de gérer les
informations (filers, éditeurs, compilateurs, etc.),

*) DOD Department of Defence (USA).

006.44:681.3;

- tout S.E. largement utilisé est de plus un réservoir d'applications

diverses et un moyen d'échanger efficacement du logiciel.

Principales caractéristiques d'un S.E.:

- supporte ou non les processus concurrents (multi-tâche),
- supporte le déroulement de plus d'un programme à la fois

(multi-programmable)
- supporte plus d'un utilisateur à la fois (multi-utilisateur),
- nature du moniteur: séquentiel, en temps réel, en temps

partagé,

- organisation de l'espace de travail, en particulier sur disque:
structure d'arbre, structure de liste simplement chaînée, structure à
accès aléatoire, structure en blocs contigus, etc.,

- liste des fonctions du système et moyens d'y accéder,

- nature du langage de commande du système: par mots-clés,
par touches de fonction, par menu à structure arborescente, par
langage conventionnel,

- étendue et nature du logiciel implémenté ou disponible,

- faculté d'adaptation à un autre hardware.

Notion de portabilité

Il est souhaitable qu'un même programme puisse tourner
sur différents ordinateurs pour des raisons d'économie: beaucoup

d'utilisateurs ont plus d'un type de machine, ils remplacent

d'anciens modèles, parfois ils échangent entre eux des

programmes. On ne peut pratiquement envisager la portabilité

de programmes que s'ils sont écrits en un langage abstrait

qui cache au mieux les différences entre ordinateurs. Des

programmes écrits dans un même langage sont rendus portables
de différentes manières :

- il existe un compilateur unique mais modifiable au niveau du
générateur de codes pour chaque machine. Le compilateur en question

doit être conçu spécialement pour séparer les parties d'analyse
du langage et la génération de codes.

- il existe un compilateur pour chaque machine. Ceci n'est
envisageable que pour quelques langages normés très répandus.

- il existe une machine virtuelle unique, supportant le compilateur,

qui peut efficacement être simulée sur différentes machines.

Pour qu'un S.E. soit portable, il faut non seulement qu'il
soit écrit comme un programme portable mais que ses interfaces

au hardware soient bien délimités et paramétrables.

3. Fondements et objectifs d'une normalisation
La politique en matière de logiciel des constructeurs de

matériel est souvent fermée pour des raisons protectionnistes.
Le logiciel est parfois insuffisamment adapté aux besoins du

développement, surtout s'il s'agit d'un développement destiné
à du matériel concurrent. En imposant aux utilisateurs des

particularités plus ou moins intéressantes, les constructeurs
escomptent s'assurer la fidélité de leur clientèle.

Le résultat de cette politique est l'émergence de familles de

systèmes dont les ancêtres (encore vivants) sont parfois des

systèmes provenant de constructeurs, parfois des systèmes
développés par des utilisateurs industriels ou universitaires. Leurs

points communs qui intéressent en matière de normalisation
est qu'ils tentent d'ignorer le plus possible les caractéristiques

propres à tel ou tel constructeur. Il s'ensuit que toute norme
en matière de S.E. devrait avoir (entre autres) pour objectif:

Bull. SEV/VSE 72(1981)23, 5. Dezember (A 703) 1241



- de promouvoir une conception logique des périphériques les

plus courants et de l'environnement matériel en général (par exemple
associer une notion de fichier ou de volume à une imprimante ou
une console, voire à la mémoire),

- promouvoir des définitions de certains outils généraux comme
des éditeurs, des «linker», des «filer», etc. Ces définitions devraient

comporter des listes exhaustives de fonctions attendues ainsi que
des détails de réalisation,

- définir les fonctions élémentaires d'accès aux périphériques les

plus courants (horloge, écrans, imprimantes, disques, lignes de

communication, etc.),

- définir les fonctions et les entrées des moniteurs ainsi que les

procédures d'interfaçage des «drivers»,

- définir un ensemble cohérent de structures logiques sur les

supports d'informations magnétiques,

- proposer des niveaux de sophistication à l'intérieur d'une
famille compatible de S. E. (du mono-utilisateur jusqu'au gestionnaire

de base de données),

- proposer une méthodologie de l'échange d'informations et de

logiciel.

Un programme d'une telle ambition aurait des retombées

intéressantes s'il aboutissait :

- il favoriserait la mobilité du personnel informatique,
- il pourrait servir de référence aux constructeurs de périphériques

ou d'autre matériel,
- il fournirait un cadre de base pour le développement de

systèmes particuliers ou de systèmes expérimentaux, directement
utilisable,

- il favoriserait l'intégration future de nouveaux éléments matériels.

Nous sommes bien loin d'un tel objectif.
Pour prendre le problème de la normalisation par un côté

plus terre à terre, regardons si des systèmes actuels pourraient
constituer une norme de facto acceptable malgré leurs
imperfections. Pour ce faire, examinons les raisons du succès de

quelques systèmes en jetant un coup d'œil sur le passé récent.

4. La situation des années 70

A cette époque, quelques grands constructeurs dominent le

marché. La plupart du temps, chaque type d'ordinateur d'un
même constructeur dispose de son propre S.E. incompatible
en grande partie avec le modèle voisin. Des programmes de

conversion permettent les transferts entre systèmes ; le logiciel,
souvent en assembleur, n'est pas transportable. De plus, l'accès

aux ordinateurs est difficile car ils sont isolés dans les «centres

de calcul». Deux faits font évoluer la situation: l'arrivée des

microprocesseurs et la prise de conscience de la valeur des

langages structurés.
Les grands laboratoires industriels et universitaires vont

rapidement se trouver confrontés aux problèmes suivants:

plusieurs sites de développement hétérogènes avec difficultés
de communication; dispersion d'efforts de «cross development»;

utilisation de petits systèmes promus par les constructeurs

de microprocesseurs, d'un confort d'emploi douteux et
nécessitant souvent l'écriture de logiciel de développement
complémentaire.

Au «Computing Science Research Center» des Bell
Laboratories, des recherches sur la portabilité des programmes
avaient déjà abouti à l'écriture de PFORT, programme qui
vérifie automatiquement qu'une source FORTRAN est
conforme aux normes ANSI de l'époque. Cependant, confrontés
à leurs problèmes de développement, les chercheurs réalisèrent

que les S. E. des machines étaient un obstacle aussi important
à la portabilité que leur architecture hardware. Ils prirent donc

l'option de développer leur propre S.E.: UNIX. La première

implémentation de UNIX fut réalisée sur PDP-11 (1972) et
fut menée de front avec l'écriture du langage structuré C.

Bientôt C tourna sur un Honeywell 6000 et sur IBM 370. Les

programmes écrits sur PDP-11 tournèrent sans difficultés sur
les autres systèmes. Ces succès encouragèrent le projet d'écrire
une version portable de UNIX en langage C. Elle fut réalisée

sur un Interdata 8/32 (32 bits) en 6 mois (1977).
A l'EPFZ, au début des années 70, une intense activité de

promotion de PASCAL conduit N. Wirth aux USA. Il y
rencontre un écho beaucoup plus favorable à PASCAL qu'en
Europe, au point que plusieurs universités développent et

distribuent des compilateurs PASCAL. K. Bowles, professeur
à l'Université de San Diego, entreprend un projet de diffusion
de PASCAL basé sur un S.E. écrit lui-même en PASCAL et
dont la portabilité se fonde sur l'existence d'une machine
virtuelle et d'un noyau minimal d'entrée-sortie (BIOS) proche de

celui du déjà célèbre CP/M. Son approche suscite un vif intérêt
surtout de la part des utilisateurs de microprocesseurs moins
répandus que les 8080 ou Z80. Vers 1979, le système est repris
sur une base commerciale par Softech Microsystems qui
continue son développement en essayant de fonder une base nor-
mée (P-code de la machine virtuelle à partir de la version IV.0).

On ne peut pas parler de norme sans mentionner CP/M.
Ce petit système, dérivé amélioré d'ISIS d'Intel est apparu à

l'époque de la mise sur le marché du Z80. Il est écrit en assembleur

8080, compatible avec celui du Z80. Son sort est intimement

lié au succès de ces deux processeurs. Une importante
quantité de logiciel en assembleur, des applications commerciales,

des traitements de textes, les compilateurs des principaux
langages de programmation sont disponibles sous CP/M.

Ce rappel de l'évolution illustre les fondements d'une
normalisation de S.E.: large diffusion, portabilité.

5. Nouvelles exigences
Avec l'évolution actuelle vers les 16 et 32 bits, de nouveaux

problèmes logiciels apparaissent avec beaucoup plus d'acuité:
l'utilisation rationnelle de la puissance de calcul et de l'espace
d'adressage, la synchronisation de processus et le partage de

ressources. On constate deux faits :

1. Aucun des langages évolués classiques n'apporte une
solution fiable aux problèmes dits «temps réel»;

2. Les S.E. offerts par certains grands constructeurs ont les

primitives nécessaires mais ne sont pas publics ni adaptables
à un environnement autre que la machine pour laquelle ils
sont faits.

Pour combler ces lacunes, de nouveaux langages apparaissent

: CHILL, PASCAL concurrent, mCP, MODULA, PORTAL,

ADA, pour n'en citer que quelques-uns (dont 2 suisses!)

et de nouveaux S.E., dont par exemple MP/M issu de CP/M,
RMX 80/86 d'INTEL, SOLO de Brinch Hansen, etc.

Parmi les systèmes adaptés au nouveau contexte, UNIX a

l'avantage d'être issu d'un environnement 16 bits, multi-utilisateur.

Il est particulièrement bien placé pour devenir un
standard de développement. Deux firmes importantes l'ont
choisi comme outil de développement de base: Zilog va
reconstruire le système pour le Z8000 en le nommant Zeus. Le
système d'accès aux fichiers sera étendu de manière à éviter

que deux utilisateurs modifient simultanément le même fichier,
et la souplesse d'interfaçage des CRT sera augmentée. Whitesmiths

Ltd. a développé une implémentation de UNIX pour

1242 (A 704) Bull. ASE/UCS 72(1981)23, 5 décembre



mini- et microordinateurs. Appelé IDRIS, ce système est

spécialement conçu pour les machines bas de gamme. Il faut
cependant 60 kbit de code du type PDP-11 pour supporter la

partie résidente du système et la plus grande passe du compilateur

C. Zeus-UNIX-IDRIS pourraient former le noyau d'une

famille compatible de systèmes.

6. Systèmes à vocation spécifique
Un nombre important d'applications utilisent des systèmes

hôtes, mais substituent en fait leur propre organisation des

disques à celle de l'hôte. Il s'agit de certaines bases de données.

Parmi celles-ci, il faut mentionner la première d'entre elles à

être normalisée (ANSI Standard XI 1.1-1977). Il s'agit de

MUMPS, créée en 1966 dans le Laboratory of Computer
Science du Massachusetts General Hospital à Boston. Le
laboratoire s'était donné pour tâche de créer un système répondant
aux exigences suivantes :

- travailler sur un mini-ordinateur,
- disposer d'une base de données multi-utilisateurs, structurée

hiérarchiquement,
- travailler en time-sharing,

- offrir un puissant outil de manipulation de chaînes de caractères

- disposer d'un langage de commande simple utilisable par des

non-professionnels de l'informatique.

Le résultat fut le MHG Utility Multi-Programming System,

un système autonome, et un langage (MUMPS). Divers
dialectes de ce langage furent implémentés sur différents matériel
et un Users Group (MUG) fut créé. Un MUMPS Dévelop-
ment Committee (MDC) fut créé également, dont le travail
aboutit à la normalisation du langage.

Aujourd'hui, des versions mono-utilisateur existent pour
8080 ou Z80, distribuées par divers constructeurs (IMSAI,
Cromemco, Sol, Northstar). Les techniques utilisées par les

implémenteurs de MUMPS sur différents microprocesseurs
les ont amenées à une portabilité toujours plus raffinée qui
a pour conséquence de rendre le système plus facile à maintenir,

en particulier en vue du remplacement des disquettes

par des disques Winchester.

7. Résumé de quelques S. E. répandus

CP!M: Mono-tâche, mono-utilisateur; processeurs Intel
8080, 8088, 8086 et Zilog Z80. Système séquentiel, organisation

disque à accès aléatoire. Interface aux périfériques par
un BIOS écrit par l'implémenteur et accédé par une «Jump
table».

Langage système par mots clés. Presque tous les compilateurs

courants sont disponibles, ils sont souvent écrits en
assembleur et génèrent du code machine. Beaucoup de logiciel
d'application ainsi que des éditeurs et du traitement de texte
sont disponibles. La faculté d'adaptation à un autre hardware
est faible, vu le peu de portabilité du logiciel.

MPIM: comme CP/M, sauf multi-tâches, multi-utilisateurs.
p-UCSD: mono-tâche, mono-utilisateur (version II). Toutefois,

IBS a développé un hardware sur lequel le système UCSD
tourne en version multi-utilisateur. A partir de la version IV,
ce système reste mono-utilisateur, mais supporte l'écriture de

processus concurrents, sans que le langage système, ni l'interface

aux périfériques ne soivent revus.
Le système est séquentiel, bien que dans le langage

PASCAL, le multi-tasking soit possible avec une synchronisation

par sémaphores. Organisation de l'espace-disque : blocs con-
tigus gérés par un algorithme d'allocation dynamique. Nature
du «langage système»: menu à structure arborescente. Logiciel
disponible: langage PASCAL étendu, FORTRAN 77, BASIC
évolué, annoncé: COBOL. Le logiciel d'application disponible
croît très vite et il existe deux Users Groups (USUS USA et
USUS UK), par l'intermédiaire desquels du logiciel gratuit est

obtenable.
Faculté d'adaptation très élevée par l'existence d'une

machine virtuelle en plus d'un BIOS du type CP/M. La machine
virtuelle est simulée avec les processeurs suivants: Z80, 8080,

DEC PDP-11 et LSI-11, 6502, 6800, 9900, bientôt 8086,

Z8000, 68000. De plus, il existe des processeurs exécutant
directement le code de la machine virtuelle (Western Digital).

UNIX: Multi-utilisateur, multi-programmable, géré en

time-sharing. Organisation disque basée sur une structure
d'arbre.

Langage système utilisant des symboles spéciaux, dont une
caractéristique essentielle est la possibilité de définir des

«tuyaux de programmes». Etendue du logiciel disponible:
plusieurs versions de certains langages, les langages courants,
beaucoup de logiciel d'application, beaucoup de logiciel de

communication, le langage C pour l'écriture de système.
Faculté d'adaptation à un autre hardware: se fait en écrivant
l'ensemble des routines I/O et un générateur de code pour le

compilateur C (pour autant qu'il n'existe pas sur le matériel
cible). Ce travail est plus complexe que l'adaptation du système

p-UCSD par exemple, vu que la notion de machine virtuelle
n'existe pas pour UNIX. La portabilité résulte d'une bonne

conception du générateur de code du compilateur de C.

8. Conclusions
Les objectifs d'une normalisation des S. E. sont indépendants

d'autres soucis normatifs fondamentaux : communication, bus

et langages de programmation. Ces derniers, en particulier,
peuvent être distribués sur différents S. E. Etant donné que les

S.E. existants ne comprennent pas encore systématiquement
un interface universel de communication directe, il est nécessaire

de transmettre l'information par support magnétique.
Les formulaires de commande de logiciel prennent aujourd'hui
l'allure d'une table à plusieurs entrées dont l'une est le format
des supports magnétiques, comme par exemple pour la
commande du système p-UCSD ou du mCP.

Le prix de développement et de diffusion du logiciel pourrait

être diminué efficacement en réduisant le nombre d'entrées
dans la table. Ce problème est en fait très complexe vu la
diversité des configurations hardware et l'étendue du spectre
des tailles en kbit des S.E. existants. Il est vraisemblable cependant

que deux familles de S.E. coexisteront: ceux destinés aux
petites machines genre home computer et ceux destinés aux
professionnels de l'informatique.

Dans la première catégorie, il existe une norme de fait avec
CP/M. Il est cependant à craindre que CP/M ne parvienne pas
à rompre ses liens avec les processeurs 8080-8088-Z 80. Le
système p-UCSD est mieux adapté à une plus large diffusion et
devrait concentrer les nouveaux développements ou même

prendre en charge des logiciels existants sur d'autres systèmes
du même genre pour favoriser le transfert futur vers des

systèmes plus performants basés sur des matériels à 16 bits.
Dans la deuxième catégorie, il existe aussi une norme de

fait avec UNIX. Des efforts sont actuellement faits pour ame-

Bull. SEV/VSE 72(1981)23, 5. Dezember (A 705) 1243



ner un véritable UNIX sur matériel 8 bits. (Il existe des pseudo-
UNIX mono-utilisateur, qui n'ont de UNIX que le langage
de commande, mais ne permettent pas d'échange de logiciel
avec la communauté des utilisateurs de UNIX.)

Quoiqu'il en soit, dans le contexte des 16 et 32 bits, UNIX
se répand rapidement. Cependant, tant que ADA n'est pas
sérieusement sur le marché, il est trop tôt pour faire des

pronostics. ADA est déjà distribué en version micro-ADA par
des maisons de logiciel ou des constructeurs aux USA, sur
des systèmes issus de la philosophie du p-UCSD. D'autre
part, il n'est pas exclu que la notion de APSE ne conduise pas
en fait à la définition peut-être plus formelle d'un S.E.
normalisé.

Bibliographie
[1] B. Weiner and D. Swartz: Adapting UNIX to a 16-bit microcomputer. Elec¬

tronics 54(1981)6, p. 120...124.
[2] P. J. Plauger and M. S. Krieger: UNIX-like software runs on mini- and micro¬

computers. Electronics 54(1981)6, p. 125...129.
[3] S.C. Johnson and D.M. Ritchie: UNIX time-sharing system: Portability of C

programs and the UNIX-system. Bell Syst. Techn. J. 57(1978)6, p. 2021...2048.
[4] P. J. Plauger and M. S. Krieger: C-language's grip on hardware makes sense

for small computers. Electronics 54(1981)6, p. 129...133.
[5] R.J. Rothstein: MUMPS: une épidémie qui s'étend. Paninformatic -(1980)1,

p. 19...21 + Nr. 2, p. 6 + 8.
[6] R. T. Walters and S. L. Johnson: Strategy for an extensible microcomputer-based

MUMPS system for private practice. IEEE Symposium on Computer Application
in Medical Care (1979), p. 457...463.

[7] P. Brinch Hansen: The architecture of concurrent programs. Englewood Cliffs,
N.J., Prentice-Hall. 1977.

Adresse de l'auteur
Th. Gagnebin, Hermes Précisa International, 8, rue des pêcheurs, 1400 Yverdon.

1244 (A 706) Bull. ASE/UCS 72(1981)23, 5 décembre


	Normalisation de systèmes d'exploitation des ordinateurs

