Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitatsunternehmen = Bulletin de
I'Association suisse des électriciens, de I'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitatsunternehmen

Band: 72 (1981)

Heft: 23

Artikel: Mikrocomputer-Sprachen (PASCAL, CHILL, ADA, PORTAL)

Autor: Zwittlinger, H.

DOl: https://doi.org/10.5169/seals-905176

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-905176
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Mikrocomputer-Sprachen (PASCAL, CHILL, ADA, PORTAL)

Von H. Zwittlinger

1. Mose 11,7: «Wohlauf, lasset uns herniederfahren und ihre
Sprache daselbst verwirren, auf dass keiner des anderen Sprache
verstehe.»

1. Einleitung

Nach der Uberlieferung scheiterte der Turmbau zu Babel
an einer Sprachverwirrung; bei modernen babylonischen Tiir-
men geschieht dies ebenfalls. Aber zu Moses Zeiten gab es nur
verschiedene Sprachen; in der Informatik gibt es dazu noch
Sprachhierarchien:

Generatorsprachen (COLUMBUS u.a.),

Interpretersprachen (BASIC, APL u.a.),

Compilersprachen (FORTRAN, COBOL, PASCAL, CHILL, ADA,
PORTAL u.a.), auch High Level Languages (HLL) genannt,
Makro-Sprachen,

Assemblersprachen,

Maschinensprachen.

Maschinensprachen liegen auf dem niedrigsten Sprach-
niveau, Generatorsprachen auf dem hochsten.

Anliegen dieser Ausfithrungen ist es, das «Sprachniveau»
zu erhohen, d.h. von der noch weitgehend verwendeten As-
semblersprache auf eine HLL zu wechseln. Dabei bestehen aus-
gezeichnete Griinde fiir HLL: Beim Einsatz von HLL wird
eine signifikante Erhohung der Arbeitsproduktivitdt bis 500%
erzielt [1]. Diesem Argument werden sich wenige entziehen
konnen. Daher wird auch eine allgemeine Umstellung von
Assembler- auf HLL etwa gemaiss Figur 1 vorausgesagt.

Bei der Umstellung auf HLL bestehen prinzipiell drei Mog-
lichkeiten :

— Erweiterungen bestehender HLL: PROCESS-BASIC,
PROCESS-FORTRAN usw. Dabei ist von Vorteil, dass frii-
her entwickelte Software meist aufwirtskompatibel ist und
nicht weggeworfen werden muss; man erspart sich einen gros-
seren Umschulungsaufwand und geht wenig Risiko ein, bei der
Sprachauswahl ginzlich fehlgeplant zu haben. Als Nachteile
sind zu vermerken: Die Spracherweiterungen sind nicht nor-
miert, daher geht die Portabilitéit verloren, d.h., die babyloni-
sche Sprachverwirrung breitet sich innerhalb einer Sprache aus;
die Sprachen stammen meist «aus der Steinzeit der Program-
mierung» und entsprechen modernen Anforderungen von Mo-
dularitdt, strukturierter Programmierung usw. nicht.

— Neuere Sprachentwicklungen ohne Real-Time-Sprachele-
mente: CORAL, ALGOL, PASCAL usw. Diese Sprachen
entsprechen mehr oder weniger den modernen Anspriichen,
erzwingen Modularitit, strukturiertes Programmieren; sie sind
blockorientiert, einfach erlernbar usw. Da sie aber keine Real-
Time-Spracheigenschaften haben, sind sie fiir ProzeBsteue-
rungen nicht zu gebrauchen; Zusétze ebenso wie Erweiterun-
gen traditioneller Hochsprachen machen sie nicht mehr por-
tabel.

— Neuere Sprachentwicklungen mit Real-Time-Sprachele-
menten: PEARL, RTL2, MODULA, CONCURRENT PAS-
CAL, ADA, CHILL, PORTAL usw. Sie sind portabel, ent-
sprechen meist modernen Vorstellungen des Software-
Engineerings, machen die Assemblersprache vollstindig tiber-
fliissig, normieren die Betriebssystem-Unterstiitzung bereits in
der Sprachdefinition, sind komfortabel fiir den Anwender

Bull. SEV/VSE 72(1981)23, 5. Dezember

519.682.7:681.322-181.48;
usw. Dagegen sind sie nicht angenehm fiir den Lieferanten, da
die Forderungen nur mit grossem Aufwand zu realisieren sind.
Sie bedingen oft ein viel zu grosses Betriebssystem und ein zu
aufwendiges Entwicklungssystem fiir einfache Mikroprozes-
soranwendungen.

PASCAL gehort zur zweiten Kategorie, also ohne Real-
Time-Befehle, ADA, CHILL und PORTAL zur dritten Kate-
gorie dieser Einteilung. Diese haben alle Vorteile von PASCAL :
einfach erlernbar, blockorientiert, unterstiitzen Grundablauf-
strukturen («GOTO-loses Programmieren»), Strukturierung
von Daten, Datenschutzkonzepte. Dariliber hinaus weisen sie
Real-Time-Eigenschaften auf.

2. Riickblick auf die Entwicklung (Fig. 2)

PASCAL wurde anfangs der 70er Jahre von Niklaus Wirth
(ETHZ) kreiert, der die Sprache nach dem franzosischen Ma-
thematiker Blaise Pascal benannte. Das Wirthsche PASCAL,
das in dessen Buch [2] beschrieben ist, wird als die Standard-
version bezeichnet. PASCAL ist gegenwirtig schon auf iiber
50 Rechnern implementiert worden und setzt sich immer mehr
als dominierende Programmiersprache durch, besonders an
den Schulen, da es viele moderne Konzepte der Programmier-
technik unterstiitzt. Man kann PASCAL als einen Standard
fiir moderne Programmiersprachen ansehen. Der internatio-
nale Erfolg von PASCAL beruht zum grossen Teil auf dem in
sich geschlossenen Sprachentwurf. Obwohl in letzter Zeit die
Vor- und Nachteile dieser Sprache an Tagungen diskutiert wur-
den [3], obwohl sie im praktischen Einsatz ohne Erweiterungen
nicht auskommt und nun schon gut 10 Jahre alt ist, ist sie ge-

von —
HLL Kaufmédnnisch- 2
wissenschaftliche ,»"Prozess-

50% Anwendungen 15 Jahre _ l.' Steuerungen
< Verz‘dgerung/
0 % A A] A [l il A V-.
60 65 70 75 80 1985 Jahr

Fig. 1 Ungefihre Entwicklung des Anteils HLL
an den Mikrocomputersprachen [2]

Stammbaum von hoheren Programmiersprachen

L= 1960
COBOL
\
APL CORAL 66
©
|
I
pL/cQ () CONCURRENT PASCAL

EUKLID

PL/1
g

=1980

Fig. 2 Stammbaum der hoheren Programmiersprachen

(A 697) 1235

genwirtig sehr gefragt, speziell im Einsatz bei Mikroprozes-
soren.

PORTAL [4] ist auf PASCAL aufgebaut. Die erste Sprach-
definition und die ersten Implementierungen wurden im Zen-
trallabor von Landis & Gyr in Zusammenarbeit mit der ETHZ
durchgefiihrt. 1977 erfolgte eine Ausweitung: PORTAL wurde
ein vom Bund finanziertes Projekt 956A in Zusammenarbeit
mit der EPFL. Die Sprachdefinition ist 4hnlich dem PASCAL,
nur wurden Prozesse, Prozesskommunikation mittels Monitor,
hardwarenahe Schnittstellen, ganz allgemein Funktionen fiir
ProzeBsteuerung geschaffen. Compiler gibt es fiir PDP-11,
8080, Nova 3.

CHILL steht fir CCITT High Level Language. Diese
Sprache wurde im November 1980 vom CCITT?) zur interna-
tionalen Norm im Fernmeldewesen erhoben [5; 6]. CHILL ist
eine hohere Programmiersprache, wurde speziell fiir Telefon-
und Telex-Vermittlungssysteme entwickelt, eignet sich aber fiir
ProzeBsteuerung ganz allgemein. Man sieht es dem Sprach-
konzept an, dass viele Ideen aus den verschiedensten Sprachen,
Betriebssystemen und Erfordernissen der Nachrichtentechnik
darin ihren Niederschlag fanden. Ein CCITT-«Team of Spe-
cialists» entwickelte CHILL in den letzten 10 Jahren. Fiir die
Lieferanten der internationalen Postorganisationen wird diese
Normung Konsequenzen haben. Compiler wurden von allen
wichtigen PTT-Zulieferanten bereits entwickelt: auf SIE-
MENS-, ITT-, Philips-, PDP-11-, IBM 370-, NORD-100-
(RUNIT-)Rechnern. Die PTT von Holland, Japan und Italien
haben ebenfalls Compiler installiert, deren Zahl sich wegen
der Normung laufend weiter vergrossern wird.

ADA wurde vom US Department of Defense (DOD) spe-
zifiziert. PASCAL-Elemente, Modularitidt, Prozesskonzepte
sind in der Sprachdefinition enthalten. Im November 1980 er-
folgte die vorldufig endgiiltige Definition der Sprache [7].
Gegenwiirtig gibt es noch keinen Compiler fir diese Sprache,
dafiir aber ein hervorragendes Marketing.

3. Real-Time-Eigenschaften der HLL

PASCAL ist also eine moderne Sprachentwicklung ohne
Real-Time-Eigenschaften, wihrend ADA, CHILL und POR-
TAL Sprachentwicklungen sind, die zwar von PASCAL ab-
stammen, zusidtzlich aber noch Assemblereigenschaften und
Real-Time-Eigenschaften, d.h. Betriebssystem-Funktionen im
Sprachkonzept integriert haben. Diese beiden Eigenschaften
sollen im folgenden genauer diskutiert werden. Dazu werden
ein paar Definitionen typischer Real-Time-Begriffe benstigt [8]:

Betriebsmittel (resource): Dies ist eine Einrichtung, inner-
halb oder ausserhalb des Rechners, die von mehreren Beniit-
zern des Rechners abwechselnd verwendet wird. Ein Betriebs-
mittel ist von sich aus passiv, solange es nicht beniitzt wird,
d.h. erzeugt dann keine Interrupts.

Benutzer (user): Diese Einrightung, innerhalb (z.B. Uhr)
oder ausserhalb des Rechners, erzeugt aus eigener Aktivitit
Ereignisse bzw. Werte.

Prozess: Fiir den Begriff Prozess gibt es leider zwei Defini-
tionen: Aus der Sicht der zu automatisierenden Anlage ist es
ein zeitbehafteter Vorgang, der aufgrund eigener Initiative
oder durch Eintreffen von Werten bzw. Ereignissen Ausgangs-
werte bzw. Ereignisse erzeugt (deterministischer Automat); aus

1) CCITT = Comité consultatif international télégraphique et télé-
phonique.

1236 (A 698)

der Sicht des Betriebssystems ist es der Ablauf eines Pro-
gramms im Rechner unter Benutzung von Daten, wobei die
Umgebung unter vollstindiger Kontrolle des Programms liegt.

Ein Prozessor ist eine Hardware-Einrichtung, die einen oder
mehrere Prozesse ausfiihrt.

Synchronisation bedeutet zeitliche Verkoppelung von Pro-
zessen mit dem Ziel, die ablaufenden Vorginge in eine vorge-
gebene Reihenfolge zu bringen (z.B. «Rendez-vous» in ADA).

Kommunikation ist Synchronisation, bei der gleichzeitig
zwischen einem sendenden und einem empfangenden Prozess
Daten ausgetauscht werden.

Mit Hilfe dieser Begriffsdefinitionen kénnen die typischen
Real-Time-Eigenschaften einer Sprache definiert werden:

Eine HLL hat Real-Time-Eigenschaften, wenn sie

— Funktionen fiir die Prozesskommunikation implementiert
hat,

— Input/Output-Funktionen sowie hardwarenahe Schnitt-
stellen fiir «non-standardn-Interrupts enthdilt,

— Funktionen fiir Zeitbehandlung (Uhr) beinhaltet.

Abgesehen von Standard-Input/Output-Funktionen enthilt
PASCAL keine dieser Anforderungen. In ADA, CHILL und
PORTAL sind sie dagegen mehr oder weniger komfortabel,
ausfiihrlich und bequem implementiert. Im folgenden werden
die Funktionen fiir die Prozesskommunikation diskutiert und
deren Implementierungsgrad in den Sprachen ADA, CHILL
und PORTAL angegeben.

4. Prozessdefinition, Start/Stop von Prozessen,

Inkarnationen
Warum soll der bisherige Begriff Programm durch den

neuen Begriff Prozess ersetzt werden? .

Ein Programm ist ein Stiick Software, das, gleichgiiltig
wann es lduft, fur gleiche Anfangswerte gleiche Resultate lie-
fert. Gehaltsabrechnungen, Buchhaltungen sind Beispiele fiir
Programme. Man sagt, ein Programm ist zeitinvariant und
deterministisch (vorherbestimmt).

Bei Prozessen ist das anders: Es ist nicht gleichgiiltig, wann
man einen Prozess startet. Auch wenn die Anfangswerte gleich
sind, erhdlt man zu verschiedenen Zeiten verschiedene Resul-
tate. Ein Prozess ist nicht zeitinvariant und deterministisch.
Die Ursache dafiir liegt in den parallellaufenden Prozessen,
die miteinander kommunizieren, d.h. sich gegenseitig blok-
kieren und deblockieren, dabei Daten austauschen, so dass die
Ergebnisse sehr verschieden ausfallen, je nach den Zustinden,
in denen sich die Nachbarprozesse gerade befinden. Die Par-
allelarbeit ist somit die Ursache, dass Zeitinvarianz und
Determiniertheit nicht mehr giiltig sind.

Griinde, warum man Software in Prozesse kleiden und par-
allel laufen lassen soll, sind:

— Hardware wird mehr und mehr verteilt (distributed processing,
Rechnernetze usw.), daher ist es natiirlich, dass die steuernde
Software ebenfalls verteilt wird,

— Funktionen in zentraler ebenso wie in verteilter Hardware laufen
parallel; somit auch die steuernde Software,

— parallele Verarbeitung erhoht die Geschwindigkeit,

— parallele Systeme erhohen die Zuverlissigkeit, erlauben moderne
Erholungsstrategien (fail-soft, graceful degradation usw.).

Ein Prozess wird, dhnlich einer Subroutine, zuerst definiert
und von aussen angerufen (Fig. 3). Der grosse Unterschied
liegt darin, dass Prozesse im allgemeinen die Kontrolle an den

Bull. ASE/UCS 72(1981)23, 5 décembre

Alte Neue Philosophie:
Philosophie:)
Initialisierungs- Zyklische
routine Prozesse

Haupt- Subroutinen
b 4
START & (N
éeﬂ &420
70p
RETURN RETURN
START e
STOP /79,) s
STOP ’Op

module M; procedureMis M: module;
a C
begin

task P1; P1:process();

do for ever;

task body PTie
100

end Toop;

end P1;

task P2;

?Ss’ Kbody P27s]|
00

end Toop;
end P2;

end M;

start P1 ();
start P2 ();
end M;

initiate P1,P2;
end;

eigentlicher
m(:ode (Anweisungen) im Prozess.

Fig. 3 Vom Programm zum Prozess
a Alte Philosophie b Neue Philosophie

Anrufer nicht mehr zuriickgeben. Sie kreisen hiufig in einer
«do forever»-Schlaufe und kdnnen hochstens gestoppt werden.
So werden Prozesse, eingebettet in Initialisierungsroutinen, in
den HLL nach Figur 4 definiert. PASCAL, als reine Batch-
sprache, kennt keine Prozesse. Das Prozesskonzept von POR-
TAL, ADA und CHILL ist so dahnlich, dass man sich die Un-
terschiede kaum merken kann, speziell im Formalismus des
Sprachkonzepts. Nach einiger Ubung erkennt man jedoch
Wesensunterschiede:

PORTAL kennt keinen expliziten ProzeBstart. Ein Prozess
startet automatisch, wenn man ihm einen Prozessor zuteilt.

ADA hat einen expliziten ProzeBstart, «initiate», ausser-
halb der Prozessdefinition, kann also in einer Initialisierungs-
routine (hier procedure M) und in Nachbarprozessen gezielt
Prozesse starten lassen. Prozesse heissen in ADA «task» und
werden in zwei Teile geteilt: Die eigentliche Task-Spezifikation
mit Datentyp-Deklarierung, Kommunikationsparametern
usw. und den task body mit Variablen-Deklarierung und An-
weisungen, z.B. der «ewigen loop»-Anweisung («do forevery-
Schlaufe).

CHILL hat ebenfalls einen expliziten ProzeBstart, die
«start»-Anweisung, die ausserhalb des Prozesses in einem Mo-
dul oder Nachbarprozess codiert werden darf. Aber zusitz-
lich zu ADA hat CHILL noch Moglichkeiten wie in der
Subroutinentechnik, beim Start Parameter mitzugeben: Ak-
tualparameter werden in die Formalparameter der Prozess-
definition geschrieben.

Tabelle I

task SHIP (1...1000) is
Spezifikation der Be-
triebsmittel fiir ein Schiff

end SHIP;

Die Anzahl der Inkarna-

tionen ist nun ebenfalls dem

Compiler bekannt, im Bei-

spiel ndmlich 1000.

generic task SHIP is
Spezifikation der Betriebs-
mittel fiir ein Schiff

end SHIP;

Nun definiert man die Prozesse

fiir die einzelnen Schiffe:

task QUEEN-ELIZABETH-2

is new SHIP;

task FRANCE is new SHIP;

task WASHINGTON is new

SHIP;

Der Start der Prozesse erfolgt Der Start der Prozesse
durch: erfolgt durch:

initiate initiate
QUEEN-ELIZABETH-2; SHIP(1);

initiate initiate

FRANCE, WASHINGTON; SHIP(5), SHIP(63);

Bull. SEV/VSE 72(1981)23, 5. Dezember

Fig. 4 Definition, Start/Stop, «ewige Loop» von Prozessen
in PORTAL (a), ADA (b) und CHILL (c)

Prozesse konnen also in CHILL durch neuerlichen Start mit
anderen Aktualparametern neu «inkarniert» werden. Das
heisst, dass in einem einmalig geschriebenen Code mehrere
Prozess-Inkarnationen kreisen. Diese Inkarnationen (im
CHILL-Jargon auch «Instances» genannt) benotigen pro Start
einen neuen Satz lokaler Daten, die vom unterstiitzenden Be-
triebssystem zur Verfligung gestellt werden miissen, und zwar
zur Laufzeit des Systems!

Anders in ADA: Dort sind Inkarnationen wihrend der
Laufzeit nicht vorgesehen, wohl aber zur Compilierzeit durch
die Anweisung «generic» oder durch Bildung von Task-
«Familien» (Tabelle I).

Der task body ist natiirlich in beiden Fillen nur einmal co-
diert. Aber der Wesensunterschied zwischen ADA und CHILL
ist klar. Bei CHILL sind Re-starts von Prozessen wihrend der
Laufzeit vorgesehen, ebenso Stops von Prozessen. Zur Com-
pilierzeit sind keinerlei Angaben dariiber zu machen, wieviele
Inkarnationen von Prozessen vorgesehen sind. In ADA sind
diese Angaben jedoch notwendig. Die Griinde dafiir sind
offensichtlich: In der Nachrichtentechnik kleidet man Hard-
wareteile gleichen Typs (z.B. Durchschaltecinheiten, Wahlein-
heiten usw. einer Telefonzentrale) in einen Prozess. Die Zahl
der Re-starts des Prozesses richtet sich direkt nach der Anzahl
von Hardwareteilen gleichen Typs, die von vornherein nicht
bekannt ist. Daher gibt es wiahrend der Laufzeit eines Systems
eine stdndig variierende Zahl von Inkarnationen eines Pro-
zesses, synchron der variierenden Zahl der Hardwareteile des
gleichen Bautyps.

Dagegen wird man in ADA im allgemeinen wissen, wie viele
Hardware gleichen Typs (im Beispiel oben SHIP) man unge-
fahr hat, und kann zur Compilierzeit die vorgesehenen Reser-
vierungen fiir Daten (pro Inkarnation ein lokaler Datensatz)
machen lassen.

In PORTAL sind keine Inkarnationen vorgesehen, ja nicht
einmal explizite ProzeBstarts. Damit gibt es auch keinerlei
Initialisierungsroutine: Der Prozess lduft bei der Zuteilung
eines Prozessors automatisch.

5. Prozessdaten, Prozesskommunikation

Bei einem Prozess konnen zwei Arten von Daten unter-
schieden werden: lokale Daten, die nur ihm gehoren, genauer,
die sogar nur jeder spezifischen Inkarnation gehoren, ander-
seits globale Daten, die mehreren Inkarnationen oder Prozes-
sen gehoren.

(A 699) 1237

Tabelle II
PORTAL ADA CHILL
process P; task body P is process P (LfP)*;
var dcl
LOKALE-VAR ...| LOKALE-VAR ...| LOKALE-VAR ...
end P; énd P; end P;

Lokale Daten: In PORTAL, ADA und CHILL sind sie
innerhalb der Prozess- bzw. Task-Deklaration definiert und
somit nur innerhalb der Prozesse sichtbar und manipulierbar,
wo sie definiert sind (Tabelle II). Im Namenskonflikt-Fall,
d.h., wenn lokale Variable in verschiedenen Prozessen mit glei-
chen Namen definiert werden, gibt es keine Probleme: Die Va-
riablen sind verschieden und eindeutig in ihrem Giiltigkeits-
bereich festgelegt. CHILL hat zusitzlich noch Parameter-
transfer-Moglichkeiten: Formale Parameter in der Prozess-
definition werden durch aktuale Parameter beim Start ersetzt.
Das gibt die Moglichkeit, innerhalb des Prozesses die Para-
meter-Variable abzufragen und dadurch festzustellen, in wel-
cher «Inkarnation man gerade ist».

Globale Variable dienen zur Kommunikation von Prozes-
sen untereinander. Sie diirfen nicht einfach zugegriffen werden,
da es bei parallelem Zugriff zu Konflikten kommen kann: Le-
sende und schreibende Prozesse konnen sich gegenseitig sto-
rend beeinflussen. Es muss daher Schutzmechanismen fiir glo-
bale Daten geben, sog. «locks». Grundsitzlich gibt es zwei
Arten von Lock-Philosophien:

— Codelocking, entwickelt von Dijkstra [9] durch seine
Semaphorentheorie (Fig. 5). Wenn im Code eines Prozesses
. auf globale Daten zugegriffen wird, wird ein Flag (Semaphor)
gesetzt, sodass im kritischen Pfad Exklusivitdt garantiert ist.

— Datalocking, entwickelt von Hoare [10] durch seine Mo-
nitortheorie (Fig. 6). Wenn im Code eines Prozesses auf glo-
bale Daten zugegriffen wird, dann muss eine Zugriffssubrou-
tine aufgerufen werden, die mit den globalen Daten in einem
speziellen Softwarebereich abgelegt ist (dem «Monitor» bei
Hoare). Das Laufzeitsystem sorgt dafiir, dass die Subroutinen
im Monitor sequentiell durchlaufen werden, so dass immer
nur ein Prozess exklusiv auf globale Daten zugreift.

Ein gestarteter Prozess (also im Zustand «running») kann
sowohl beim Testen des Dijkstraschen Semaphors P(S) als
auch beim Aufruf (CALL) von Zugriffssubroutinen im Hoare-
schen Monitor angehalten werden (also im Zustand «blocked»
sein), weil ein paralleler Prozess auf die globalen Daten zu-
greift. Spiter, wenn kein paralleler Prozess mit hoherer Priori-
tdt mehr auf die globalen Daten zugreift, wird der blockierte
Prozess wieder frei und kann weiterlaufend auf die globalen
Daten zugreifen.

Prozesse haben somit Zustinde (Status, state): Sie sind
nicht aktiv (noch «schlafend», dormant), werden durch den
Start aktiv («]laufend», running), und konnen durch die Sema-
phorenoperation P(S) (Test & Set Flag) bzw. durch das CALL
einer Zugriffssubroutine blockiert werden. Das typische Zu-
standsiibergangsdiagramm eines Prozesses bzw. einer Prozess-
inkarnation ist in Figur 7 dargestellt. Ein Nachbarprozess gibt
die Blockade frei durch die Semaphorenoperation V (S) (Clear
Flag) bzw. durch RETURN von Zugriffssubroutine.

1238 (A 700)

Beziiglich der erwidhnten Eigenschaften der Prozesskom-
munikation ldsst sich in PORTAL, ADA und CHILL folgen-
des feststellen:

In PORTAL ist ausschliesslich das Monitorkonzept von
Hoare vorgesehen. Der Monitor ist ein spezieller Modul, fiir
welchen das Laufzeitsystem gewihrleistet, dass er jeweils nur
von einem einzigen Prozess besucht werden kann. Das be-
deutet, dass fiir eine Sammlung von Subroutinen, die im glei-
chen Monitor deklariert werden, garantiert wird, dass immer
nur ein Prozess in einer der Subroutinen aktiv sein kann. Die
Verschachtelungen von Monitoren, d.h., die Deklaration eines
Monitors innerhalb eines anderen Monitors ist nicht gestattet.
Neuere Publikationen [11] zeigen, dass dies auch gar nicht er-
wiinscht ist. Demgegeniiber ist es erlaubt, innerhalb eines Mo-
nitors Subroutinen aus einem andern Monitor ausfithren zu
lassen, d.h., der Prozess-« Ddmon» springt vom ersten zu einem
weiteren Monitor (dynamische Schachtelung). In diesem Fall
wird der Monitor, von welchem die fremde Monitor-Zugriffs-
subroutine aufgerufen wird, ebenfalls als «belegt» gekenn-
zeichnet.

Formal besteht zwischen einem Modul mit Subroutinen-
und Prozessdeklarationen fast kein Unterschied; einzig das
Verbot der statischen Schachtelung fiihrt zu einem formalen
Unterschied.

Ein Monitor hat grundsitzlich zwei Zustinde: belegt (ac-
tive) und frei (inactive). Beim Aufruf einer Monitorsubroutine
ist zu unterscheiden, ob der Monitor frei oder belegt ist. Im
ersten Fall kann der rufende Prozess sofort in den Monitor
eintreten und die Zugriffssubroutine benutzen. Im zweiten Fall
wird der Prozess blockiert («ready entry» gesetzt). Er muss auf
den Zutritt warten. Es ist implementationsabhingig, welcher
der so wartenden Prozesse als erster zum Monitor Zutritt er-
halt.

Prozess 1 Prozess 2

Semaphoren-

test & poperationen:
set Flag P(S)
clear h V(S)

Flag

wWA exclusiv durchlaufener
Code, kritischer Pfad

Fig. 5 Codelocking mittels Semaphoren [10]

Der Globale Daten (unsichtbar) :“@Y‘OZESS 'D
Monitor: || Zugriffs-Subroutinen H
nach "aussen sichtbar" 7 '.—-(Prozess 2)
und nur sequentiell i
ablaufend d ‘~-@

Fig. 6 Datalocking mittels Subroutinen [11]

Semaphorenoperation V(S)
oder (Clear Flag)

RETURN von Zugriffs-

subroutine;

P(S)(Test & Set Flag);
CALL Zugriffs-
subroutine

@)

Fig. 7 Zustandsiibergangsdiagramm eines Prozesses

Bull. ASE/UCS 72(1981)23, 5 décembre

Zwischen Aufruf und Verlassen des Monitors kann der
Prozess durch ein «wait» blockiert werden und so den Monitor
wieder freigeben. Ein anderer Prozess kann den so blockierten
Prozess durch ein «send» wieder wecken. Aber wohlgemerkt,
«wait» und «send» (vom Systemtyp «signal») diirfen nur in
Monitor-Zugriffssubroutinen verwendet werden und nicht im
Prozesscode direkt! «Wait» und «send» bilden «extraterrito-
riale» Punkte im Monitor, indem der eine solche Zugriffs-
subroutine aufrufende Prozess den Monitor zwangsweise ver-
lassen muss.

CHILL enthilt ebenfalls das Hoaresche Monitorkonzept,
aber zum Unterschied von PORTAL ist es eine unter mehreren
Moglichkeiten, Prozesse kommunizieren zu lassen. Statt Mo-
nitor wird in CHILL «region» gesagt, statt «wait» heisst es
«delayp, fiir «send» wird «continue» verwendet. Delay und con-
tinue wirken auf eine Variable vom Datentyp «event». Abge-
sehen von neuen Namen sind alle Ideen des Hoareschen Mo-
nitorkonzepts iibernommen.

CHILL hat noch ein luxuriéseres Monitorkonzept in seiner
Sprache implementiert: Fiir Prozesse sichtbare globale Daten
konnen als Warteschlange (FIFO) deklariert werden. Prozesse
kénnen mit «send» lokale Werte in die Warteschlange ein-
reihen bzw. mit «receive» Werte holen. Die Warteschlange er-
hilt einfach den Datentyp «buffer», wobei die Zahl der Ein-
trige definiert werden muss. Blockierungen gibt es beim Sen-
den in die Warteschlange, wenn diese voll ist (Overflow) oder
beim Empfangen, wenn sie leer ist (Underflow). Ein so konzi-
pierter Monitor wirkt wie ein Briefkasten (Fig. 8).

ADA kennt das Monitorkonzept von Hoare nicht in sei-
nem Sprachkonzept. Keine der hier diskutierten Sprachen hat
das Semaphorenkonzept von Dijkstra in ihrem Sprachschatz.
Aber der Anwender von CHILL und PORTAL kann z.B. mit
relativ geringem Aufwand Semaphore in einem Monitor selbst
definieren und das Flagtesten, -setzen und -loschen iiber die
Zugriffssubroutinen des Monitors selbst vornehmen. Ebenso ist
es relativ einfach, einen Monitor als Warteschlange zu bauen.

ADA hat als einziges Kommunikationsmittel zwischen Pro-
zessen (im ADA-Jargon Tasks) das Rendez-vous-Konzept:
Bisher waren alle globalen Daten immer vorhanden, zeitlich
wie platzmissig. Bei Dijkstra und Hoare spricht man daher
von globalen Daten permanenter Natur. Nun kann man sich
auch vorstellen, dass globale Daten von transienter Natur sind,
dann spart man sich alle Philosophien des Code- und/oder
Datalockings. Nur wihrend des Rendez-vous-Vorgangs zwi-
schen Sender und Empfinger sind globale Daten vorhanden.
Genauer: Lokale Daten kommen in einen Sendepuffer, dann
erfolgt das Rendez-vous mit dem Empfianger, die Empfangs-
Task schliesslich findet die Nachricht im Empfangspuffer und
kann die Werte in ihren lokalen Datenbereich umschaufeln.

Dieses einfache Nachrichteniibermitteln ist in ADA noch
etwas ausgebaut worden. Ein Rendez-vous ist eine asymme-
trische Verbindung aufeinander wartender Sende- und Emp-
fangs-Tasks. Die Sende-Task gibt einen Wunsch aus, einen
«Eintritt» in die Empfangs-Task zu machen (a request to an
«entry», entry call). Die Empfangs-Task erlaubt dies, wenn sie
bereit ist, den Wunsch zu akzeptieren (accept' the request)
(Fig. 9). Der Code zwischen «accept do ... end accept» hat
grosse Ahnlichkeiten mit einer Subroutinendefinition. Der entry
call dazu hat die Form eines Subroutinenaufrufs. Die Formal-
parameter, je nachdem ob sie Eingangs- oder Ausgangspara-
meter sind, erlauben Nachrichteniibermittlung in beiden Rich-

Bull. SEV/VSE 72(1981)23, 5. Dezember

tungen. Eine «select»-Anweisung ermoglicht noch die Unter-
scheidung mehrerer entry calls. Zusitzlich ist wahlweise eine
Zeitiiberwachung vorgesehen, aber nur auf der Empfangs-
Task-Seite.

CHILL weist diese Rendez-vous-Technik ebenfalls auf, so-
gar noch subtiler: In CHILL wird diese Technik das Signal-
konzept genannt und ist dafiir vorgesehen, von einer beliebigen
Inkarnation eines Prozesses zu einer beliebigen Inkarnation
eines anderen Prozesses einen Datenaustausch vornehmen zu
lassen. Zu diesem Zweck wird nicht nur der Name des Ziel-
prozesses angegeben, sondern auch Zusatzinformation fiir die
Inkarnation (Fig. 10). Ein Puffer «t MESSAGE» wird definiert,
der eine ganze Zahl, einen Charakter (Buchstabe, Ziffer, Son-
derzeichen) und eine boolsche Variable (true oder false) ent-
hélt. Die Zahl im Beispiel von Figur 10 (nimlich 5) kénnte be-
deuten, dass man die 5. Inkarnation des Empfangsprozesses,
der im «receive case» wartet, herauskippen und aktivieren will.
«Receive case» ermoglicht natiirlich auch ein Warten auf an-
dere Signale, die nicht vom Typ MESSAGE sind. Mittels die-
ser Rendez-vous-Technik lassen sich recht einfach Dijkstras
Semaphoren bzw. Codelocking implementieren [12].

PORTAL kennt keine globalen Daten transienter Natur.

Zusammenfassend kann ganz allgemein gesagt werden:
Prozesskommunikation tiber permanente, globale Daten, die

Sende- "Brief- Empfangs -
prozesse: kasten" prozesse:
(Warteschlange,

"send"

@'o 26:2)'—>

FIFO0) '(Pr'ozess 4)
"receive"

—F@‘OZESS ED

"send" "receive"
Prozess 3 Prozess 6
"send" "receive"

Blockierung bei
Overflow

Blockierung bei
Underflow

Fig. 8 Kommunikation von Prozessen mittels Warteschlangen (FIFO)

Sende-Task Empfangs-Task

Parallel-
Lauf: Datenaustausch in
beiden Richtungen

(entry)cal) accept (the request)
exklusiv durch-

laufener Code,
"kritischer Pfad"

end accept;

Asymmetrischer Lauf:

Fortsetzung
Parallel-
Lauf:

Fig. 9 Rendez-vous in ADA

signal Message = (int,char,bool);

Sende Prozess Empfangs Prozess

send Message (5,'A', true)=——preceive case
ito Empfangs-Prozess; (Message):

Fig. 10 Signalkonzept in CHILL

(A701) 1239

d Globale Daten < Data-Locking

Philosophien

Prozess 1 oder
Code-Locking
Prozess 2 Philosophien

Ein Prozessor

b Lokale Daten <&
Prozess '1<—/

Prozessor

Lokale Daten <&
—»Prozess _24/

Prozessor

Fig. 11 Prozesskommunikation im Ein- und Mehrprozessor-System

durch Code- oder Datalocking geschiitzt sind, ist besonders im
Einprozessor-System angebracht (Fig. 11a). Prozesskommuni-
kation iiber transiente, globale Daten ist geeignet fiir Mehr-
Prozessor-Systeme (Fig. 11b).

6. Input/Output-Funktionen sowie hardwarenahe
Schnittstellen fiir « Non-Standard »-Interrupts

Die bisherigen Ausfiihrungen befassen sich gar nicht mit
der Hardware, speziell mit Standard- und Nichtstandard-Peri-
pherie. Es wurde lediglich mit abstrakten Konzepten wie Pro-
zessen, Monitoren, Semaphoren usw. gearbeitet.

Fiir das Erfassen von Interrupts oder das Lesen von Signa-
len mit absoluten (Hardware) Adressen durch einen Polling-
Prozess ist weder PORTAL noch ADA noch CHILL vorberei-
tet, da man die Ansicht vertritt, solche maschinenabhidngigen
Funktionen seien als Codefunktionen und -prozeduren zu im-
plementieren. Beispiele:

In CHILL wird empfohlen, jedoch nicht normiert, fiir Input/
Output folgende Funktionen zu gebrauchen:
inint(); inbool(); inchar();
fiir: «lese einen integer, boolean, character Wert», oder
outint(); outbool(); outchar();
fiir: «schreibe einen integer, boolean, character Wert», vermutlich
auf der Konsole.

Entsprechend sind Input/Output-Funktionen fiir Nicht-
standard-Peripherie zu bilden. Diese Input/Output-Funktionen
werden Prozesse starten, die die Peripherie-Gerite bedienen.
Werden mehrere Peripherie-Gerite gleichen Typs von einem
Prozess bedient, werden Inkarnationen (in CHILL) bzw.
generic tasks oder Task-Familien (in ADA) installiert werden
miissen.

Der Datenverkehr mit peripheren Gerdten geschieht iiber
Geriteregister (I/O-Fenster, Kommunikationsregister usw.).

Diese werden als Variable deklariert und behandelt. Prozesse,
die periphere Geréte bedienen, werden in «wait»-Anweisungen
(PORTAL) auf ein externes Signal warten. Klassische Geriite-
treiber oder Héndler werden also als Prozesse implementiert,
die von der Hardware her synchronisiert werden. Sind die Er-
eignisse dieser sehr maschinenabhingigen Funktionen aber
einmal erfasst, so konnen sie einfach an den Anwenderprozess
weitergeleitet werden.

Ahnliches geschieht mit Zeitfunktionen. Nur ADA hat eine
Zeitfunktion definiert im Sprachkonzept: Accept (a request)
beim Rendez-vous kann durch ein Zeitglied iiberwacht werden
(delay time). Ansonsten werden sehr anwendungsspezifisch
Funktionen fiir die Uhr zu definieren sein.

In allen Féllen jedoch wird in PORTAL, ADA und CHILL
der Gebrauch von Assemblersprache und Kenntnisse von spe-
ziellen Betriebssystemfunktionen, die der Computer-Hersteller
definiert, {iberfliissig sein, wenn die Sprachen fiir ein Hardware-
konzept implementiert sind. Es geniigt, das Sprachkonzept und
eine Funktionsbibliothek zu kennen, mit der der Anwender
sehr benutzerfreundlich arbeiten kann. Nun, das ist hoffent-
lich nicht mehr lange « Zukunftsmusik» fiir jedermann.

Literatur

[1] F.P. Brooks: The mythical man-month. Reading — Mass. a.o., Addison
Wesley, 1975, p. 94.

[2] K. Jensen and N. Wirth: Pascal; user manual and report. New York a.o.,
Springer study edition, 1978, ed. 2.

[3] H.W. Wippermann: Pascal; Einsatz in der Ausbildung; Implementierung der
Sprache; Verwendung auf Kleinrechnern. 3. Workshop und Treffen der
German Chapter of the ACM, Kaiserslautern, 14. und 15. Oktober 1977.
Miinchen und Wien, C. Hanser Verlag, 1978. Applied computer science
Band 11.

[4] H.H. Négeli: Programmieren mit Portal. Ziirich, Institut fiir Informatik an
der ETH, 1979.

[5] The brown document. Comité Consultatif International Télégraphique et
Téléphonique (CCITT), February 1980, paper SG XI/Control number 379.

[6] Introduction to Chill. Comité Consultatif International Télégraphique et
Téléphonique (CCITT), May 1980, paper SG XI/3-2.

[7] Institut National de Recherche en Informatique et en Automatique (INRIA):
Formal definition of the Ada programming language. Domaine de Voluceau,
Rocquencourt, 78153 Le Chesnay, France, November 1980.

[8] D. Profos: Programmiersprachen fiir die Nachrichtentechnik, Nachrichten-
technisches Kollogquium der Universitidt Bern 1980/81. Bern, Institut fiir an-
gewandte Mathematik und angewandte Physik der Universitéit, 1981.

[9] E.W. Dijkstra: Co-operating sequential processes. Out of ‘Programming
languages’, lectures given in Villard-de-Lans, edited by F. Genuys. London &
New York, Academic Press, 1968, p. 43...112.

[10] C.A.R. Hoare: Monitors: an operating system structuring concept. Commu-
nications of the Association for Computing Machinery 17(1974)10, p. 549 to
557.

[11] F. Pieper: Concurrent Pascal — eine Kritik. Elektronische Rechenanlagen mit
Computerpraxis 23(1981)3, S. 115...121.

[12] P. Wegner: Programming with Ada; an introduction by means of graduated
examples. Englewood Cliffs — N.J., Prentice-Hall, 1980, p. 176.

Adresse des Autors

Dr. H. Zwittlinger, Ingenieurschule Bern HTL und Software-Schule Schweiz,
Morgartenstrasse 2¢, 3014 Bern.

1240 (A 702)

Bull. ASE/UCS 72(1981)23, 5 décembre

	Mikrocomputer-Sprachen (PASCAL, CHILL, ADA, PORTAL)

