
Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de
l'Association suisse des électriciens, de l'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitätsunternehmen

Band: 72 (1981)

Heft: 23

Artikel: Mikrocomputer-Sprachen (PASCAL, CHILL, ADA, PORTAL)

Autor: Zwittlinger, H.

DOI: https://doi.org/10.5169/seals-905176

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-905176
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Mikrocomputer-Sprachen (PASCAL, CHILL, ADA, PORTAL)
Von H. Zwittlinger

1. Mose 11,7: « Wohlauf, lasset uns herniederfahren und ihre
Sprache daselbst verwirren, auf dass keiner des anderen Sprache
verstehe. »

1. Einleitung
Nach der Überlieferung scheiterte der Turmbau zu Babel

an einer Sprachverwirrung; bei modernen babylonischen Türmen

geschieht dies ebenfalls. Aber zu Moses Zeiten gab es nur
verschiedene Sprachen; in der Informatik gibt es dazu noch

Sprachhierarchien :

Generatorsprachen (COLUMBUS u.a.),
Interpretersprachen (BASIC, APL u.a.),
Compilersprachen (FORTRAN, COBOL, PASCAL, CHILL, ADA,
PORTAL u.a.), auch High Level Languages (HLL) genannt,
Makro-Sprachen,
Assemblersprachen,
Maschinensprachen.

Maschinensprachen liegen auf dem niedrigsten Sprachniveau,

Generatorsprachen auf dem höchsten.

Anliegen dieser Ausführungen ist es, das «Sprachniveau»

zu erhöhen, d.h. von der noch weitgehend verwendeten

Assemblersprache auf eine HLL zu wechseln. Dabei bestehen

ausgezeichnete Gründe für HLL: Beim Einsatz von HLL wird
eine signifikante Erhöhung der Arbeitsproduktivität bis 500%
erzielt [l]. Diesem Argument werden sich wenige entziehen

können. Daher wird auch eine allgemeine Umstellung von
Assembler- auf HLL etwa gemäss Figur 1 vorausgesagt.

Bei der Umstellung auf HLL bestehen prinzipiell drei
Möglichkeiten :

- Erweiterungen bestehender HLL: PROCESS-BASIC,
PROCESS-FORTRAN usw. Dabei ist von Vorteil, dass früher

entwickelte Software meist aufwärtskompatibel ist und
nicht weggeworfen werden muss ; man erspart sich einen
grösseren Umschulungsaufwand und geht wenig Risiko ein, bei der

Sprachauswahl gänzlich fehlgeplant zu haben. Als Nachteile
sind zu vermerken: Die Spracherweiterungen sind nicht
normiert, daher geht die Portabilität verloren, d.h., die babylonische

Sprachverwirrung breitet sich innerhalb einer Sprache aus ;

die Sprachen stammen meist «aus der Steinzeit der Programmierung»

und entsprechen modernen Anforderungen von Mo-
dularität, strukturierter Programmierung usw. nicht.

- Neuere Sprachentwicklungen ohne Real-Time-Sprachelemente:

CORAL, ALGOL, PASCAL usw. Diese Sprachen
entsprechen mehr oder weniger den modernen Ansprüchen,
erzwingen Modularität, strukturiertes Programmieren ; sie sind

blockorientiert, einfach erlernbar usw. Da sie aber keine Real-

Time-Spracheigenschaften haben, sind sie für Prozeßsteuerungen

nicht zu gebrauchen; Zusätze ebenso wie Erweiterungen

traditioneller Hochsprachen machen sie nicht mehr
portabel.

- Neuere Sprachentwicklungen mit Real-Time-Sprachele-
menten: PEARL, RTL2, MODULA, CONCURRENT
PASCAL, ADA, CHILL, PORTAL usw. Sie sind portabel,
entsprechen meist modernen Vorstellungen des Software-

Engineerings, machen die Assemblersprache vollständig
überflüssig, normieren die Betriebssystem-Unterstützung bereits in
der Sprachdefinition, sind komfortabel für den Anwender

519.682.7:681.322-181.48;

usw. Dagegen sind sie nicht angenehm für den Lieferanten, da
die Forderungen nur mit grossem Aufwand zu realisieren sind.
Sie bedingen oft ein viel zu grosses Betriebssystem und ein zu
aufwendiges Entwicklungssystem für einfache
Mikroprozessoranwendungen.

PASCAL gehört zur zweiten Kategorie, also ohne Real-
Time-Befehle, ADA, CHILL und PORTAL zur dritten Kategorie

dieser Einteilung. Diese haben alle Vorteile von PASCAL :

einfach erlernbar, blockorientiert, unterstützen Grundablaufstrukturen

(«GOTO-loses Programmieren»), Strukturierung
von Daten, Datenschutzkonzepte. Darüber hinaus weisen sie

Real-Time-Eigenschaften auf.

2. Rückblick auf die Entwicklung (Fig. 2)

PASCAL wurde anfangs der 70er Jahre von Nikiaus Wirth
(ETHZ) kreiert, der die Sprache nach dem französischen
Mathematiker Blaise Pascal benannte. Das Wirthsche PASCAL,
das in dessen Buch [2] beschrieben ist, wird als die Standardversion

bezeichnet. PASCAL ist gegenwärtig schon auf über
50 Rechnern implementiert worden und setzt sich immer mehr
als dominierende Programmiersprache durch, besonders an
den Schulen, da es viele moderne Konzepte der Programmiertechnik

unterstützt. Man kann PASCAL als einen Standard
für moderne Programmiersprachen ansehen. Der internationale

Erfolg von PASCAL beruht zum grossen Teil auf dem in
sich geschlossenen Sprachentwurf. Obwohl in letzter Zeit die

Vor- und Nachteile dieser Sprache an Tagungen diskutiert wurden

[3], obwohl sie im praktischen Einsatz ohne Erweiterungen
nicht auskommt und nun schon gut 10 Jahre alt ist, ist sie ge-

Fig. 1 Ungefähre Entwicklung des Anteils HLL
an den MikroComputersprachen [2]

Stammbaum von höheren Programmiersprachen

Bull. SEV/VSE 72(1981)23, 5. Dezember (A 697) 1235

genwärtig sehr gefragt, speziell im Einsatz bei Mikroprozessoren.

PORTAL [4] ist auf PASCAL aufgebaut. Die erste
Sprachdefinition und die ersten Implementierungen wurden im
Zentrallabor von Landis & Gyr in Zusammenarbeit mit der ETHZ
durchgeführt. 1977 erfolgte eine Ausweitung: PORTAL wurde
ein vom Bund finanziertes Projekt 956A in Zusammenarbeit
mit der EPFL. Die Sprachdefinition ist ähnlich dem PASCAL,
nur wurden Prozesse, Prozesskommunikation mittels Monitor,
hardwarenahe Schnittstellen, ganz allgemein Funktionen für
Prozeßsteuerung geschaffen. Compiler gibt es für PDP-11,
8080, Nova 3.

CHILL steht für CCITT 7/igh Level Language. Diese

Sprache wurde im November 1980 vom CCITT1) zur
internationalen Norm im Fernmeldewesen erhoben [5; 6]. CHILL ist
eine höhere Programmiersprache, wurde speziell für Telefon-
und Telex-Vermittlungssysteme entwickelt, eignet sich aber für
Prozeßsteuerung ganz allgemein. Man sieht es dem
Sprachkonzept an, dass viele Ideen aus den verschiedensten Sprachen,

Betriebssystemen und Erfordernissen der Nachrichtentechnik
darin ihren Niederschlag fanden. Ein CCITT-«Team of
Specialists» entwickelte CHILL in den letzten 10 Jahren. Für die

Lieferanten der internationalen Postorganisationen wird diese

Normung Konsequenzen haben. Compiler wurden von allen

wichtigen PTT-Zulieferanten bereits entwickelt: auf
SIEMENS-, ITT-, Philips-, PDP-11-, IBM 370-, NORD-100-
(RUNIT-)Rechnern. Die PTT von Holland, Japan und Italien
haben ebenfalls Compiler installiert, deren Zahl sich wegen
der Normung laufend weiter vergrössern wird.

ADA wurde vom US Department of Defense (DOD)
spezifiziert. PASCAL-Elemente, Modularität, Prozesskonzepte
sind in der Sprachdefinition enthalten. Im November 1980

erfolgte die vorläufig endgültige Definition der Sprache [7].

Gegenwärtig gibt es noch keinen Compiler für diese Sprache,
dafür aber ein hervorragendes Marketing.

3. Real-Time-Eigenschaften der HLL

PASCAL ist also eine moderne Sprachentwicklung ohne

Real-Time-Eigenschaften, während ADA, CHILL und PORTAL

Sprachentwicklungen sind, die zwar von PASCAL
abstammen, zusätzlich aber noch Assemblereigenschaften und
Real-Time-Eigenschaften, d.h. Betriebssystem-Funktionen im
Sprachkonzept integriert haben. Diese beiden Eigenschaften
sollen im folgenden genauer diskutiert werden. Dazu werden
ein paar Definitionen typischer Real-Time-Begriffe benötigt [8] :

Betriebsmittel (resource): Dies ist eine Einrichtung, innerhalb

oder ausserhalb des Rechners, die von mehreren Benüt-
zern des Rechners abwechselnd verwendet wird. Ein Betriebsmittel

ist von sich aus passiv, solange es nicht benützt wird,
d. h. erzeugt dann keine Interrupts.

Benutzer (user): Diese Einrichtung, innerhalb (z.B. Uhr)
oder ausserhalb des Rechners, erzeugt aus eigener Aktivität
Ereignisse bzw. Werte.

Prozess: Für den Begriff Prozess gibt es leider zwei
Definitionen: Aus der Sicht der zu automatisierenden Anlage ist es

ein zeitbehafteter Vorgang, der aufgrund eigener Initiative
oder durch Eintreffen von Werten bzw. Ereignissen Ausgangswerte

bzw. Ereignisse erzeugt (deterministischer Automat) ; aus

x) CCITT Comité consultatif international télégraphique et
téléphonique.

der Sicht des Betriebssystems ist es der Ablauf eines
Programms im Rechner unter Benutzung von Daten, wobei die
Umgebung unter vollständiger Kontrolle des Programms liegt.

Ein Prozessor ist eine Hardware-Einrichtung, die einen oder
mehrere Prozesse ausführt.

Synchronisation bedeutet zeitliche Verkoppelung von
Prozessen mit dem Ziel, die ablaufenden Vorgänge in eine
vorgegebene Reihenfolge zu bringen (z.B. «Rendez-vous» in ADA).

Kommunikation ist Synchronisation, bei der gleichzeitig
zwischen einem sendenden und einem empfangenden Prozess
Daten ausgetauscht werden.

Mit Hilfe dieser Begriffsdefinitionen können die typischen
Real-Time-Eigenschaften einer Sprache definiert werden :

Eine HLL hat Real-Time-Eigenschaften, wenn sie

- Funktionen für die Prozesskommunikation implementiert
hat,

- InputIOutput-Funktionen sowie hardwarenahe Schnittstellen

für «non-standard»-Interrupts enthält,

- Funktionen für Zeitbehandlung Uhr) beinhaltet.

Abgesehen von Standard-Input/Output-Funktionen enthält
PASCAL keine dieser Anforderungen. In ADA, CHILL und
PORTAL sind sie dagegen mehr oder weniger komfortabel,
ausführlich und bequem implementiert. Im folgenden werden
die Funktionen für die Prozesskommunikation diskutiert und
deren Implementierungsgrad in den Sprachen ADA, CHILL
und PORTAL angegeben.

4. Prozessdefinition, Start/Stop von Prozessen,
Inkarnationen

Warum soll der bisherige Begriff Programm durch den

neuen Begriff Prozess ersetzt werden?
Ein Programm ist ein Stück Software, das, gleichgültig

wann es läuft, für gleiche Anfangswerte gleiche Resultate
liefert. Gehaltsabrechnungen, Buchhaltungen sind Beispiele für
Programme. Man sagt, ein Programm ist zeitinvariant und
deterministisch (vorherbestimmt).

Bei Prozessen ist das anders : Es ist nicht gleichgültig, wann
man einen Prozess startet. Auch wenn die Anfangswerte gleich
sind, erhält man zu verschiedenen Zeiten verschiedene Resultate.

Ein Prozess ist nicht zeitinvariant und deterministisch.
Die Ursache dafür liegt in den parallellaufenden Prozessen,
die miteinander kommunizieren, d.h. sich gegenseitig blok-
kieren und deblockieren, dabei Daten austauschen, so dass die
Ergebnisse sehr verschieden ausfallen, je nach den Zuständen,
in denen sich die Nachbarprozesse gerade befinden. Die
Parallelarbeit ist somit die Ursache, dass Zeitinvarianz und
Determiniertheit nicht mehr gültig sind.

Gründe, warum man Software in Prozesse kleiden und
parallel laufen lassen soll, sind:

- Hardware wird mehr und mehr verteilt (distributed processing,
Rechnernetze usw.), daher ist es natürlich, dass die steuernde
Software ebenfalls verteilt wird,

- Funktionen in zentraler ebenso wie in verteilter Hardware laufen
parallel ; somit auch die steuernde Software,

- parallele Verarbeitung erhöht die Geschwindigkeit,
- parallele Systeme erhöhen die Zuverlässigkeit, erlauben moderne

Erholungsstrategien (fail-soft, graceful degradation usw.).

Ein Prozess wird, ähnlich einer Subroutine, zuerst definiert
und von aussen angerufen (Fig. 3). Der grosse Unterschied
liegt darin, dass Prozesse im allgemeinen die Kontrolle an den

1236 (A 698) Bull. ASE/UCS 72(1981)23, 5 décembre

Hauptroutine

Alte
Philosophie:

Subroutinen

a
C/Û_L CALLKn
STOP

Neue Philosophie:

Initialisierungsroutine Zyklische
Prozesse,

RETURN RETURN

Fig. 3 Vom Programm zum Prozess

a Alte Philosophie b Neue Philosophie

a module M;

process PI;

loop
W////////M
end loop;
end P1 ;

process P2;

loop
WM/////Â
end loop;
end P2;

end M;

task P1 ;

task body P1 is
1 OOP

procedure Mis
begin

end loop;
,end P1 ;

task P2;

läsirFöayTSTs
1 OOP
f//////////////////////j
end loop;
end P2;

initiate P1,P2;
end ;

reigentlicher
tCode (Anweisungen) im Prozess.

M: module;

P1 :process(;

do for ever;
llllllllllllllllllllll
od ;
end PI ;

P2:process();
do for ever:
''////////////////////A
od;
end P2;

start PI 0;
start P2 ();
end M;

Fig. 4 Definition, Start/Stop, «ewige Loop» von Prozessen
in PORTAL (a), ADA (b) und CHILL (c)

Anrufer nicht mehr zurückgeben. Sie kreisen häufig in einer
«do forever»-Schlaufe und können höchstens gestoppt werden.
So werden Prozesse, eingebettet in Initialisierungsroutinen, in
den HLL nach Figur 4 definiert. PASCAL, als reine Batch-
sprache, kennt keine Prozesse. Das Prozesskonzept von PORTAL,

ADA und CHILL ist so ähnlich, dass man sich die
Unterschiede kaum merken kann, speziell im Formalismus des

Sprachkonzepts. Nach einiger Übung erkennt man jedoch
Wesensunterschiede :

PORTAL kennt keinen expliziten Prozeßstart. Ein Prozess

startet automatisch, wenn man ihm einen Prozessor zuteilt.
ADA hat einen expliziten Prozeßstart, «initiate», ausserhalb

der Prozessdefinition, kann also in einer Initialisierungsroutine

(hier procedure M) und in Nachbarprozessen gezielt
Prozesse starten lassen. Prozesse heissen in ADA «task» und
werden in zwei Teile geteilt: Die eigentliche Task-Spezifikation
mit Datentyp-Deklarierung, Kommunikationsparametern
usw. und den task body mit Variablen-Deklarierung und
Anweisungen, z.B. der «ewigen loop »-Anweisung («do forever»-
Schlaufe).

CHILL hat ebenfalls einen expliziten Prozeßstart, die

«Start»-Anweisung, die ausserhalb des Prozesses in einem Modul

oder Nachbarprozess codiert werden darf. Aber zusätzlich

zu ADA hat CHILL noch Möglichkeiten wie in der

Subroutinentechnik, beim Start Parameter mitzugeben:
Aktualparameter werden in die Formalparameter der
Prozessdefinition geschrieben.

Tabelle I

generic task SHIP is task SHIP (1...1000) is

Spezifikation der BetriebsSpezifikation der
Bemittel für ein Schiff triebsmittel für ein Schiff

end SHIP; end SHIP;
Nun definiert man die Prozesse Die Anzahl der Inkarnafür

die einzelnen Schiffe: tionen ist nun ebenfalls dem
task QUEEN-ELIZABETH-2 Compiler bekannt, im Beiis

new SHIP; spiel nämlich 1000.
task FRANCE is new SHIP;
task WASHINGTON is new
SHIP;
Der Start der Prozesse erfolgt Der Start der Prozesse
durch : erfolgt durch:
initiate initiate
QUEEN-ELIZABETH-2 ; SHIP(l);
initiate initiate
FRANCE, WASHINGTON; SHIPI5), SHIP(63);

Prozesse können also in CHILL durch neuerlichen Start mit
anderen Aktualparametern neu «inkarniert» werden. Das
heisst, dass in einem einmalig geschriebenen Code mehrere
Prozess-Inkarnationen kreisen. Diese Inkarnationen (im
CHILL-Jargon auch «Instances» genannt) benötigen pro Start
einen neuen Satz lokaler Daten, die vom unterstützenden
Betriebssystem zur Verfügung gestellt werden müssen, und zwar
zur Laufzeit des Systems

Anders in ADA: Dort sind Inkarnationen während der
Laufzeit nicht vorgesehen, wohl aber zur Compilierzeit durch
die Anweisung «generic» oder durch Bildung von Task-
«Familien» (Tabelle I).

Der task body ist natürlich in beiden Fällen nur einmal
codiert. Aber der Wesensunterschied zwischen ADA und CHILL
ist klar. Bei CHILL sind Re-starts von Prozessen während der
Laufzeit vorgesehen, ebenso Stops von Prozessen. Zur
Compilierzeit sind keinerlei Angaben darüber zu machen, wieviele
Inkarnationen von Prozessen vorgesehen sind. In ADA sind
diese Angaben jedoch notwendig. Die Gründe dafür sind
offensichtlich: In der Nachrichtentechnik kleidet man
Hardwareteile gleichen Typs (z.B. Durchschalteeinheiten, Wahleinheiten

usw. einer Telefonzentrale) in einen Prozess. Die Zahl
der Re-starts des Prozesses richtet sich direkt nach der Anzahl
von Hardwareteilen gleichen Typs, die von vornherein nicht
bekannt ist. Daher gibt es während der Laufzeit eines Systems
eine ständig variierende Zahl von Inkarnationen eines

Prozesses, synchron der variierenden Zahl der Hardwareteile des

gleichen Bautyps.
Dagegen wird man in ADA im allgemeinen wissen, wie viele

Hardware gleichen Typs (im Beispiel oben SHIP) man ungefähr

hat, und kann zur Compilierzeit die vorgesehenen
Reservierungen für Daten (pro Inkarnation ein lokaler Datensatz)
machen lassen.

In PORTAL sind keine Inkarnationen vorgesehen, ja nicht
einmal explizite Prozeßstarts. Damit gibt es auch keinerlei
Initialisierungsroutine: Der Prozess läuft bei der Zuteilung
eines Prozessors automatisch.

5. Prozessdaten, Prozesskommunikation
Bei einem Prozess können zwei Arten von Daten

unterschieden werden : lokale Daten, die nur ihm gehören, genauer,
die sogar nur jeder spezifischen Inkarnation gehören, anderseits

globale Daten, die mehreren Inkarnationen oder Prozessen

gehören.

Bull. SEV/VSE 72(1981)23, 5. Dezember (A 699) 1237

Tabelle II

PORTAL ADA CHILL

process P;
var
LOKALE-VAR

end P;

task body P is

LOKALE-VAR

end P;

process P (LfP)*;
del
LOKALE-VAR

end P;

Lokale Daten: In PORTAL, ADA und CHILL sind sie

innerhalb der Prozess- bzw. Task-Deklaration definiert und

somit nur innerhalb der Prozesse sichtbar und manipulierbar,
wo sie definiert sind (Tabelle II). Im Namenskonflikt-Fall,
d. h., wenn lokale Variable in verschiedenen Prozessen mit
gleichen Namen definiert werden, gibt es keine Probleme: Die
Variablen sind verschieden und eindeutig in ihrem Gültigkeitsbereich

festgelegt. CHILL hat zusätzlich noch
Parametertransfer-Möglichkeiten: Formale Parameter in der
Prozessdefinition werden durch aktuale Parameter beim Start ersetzt.

Das gibt die Möglichkeit, innerhalb des Prozesses die
Parameter-Variable abzufragen und dadurch festzustellen, in
welcher «Inkarnation man gerade ist».

Globale Variable dienen zur Kommunikation von Prozessen

untereinander. Sie dürfen nicht einfach zugegriffen werden,
da es bei parallelem Zugriff zu Konflikten kommen kann :

Lesende und schreibende Prozesse können sich gegenseitig
störend beeinflussen. Es muss daher Schutzmechanismen für
globale Daten geben, sog. « locks». Grundsätzlich gibt es zwei

Arten von Lock-Philosophien :

- Codelocking, entwickelt von Dijkstra [9] durch seine

Semaphorentheorie (Fig. 5). Wenn im Code eines Prozesses

auf globale Daten zugegriffen wird, wird ein Flag (Semaphor)
gesetzt, sodass im kritischen Pfad Exklusivität garantiert ist.

- Datalocking, entwickelt von Hoare [10] durch seine

Monitortheorie (Fig. 6). Wenn im Code eines Prozesses auf
globale Daten zugegriffen wird, dann muss eine Zugriffssubroutine

aufgerufen werden, die mit den globalen Daten in einem

speziellen Softwarebereich abgelegt ist (dem «Monitor» bei

Hoare). Das Laufzeitsystem sorgt dafür, dass die Subroutinen
im Monitor sequentiell durchlaufen werden, so dass immer

nur ein Prozess exklusiv auf globale Daten zugreift.
Ein gestarteter Prozess (also im Zustand «running») kann

sowohl beim Testen des Dijkstraschen Semaphors P(S) als

auch beim Aufruf (CALL) von Zugriffssubroutinen im Hoare-
schen Monitor angehalten werden (also im Zustand «blocked»

sein), weil ein paralleler Prozess auf die globalen Daten
zugreift. Später, wenn kein paralleler Prozess mit höherer Priorität

mehr auf die globalen Daten zugreift, wird der blockierte
Prozess wieder frei und kann weiterlaufend auf die globalen
Daten zugreifen.

Prozesse haben somit Zustände (Status, state): Sie sind
nicht aktiv (noch «schlafend», dormant), werden durch den

Start aktiv («laufend», running), und können durch die Sema-

phorenoperation P(S) (Test & Set Flag) bzw. durch das CALL
einer Zugriffssubroutine blockiert werden. Das typische Zu-
standsübergangsdiagramm eines Prozesses bzw. einer
Prozessinkarnation ist in Figur 7 dargestellt. Ein Nachbarprozess gibt
die Blockade frei durch die Semaphorenoperation V (S) (Clear
Flag) bzw. durch RETURN von Zugriffssubroutine.

Bezüglich der erwähnten Eigenschaften der Prozesskommunikation

lässt sich in PORTAL, ADA und CHILL folgendes

feststellen:

In PORTAL ist ausschliesslich das Monitorkonzept von
Hoare vorgesehen. Der Monitor ist ein spezieller Modul, für
welchen das Laufzeitsystem gewährleistet, dass er jeweils nur
von einem einzigen Prozess besucht werden kann. Das
bedeutet, dass für eine Sammlung von Subroutinen, die im
gleichen Monitor deklariert werden, garantiert wird, dass immer
nur ein Prozess in einer der Subroutinen aktiv sein kann. Die
Verschachtelungen von Monitoren, d.h., die Deklaration eines

Monitors innerhalb eines anderen Monitors ist nicht gestattet.
Neuere Publikationen [11] zeigen, dass dies auch gar nicht
erwünscht ist. Demgegenüber ist es erlaubt, innerhalb eines
Monitors Subroutinen aus einem andern Monitor ausführen zu
lassen, d.h., der Prozess-«Dämon» springt vom ersten zu einem
weiteren Monitor (dynamische Schachtelung). In diesem Fall
wird der Monitor, von welchem die fremde Monitor-Zugriffssubroutine

aufgerufen wird, ebenfalls als «belegt»
gekennzeichnet.

Formal besteht zwischen einem Modul mit Subroutinen-
und Prozessdeklarationen fast kein Unterschied; einzig das

Verbot der statischen Schachtelung führt zu einem formalen
Unterschied.

Ein Monitor hat grundsätzlich zwei Zustände: belegt
(active) und frei (inactive). Beim Aufruf einer Monitorsubroutine
ist zu unterscheiden, ob der Monitor frei oder belegt ist. Im
ersten Fall kann der rufende Prozess sofort in den Monitor
eintreten und die Zugriffssubroutine benutzen. Im zweiten Fall
wird der Prozess blockiert («ready entry» gesetzt). Er muss auf
den Zutritt warten. Es ist implementationsabhängig, welcher
der so wartenden Prozesse als erster zum Monitor Zutritt
erhält.

Prozess 1 Prozess 2

Semaphoren-
operationen:

exclusiv durchlaufener
Code,kritischer Pfad

Fig. 5 Codelocking mittels Semaphoren [10]

Der
Monitor:

Globale Daten (unsichtbar)
Zugriffs-Subroutinen
nach "aussen sichtbar" *"
und nur sequentiell
ablaufend

.-(Prozess l)
*!—(Prozess 2)

"'—(Prozess 3)

Fig. 6 Datalocking mittels Subroutinen [11]

[blocked! Semaphorenoperation V(S)
Loder (Clear Flag)

[RETURN von Zugriffs-
PfSllTpst R Set Flanl A J subroutine;
CALL Zugriffs- Jdunrnn9isTnp
subroutine

START dormant/

Fig. 7 Zustandsiibergangsdiagramm eines Prozesses

1238 (A 700) Bull. ASE/UCS 72(1981)23, 5 décembre

Zwischen Aufruf und Verlassen des Monitors kann der

Prozess durch ein « wait» blockiert werden und so den Monitor
wieder freigeben. Ein anderer Prozess kann den so blockierten

Prozess durch ein «send» wieder wecken. Aber wohlgemerkt,
«wait» und «send» (vom Systemtyp « signal))) dürfen nur in
Monitor-Zugriffssubroutinen verwendet werden und nicht im
Prozesscode direkt! «Wait» und «send» bilden «extraterritoriale»

Punkte im Monitor, indem der eine solche
Zugriffssubroutine aufrufende Prozess den Monitor zwangsweise
verlassen muss.

CHILL enthält ebenfalls das Hoaresche Monitorkonzept,
aber zum Unterschied von PORTAL ist es eine unter mehreren

Möglichkeiten, Prozesse kommunizieren zu lassen. Statt
Monitor wird in CHILL «région» gesagt, statt «wait» heisst es

« delay», für «send» wird «continue» verwendet. Delay und
continue wirken auf eine Variable vom Datentyp « event». Abgesehen

von neuen Namen sind alle Ideen des Hoareschen

Monitorkonzepts übernommen.

CHILL hat noch ein luxuriöseres Monitorkonzept in seiner

Sprache implementiert : Für Prozesse sichtbare globale Daten
können als Warteschlange (FIFO) deklariert werden. Prozesse

können mit «send» lokale Werte in die Warteschlange
einreihen bzw. mit «receive» Werte holen. Die Warteschlange
erhält einfach den Datentyp «buffer», wobei die Zahl der

Einträge definiert werden muss. Blockierungen gibt es beim Senden

in die Warteschlange, wenn diese voll ist (Overflow) oder

beim Empfangen, wenn sie leer ist (Underflow). Ein so

konzipierter Monitor wirkt wie ein Briefkasten (Fig. 8).

ADA kennt das Monitorkonzept von Hoare nicht in
seinem Sprachkonzept. Keine der hier diskutierten Sprachen hat
das Semaphorenkonzept von Dijkstra in ihrem Sprachschatz.

Aber der Anwender von CHILL und PORTAL kann z.B. mit
relativ geringem Aufwand Semaphore in einem Monitor selbst

definieren und das Flagtesten, -setzen und -löschen über die

Zugriffssubroutinen des Monitors selbst vornehmen. Ebenso ist

es relativ einfach, einen Monitor als Warteschlange zu bauen.

ADA hat als einziges Kommunikationsmittel zwischen

Prozessen (im ADA-Jargon Tasks) das Rendez-vous-Konzept :

Bisher waren alle globalen Daten immer vorhanden, zeitlich
wie platzmässig. Bei Dijkstra und Hoare spricht man daher

von globalen Daten permanenter Natur. Nun kann man sich

auch vorstellen, dass globale Daten von transienter Natur sind,
dann spart man sich alle Philosophien des Code- und/oder
Datalockings. Nur während des Rendez-vous-Vorgangs
zwischen Sender und Empfänger sind globale Daten vorhanden.
Genauer: Lokale Daten kommen in einen Sendepuffer, dann

erfolgt das Rendez-vous mit dem Empfänger, die Empfangs-
Task schliesslich findet die Nachricht im Empfangspuffer und
kann die Werte in ihren lokalen Datenbereich umschaufeln.

Dieses einfache Nachrichtenübermitteln ist in ADA noch
etwas ausgebaut worden. Ein Rendez-vous ist eine asymmetrische

Verbindung aufeinander wartender Sende- und Emp-
fangs-Tasks. Die Sende-Task gibt einen Wunsch aus, einen

«Eintritt» in die Empfangs-Task zu machen (a request to an

«entry», entry call). Die Empfangs-Task erlaubt dies, wenn sie

bereit ist, den Wunsch zu akzeptieren (accept the request)

(Fig. 9). Der Code zwischen «accept do end accept» hat

grosse Ähnlichkeiten mit einer Subroutinendefinition. Der entry
call dazu hat die Form eines Subroutinenaufrufs. Die
Formalparameter, je nachdem ob sie Eingangs- oder Ausgangsparameter

sind, erlauben Nachrichtenübermittlung in beiden Rich¬

tungen. Eine «select»-Anweisung ermöglicht noch die
Unterscheidung mehrerer entry calls. Zusätzlich ist wahlweise eine

Zeitüberwachung vorgesehen, aber nur auf der Empfangs-
Task-Seite.

CHILL weist diese Rendez-vous-Technik ebenfalls auf,
sogar noch subtiler: In CHILL wird diese Technik das

Signalkonzept genannt und ist dafür vorgesehen, von einer beliebigen
Inkarnation eines Prozesses zu einer beliebigen Inkarnation
eines anderen Prozesses einen Datenaustausch vornehmen zu
lassen. Zu diesem Zweck wird nicht nur der Name des

Zielprozesses angegeben, sondern auch Zusatzinformation für die
Inkarnation (Fig. 10). Ein Puffer «MESSAGE» wird definiert,
der eine ganze Zahl, einen Charakter (Buchstabe, Ziffer,
Sonderzeichen) und eine boolsche Variable (true oder false)
enthält. Die Zahl im Beispiel von Figur 10 (nämlich 5) könnte
bedeuten, dass man die 5. Inkarnation des Empfangsprozesses,
der im «receive case» wartet, herauskippen und aktivieren will.
«Receive case» ermöglicht natürlich auch ein Warten auf
andere Signale, die nicht vom Typ MESSAGE sind. Mittels dieser

Rendez-vous-Technik lassen sich recht einfach Dijkstras
Semaphoren bzw. Codelocking implementieren [12].

PORTAL kennt keine globalen Daten transienter Natur.
Zusammenfassend kann ganz allgemein gesagt werden:

Prozesskommunikation über permanente, globale Daten, die

Sendeprozesse:

(Prozess 1^
"send" *

"Briefkasten"

(Warteschlange
FIFO)

Empfangs -
Prozesse:

(Prozess 2^

"send"

(Prozess

"send"

Blockierung bei
Overflow

^Prozess 4)
— "receive"

»{Prozess 5)

"receive"

VSvs*^Prozess 6)

Blockierung bei
Underflow

Fig. 8 Kommunikation von Prozessen mittels Warteschlangen (FIFO)

Sende-Task

Parallel-
Lauf :

(entry)cal 1

Asymmetrischer Lauf:

$ Datenaustausch in
} beiden Richtungen

4 » « *—

Empfangs-Task

accept (the request)
do

v durch-\[i\\ exklusi
: : laufene
ill:: "kritis

laufener Code,
scher Pfad"

Fortsetzung
Parai1 el -
Lauf:

end accept;

Fig. 9 Rendez-vous in ADA

signal Message (int,char,bool);
Sende Prozess

I
send Message (5,'A1, true) —

.to Empfangs-Prozess;

Empfangs Prozess

•receive case
(Message):

Fig. 10 Signalkonzept in CHILL

Bull. SEV/VSE 72(1981)23, 5. Dezember (A 701) 1239

Data-Locking
Philosophien
oder
Code-Locking
Phi 1osophien

Ein Prozessor

Lokale Daten

Prozess 1

Lokale Daten

-Prozess 2

Prozessor Prozessor

Fig. 11 Prozesskommunikation im Ein- und Mehrprozessor-System

durch Code- oder Datalocking geschützt sind, ist besonders im
Einprozessor-System angebracht (Fig. IIa). Prozesskommunikation

über transiente, globale Daten ist geeignet für Mehr-
Prozessor-Systeme (Fig. IIb).

6. Input/Output-Funktionen sowie hardwarenahe
Schnittstellen für « IMon-Standard»-Interrupts

Die bisherigen Ausführungen befassen sich gar nicht mit
der Flardware, speziell mit Standard- und Nichtstandard-Peri-
pherie. Es wurde lediglich mit abstrakten Konzepten wie
Prozessen, Monitoren, Semaphoren usw. gearbeitet.

Für das Erfassen von Interrupts oder das Lesen von Signalen

mit absoluten (Hardware) Adressen durch einen Polling-
Prozess ist weder PORTAL noch ADA noch CHILL vorbereitet,

da man die Ansicht vertritt, solche maschinenabhängigen
Funktionen seien als Codefunktionen und -Prozeduren zu
implementieren. Beispiele:

In CHILL wird empfohlen, jedoch nicht normiert, für Input/
Output folgende Funktionen zu gebrauchen:

inintO; inboolf); inchar();
für: «lese einen integer, boolean, character Wert», oder
outint(); outbool(); outchar();
für: «schreibe einen integer, boolean, character Wert», vermutlich
auf der Konsole.

Entsprechend sind Input/Output-Funktionen für Nicht-
standard-Peripherie zu bilden. Diese Input/Output-Funktionen
werden Prozesse starten, die die Peripherie-Geräte bedienen.
Werden mehrere Peripherie-Geräte gleichen Typs von einem
Prozess bedient, werden Inkarnationen (in CHILL) bzw.

generic tasks oder Task-Familien (in ADA) installiert werden
müssen.

Der Datenverkehr mit peripheren Geräten geschieht über
Geräteregister (I/O-Fenster, Kommunikationsregister usw.).

Diese werden als Variable deklariert und behandelt. Prozesse,
die periphere Geräte bedienen, werden in «wait»-Anweisungen
(PORTAL) auf ein externes Signal warten. Klassische Gerätetreiber

oder Händler werden also als Prozesse implementiert,
die von der Hardware her synchronisiert werden. Sind die
Ereignisse dieser sehr maschinenabhängigen Funktionen aber
einmal erfasst, so können sie einfach an den Anwenderprozess
weitergeleitet werden.

Ähnliches geschieht mit Zeitfunktionen. Nur ADA hat eine
Zeitfunktion definiert im Sprachkonzept: Accept (a request)
beim Rendez-vous kann durch ein Zeitglied überwacht werden
(delay time). Ansonsten werden sehr anwendungsspezifisch
Funktionen für die Uhr zu definieren sein.

In allen Fällen jedoch wird in PORTAL, ADA und CHILL
der Gebrauch von Assemblersprache und Kenntnisse von
speziellen Betriebssystemfunktionen, die der Computer-Hersteller
definiert, überflüssig sein, wenn die Sprachen für ein Hardwarekonzept

implementiert sind. Es genügt, das Sprachkonzept und
eine Funktionsbibliothek zu kennen, mit der der Anwender
sehr benutzerfreundlich arbeiten kann. Nun, das ist hoffentlich

nicht mehr lange «Zukunftsmusik» für jedermann.

Literatur
[1] F. P. Brooks: The mythical man-month. Reading - Mass. a.o., Addison

Wesley, 1975, p. 94.
[2] K.Jensen and N. Wirth: Pascal; user manual and report. New York a.o.,

Springer study edition, 1978, ed. 2.
[3] H. W. Wippermann: Pascal; Einsatz in der Ausbildung; Implementierung der

Sprache; Verwendung auf Kleinrechnern. 3. Workshop und Treffen der
German Chapter of the ACM, Kaiserslautern, 14. und 15. Oktober 1977.
München und Wien, C. Hanser Verlag, 1978. Applied computer science
Band 11.

[4] H. H. Nägeli: Programmieren mit Portal. Zürich, Institut für Informatik an
der ETH, 1979.

[5] The brown document. Comité Consultatif International Télégraphique et
Téléphonique (CCITT), February 1980, paper SG XI/Control number 379.

[6] Introduction to Chill. Comité Consultatif International Télégraphique et
Téléphonique (CCITT), May 1980, paper SG XI/3-2.

[7] Institut National de Recherche en Informatique et en Automatique (INRIA):
Formal definition of the Ada programming language. Domaine de Voluceau,
Rocquencourt, 78153 Le Chesnay, France, November 1980.

[8] D. Profos: Programmiersprachen für die Nachrichtentechnik, Nachrichten¬
technisches Kolloquium der Universität Bern 1980/81. Bern, Institut für
angewandte Mathematik und angewandte Physik der Universität, 1981.

[9] E.W. Dijkstra: Co-operating sequential processes. Out of 'Programming
languages', lectures given in Villard-de-Lans, edited by F. Genuys. London &
New York, Academic Press, 1968, p. 43...112.

[10] C.A.R. Hoare: Monitors: an operating system structuring concept. Commu¬
nications of the Association for Computing Machinery 17(1974)10, p. 549 to
557.

[11] F. Pieper: Concurrent Pascal - eine Kritik. Elektronische Rechenanlagen mit
Computerpraxis 23(1981)3, S. 115...121.

[12] P. Wegner: Programming with Ada; an introduction by means of graduated
examples. Englewood Cliffs - N.J., Prentice-Hall, 1980, p. 176.

Adresse des Autors
Dr. H. Zwittlinger, Ingenieurschule Bern HTL und Software-Schule Schweiz,
Morgartenstrasse 2c, 3014 Bern.

1240 (A 702) Bull. ASE/UCS 72(1981)23, 5 décembre

	Mikrocomputer-Sprachen (PASCAL, CHILL, ADA, PORTAL)

