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Genaue Simulierung eines Asynchronmotors mit veridnderlicher Sattigung

Von K.P. Kovacs und L.Kiss

621.313.333;

An eine friihere Verdffentlichung ankniipfend, wird die genaue und allgemeingiiltige Berechnung des Verhaltens einer Induktionsmaschine mit
verdnderlicher Sdttigung dargestellt, indem ein Koordinatensystem gewdhlt wird, welches zum Magnetisierungsstrom gebunden ist. Dadurch er-
héilt man relativ einfache Gleichungen, die fiir die maschinelle Bearbeitung geeignet sind.

Faisant suite a une publication antérieure, on indique le calcul précis, valable d’une fagon générale, du comportement d’une machine a in-
duction a saturation variable, en adoptant un systéme de coordonnées lié au courant d’aimantation, ce qui donne des équations relativement

simples a résoudre par ordinateur.

1. Einleitung

Das Problem der Simulierung von Asynchronmaschinen
mit verdnderlicher Sdttigung wurde u.a. schon vor lingerer
Zeit als Gegenstand eines Aufsatzes im Archiv fiir Elektro-
technik [1] erortert. Damals war die Auffassung des Verfas-
sers, dass die dort angefithrte Methode allgemeine Giiltigkeit
besitze. Doch wurde in der Zwischenzeit durch einen person-
lichen Hinweis seitens P. Vas!) bewiesen, dass die damals ge-
zeigte Art der Simulierung (fiir den Analogrechner) keine all-
gemeine Giiltigkeit besitzt. Dabei handelte es sich darum, dass
komplexe Differentialquotienten, die in den Differential-
gleichungen der Maschine vorkommen, nicht in der Weise dif-
ferenziert werden diirfen, wie es in [1] angefiihrt wurde. Bei
korrekter Differenzierung verlieren die dort beschriebenen Re-
sultate ihre allgemeine Giiltigkeit und konnen nur beschrinkt
beniitzt werden.

Im folgenden soll dieser Fehler dadurch aufgehoben wer-
den, dass fiir die Beschreibung der Maschine mit verdnder-
licher Sittigung ein zum Magnetisierungsstrom gebundenes
System gewihlt wird, wodurch das Problem der komplexen
Differentialquotienten iiberhaupt entfillt. In dem angewandten
System werden die Grossen Magnetisierungsstrom und Haupt-
fluss und deren Funktionen als reelle Zeitfunktionen erschei-
nen.

2. Gleichungen der Maschine; das Koordinatensystem
ist zum Magnetisierungsstrom gebunden

Die Gleichungen werden in Raumvektorform (neuerdings
auch Parkvektoren genannt) angeschrieben, und es wird das
p.u.-System in dimensionsloser Form beniitzt. Die Winkel-
geschwindigkeit des Magnetisierungsstromes (7m) wird mit ©om
bezeichnet. Die Spannungsgleichungen lauten [2]:

G= TR+ jom 0
T

- - d;/7r s —_—

ur = ir Rr + dr +J (wm — Cl)) Yr (2)

wobei alle Grossen mit Uberstrich Raumvektoren bezeichnen.
Ferner bedeuten us und ur die Stinder- bzw. Liuferspannung;
7 und 7 die Stéinder- bzw. Liuferstrdme, ws und yr die Stin-
der- bzw. Lauferfliisse. w ist die mechanische Geschwindigkeit
des Laufers, und Rs bzw. Rr bezeichnen die Stdnder- und
Rotorwiderstdnde. © = w; - ¢ ist die Zeit in rad.

Die Drehmomentgleichung lautet [2]:

dow o = T
hﬁf—‘i“M—Im(Ws is) 3)

1) Dr. Ing. P. Vas, T. U. Budapest, Lehrstuhl fiir Elektrische
Maschinen.
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wobei h = J w13/Px die Nennhochlaufzeit bedeutet (in rad),
J das Schwungmoment in Ws3, @; die synchrone Winkel-
geschwindigkeit (s-1), Pn die Nennleistung in W und M das
mechanische Lastmoment. Mit Stern wird der konjugiert-kom-
plexe Wert bezeichnet.

Die Flisse sollen durch die Strome und Reaktanzen ausge-
driickt werden, wobei darauf zu achten ist, dass im p.u.-System
Reaktanzen fiir die Induktivitdten stehen. Da der Magnetisie-
rungsstrom jeweils die Summe des Stinder- und Liuferstromes
ist, wird im = Z -+ . Dann sind die Fliisse

as=-i-st+Z*Xm=i_me+lrs-Xsc (4)
Yr=1IsXm + &t Xr = im Xm + Ir Xro %)

wobei Xa = Xm + Xso und Xt = Xm + Xro die Stdnder- bzw.
Laufer-Reaktanzen bedeuten, mit Xm der Hauptfeldreaktanz,
Xso und Xro den Streufeldreaktanzen.

Man nimmt an, dass die Sittigungskurve des Hauptfeldes
bekannt ist (Fig. 1). Da die reelle Axe des Koordinatensystems
in Richtung des Magnetisierungsstromes angenommen wurde,
wird der Wert dieses Stromes immer eine reelle Zahl sein. Die
Gln. (4) und (5) werden in reelle und imaginire Teile aufgelost.
Dabei ist zu beachten, dass durch die Wahl des Koordinaten-
systems fiir die Strome folgende Zusammenhinge bestehen:
im = ia + ira und iq -+ irq = 0. Dann kann fiir die Fliisse in
d- und g-Richtung die reelle bzw. imagindre Zahlenauflosung
geschrieben werden:

Va = im Xm + iqa Xso = Vm + id Xso (6)
Ym| X
40\ Xex(im) )
13.0 Y=Y (im)

YNl

i
X=01
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-04f/~1-10 i =03 —>im
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21,2930
-1.6+-40

Fig. 1 Sattigungskurve einer Asynchronmaschine

Ym = WY (im). Der Differentialquotient
d¥m/dum = X = X (im) ist auch angefiithrt
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Yq = iq Xso @)
Yrda = im Xm + ira Xro = Ym + ira Xro (8)
Yrq = irq Xro = — iq Xro ®

Unter Beniitzung der Gln. (6) bis (9) sollen die Spannungs-

gleichungen und die Drehmomentgleichung in Komponenten
zerlegt werden

Ua = ia Rs + P + Xso i i wm iq Xso (10)
Uq =iqu —I—Xsa%—l-(l)m(lmxm +idXSO') (11)
Ura = ira Rr + d (im Xm) + Xro dird + (wm — o) iq Xro
dr dr
(12)
g = — fa Re = Xeo 35 4 (0m — ) Gim Xm + ira Xio) (13)

dr

do

h—(F‘f'M:Wdiq—qud:'//miq 14)

3. Der Einfluss der Sittigung

Es soll nun die Ableitung d (im Xm)/dz betrachtet werden,
da im und Xm zeitverdnderliche Grossen darstellen, die durch
die Sattigungskurve funktionell verbunden sind. Der Differen-
tialquotient kann in folgender Form auch angeschrieben
werden:

d (in Xu) _ d(im Xu)  dim
dr o dim dr

_ dym dim
a dim dr

15)

dym/dim = X (im) = X kann als dynamische Induktivitédt
(Reaktanz) bezeichnet werden und kann aus der Magnetisie-
rungskurve (Fig. 1) durch graphische, oder semianalytische
Methoden berechnet werden. Der Verlauf von X = X (im) ist
in Figur 1 auch angegeben.
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Fig. 2 Anlauf einer Asynchronmaschine mit Kurzschlussldufer,
digital berechnet und mit Plotter aufgezeichnet

us = 1; konstante Séttigung; reine Massenbeschleunigung.
Maschinendaten: # = 31,4; Xsg= Xro = Xo = 0,1;

Rs = R: = 0,03; Nenn-Hauptfeldreaktanz: Xu = 3,33.
Angegeben sind die Zeitfunktionen: Winkelgeschwindigkeit
des Laufers (w); Drehmoment (M); Winkelgeschwindigkeit
des Magnetisierungsstromes (wwm); der Stédnderstrom

(is in wm-Koordinaten)
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Nun kann das Gleichungssystem aus Gln. (10) bis (14)
unter Beriicksichtigung der Sittigung angeschrieben werden.
Da fiir den Kurzschlusslidufer ur = 0 ist, folgt

udzidRs+X%+Xsc%_wminS° (16)

Uqg = iq Rs + Xso (3111('1 + om (Ym + ia Xso) a7
e dim d (im — ia)

0= (lm ld) R+ X dr + Xro T + (18)

+ (wm - CO) iq ch

99| (@ — ©) lym + (in — ia) Xro] (19)

OZ—iqu-ch

Aus den Gln. (14), (16), (17) und (19) konnen die unbe-
kannten Grossen iq, Ig, im, ®m und @ bestimmt werden.

Es wird vorausgesetzt, dass an die Klemmen der Maschine
eine symmetrische, sinusformige Dreiphasenspannung von
Nennfrequenz und von konstanter Amplitude plétzlich zuge-
schaltet wird. Diese Spannung erscheint in Stinderkoordinaten
als [2]

;s = ug eioit = yg eit
oder nach der Transformation in wm-Koordinaten [2] als

Us = Us e—it = yg ei G—a)

(20)

wobei a den Winkel bezeichnet, welcher von der reellen Axe
der Stinderkoordinaten mit im (reelle Axe der wm Koordina-
ten) eingeschlossen wird: « = a0 + [ wm dr.

Werden die Gln. (17) und (19) unter Beniitzung der Gl. (20)
addiert, so erhdlt man mit Ra = Rs — Rr und Xa = Xso
— Xrg':

aAm =
_ Us sin (t — &) — iq Ra — XA dig/dt + @ [Wm + (im — ia) Xro]
2 wm + im Xt + ia XA
(21)

4. Digitale Berechnung

Aufgrund der Gln. (14), (16), (17) und (18) ist die Moglich-
keit gegeben, das Gleichungssystem fiir die maschinelle Be-
rechnung zu ordnen:

dim 1

Y e [uscos(r—a)—(imRr—l—idRA)—
rg

dia @)
= Xa-GL + wig Xoo + omiq XA]

dia 1 - p oy Gim ;

FE = —E [Ms cos (1,' — az) — ia Rs X dr ] + om lq (23)
dig . . :

o [wsinG— @)~ iR~ onyn] —omia @9
do M, ymig

&~ h Tk @

Der Wert von ww ist durch GI. (21) festgelegt. Das Argu-
ment (z — «) kann als

t—a=10— a0+ [ (w1 — wm)dt =70 — 20 +

+ [ (- om)de (26)

berechnet werden. Der Absolutwert des Stinderstromes be-
trigt is = Via® + iq®
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Fig. 3 Wie Figur 2, jedoch us = 1,5

Die Berechnungen der Zeitfunktionen wurden an einem
Digitalrechner durchgefiihrt. Es wurde eine fiktive Sattigungs-
kurve nach Figur 1 beniitzt, wobei der Anfangsteil und der
Séttigungsteil durch Gerade ersetzt wurden. Die Kriimmung
wurde durch eine Parabel zweiter Ordnung nachgeahmt.

Die Plotter-Bilder (Fig. 2...4) zeigen die Anlaufverhiltnisse
einer Asynchronmaschine mit den in der Legende angegebenen
Daten. Zu bemerken ist, dass der stationdre Endstrom dem
Maximalwert des Stromes entspricht. Die Aufnahmen wurden
fiir die Speisespannung us = 1 resp. #s = 1,5, ohne und mit
verdnderlicher Sittigung ausgefiihrt. Aus Figur 4 ist die Wir-
kung der hohen Sittigung klar zu entnehmen (is = im = 3.0).
Bei der Beschleunigung war kein Gegenmoment wirksam

Fig. 4 Wie Fig.2, aber us = 1,5 und veriinderliche Sittigung

(reine Massenbeschleunigung mit der Hochlaufzeit & = 31,4
rad). Es sei noch darauf hingewiesen, dass die angegebenen
Zeitfunktionen mit denjenigen, die an verschiedenen Maschi-
nen mehrfach gemessen werden, gut iibereinstimmen.
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