Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitatsunternehmen = Bulletin de
I'Association suisse des électriciens, de I'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitatsunternehmen

Band: 72 (1981)

Heft: 7

Artikel: Programmation structurée

Autor: Mange, D.

DOl: https://doi.org/10.5169/seals-905096

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-905096
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Programmation structurée
Par D. Mange

681.3.06;

Aprés un bref exposé des objectifs de la programmation structurée, on définit formellement les éléments qui la caractérisent: séquence (DO...),
itération (WHILE... DO...) et test (IF... THEN... ELSE...). La structuration — c’est-a-dire la transformation d’un programme quelconque
dans un programme équivalent, mais structuré — fait I'objet de deux méthodes: la premiére, intuitive, s’applique généralement a des parties de
programme (structuration locale), tandis que la seconde, systématique, considére le programme dans sa totalité (structuration globale). Ces
deux méthodes sont illustrées par I'exemple d’une montre digitale, dont le cahier des charges est décrit par I'algorithme horloger.

Nach einer kurzgefassten Darstellung der Ziele der strukturierten Programmierung werden die diese kennzeichnenden Elemente formell
definiert: Sequenz (DO...), Iteration (WHILE... DO...) und Tests (IF... THEN... ELSE...). Zur Strukturierung, d.h. zur Umwandlung
eines beliebigen Programmes in ein gleichwertiges, strukturiertes Programm, sind zwei Methoden méglich: Die intuitive Methode wird
tblicherweise auf Teile eines Programms angewandt (lokale Strukturierung), die systematische Methode befasst sich mit dem ganzen Programm
(globale Strukturierung). Diese beiden Methoden werden am Beispiel der Digitaluhr erliutert, deren Pflichtenheft durch den Uhren-Algorithmus

beschrieben ist.

1. Introduction et définitions
1.1 Préambule

Le développement de circuits intégrés digitaux de plus en
plus complexes (circuits pour microprocesseurs en tranches
notamment) entraine I’utilisation fréquente de systémes lo-
giques programmés. Il en découle le besoin de disposer de mé-
thodes systématiques pour la réalisation du logiciel, c’est-a-
dire pour la conception, le test et le dépannage des programmes
ou microprogrammes. La programmation structurée constitue
une réponse a ce besoin. Le but de cet article est de présenter
briévement les caractéristiques principales de la programma-
tion structurée, puis de démontrer 1’existence de méthodes per-
mettant de transformer n’importe quel programme (non struc-
turé) en un programme structuré équivalent.

1.2 Programmation structurée

La programmation structurée [1;2; 3] est une méthode
pour formuler et réaliser des algorithmes d’une fagon systé-
matique [4]. Les objectifs de la programmation structurée sont,
dans ’ordre d’importance:

a b

D q J

IF a THEN GO TO DO O AND GO TO j

p ELSE GO TO g

entrée

? |

entrée

-

source

| I

sortie sortie

puits

Fig.1 Programme non structuré et ses éléments
a Instruction de test
b Instruction de sortie
¢ Programme avec une source
d Programme avec un puits

Bull. SEV/VSE 72(1981)7, 11. April

— la rédaction de programmes corrects; la programmation
structurée rend plus faciles les techniques de validation.

— la rédaction de programmes efficaces; la programmation
structurée facilite ’optimisation de certains parameétres, tels
que la durée d’un cycle d’opérations ou la capacité de la mé-
moire (calcul systématique des arbres de décision binaire, par
exemple).

— la rédaction de programmes adaptables; la programma-
tion structurée permet de modifier une partie de programme
sans affecter le tout (modularité) ; 1a lecture ou la modification
d’un programme par un tiers, la rédaction d’un programme par
plusieurs auteurs sont également facilitées (/isibilité).

Ces objectifs sont atteints & un certain prix, la redondance
du logiciel. Le nombre plus élevé des instructions, ainsi que la
complexité plus grande de celles-ci, entrainent une augmenta-
tion de taille de la mémoire (paramétre spatial); le nombre
plus élevé d’instructions pour certaines actions allonge la durée
d’un cycle (paramétre temporel). Cette redondance du logiciel
peut donc diminuer l’efficacité du programme structuré et
s’opposer ainsi aux objectifs originaux.

1.3 Programme non structuré

Un programme non structuré (ou, plus simplement, un
programme) (fig. 4a p.ex.) est un assemblage quelconque de
deux types d’éléments ou instructions:

— une instruction de fest (IF.. THEN GO TO... ELSE
GO TO...), représentée par un losange (fig. 1a); chaque ins-
truction de test, définie par un nombre ou adresse i et par une
variable logique de test a, posséde une borne d’entrée (reliée
a une ou plusieurs instructions précédentes) et deux bornes de
sortie conduisant chacune a une seule instruction suivante
d’adresse p (@ = 1) ou d’adresse ¢ (a = 0); la borne de sortie
de la variable complémentée (a = 0) est repérée par un rond
accolé au losange.

— une instruction de sortie (DO... AND GO TO..), re-
présentée par un rectangle (fig. 1b); chaque instruction de
sortie, définie par une adresse i et par une action o, posséde
une borne d’entrée (reliée & une ou plusieurs instructions pré-
cédentes) et une borne de sortie reliée a une seule instruction
suivante d’adresse j.

Un organigramme non structuré (ou organigramme) est une
représentation graphique d’un programme non structuré
(fig. 4a, p.ex.), obtenu par I’assemblage des instructions don-
nées par les figures l1a et 1b.

(A 187) 339

a b C
e L
] = <> =| [
o]
Do o© DO PO WHILE a DO P
e
d 7
Q
o. DO PQ
] o] = ‘:VQ WHILE a
P
WHILE a DO P
N2 -0
IF a THEN P ELSE Q 2)

IF a THEN P ELSE Q

Fig. 2 Programme structuré

a Instruction de sortie

b Séquence ou composition de P et Q

¢ Itération ou répétition conditionnelle de P
d Test de P ou Q

e Structogrammes

1.4 Programme propre

Un programme propre (fig. 4b p.ex.) est un programme [5]

— qui comporte une entrée et une sortie;

— dont toutes les instructions sont accessibles a4 partir de
Ientrée; il n’existe donc aucune source (fig. 1c p.ex.);

— dont toutes les instructions conduisent a la sortie; il
n’existe donc aucun puits (fig. 1d p.ex.).

1.5 Programme structuré [6; 7]

(1) L’instruction de sortie (DO...), représentée par un
rectangle (fig. 2a), définie par une action o, possédant une
borne d’entrée (reliée a une seule instruction précédente) et
une borne de sortie (reliée 4 une seule instruction suivante),
est un programme structuré. Si P et Q sont des programmes
structurés, alors

(2) la séquence ou composition de P et Q (DO PQ), notée
PQ, est un programme structuré (fig. 2b); les programmes
structurés P et Q sont les éléments de la séquence PQ;

(3) litération ou répétition conditionnelle de P (WHILE a
DO P), notée gP], est un programme structuré (fig. 2c); un tel

programme posséde une boucle de rétroaction;

(4) le test de P ou Q (IF ¢ THEN P ELSE Q), notée (PVQ),
est un programme structuré (fig. 2d). *

(5) Il n’y a pas d’autres programmes structurés que ceux
obtenus en appliquant les définitions (1) a (4) un nombre fini
de fois.

1.6 Organigramme structuré et structogramme

Un organigramme structuré (fig. 7a p.ex.) est une représen-
tation graphique d’un programme structuré, obtenu par I’as-
semblage des éléments donnés par les figures 2a, 2b, 2¢ et 2d.
Lorsque ces mémes éléments sont représentés sous la forme
particuliére de la figure 2e, leur assemblage porte le nom de
structogramme (fig. 7b, p.ex.) [8].

340 (A 188)

1.7 Equation d’un programme structuré

La concaténation des expressions algébriques P, Q, PQ,
(PVQ), [P] définissant les éléments d’un programme structuré,
a a

constitue I’équation de ce programme. A titre d’exemple,
I’équation du programme x (fig. 6b) s’écrirait

x = 01 [(To (00 vTi 01) voo)l
sT i

L’étude de ces équations fait notamment 1’objet des références
[7;9; 10].

1.8 Commentaire

Tous les programmes structurés ont donc une seule entrée
et une seule sortie; la composition quelconque de plusieurs
programmes structurés produit toujours un programme struc-
turé (exemple: fig. 7a). Contrairement aux programmes non
structurés, il n’est pas nécessaire de connaitre les adresses
futures (GO TO...) pour décrire un programme structuré:
la composition des éléments de ce programme suffit [11].

1.9 Structuration

La structuration d’un programme propre, non structuré,
est la transformation de celui-ci dans un programme équiva-
lent, mais structuré. La structuration est locale si la transforma-
tion n’affecte qu’une partie du programme non structuré, elle
est globale dans le cas contraire.

1.10 Conclusion

L’étude des méthodes systématiques de structuration, qui
fait I’objet de cette publication, est entreprise dans le double

but
— de démontrer que tout programme non structuré (et

propre) est réalisable par un programme structuré, et de prou-
ver ainsi I'universalité de la programmation structurée;

— de réaliser un programme structuré a partir d’un cahier
des charges représenté par un programme propre, non struc-
turé.

2. Structuration locale
2.1 Méthode

Elle consiste en I’application successive et, éventuellement,
répétée des trois régles qui suivent; ces régles découlent directe-
ment des définitions de la programmation structurée.

2.2 Régle de structuration n° 1: composition ou décomposition

Soit deux programmes propres p et q assemblés en séquence
selon la figure 3a. Le programme résultant = est aussi propre.
Selon le contexte du probléme (et selon I’application possible
des deux autres régles), on peut effectuer la structuration de
chacun des deux programmes p et q (décomposition) ou, au
contraire, la structuration du seul programme résultant 7
(composition).

2.3 Régle de structuration n° 2: coupure des boucles

Soit une boucle de rétroaction appartenant & un organi-
gramme non structuré et ne comportant qu’une seule borne
d’entrée (fig. 3b et 3c). Le nombre des bornes de sortie de
cette boucle est la sortance (en anglais: fan out).

Toute boucle dont la sortance est égale a un peut étre réali-
sée par un programme structuré comportant un élément
WHILE... DO... (fig. 3b).

Bull. ASE/UCS 72(1981)7, 11 avril

Définition des notations de I'algorithme horloger Table I
Indice i (décimal) Indice i (binaire) Variable Constante
ig i1 io T® G (@)
0 0 0 0 T (0) = unité de seconde G(0) =10
1 0 0 1 T (1) = dizaine de secondes G(1) = 6
2 010 T (2) = unité de minute G2 =10
3 01 1 T (3) = dizaine de minutes G3) = 6
cir 1y = 10 pour 00...19 heures
4 1 00 T (4) = unité d’heure G, _ 4 pour 20...23 heures
5 1 01 T (5) = dizaine d’heures GGB) = 3
6 = imax 1 10 - -
T 111 = -

2.4 Régle de structuration n° 3: abaissement des boucles [12]

Soit une boucle dont la sortance est supérieure a un (fig. 3c):
dans un tel cas, il n’est pas possible d’obtenir directement un
programme structuré, a moins de recourir a la méthode de
structuration globale exposée plus loin.

Cependant, dans le cas ou le premier élément de la boucle
est un programme propre p, il est possible, par duplication
de ce programme, d’obtenir un abaissement de la boucle mis
en évidence par la figure 3c.

2.5 Cahier des charges: montre digitale

Une montre digitale, excitée par un signal d’horloge H,
doit compter et afficher les grandeurs suivantes:

— les secondes (de 00 & 59);
— les minutes (de 00 a 59);
— les heures (de 00 a 23).

Le signal d’horloge H est une variable logique dont la pé-
riode est égale a une seconde; l'incrémentation des secondes
doit étre effectuée a chaque montée de H (H = 0 —1).

2.6 Algorithme horloger

11 existe un algorithme universel pour la mesure du temps,
généralement appelé algorithme horloger [13;14;15]. En
adoptant les notations de la table I, I’algorithme horloger,
représenté par I’organigramme de la figure 4a, réalise le cahier
des charges de la montre digitale de la facon suivante:

— I’indice i indique la variable calculée; de 0 a 5, on distin-
guera tour a tour les secondes (unités, puis dizaines), les mi-
nutes (unités, puis dizaines) et les heures (unités, puis dizaines);

— la grandeur 7'(i) est la variable calculée, dont la valeur
décimale est comprise entre 0 et 9;

— la constante G (i) constitue la limite supérieure de la va-
leur de la variable T (7).

En partant alors du premier test de H («<START» sur la
fig. 4a), le programme détecte la montée du signal H (second
test de H) et force I’indice i a la valeur 0 (i <—0: comptage des
unités de seconde); la valeur présente des secondes 7'(0) est
alors incrémentée (7°(0) < T(0) + 1); si cette nouvelle valeur
n’est pas égale a la limite G (0) = 10, alors I’incrémentation
des secondes se poursuit pour chaque montée de H; sinon, les
unités de secondes sont mises 4 zéro (7 (0)<«0) et I'indice i
est incrémenté (i < i + 1 = 1): le programme s’appréte
a compter les dizaines de secondes (7(1)<~ T (1) 4+ 1). Le
processus se poursuit jusqu’a la détection de la valeur limite
de I’indice (imax = 6), qui coincide avec la remise & zéro com-
pléte de la montre.

Bull. SEV/VSE 72(1981)7, 11. April

2.7 Programme propre

Le programme de la figure 4a n’est pas propre: il ne com-
porte ni entrée, ni sortie. L’introduction d’une variable logique
auxiliaire E (Enable) permet d’obtenir aisément un organi-
gramme propre (fig. 4b, PP: programme principal); dans
celui-ci on a, par ailleurs, simplifié le libellé de certaines ins-
tructions.

On remarque que I’organigramme propre est obtenu par la
coupure d’une boucle de I’organigramme original (fig. 4a) et
I'insertion d’un test sur E; cette insertion est telle que ce test
est effectué chaque seconde. Une autre coupure possible entrai-
nerait le test sur E chaque fois que i = imax, c’est-a-dire
chaque jour.

=
X
1 p [p]
p.4
C
=]
P
1 X 1
! = :)
3
n n

Fig. 3 Régles de structuration
a Regle n° 1: décomposition ou composition
b Regle n° 2: coupure de boucle

¢ Régle n° 3: abaissement de boucle

(A 189) 341

T(1)«T(i)+1

Fig. 4a, 4b L’algorithme horloger

a Organigramme original
b Organigramme propre; £ = Enable

2.8 Exemple de structuration locale

L’application des régles de structuration est illustrée de la
fagon suivante:

— La régle n° 1 transforme ’organigramme de la figure 4b
dans les deux organigrammes de la figure 4c; les nouveaux
programmes propres H, To et AH sont obtenus par composi-
tion; le programme principal (PP) est structuré, de méme que

PP*

Fig. 4c, 4d, 4¢ Application des reégles de structuration locale

¢ Application de la régle n° 1
d Application de la régle n° 3
e Application de la régle n° 1

342 (A 190)

Fig. 5 Structuration globale

a Organigramme original
b Transformations générales

les programmes H et To: ils sont distingués par un asté-
risque (¥).

— La reégle n° 3 transforme I’organigramme AH de la figure
4c dans celui de la figure 4d par abaissement d’une boucle.

— La régle n° 1 transforme 1’organigramme AH de la figure
4d dans celui de la figure 4e par composition (nouveaux pro-
grammes propres h et x; h est structuré).

A T’exception du programme propre x (fig. 4d), tous les
programmes obtenus sont structurés. L’application des trois
reégles de structuration au programme x n’est plus possible: il
faut donc recourir a la méthode de structuration globale.

2.9 Conclusion

La méthode de structuration locale est facile & mettre en
ceuvre; elle n’est pas systématique, et le résultat peut dépendre
de ’ordre dans lequel les trois régles ont été appliquées.

Par ailleurs, I’existence d’une ou plusieurs boucles avec
une sortance supérieure a un, ne permet qu’une structuration
partielle du programme original; seule la méthode de structu-
ration globale peut achever la transformation.

3. Structuration globale
3.1 Méthode [5; 16]

Celle-ci est illustrée par la transformation du programme
propre x (fig. 5a), qui constitue la partie non structurée de
I’algorithme horloger. Les étapes de la méthode sont les sui-
vantes:

(1) Toutes les instructions du programme original sont
munies d’une adresse i arbitraire (i = 1, 2, 3, 4 dans ’exemple
traité); ’adresse i = 1 est réservée a la premiére instruction

Bull. ASE/UCS 72(1981)7, 11 avril

rencontrée a ’entrée du programme; ’adresse i = 0 est affec-
tée a la sortie du programme.

(2) Chaque instruction du programme original (i =1, 2,
3, 4) est remplacée par un programme structuré selon la trans-
formation de la figure 5b. On introduit donc une variable
auxiliaire s, qui est multivaluée (0 = s = 4).

(3) L’organigramme structuré recherché se compose (fig. 6a)

— d’une partie universelle, identique pour chaque probléme
de structuration, & I’exception du nombre des tests qui est
égal au nombre d’instructions du programme original (quatre
dans I’exemple traité);

— d’une partie spécialisée qui regroupe tous les programmes
structurés produits dans 1’étape précédente (Ri...R4).

3.2 Organigramme canonique structuré

I’organigramme obtenu par la méthode de structuration
globale est appelé organigramme canonique structuré: il est
unique pour un organigramme (non structuré) donné. On
vérifie aisément que ’organigramme canonique structuré

— représente un programme structuré;

— comporte un seul élément WHILE... DO... et une unique
boucle de rétroaction;

- exige n tests de la variable auxiliaire s [s est (n + 1) — va-
luée], si n est le nombre d’instructions de I’organigramme
original.

3.3 Organigramme structuré simplifié

I1 est possible de simplifier ’organigramme canonique
structuré, c’est-a-dire d’en diminuer le nombre d’éléments, en
procédant comme suit: Chaque €lément g; (DO s<—j) est
remplacé par le programme structuré Rj, a 1’exception de
g0 (DO s < 0) qui reste inchangé.

Dans I’exemple traité (fig. 6a), on peut procéder aux rem-
placements successifs suivants:

— dans le programme Ri, g2 est remplacé par Ra:
Ri1 = (02 v ¢0) = (To 03V 00);
T T

— dans le programme Rg, g3 est remplacé par Rs:
Ri1i = (To (o v 04) V 00);
T i

Partie universelle

Partie

Partie
universelle spécialisée

— dans le programme Rs, o4 est remplacé par R4 (fig. 6b):
Ri1 = (To (00 v Ti 01) V 00).
T i

Dans le programme R4 (fig. 6a), il apparait o1 (s < 1): on
obtient le cas particulier ou ’élément p; renvoie au programme
R; auquel il appartient; cet appel récursif empéche alors le
remplacement énoncé par la régle de simplification, et le pro-
gramme structuré final s’exprime enfin par I’équation:

x =01 [Ri] = o1 [(TTO (eo v Tie1) v eo)]

L’organigramme correspondant (fig. 6b) est un organi-
gramme structuré simplifié; pour un organigramme canonique
donné, il existe un grand nombre d’organigrammes structurés
simplifiés, dont la forme finale dépend de I’ordre dans lequel
les remplacements successifs ont été effectués.

On constate, dans I’exemple traité (fig. 6b), que I’organi-
gramme structuré simplifié

— représente un programme structuré;

— comporte un nombre d’éléments inférieur a celui de
I’organigramme canonique (9 au lieu de 15);

— comporte un seul élément WHILE... DO... et une unique
boucle de rétroaction;

— exige k tests de la variable auxiliaire s [s est (kK + 1)-
valuée], si k est le nombre de boucles essentielles de 1’organi-
gramme original, non structuré (dans le cas général, on a
k < n, ou n est le nombre d’instructions de I’organigramme
original).

Dans I’exemple traité, il existe une seule boucle essentielle
dans I’organigramme original, non structuré (fig. 5a); il existe
par conséquent, dans ’organigramme structuré simplifié, un
unique test sur la variable auxiliaire s, qui est binaire (2-valuée)
(fig. 6b).

3.4 Programme structuré final

L’assemblage des programmes structurés x (fig. 6b), h
(fig. 4d), H (fig. 4b) et PP (fig. 4c) produit le programme final
qui est completement structuré (fig. 7a). Dans ce programme,
on a restauré les libellés originaux (selon fig. 4a) et, pour plus
de lisibilité, on a décomposé le programme structuré x en un
élément WHILE... DO... et un programme structuré y.

Fig. 6a Organigramme canonique structuré

Bull. SEV/VSE 72(1981)7, 11. April

Fig. 6b Organigramme structuré simplifié

(A 191) 343

Le structogramme équivalent a I’organigramme structuré
(fig. 7a) est donné a la figure 7b, dans laquelle le mnémonique
NOP (no operation) représente une opération neutre (c’est-a-
dire une instruction de sortie sans effet).

La figure 7c¢ donne enfin le programme décrit par les mné-
moniques DO..., WHILE... DO...,, IF... THEN... ELSE...,
définis au paragraphe 1.5.

3.5 Conclusion
La structuration globale du programme propre original

(fig. 4b) produirait un organigramme canonique structuré a
neuf tests (avec une variable s 10-valuée) et un seul élément
WHILE... DO... (avec une seule boucle de rétroaction).

La structuration locale du méme programme a diminué la
complexité de la structuration globale, appliquée a la seule
partie x du programme original. Le programme structuré final
comporte un seul test (avec une variable s binaire) et quatre
éléments WHILE... DO..., donc quatre boucles de rétroaction.

L’intérét principal de la méthode de structuration locale,
outre sa simplicité, réside dans la réduction de complexité
qu’elle entraine pour ’application de la structuration globale.

4. Conclusion générale
4.1 Meéthodes de structuration

Dans la pratique, on recommande de construire un pro-
gramme structuré directement a partir de son cahier des char-
ges, Les méthodes de structuration semblent cependant indis-
pensables:

— pour démontrer ’'universalité de la programmation struc-
turée (besoin théorique);

— pour réaliser un cahier des charges, lorsque celui-ci est
représenté par un organigramme non structuré (besoin pra-
tique).

La structuration locale du programme original, suivie d’une
éventuelle structuration globale pour les éléments restant non
structurés (c’est-a-dire les boucles dont la sortance est supé-
rieure a un), constitue une approche possible du probléme
posé.

4.2 Meéthode de synthése descendante

Tout processeur admet une décomposition en deux parties,
généralement appelées unité de commande (ou de controle) et

PP
WHILE E
b WHILE H
| NOP
WHILE H
| NOP
i<+ Q
T(i) « T(i) +1
s+1
WHILE s>0
oui T(i)=G(d) non
T(i) <« O
i +«i+l
non 'éi
T30
s+1

oui

s+« 0 s« 0

Fig. 7b Structogramme final

PP
WHILE E DO AH

WHILE H DO NOP
WHILE H DO NOP
DO i « 0

C DO T(i) + T(i) +1
DO s+1
WHILE (s >0) DO ¥y

¢ IF (T(i) = G(i)) THEN P, ELSE Q

(DO T(i) «+ O
DO i +i+1l

IF (i= ﬁAx) gggg gzz

P14
Y 4 P, { DO s+0

DO T(i)«T(i) +1
\ Q2

DO s+ 1

. 01{ DOs<«0

Fig. 7a Organigramme structuré final de 1’algorithme horloger

344 (A 192)

Fig. 7c Programme mnémonique final

Bull. ASE/UCS 72(1981)7, 11 avril

unité de traitement (ou unité opérative). Examinons ’exécution
par un tel processeur d’une instruction de 1’algorithme hor-
loger (fig. 7a), par exemple celle qui réalise I’incrémentation
de I'indice i:

DO i«~i+ 1.

Si l'unité de traitement est assez puissante, c’est-a-dire si
elle dispose d’un circuit arithmétique permettant 1’incrémen-
tation d’'un nombre i, alors le programme de I'unité¢ de com-
mande se borne a envoyer un ordre simple. Si, par contre,
I'unité de traitement se résume a I’existence de registres de
sortie, comme c’est le cas dans les machines de décision binaire
décrites dans [11;17; 18], alors I’action i<i + 1 doit étre
réalisée par un assemblage d’instructions plus simples, se
ramenant en général a des tests d’une variable logique et des
transferts, dans un registre, d’un état logique. Le raffinement
successif d’une action complexe (par exemple i < i + 1) en un
programme structuré ne comportant que des actions simples
(IF a THEN P ELSE Q, DO R; < 1001, par exemple), cons-
titue la synthése descendante de ce programme (en anglais:
top down methodology).

La synthése descendante d’un programme structuré fait
I’objet de travaux de recherche du Laboratoire de systémes
logiques de ’EPFL. La réalisation d’unités de commande spé-
cialisées dans I’exécution de microprogrammes structurés a
déja fait I’objet d’études antérieures [11].

Bibliographie

[L] Y. Tabourier, A. Rochfeld et C. Frank: La programmation structurée en infor-
matique. Paris, Editions d’organisation, 1975

[2] W. Findlay and D.A. Watt: Pascal, an mtroduction to methodical program-
ming. Potomac/Maryland, Computer Science Press, 1978.

[3]1 B. Meyer et C. Baudoin: Méthodes de programmation. Collection de la direc~
tion des études et recherches de I’Electricité de France. Paris, Eyrolles, 1978.

[4] N. Wirth: Introduction a la programmation systématique. Paris, Masson, 1977.

[5]1 R.C. Linger, H.D. Mills and B.I. Witt: Structured programming, theory and
practice. Reading/Massachusetts, Addison-Wesley, 1979.

[6] C. Bohm and G. Jacopini: Flow diagrams, Turing machines and languages
with only two formation rules. Communications of the Association for Com~
puting Machinery 9(1966)5, p. 366...371.

[71 M. Davio: Hardware implementation of algorithmic computations. MBLE
Research Laboratory, Report R 333. Brussels, Manufacture Belge des Lampes
et de Matériel Electronique, 1976.

[8]1 H. Biihler: Cours d’automatisation de processus. Vol. Ib. Lausanne, Ecole
Polytechnique Fédérale de Lausanne, 1979.

[9]1 T. Ito: A theory of formal microprograms. Sigmicro Newsletters 4(1973)1,
p.5..17.

[10] V.M. Glushkov: Automata theory and formal microprogram transformations.
Cybernetics 1(1965)5, p. 1...9.

1] D3 Ma‘r‘zge 51‘\‘/11croprograrmnatlon structurée. Le Nouvel Automatisme 25(1980)
13, p. 45...54.

[12] R. Kosaraju: Analysis of structured programs. Journal of Computer and
System Sciences 9(1974)3, p. 232...252

[13] C. Piguet, J.-F. Perotto et J.-J. Monbaran. Conception d’un microprocesseur
horloger. Proceedings du Congrés International de Chronométrie, Genéve,
10(1979)3, p. 271...278.

[14] J.-J. Monbaron e.a.: Conception d’un microprocesseur horloger. Journées
g’llélectronique 1979 de I’Ecole Polytechnique Fédérale de Lausanne, p. 207 a

[15] J.-J. Monbaron, et N. Peguiron: Conception de microprocesseurs spécialisés:
exemple du microprocesseur horloger. Bull. ASE/UCS 71(1980)11, p. 558...562.

[16] D. Harel: On folk theorems. Communications of the Association for Com-
puting Machinery 23(1980)7, p. 379...389.

[17] D. Mange: Arbres de décision pour systémes logiques cablés ou programmeés.
Bull. ASE/UCS 69(1978)22, p. 1238...1243.

[18] D. Mange: Compteurs microprogrammés. Bull. ASE/UCS 70(1979)19, p. 1087
a 1095.

Adresse de ’auteur

Daniel Mange, Professeur EPFL, Laboratoire de systémes logiques,
16, chemin de Bellerive, 1007 Lausanne.

Bull. SEV/VSE 72(1981)7, 11. April

(A 193) 345

	Programmation structurée

