
Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de
l'Association suisse des électriciens, de l'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitätsunternehmen

Band: 72 (1981)

Heft: 7

Artikel: Programmation structurée

Autor: Mange, D.

DOI: https://doi.org/10.5169/seals-905096

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-905096
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Programmation structurée
Par D. Mange

681.3.06;

Après un brefexposé des objectifs de la programmation structurée, on définit formellement les éléments qui la caractérisent: séquence DO...),
itération (WHILE... DO...) et test (IF... THEN... ELSE...). La structuration - c'est-à-dire la transformation d'un programme quelconque
dans un programme équivalent, mais structuré - fait l'objet de deux méthodes: la première, intuitive, s'applique généralement à des parties de

programme (structuration locale), tandis que la seconde, systématique, considère le programme dans sa totalité (structuration globale). Ces
deux méthodes sont illustrées par l'exemple d'une montre digitale, dont le cahier des charges est décrit par l'algorithme horloger.

Nach einer kurzgefassten Darstellung der Ziele der strukturierten Programmierung werden die diese kennzeichnenden Elemente formell
definiert: Sequenz (DO...), Iteration (WHILE... DO...) und Tests (IF... THEN... ELSE...). Zur Strukturierung, d.h. zur Umwandlung
eines beliebigen Programmes in ein gleichwertiges, strukturiertes Programm, sind zwei Methoden möglich: Die intuitive Methode wird
üblicherweise auf Teile eines Programms angewandt (lokale Strukturierung) ; die systematische Methode befasst sich mit dem ganzen Programm
(globale Strukturierung). Diese beiden Methoden werden am Beispiel der Digitaluhr erläutert, deren Pflichtenheft durch den Uhren-Algorithmus
beschrieben ist.

1. Introduction et définitions
1.1 Préambule

Le développement de circuits intégrés digitaux de plus en

plus complexes (circuits pour microprocesseurs en tranches

notamment) entraîne l'utilisation fréquente de systèmes
logiques programmés. Il en découle le besoin de disposer de
méthodes systématiques pour la réalisation du logiciel, c'est-à-
dire pour la conception, le test et le dépannage des programmes
ou microprogrammes. La programmation structurée constitue

une réponse à ce besoin. Le but de cet article est de présenter
brièvement les caractéristiques principales de la programmation

structurée, puis de démontrer l'existence de méthodes
permettant de transformer n'importe quel programme (non structuré)

en un programme structuré équivalent.

1.2 Programmation structurée

La programmation structurée [1 ; 2; 3] est une méthode

pour formuler et réaliser des algorithmes d'une façon
systématique [4]. Les objectifs de la programmation structurée sont,
dans l'ordre d'importance:

GO TO j

puits

Fig. X Programme non structuré et ses éléments

a Instruction de test
b Instruction de sortie
c Programme avec une source
d Programme avec un puits

- la rédaction de programmes corrects-, la programmation
structurée rend plus faciles les techniques de validation.

- la rédaction de programmes efficaces-, la programmation
structurée facilite l'optimisation de certains paramètres, tels

que la durée d'un cycle d'opérations ou la capacité de la
mémoire (calcul systématique des arbres de décision binaire, par
exemple).

- la rédaction de programmes adaptables-, la programmation
structurée permet de modifier une partie de programme

sans affecter le tout (modularité) ; la lecture ou la modification
d'un programme par un tiers, la rédaction d'un programme par
plusieurs auteurs sont également facilitées (lisibilité).

Ces objectifs sont atteints à un certain prix, la redondance
du logiciel. Le nombre plus élevé des instructions, ainsi que la

complexité plus grande de celles-ci, entraînent une augmentation

de taille de la mémoire (paramètre spatial); le nombre
plus élevé d'instructions pour certaines actions allonge la durée

d'un cycle (paramètre temporel). Cette redondance du logiciel
peut donc diminuer l'efficacité du programme structuré et

s'opposer ainsi aux objectifs originaux.

1.3 Programme non structuré

Un programme non structuré (ou, plus simplement, un
programme) (fig. 4a p.ex.) est un assemblage quelconque de

deux types d'éléments ou instructions :

- une instruction de test (IF...THEN GO TO... ELSE
GO TO...), représentée par un losange (fig. la); chaque
instruction de test, définie par un nombre ou adresse i et par une
variable logique de test a, possède une borne d'entrée (reliée
à une ou plusieurs instructions précédentes) et deux bornes de

sortie conduisant chacune à une seule instruction suivante
d'adresse p (a 1) ou d'adresse q (a 0); la borne de sortie
de la variable complémentée (a 0) est repérée par un rond
accolé au losange.

- une instruction de sortie (DO... AND GO TO...),
représentée par un rectangle (fig. lb); chaque instruction de

sortie, définie par une adresse i et par une action a, possède

une borne d'entrée (reliée à une ou plusieurs instructions
précédentes) et une borne de sortie reliée à une seule instruction
suivante d'adresse j.

Un organigramme non structuré (ou organigramme) est une
représentation graphique d'un programme non structuré
(fig. 4a, p. ex.), obtenu par l'assemblage des instructions données

par les figures la et lb.

IF a THEN GO TO

p ELSE GO TO q
DO O ANI

sortie

Bull. SEV/VSE 72(1981)7, 11. April (A 187) 339

DO PQ WHILE a DO P

(PVQ)
a

DO PQ

IF a THEN P ELSE Q

WHILE a DO P

IF a THEN P ELSE Q

Fig. 2 Programme structuré

a Instruction de sortie
b Séquence ou composition de P et Q
c Itération ou répétition conditionnelle de P
d Test de P ou Q
e Structogrammes

1.4 Programme propre
Un programme propre (fig. 4b p. ex.) est un programme [5]

- qui comporte une entrée et une sortie;

- dont toutes les instructions sont accessibles à partir de

l'entrée; il n'existe donc aucune source (fig. le p.ex.);
- dont toutes les instructions conduisent à la sortie; il

n'existe donc aucun puits (fig. Id p.ex.).

1.5 Programme structuré [6; 7]

(1) L'instruction de sortie (DO...), représentée par un
rectangle (fig. 2a), définie par une action a, possédant une
borne d'entrée (reliée à une seule instruction précédente) et

une borne de sortie (reliée à une seule instruction suivante),
est un programme structuré. Si P et Q sont des programmes
structurés, alors

(2) la séquence ou composition de P et Q (DO PQ), notée
PQ, est un programme structuré (fig. 2b); les programmes
structurés P et Q sont les éléments de la séquence PQ;

(3) l'itération ou répétition conditionnelle de P (WHILE a
DO P), notée [P], est un programme structuré (fig. 2c); un tel

a

programme possède une boucle de rétroaction ;

(4) le test de P ou Q (IF a THEN P ELSE Q), notée (PVQ),
est un programme structuré (fig. 2d).

(5) Il n'y a pas d'autres programmes structurés que ceux
obtenus en appliquant les définitions (1) à (4) un nombre fini
de fois.

1.6 Organigramme structuré et structogramme

Un organigramme structuré (fig. 7a p. ex.) est une représentation

graphique d'un programme structuré, obtenu par
l'assemblage des éléments donnés par les figures 2a, 2b, 2c et 2d.

Lorsque ces mêmes éléments sont représentés sous la forme
particulière de la figure 2e, leur assemblage porte le nom de

structogramme (fig. 7b, p. ex.) [8],

1.7 Equation d'un programme structuré

La concaténation des expressions algébriques P, Q, PQ,
(PVQ), [P] définissant les éléments d'un programme structuré,
a a
constitue l'équation de ce programme. A titre d'exemple,
l'équation du programme x (fig. 6b) s'écrirait

x ei [(To (eo V Ti gi) v go)]
s T i

L'étude de ces équations fait notamment l'objet des références

[7; 9; 10],

1.8 Commentaire

Tous les programmes structurés ont donc une seule entrée
et une seule sortie; la composition quelconque de plusieurs

programmes structurés produit toujours un programme structuré

(exemple: fig. 7a). Contrairement aux programmes non
structurés, il n'est pas nécessaire de connaître les adresses

futures (GO TO...) pour décrire un programme structuré:
la composition des éléments de ce programme suffit [11].

1.9 Structuration

La structuration d'un programme propre, non structuré,
est la transformation de celui-ci dans un programme équivalent,

mais structuré. La structuration est locale si la transformation

n'affecte qu'une partie du programme non structuré, elle
est globale dans le cas contraire.

1.10 Conclusion

L'étude des méthodes systématiques de structuration, qui
fait l'objet de cette publication, est entreprise dans le double
but

- de démontrer que tout programme non structuré (et

propre) est réalisable par un programme structuré, et de prouver

ainsi l'universalité de la programmation structurée;

- de réaliser un programme structuré à partir d'un cahier
des charges représenté par un programme propre, non structuré.

2. Structuration locale

2.1 Méthode

Elle consiste en l'application successive et, éventuellement,
répétée des trois règles qui suivent; ces règles découlent directement

des définitions de la programmation structurée.

2.2 Règle de structuration n° 1: composition ou décomposition

Soit deux programmes propres p et q assemblés en séquence
selon la figure 3a. Le programme résultant r est aussi propre.
Selon le contexte du problème (et selon l'application possible
des deux autres règles), on peut effectuer la structuration de

chacun des deux programmes p et q (décomposition) ou, au
contraire, la structuration du seul programme résultant r
(composition).

2.3 Règle de structuration n" 2: coupure des boucles

Soit une boucle de rétroaction appartenant à un
organigramme non structuré et ne comportant qu'une seule borne
d'entrée (fig. 3b et 3c). Le nombre des bornes de sortie de

cette boucle est la sortance (en anglais: fan out).
Toute boucle dont la sortance est égale à un peut être réalisée

par un programme structuré comportant un élément

WHILE... DO... (fig. 3b).

340 (A 188) Bull. ASE/UCS 72(1981)7, 11 avril

Définition des notations de Valgorithme horloger Table I

Indice i (décimal) Indice i (binaire)
h il io

Variable
T (i)

Constante
G(i)

0 0 0 0
1 0 0 1

2 0 1 0
3 0 1 1

4 1 0 0

5 1 0 1

6 /max 1 1 0
7 1 1 1

T (0) unité de seconde

T(l) dizaine de secondes
T (2) unité de minute
T (3) dizaine de minutes

T (4) unité d'heure

T (5) dizaine d'heures

G(0)
G(l)
G (2)
G (3)

G (4)

G (5)

10
6

10
6

10 pour 00... 19 heures
4 pour 20...23 heures
3

2.4 Règle de structuration n" 3: abaissement des boucles [12]

Soit une boucle dont la sortance est supérieure à un (fig. 3c) :

dans un tel cas, il n'est pas possible d'obtenir directement un
programme structuré, à moins de recourir à la méthode de

structuration globale exposée plus loin.
Cependant, dans le cas où le premier élément de la boucle

est un programme propre p, il est possible, par duplication
de ce programme, d'obtenir un abaissement de la boucle mis
en évidence par la figure 3c.

2.5 Cahier des charges: montre digitale

Une montre digitale, excitée par un signal d'horloge H,
doit compter et afficher les grandeurs suivantes :

- les secondes (de 00 à 59);

- les minutes (de 00 à 59) ;

- les heures (de 00 à 23).

Le signal d'horloge H est une variable logique dont la
période est égale à une seconde; l'incrémentation des secondes

doit être effectuée à chaque montée de H {H 0 -»• 1).

2.6 Algorithme horloger

Il existe un algorithme universel pour la mesure du temps,
généralement appelé algorithme horloger [13; 14; 15]. En
adoptant les notations de la table I, l'algorithme horloger,
représenté par l'organigramme de la figure 4a, réalise le cahier
des charges de la montre digitale de la façon suivante:

- l'indice i indique la variable calculée; de 0 à 5, on distinguera

tour à tour les secondes (unités, puis dizaines), les

minutes (unités, puis dizaines) et les heures (unités, puis dizaines) ;

- la grandeur T(i) est la variable calculée, dont la valeur
décimale est comprise entre 0 et 9 ;

- la constante G (i) constitue la limite supérieure de la
valeur de la variable T (i).

En partant alors du premier test de H («START» sur la
fig. 4a), le programme détecte la montée du signal H (second
test de H) et force l'indice i à la valeur 0 (i *- 0 : comptage des

unités de seconde); la valeur présente des secondes T(0) est
alors incrémentée (T(0)-^-T(0) + 1); si cette nouvelle valeur
n'est pas égale à la limite G (0) 10, alors l'incrémentation
des secondes se poursuit pour chaque montée de H\ sinon, les

unités de secondes sont mises à zéro (T(0)-<—0) et l'indice i
est incrémenté (i *- i + 1 1): le programme s'apprête
à compter les dizaines de secondes (7X1)T(l) + 1). Le

processus se poursuit jusqu'à la détection de la valeur limite
de l'indice (/max 6), qui coïncide avec la remise à zéro complète

de la montre.

2.7 Programme propre
Le programme de la figure 4a n'est pas propre: il ne

comporte ni entrée, ni sortie. L'introduction d'une variable logique
auxiliaire E (Enable) permet d'obtenir aisément un
organigramme propre (fig. 4b, PP : programme principal) ; dans

celui-ci on a, par ailleurs, simplifié le libellé de certaines
instructions.

On remarque que l'organigramme propre est obtenu par la

coupure d'une boucle de l'organigramme original (fig. 4a) et
l'insertion d'un test sur E; cette insertion est telle que ce test
est effectué chaque seconde. Une autre coupure possible entraînerait

le test sur E chaque fois que i /max, c'est-à-dire
chaque jour.

Fig. 3 Kègles de structuration
a Règle n° 1 : décomposition ou composition
b Règle n° 2 : coupure de boucle
c Règle n° 3 : abaissement de boucle

Bull. SEV/VSE 72(1981)7, 11. April (A 189) 341

| T(i)*-T(i)+1 |

T"
| r(i)*-0 |

1 i-i+1 1

-

Fig. 4a, 4b L'algorithme horloger
a Organigramme original
b Organigramme propre; E

a

Ei i pp u Pg »

^ Prls pl Is g|P,

T

Enable

Fig. 5 Structuration globale

a Organigramme original
b Transformations générales

2.8 Exemple de structuration locale

L'application des règles de structuration est illustrée de la
façon suivante:

- La règle n° 1 transforme l'organigramme de la figure 4b
dans les deux organigrammes de la figure 4c; les nouveaux
programmes propres H, To et AH sont obtenus par composition;

le programme principal (PP) est structuré, de même que

AH*

I h» I

m

Fig. 4c, 4d, 4e Application des règles de structuration locale

c Application de la règle n° 1

d Application de la règle n° 3

e Application de la règle n° 1

les programmes H et To: ils sont distingués par un
astérisque (*).

- La règle n° 3 transforme l'organigramme AH de la figure
4c dans celui de la figure 4d par abaissement d'une boucle.

- La règle n° 1 transforme l'organigramme AH de la figure
4d dans celui de la figure 4e par composition (nouveaux
programmes propres h et x; h est structuré).

A l'exception du programme propre x (fig. 4d), tous les

programmes obtenus sont structurés. L'application des trois
règles de structuration au programme x n'est plus possible: il
faut donc recourir à la méthode de structuration globale.

2.9 Conclusion

La méthode de structuration locale est facile à mettre en

œuvre; elle n'est pas systématique, et le résultat peut dépendre
de l'ordre dans lequel les trois règles ont été appliquées.

Par ailleurs, l'existence d'une ou plusieurs boucles avec
une sortance supérieure à un, ne permet qu'une structuration
partielle du programme original ; seule la méthode de structuration

globale peut achever la transformation.

3. Structuration globale
3.1 Méthode [5; 16]

Celle-ci est illustrée par la transformation du programme
propre x (fig. 5a), qui constitue la partie non structurée de

l'algorithme horloger. Les étapes de la méthode sont les

suivantes :

(1) Toutes les instructions du programme original sont
munies d'une adresse i arbitraire (i 1, 2, 3, 4 dans l'exemple
traité); l'adresse i 1 est réservée à la première instruction

342 (A 190) Bull. ASE/UCS 72(1981)7, 11 avril

rencontrée à l'entrée du programme; l'adresse i 0 est affectée

à la sortie du programme.
(2) Chaque instruction du programme original (z 1, 2,

3, 4) est remplacée par un programme structuré selon la
transformation de la figure 5b. On introduit donc une variable
auxiliaire s, qui est multivaluée (0 SsÈ 4).

(3) L'organigramme structuré recherché se compose (fig. 6a)

- d'une partie universelle, identique pour chaque problème
de structuration, à l'exception du nombre des tests qui est

égal au nombre d'instructions du programme original (quatre
dans l'exemple traité) ;

- d'une partie spécialisée qui regroupe tous les programmes
structurés produits dans l'étape précédente (R1...R4).

3.2 Organigramme canonique structuré

L'organigramme obtenu par la méthode de structuration
globale est appelé organigramme canonique structuré: il est

unique pour un organigramme (non structuré) donné. On
vérifie aisément que l'organigramme canonique structuré

- représente un programme structuré;

- comporte un seul élément WHILE... DO... et une unique
boucle de rétroaction;

- exige n tests de la variable auxiliaire s [5 est (n + 1) — va-
luée], si n est le nombre d'instructions de l'organigramme
original.

3.3 Organigramme structuré simplifié

Il est possible de simplifier l'organigramme canonique
structuré, c'est-à-dire d'en diminuer le nombre d'éléments, en

procédant comme suit: Chaque élément pj (DO sj) est

remplacé par le programme structuré Ru à l'exception de

go (DO s-*- 0) qui reste inchangé.
Dans l'exemple traité (fig. 6a), on peut procéder aux

remplacements successifs suivants:

- dans le programme Ri, @2 est remplacé par R2:

Ri (é?2 v go) (To es v go);
T T

- dans le programme R2, 53 est remplacé par R3:

Ri — (To (gov £4) v eo);
T1 I

- dans le programme R3, «4 est remplacé par R4 (fig. 6b) :

Ri (To (eo v Ti gi) v go).
t 1

Dans le programme R4 (fig. 6a), il apparaît 01 (s 1 : on
obtient le cas particulier où l'élément gj renvoie au programme
Rj auquel il appartient; cet appel récursif empêche alors le

remplacement énoncé par la règle de simplification, et le

programme structuré final s'exprime enfin par l'équation:

x gi [Ri] ei [(To (go v Ti gi) v eo)]
s s T i

L'organigramme correspondant (fig. 6b) est un
organigramme structuré simplifié; pour un organigramme canonique
donné, il existe un grand nombre d'organigrammes structurés
simplifiés, dont la forme finale dépend de l'ordre dans lequel
les remplacements successifs ont été effectués.

On constate, dans l'exemple traité (fig. 6b), que l'organigramme

structuré simplifié

- représente un programme structuré;

- comporte un nombre d'éléments inférieur à celui de

l'organigramme canonique (9 au lieu de 15) ;

- comporte un seul élément WHILE... DO... et une unique
boucle de rétroaction ;

- exige k tests de la variable auxiliaire s [i est (k + 1)-
valuée], si k est le nombre de boucles essentielles de l'organigramme

original, non structuré (dans le cas général, on a
k < n, où n est le nombre d'instructions de l'organigramme
original).

Dans l'exemple traité, il existe une seule boucle essentielle
dans l'organigramme original, non structuré (fig. 5a); il existe

par conséquent, dans l'organigramme structuré simplifié, un
unique test sur la variable auxiliaire s, qui est binaire (2-valuée)
(fig. 6b).

3.4 Programme structuré final
L'assemblage des programmes structurés x (fig. 6b), h

(fig. 4d), H (fig. 4b) et PP (fig. 4c) produit le programme final
qui est complètement structuré (fig. 7a). Dans ce programme,
on a restauré les libellés originaux (selon fig. 4a) et, pour plus
de lisibilité, on a décomposé le programme structuré x en un
élément WHILE... DO... et un programme structuré y.

Fig. 6a Organigramme canonique structuré

Bull. SEV/VSE 72(1981)7, 11. April

Fig. 6b Organigramme structuré simplifié

(A 191) 343

Le structogramme équivalent à l'organigramme structuré
(flg. 7a) est donné à la figure 7b, dans laquelle le mnémonique
NOP (no operation) représente une opération neutre (c'est-à-
dire une instruction de sortie sans effet).

La figure 7c donne enfin le programme décrit par les

mnémoniques DO..., WHILE... DO..., IF... THEN... ELSE...,
définis au paragraphe 1.5.

3.5 Conclusion

La structuration globale du programme propre original
(fig. 4b) produirait un organigramme canonique structuré à

neuf tests (avec une variable .s 10-valuée) et un seul élément
WHILE... DO... (avec une seule boucle de rétroaction).

La structuration locale du même programme a diminué la
complexité de la structuration globale, appliquée à la seule

partie x du programme original. Le programme structuré final
comporte un seul test (avec une variable 5 binaire) et quatre
éléments WHILE... DO..., donc quatre boucles de rétroaction.

L'intérêt principal de la méthode de structuration locale,
outre sa simplicité, réside dans la réduction de complexité
qu'elle entraîne pour l'application de la structuration globale.

4. Conclusion générale
4.1 Méthodes de structuration

Dans la pratique, on recommande de construire un
programme structuré directement à partir de son cahier des charges.

Les méthodes de structuration semblent cependant
indispensables :

- pour démontrer l'universalité de la programmation structurée

(besoin théorique) ;

- pour réaliser un cahier des charges, lorsque celui-ci est

représenté par un organigramme non structuré (besoin
pratique).

La structuration locale du programme original, suivie d'une
éventuelle structuration globale pour les éléments restant non
structurés (c'est-à-dire les boucles dont la sortance est
supérieure à un), constitue une approche possible du problème
posé.

4.2 Méthode de synthèse descendante

Tout processeur admet une décomposition en deux parties,
généralement appelées unité de commande (ou de contrôle) et

pp

WHILE E

WHILE H

1 NOP

WHILE H

1 NOP

i 0

TU) «- T(i) + 1

s «-1

WHILE s > 0

oui - T f T")cG(j —- n"nn

T(i) 0

i i + 1

non*
TU.

T r-H+13

s 1 s + 0 s •*- 0

Fig. 7b Structogramme final

1 T(i) <-0 |

li-i + il

WHILE E DO AH

f WHILE H DO NOP

WHILE H DO NOP

DO i <- 0

DO TU) * TU) +1
DO s 1

WHILE s > 0) DO y

f IF (TU) G(i)) THEN P, ELSE Ö!

f DO TU) -<- 0

DO i •*- i + 1

IF i i THEN P2
MAX ELSE Q2

Ql

P2

02

DO s * 0

'DO s + 0

DO T(i)<-T(i) +1

DO S4" 1

Fig. 7a Organigramme structuré final de l'algorithme horloger

344 (A 192)

Fig. 7c Programme mnémonique final

Bull. ASE/UCS 72(1981)7, 11 avril

unité de traitement (ou unité opérative). Examinons l'exécution

par un tel processeur d'une instruction de l'algorithme
horloger (fig. 7a), par exemple celle qui réalise l'incrémentation
de l'indice i :

DO Î+-Î + 1.

Si l'unité de traitement est assez puissante, c'est-à-dire si
elle dispose d'un circuit arithmétique permettant l'incrémentation

d'un nombre i, alors le programme de l'unité de

commande se borne à envoyer un ordre simple. Si, par contre,
l'unité de traitement se résume à l'existence de registres de

sortie, comme c'est le cas dans les machines de décision binaire
décrites dans [11; 17; 18], alors l'action i*-i + 1 doit être
réalisée par un assemblage d'instructions plus simples, se

ramenant en général à des tests d'une variable logique et des

transferts, dans un registre, d'un état logique. Le raffinement
successif d'une action complexe (par exemple i*-i + 1) en un
programme structuré ne comportant que des actions simples

(IF a THEN P ELSE Q, DO Rj 1001, par exemple), constitue

la synthèse descendante de ce programme (en anglais:

top down methodology).
La synthèse descendante d'un programme structuré fait

l'objet de travaux de recherche du Laboratoire de systèmes

logiques de l'EPFL. La réalisation d'unités de commande
spécialisées dans l'exécution de microprogrammes structurés a

déjà fait l'objet d'études antérieures [11].

Bibliographie
[1] Y. Tabourier, A. Rochfeld et C. Frank: La programmation structurée en infor¬

matique. Paris, Editions d'organisation, 1975.
[2] W. Findlay and D.A. Watt: Pascal, an introduction to methodical programming.

Potomac/Maryland, Computer Science Press, 1978.
[3] B. Meyer et C. Baudoin: Méthodes de programmation. Collection de la direc¬

tion des études et recherches de l'Electricité de France. Paris, Eyrolles, 1978.
[4] N. Wirth: Introduction à la programmation systématique. Paris, Masson, 1977.
[5] R.C. Linger, H.D. Mills and B.I. Witt: Structured programming, theory and

practice. Reading/Massachusetts, Addison-Wesley, 1979.
[6] C. Böhm and G. Jacopini: Flow diagrams, Turing machines and languages

with only two formation rules. Communications of the Association for
Computing Machinery 9(1966)5, p. 366...371.

[7] M. Davio: Hardware implementation of algorithmic computations. MBLE
Research Laboratory, Report R 333. Brussels, Manufacture Belge des Lampes
et de Matériel Electronique, 1976.

[8] H. Bühler: Cours d'automatisation de processus. Vol. Ib. Lausanne, Ecole
Polytechnique Fédérale de Lausanne, 1979.

[9] T. Ito: A theory of formal microprograms. Sigmicro Newsletters 4(1973)1,
p. 5...17.

[10] V.M. Glushkov: Automata theory and formal microprogram transformations.
Cybernetics 1(1965)5, p. 1...9.

[11] D. Mange: Microprogrammation structurée. Le Nouvel Automatisme 25(1980)
13, p. 45...54.

[12] R. Kosaraju: Analysis of structured programs. Journal of Computer and
System Sciences 9(1974)3, p. 232...252.

[13] C. Piguet, J.-F. Perotto et J.-J. Monbaron: Conception d'un microprocesseur
horloger. Proceedings du Congrès International de Chronométrie, Genève,
10(1979)3, p. 271...278.

[14] J.-J. Monbaron e.a.: Conception d'un microprocesseur horloger. Journées
d'Electronique 1979 de l'Ecole Polytechnique Fédérale de Lausanne, p. 207 à
216.

[15] J.-J. Monbaron, et N. Peguiron: Conception de microprocesseurs spécialisés:
exemple du microprocesseur horloger. Bull. ASE/UCS 71(1980)11, p. 558...562.

[16] D. Harel: On folk theorems. Communications of the Association for Com¬
puting Machinery 23(1980)7, p. 379...389.

[17] D. Mange: Arbres de décision pour systèmes logiques câblés ou programmés.
Bull. ASE/UCS 69(1978)22, p. 1238...1243.

[18] D. Mange: Compteurs microprogrammés. Bull. ASE/UCS 70(1979)19, p. 1087
à 1095.

Adresse de l'auteur
Daniel Mange, Professeur EPFL, Laboratoire de systèmes logiques,
16, chemin de Bellerive, 1007 Lausanne.

Bull. SEV/VSE 72(1981)7, 11. April (A 193) 345

	Programmation structurée

