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Der bindre Golay-Code
Von J. Fabijanski

681.3.04:519.711.4;

Die wichtigsten Eigenschaften des dichigepackten und des erweiterten Golay-Codes werden dargelegt. Anschliessend werden die Gewichts-
bzw. Distanzverteilungen sowie explizite Ausdriicke fiir die Wahrscheinlichkeit des richtigen Empfanges und des Fehlempfanges abgeleitet.

Larticle comporte un exposé des qualités fondamentales du code binaire de Golay, tant parfait qu’élargi. On en déduit ensuite les répartitions
du poids et de la distance ainsi que les formules explicites pour la probabilité de la réception correcte et intempestive.

1. E nleitung

Fiir die Ubertragung von Informationen werden meistens
bindre Blockcodes verwendet [1; 2; 3]. Ein solcher Code bildet
eine Menge von Codeworten, die n bindre Elemente (Bits)
enthalten. Von diesen gelten iiblicherweise die ersten A als
Informationselemente und die restlichen r — n — k als redun-
dante Parititselemente, die es ermoglichen, Bitfehler innerhalb
des Codewortes zu erkennen bzw. zu korrigieren.

Der Code wird demnach durch das geordnete Tripel (n, k, d)
charakterisiert, wobei d die minimale Hamming-Distanz zwi-
schen den Codeworten bedeutet. Die Hamming-Distanz ist
bekanntlich als die Anzahl der Binirstellen definiert, an denen
sich zwei Codeworte voneinander unterscheiden.

Die Codeworte, als Folgen von Nullen und Einsen, konnen
als Vektoren aufgefasst werden. Mit der elementenweisen Ad-
dition modulo 2 (die in diesem Fall mit der Subtraktion iden-
tisch ist) und Multiplikation mit O und 1 bilden sie iiber dem
Galois-Korper GF(2) eine additive abelsche Gruppe und einen
k-dimensionalen linearen Unterraum des n-dimensionalen
Vektorraumes aller moglichen Worte der Linge n. Solche Codes
werden daher als lineare Codes bzw. Gruppencodes bezeichnet.

Die Codeworte (einschliesslich des Codewortes aus lauter
Nullen, das normalerweise nicht benutzt wird) miissen in ihrem
Informationsteil unterschiedlich sein, ihre Anzahl ist also der
Anzahl der k-Variationen von 2 Elementen, d. h. 2k gleich. Sie
bilden folglich eine Teilmenge der Menge aller mdoglichen
Worte der Linge #n, deren Anzahl 27 ist.

Die r Parititselemente werden so gewihlt, dass zum Code
nur diejenigen Vektoren gehoren, die die Bedingung He™ = 0
erfiillen. Dabei ist H eine Matrix mit Elementen aus GF(2)
und ¢T der transponierte Codevektor, also ein Spaltenvektor
mit n Elementen. Die dem Code eigene Parititsmatrix H hat
r Zeilen und n Spalten. Sie besteht aus ciner rechteckigen
Matrix 4 mit k Spalten und einer Einheitsmatrix I; vom
Gradr: H = [A, I].

Diese Bedingung definiert den Code eindeutig. Sie bildet
auch die Grundlage fiir die selbsttitige Korrektur der Bitfehler
im empfangenen Wort. Wenn ndmlich das gesendete Codewort
fehlerlos empfangen wird, so ist diese Bedingung offenbar
erfiillt. Wenn aber das obige Produkt vom Nullvektor ver-
schieden ist, so enthélt es (als das sog. Syndrom) die Informa-
tion liber die Stellen, an welchen Bitfehler aufgetreten sind,
vorausgesetzt, dass diese die fiir den Code zuldssige Hochst-
zahl e nicht {ibersteigen. Die Fehler konnen dann riickgingig
gemacht und das gesendete Codewort kann erkannt werden.

Wenn man sich die Endpunkte aller Codevektoren als
Mittelpunkte von Kugeln mit dem Radius e (im Sinne der
Hammingschen Metrik) im n-dimensionalen Raum denkt, so
muss die minimale Distanz zwischen den Codeworten zumin-
dest

d=2¢+1 (1)
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betragen, damit diese Kugeln disjunkt und somit die mit hoch-
stens e Bitfehlern behafteten Codeworte eindeutig identifizier-
bar sind.

Unter den linearen Codes gibt es eine besondere Klasse der
sog. perfekten oder dichtgepackten Codes. Derartige Codes
(sofern sie existiecren) erlauben es, mit der minimalen Ham-
ming-Distanz nach (1) bis zu e Bitfehlern innerhalb des Code-
wortes (aber keine mehr) zu korrigieren. Sie sind «dichtge-
packt» in dem Sinne, dass die 2k n-dimensionalen Kugeln um
die Codeworte den gesamten Vektorraum restlos ausfiillen,
und zwar derart, dass jeder Vektor zu nur einer Kugel gehort
und dass es keine gibt, die zu keiner Kugel gehoren. Die not-
wendige Bedingung fiir eine solche Zerlegung des Vektorraumes
ist

< 13
z (’Z) — Jn-k (2)
i=0
Die Anzahl der jeder Kugel zugehorigen Vektoren ist ndmlich

gleich der Summe der Zahlen (7) der i-Kombinationen von

n Elementen fiir i = 0, ..., e. Diese Anzahl, multipliziert mit
der Anzahl 2k der Kugeln, muss die Anzahl 2» aller Vektoren
des Raumes ergeben, woraus die obige Bedingung unmittelbar
folgt.

Es gibt freilich verhiltnismissig wenige ganzzahlige Werte-
tripel (n, k, d), die (2) mit (1) erfiillen. Fiir diejenigen allerdings,
die dies erfiillen, ist auch die Bedingung (2) nicht hinreichend
fur die Existenz eines entsprechenden Codes. Es muss in jedem
Fall zusitzlich nachgewiesen werden, dass der betreffende Code
tatsdchlich existiert, d.h. nicht in sich widerspriichlich ist.

2. Die dichtgepackten Codes

Ein triviales Beispiel des dichtgepackten Codes ist der sog.
Wiederholungscode, in dem ein Informationsbit einfach mehr-
mals wiederholt wird. Er enthilt nur zwei Codeworte, beste-
hend aus lauter Nullen (das Nullwort) oder aus lauter Einsen
(das Einswort). Mit e Kkorrigierbaren Bitfehlern ist hier
(n, k,d) = (2e + 1, 1, 2¢ + 1), was die Bedingung (2) erfillt,
denn
i (2e - 1) _ poe
i—=0

Ein praktisch viel wichtigeres Beispiel bilden die Hamming-

Codes (2r — 1,2r — 1 — r, 3), die freilich nur einen Bitfehler
zu korrigieren vermogen [2; 3]. Hier hat man ndmlich

> (F7 Y-

i=0 :
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Nach zahlreichen Versuchen hat Golay!) im Jahre 1949 [4]
fir bindre Codes noch zwei Wertetripel (n, k, d) gefunden, die
die Bedingung (2) erfiillen, und zwar: (90, 78, 5) und (23, 12, 7).
Er hat aber gleichzeitig festgestellt [4; 5], dass es fiur das erste
Wertetripel keinen widerspruchslosen Code geben kann. Fir
das zweite hingegen hat er ein konkretes Beispiel eines linearen
Codes (23, 12, 7) angegeben, definiert durch die Paritdatsmatrix:

T100111000111]10000000000
101011011001{01000000000
101101101010{00100000000
101110110100{00010000000
110011101100{00001000000

H - 1170101110001 {00000100000 |(3)
110110011010]00000010000
111001010110{00000001000
111010100011{00000000100
111100001101{00000000010
LO11111111111{0000000000T1_|

Der durch diese Matrix H eindeutig definierte Code kann
nach (1) bis zu 3 Bitfehler korrigieren. Er kann auch durch
seine erzeugende Matrix G definiert werden, die von der Pari-
tédtsmatrix in ihrer kanonischen Form H — [ A, I ] unmittelbar
[3] als G = [ Iy, A"] abgeleitet werden kann. Dabei bedeutet
A" die transponierte Teilmatrix 4 von H und I\ die Einheits-
matrix vom Grad k. Die Zeilen der Matrix G bilden die Basis-
vektoren des A-dimensionalen Coderaumes. Ihre linearen Kom-
binationen tiber GF(2) ergeben alle Vektoren bzw. Worte des
Codes. Fiir den obigen Golay-Code erhidlt man demnach die
erzeugende Matrix als:

100000000000 | 1 L1 LTI 1LTI11O0T]
010000000000|0000T1T 111111
001000000000 |0O111000T1T1T11
000100000000 |101 101100711
000010000000 |1 1011010101
G 000001000000 |11 101101001 )
000000100000 |001 T 1100101
000000010000 |010101110O0T1
000000001000|011010100T1 1
000000000100 |1001 10010711
000000000010 10100011101
1L 000000000001 |1 T0001001T11_]

Golay hat auch u.a. die Vermutung gedussert, dass es mog-
licherweise ausser den frither erwidhnten dichtgepackten Codes
und dem Code (23, 12, 7) keine perfekten bindren Codes mehr
geben kann [6]. Die Richtigkeit dieser Vermutung ist aber
erst 1973 von Tietdvdinen bewiesen worden [3]. Der Golay-
Code (23, 12,7) kann also in dieser Hinsicht als einzigartig
angesehen werden. Er ist nicht nur theoretisch interessant,
sondern auch zur praktischen Anwendung sehr gut geeignet
und wird als solcher mit Vorteil verwendet. Es soll daher im
folgenden auf einige wichtige, meistens aber nur fliichtig be-
rithrte Eigenschaften dieses Codes niher eingegangen werden.

3. Der zyklische Golay-Code

Fiir das Wertetripel (23, 12, 7) gibt es auch andere Codes,
die dem von Golay mit (3) definierten dquivalent sind, und
zwar in dem Sinne, dass sie in bezug auf Gewichtsverteilung
der Codeworte und Fehlerwahrscheinlichkeit gleichwertig sind,
sonst aber noch weitere niitzliche Eigenschaften besitzen kon-
nen. Der Begriff Golay-Code kann also als eine Klasse von
dquivalenten dichtgepackten Codes aufgefasst werden.

1) Marcel J. E. Golay, geb. 1902 in Neuchatel.
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Unter den linearen Codes kommt den zyklischen Codes eine
besondere Bedeutung zu. Eine zyklische Permutation der Ele-
mente des Codewortes ergibt in diesem Fall wieder ein Code-
wort. Zur Codierung und Decodierung werden hier nur
Schieberegister und verhiltnismissig einfache logische Folge-
schaltungen benotigt.

Fasst man die Codeworte der Lidnge » als Polynome vom
Grade < n — 1 auf, deren Koeffizienten aus dem Galois-
Korper GF(2) den Codewortelementen

< €1, €2, ., Cn > =1 X" - eax™ 2 4+ o1 X+ e

entsprechen, so kann der zyklische Golay-Code folgender-
massen definiert werden: der dquivalente zyklische Golay-Code
(23, 12, 7) ist ein Hauptideal im Polynomrestklassenring
modulo x™ + | fiber GF(2) mit n
Polynom g(x) vom Grade r — 11. Alle Codeworte, als Ele-
mente des obigen Ideals, miissen dieses Polynom als Faktor
enthalten. Es muss auch ein Teiler von (x?3 -+ 1) sein, denn
aus x2 4+ 1 = g(x) h(x) + r(x) folgt g(x) h(x) — r(x) mod
(x23 4 1) und, da r(x) von kleinerem Grade als g(x) ist, muss
r(x) — 0 sein. Die folgende Zerlegung tiber GF(2) [3]:

x23 | (x

+ x

— 23, erzeugt durch ein

F 1) (1 4 x9 4 7
1) (x!!

Lox6 oy

+ 1

U L R D G .

liefert zwei Polynome 1. Grades, die dquivalente zyklische
Golay-Codes erzeugen. Diese Polynome sind unzerlegbar
(irreduzibel) tiber GF(2) (siche z.B. Anhang C in [2]) und
zueinander reziprok. Ein zu g(x) reziprokes Polynom, definiert
als x!! g(x-1), hat die gleichen Koeffizienten, aber in umge-
kehrter Reihenfolge. Im vorliegenden Fall sind die Koeffizien-
ten beider Polynome:

< 101011100011 = und << 110001110101 =>.

Die Multiplikation mod (x>3 - 1) eines Codewortpolynoms
c(x) 1 x22 + cax? + 4 coax + 1
mit x ergibt, da x23 I mod(x23 + 1) ist,
c1x233  cox?2 4 ..+ caox® + cogx = c2x22 4 cax?l +
+ ... + ce3x + ci,

wieder ein Codewort, mit der zyklischen Permutation der
Koeffizienten:

(1, 2, sess 224 23)
2,3, ..,23,1 )

Durch wiederholte Multiplikation mit x kann man aus dem
Polynom g (x) k linear unabhidngige Codeworte bzw. -vektoren
erhalten, die den A-dimensionalen Code-Unterraum aufspan-
nen, mithin die Zeilen der erzeugenden Matrix G bilden kon-
nen. Somit erhdlt man vom ersten der oben angegebenen Poly-

nome g(x) = x + x9 + x7 + x6 | x5 L x - | die erzeu-
gende Matrix des Codes:

10101110001 10000000000O07]

010101110001100000000O00O0
001010111000110000000O0CO0
00010101110001100000000
0000101011 10001100000O0O0
G 00000101011 1T00011000006O0
1000000101011 10001100000
0000000101011 1000110006O0
0000000010101 1100011006O0
00000000O0O10O1O0OI1T1T10001100O0
0000000000101 011T10001T10

1L 000000000001 010111000T1 1_]

Bull. ASE/UCS 70(1979)11, 9 juin



Mit linearen Kombinationen der Zeilen kann diese Matrix
in die kanonische Form G = [ 12, A] iibergefiihrt werden:

100000000000 101011100017]
010000000000 (11111001001
0010000000001 10100101011
000100000000|11000111011
0000100000001 1001T1T01100
G — 000001000000 (01100110110
1 000000100000 |00110011011
000000010000(10110111100
000000001000(0O10110111T10
000000000100 (00101101 111
000000000010(101110001T10
1 000000000001 ]01011100011_]
Daraus folgt die Paritatsmatrix
r111110010010|100000000007]
011111001001 (01000000000O0
1170001110110{00100000000
011000111011{]00010000000
11001000111 1100001000000
H=| 100111010101]00000100000 |(5)
101 101111000{00000010000
010110111100{]00000001000
001011011110{00000000100
00010110111 1[000000000T10
1 1111001001011]00000000001 _|
Das andere Polynom g(x) = x'1 - x10 4 x6 - x5 | x4 +

+ x2 -1 fihrt zu einem dquivalenten (aber nicht identischen)
Code mit der erzeugenden Matrix

100000000000 (110001110107
010000000000 (0110001 1101
001000000000 11110110100
000100000000 (0T1'T 11011010
000010000000 (00111101101
G — 0000010000001 1011001100
000000100000 (01101100110
000000010000 |001101100T1
000000001000)110111000T11
000000000100)10101001011
0000000000101 001001 1111
L 000000000001 ]1000111010T1_|

Tabelle 1

Gewicht Anzahl der Worte

i+ 2

i+ 3

4. Gewichtsverteilung und Codeerweiterung

Zur Berechnung gewisser mit dem Code zusammenhéngen-
der Wahrscheinlichkeiten ist die Kenntnis der Gewichtsvertei-
lung notwendig. Das Gewicht w eines Codewortes ist gleich
der Anzahl von Stellen, die nicht gleich null sind. Die Ge-
wichtsverteilung ist eine auf der Menge der Gewichte {w}
definierte Funktion A(w), deren Werte der Anzahl der Code-
worte vom Gewicht w gleich sind. Sie stellt auch die Verteilung
der Hammingschen Distanz der Codeworte vom Nullwort dar.

Um diese Verteilung flir den Golay-Code zu bestimmen,
beachte man, dass je nachdem, ob die Bitfehler auf Nullen
oder Einsen im Codewort entfallen, jede n-dimensionale Kugel
um ein Codewort vom Gewicht 7/ in die Gewichtsklassen von
Tabelle I zerlegt werden kann. Da der betrachtete Code dicht-
gepackt ist, miissen alle Beitrdge der Kugeln um die Codeworte
vom Gewicht (j — 3), ..., ( + 3) zur Gewichtsklasse j aller
moglichen Worte der Linge n = 23 deren Anzahl (23) ergeben,

]
so dass

+AG) [147@3=D] + a0+

Mit der Substitution /

A= 27w = (T V)] A =5 (B

AG=3 (57 s a2 (B ) rau -G n (M)

D1+ (b @-pl+ag+a (5 +4a6+3 (757 - (F).

]

w — 3 folgt daraus die Rekursionsbeziehung
A (§) +Aw =10 (Y3 )+ aw -2 [w-2+("3?) @5 - w)] A =31+ -3 @6~ w] +

2 ") H =9 (P37) = (,23):

(6)

Wie schon erwédhnt, miussen alle Codewortpolynome eines
zyklischen Codes, im besonderen also auch die Zeilen der
erzeugenden Matrix G, das Polynom g(x) als gemeinsamen
Teiler enthalten. Wenn man nun z.B. die zwei letzten Zeilen
der Matrix (4) ins Auge fasst, so kann man sich leicht iiber-
zeugen (z. B. mit Hilfe des euklidschen Algorithmus), dass diese
teilerfremd sind. Folglich ist der von Golay in [4] angegebene
perfekte Code nicht zyklisch. Die beiden dquivalenten Codes
hingegen, mit gleichen Parametern (n, k, d) = (23, 12, 7), die
die Bedingung (2) erfiillen, sind zugleich dichtgepackt und
zyklisch.

Bull. SEV/VSE 70(1979)11, 9. Juni

Mit A(0) =1, A(l) = ... = A(6) = 0 erhdlt man aus (6)
nacheinander die weiteren Werte: A(7) = 253, 4(8) = 506,
A9) = A(10) = 0, A(11) = 1288.

Weitere Berechnungen eriibrigen sich, weil in einem Grup-
pencode jedem Codewort mit dem Gewicht w ein Codewort
mit dem komplementiren Gewicht n — w, das durch die Ad-
dition des Einswortes zum ersteren entsteht, umkehrbar ein-
deutig zugeordnet werden kann. Es gilt also A(w) = A(n — w),
so dass A(12) = A(11), A(13) = A(10) usw.

Der Golay-Code (23, 12, 7) kann durch Hinzunahme einer
zusitzlichen, tber das ganze Codewort erstreckten Paritits-
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stelle zu einem Code (24, 12, 8) erweitert werden. Bei gleich-
bleibender Anzahl der k Informationsstellen wird somit die
Lange der Codeworte und das Gewicht aller Codeworte mit
ungeradzahligem Gewicht, mithin auch die minimale Distanz
d, um 1 erhoht, was allerdings die Anzahl der korrigierbaren
Fehler nicht vergrossert.

Esist leicht einzusehen, dass dadurch die Paritdtsmatrix des
urspriinglichen Codes um eine Zeile und eine Spalte erweitert
wird. So erhdlt man z.B. aus der Matrix (5) des zyklischen
Golay-Codes (23, 12, 7) die folgende Parititsmatrix des erwei-
terten Golay-Codes (24, 12, 8):

T111110010010]10000000000 |07
011111001001{01000000000/|0
110001110110|{00100000000 /0
011000111011{00010000000/0
110010001111{00001000000/0
7L 100111010101 (000001000001]0
101101111000[{00000010000/0
010110111100{00000001000 /0
001011011110|{00000000100/0
0001011011 11]00000000010|0
111100100101{00000000001 /|0
111111111111 11r1rr1111r111 1

Ein solcher Code ist offenbar nicht mehr dichtgepackt (und
auch nicht mehr zyklisch), hat aber andere interessante Eigen-
schaften (z. B. Zusammenhinge mit anderen Codearten, niitz-
liche Automorphismen u.a.), auf die hier allerdings nicht niher
eingegangen werden kann. Es sei in diesem Zusammenhang
nur auf [3] verwiesen, wo besonders der erweiterte Golay-Code
ausfiihrlich behandelt wird.

Die Gewichtsverteilung des erweiterten Golay-Codes kann
von derjenigen des perfekten Golay-Codes einfach abgeleitet
werden, indem alle Werte A4 (w) fiir ungerades w zu den Werten
A(w + 1) hinzuaddiert und A4(w) — O gesetzt werden. Somit
konnen die Gewichtsverteilungen fiir den dichtgepackten und
den erweiterten Golay-Code in Tabelle 11 zusammengestellt
werden.

5. Empfangswahrscheinlichkeit

Die Wahrscheinlichkeit, dass ein gesendetes Codewort rich-
tig empfangen wird, ist gleich derjenigen, dass nicht mehr als
3 Bitfehler im Codewort auftreten. Unter der Voraussetzung
der stochastischen Unabhingigkeit der Bitfehler innerhalb
eines Codewortes und dass die Bitfehlerrate p als Wahrschein-
lichkeit eines Fehlers an einer beliebigen Stelle des Codewortes
angenommen werden kann, ergibt sich fiir den Golay-Code
mitg =1—p

3
Pi= ZO (’;) pigni. %)
Dabei ist fur den perfekten Golay-Code n — 23 und fiir den
erweiterten n — 24 zu setzen.

Das Ereignis, dass ein nicht gesendetes Codewort trotzdem,
infolge von Bitfehlern, unerwiinschterweise empfangen wird,
bedeutet z. B. in beweglichen Fernmeldesystemen einen storen-
den falschen Anruf des betroffenen Teilnehmers. Zur Ermitt-
lung der Wahrscheinlichkeit P eines solchen Ereignisses muss
die Distanzverteilung der Codeworte beriicksichtigt werden.

Aus der Definition der Hammingschen Distanz 4 (c, ¢o) und
des Gewichtes w(c) der Codeworte eines bindren Gruppen-
codes uber GF(2) folgt, dass k(c, co) = w(c + co).

540 (A 275)

Es ist leicht einzusehen, dass die Abbildung f: ¢ >c¢ + co
eine Bijektion von C = {c} auf sich ist. Die Anzahl der Code-
worte mit der Distanz 4 von c¢o ist mithin der Anzahl der Code-
worte vom Gewicht w gleich. Die Distanzverteilung ist folglich
gegeniiber f invariant und fiir jedes Codewort co mit der Ge-
wichtsverteilung A (w) identisch. Im besonderen ist auch die
minimale Distanz d gleich dem minimalen Gewicht.

Die gesuchte Wahrscheinlichkeit P» ist gleich der Wahr-
scheinlichkeit, dass ein Codewort ¢o empfangen wird, unter
der Bedingung, dass ein Codewort mit der Distanz i -4 0 ge-
sendet wurde, erstreckt auf alle moglichen Werte i = d, ..., n,
was offenbar exklusiven Ereignissen entspricht. Es ist also

Py = é Pr{co|i} Pr{i}

Infolge der Bitfehler kann die Distanz des gesendeten Code-
wortes gedndert, im besonderen auch vermindert werden.
Wenn sie dadurch bis auf hochstens 3 herabgesetzt wird, so
wird das empfangene Wort als das Codewort ¢ identifiziert,
da der Golay-Code bis zu 3 Bitfehler zu korrigieren vermag.
Dies kann folgendermassen erfolgen:

1. Es konnen in einem mit der Distanz i gesendeten Code-
wort genau / Bitfehler auftreten, die diese Distanz auf 0 herab-
setzen, mit der Wahrscheinlichkeit

piq“"i

2. Die Anzahl der Bitfehler innerhalb der obigen i Stellen
kann 7 — j betragen, mit j < 3, mit der Wahrscheinlichkeit

(l i]) pi—j qn—(i~j)

3. Die Anzahl der Bitfehler umfasst die obigen 7 Stellen und
betrdgt i/ +j mit j < 3, mit der Wahrscheinlichkeit

n—i e
( j )p(n_])qn (i+j)

Diese Fille schliessen einander aus, so dass die bedingte
Wabhrscheinlichkeit

3 4
Pr {(‘o' ,-} = plgn-i 4 Z (;) pi-lgn- i
j=1

3 ;
4 Z (njf./) pitign=(i=)

j=1

ist.
Tabelle 11
Anzahl der Codeworte 4 (w) im Golay-Code:
Gewicht w (23,12, 7) (24,12, 8)
0 1 1
Ly 8 0 0
7 253 0
8 506 759
9,10 0 0
11 1288 0
12 1288 2576
13, 14 0 0
15 506 0
16 253 759
17 wssy 22 0 0
23 1 0
24 0 1
insgesamt 4096 4096
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Die Wahrscheinlichkeit dafiir, dass ein Codewort mit der
Distanz 7 (einschliesslich des Nullwortes) gesendet wird, be-
tragt

Somit ergibt sich fiir die Wahrscheinlichkeit des falschen
Anrufes im Golay-Code der Ausdruck

Py 212iid Apign |1 +§ () (%)j +

3 (150 (2]

i=1

®)

Fir den dichtgepackten Code ist in diesem Ausdruck n = 23
und fiir den erweiterten n = 24 einzusetzen. Die Werte der
Koeffizienten A (i) sind dabei der Tabelle II fiir A(w) mit
I = w zu entnehmen.

Beide Formeln (7) und (8) ergeben fiir den perfekten Golay-
Code grossere Werte als fiir den erweiterten. Allerdings ist die

Differenz im Fall der Formel (7) unerheblich, so dass beide
Codes in bezug auf Decodierung als fast gleichwertig gelten
konnen. Fiir den Ausdruck (8) hingegen ist die Differenz be-
trachtlich grosser. Der erweiterte Golay-Code ist also beziiglich
der Wahrscheinlichkeit unerwiinschter Anrufe glinstiger.
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Carl Emil Krarup 18721909

Konigliche Bibliothek Kopenhagen

Als sich Ende des 19. Jahrhunderts die Telefonnetze auf immer grossere Gebiete aus-
dehnten, machte sich die zu grosse Dampfung der Leitungen in zunehmendem Mass
unangenehm bemerkbar. Heaviside hatte dieses Problem vorausgesehen und verschiedene
Wege zur Erhohung der Selbstinduktion und damit Verkleinerung der Dampfung vor-
geschlagen. Das Krarupkabel stellt eine solche Losung dar.

Carl Emil Krarup, Sohn eines Textilkaufmannes, wurde am 12. Oktober 1872 in
Kopenhagen geboren. Mit 24 Jahren schloss er sein Studium als Bauingenieur ab und
arbeitete 2 Jahre lang beim Kopenhagener Amt fiir Strassen und Kanalisation. Darauf
trat er als technischer Ingenieur-Aspirant zum staatlichen Telegrafenwesen tber, machte
1901 Studien am Physikalischen Institut in Wirzburg, worauf er am 1. Dezember 1902
zum Telegrafeningenieur ernannt wurde.

Zu jener Zeit schrieb die Universitit Kopenhagen eine Preisaufgabe aus tiber die Selbst-
induktion elektrischer Leitungen. Krarup beteiligte sich am Wettbewerb, wurde ausge-
zeichnet und kam dadurch ins Gesprach mit Professor Pedersen von der Universitit.
Dieser war uiberzeugt, dass Krarup mit seinem Vorschlag auf dem rechten Weg sei, und
forderte ihn. Schon im Spétherbst 1902 fabrizierte die Firma Felten und Guillaume nach
Krarups Angaben ein erstes, 4 km langes Kabel, das durch den Oeresund verlegt wurde.
Beim Krarupkabel sind die feinen Kupferleiter mit etwa 0,2 bis 0,3 mm dickem Eisendraht
oder 0,15 mm dickem, etwa 3 mm breitem Eisenband umwickelt, was eine betrdchtliche
Reduktion der Dampfung bewirkt. Ein Jahr spiter folgte ein 20 km langes Seekabel
zwischen Ddnemark und Deutschland (Fehmarn-Belt). Von da an fanden Krarupkabel
fiir Telefon- und spéter auch fir Telegrafenleitungen regelméssig Verwendung.

1906 riickte Krarup zum Leiter der technischen Abteilung der Telegrafendirektion auf.
Er war bei radiotelegrafischen Versuchen auf den Lofoten (Norwegen) beteiligt, wirkte
als Berater der Telegrafenverwaltungen von Island, der Firder-Inseln sowie in Baku.
Er war Mitglied der Meterkommission und spielte auch im IEC eine Rolle. Mitten aus
einer rastlosen Tétigkeit wurde er am 30. Dezember 1909 in Kopenhagen nach kurzer

Krankheit durch den Tod abberufen. Uber sein Privatleben ist ausser seiner Heirat am 23. August 1904 nur wenig bekannt. Er soll sehr

beliebt gewesen sein.

Die Krarupkabel wurden weiter entwickelt und fanden bis etwa 1935 breite Anwendung. Die gleichméssige Verteilung der Selbstinduktion
uber die ganze Kabelldnge, der gleichbleibende Kabeldurchmesser und die leichte Reparaturmoglichkeit galten lange als Vorteil gegeniiber
der fast gleichzeitig erfundenen und dem gleichen Zweck dienenden Pupin-Spule. Diese, etwa ab 1920 gebaut, hat spiter das teurere, etwas

schwerere und dickere Krarupkabel verdrangt.
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