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Der binäre Golay-Code
Von J. Fabijanski

681.3.04:519.711.4;

Die wichtigsten Eigenschaften des dichtgepackten und des erweiterten Golay-Codes werden dargelegt. Anschliessend werden die Gewichtsbzw.

Distanzverteilungen sowie explizite Ausdrücke für die Wahrscheinlichkeit des richtigen Empfanges und des Fehlempfanges abgeleitet.

L'article comporte un exposé des qualités fondamentales du code binaire de Golay, tant parfait qu'élargi. On en déduit ensuite les répartitions
du poids et de la distance ainsi que les formules explicites pour la probabilité de la réception correcte et intempestive.

1. Einleitung
Für die Übertragung von Informationen werden meistens

binäre Blockcodes verwendet [l ; 2; 3], Ein solcher Code bildet
eine Menge von Codeworten, die n binäre Elemente (Bits)
enthalten. Von diesen gelten üblicherweise die ersten k als

Informationselemente und die restlichen r n — k als redundante

Paritätselemente, die es ermöglichen, Bitfehler innerhalb
des Codewortes zu erkennen bzw. zu korrigieren.

Der Code wird demnach durch das geordnete Tripel (n, k, d)
charakterisiert, wobei d die minimale Hamming-Distanz
zwischen den Codeworten bedeutet. Die Hamming-Distanz ist

bekanntlich als die Anzahl der Binärstellen definiert, an denen

sich zwei Codeworte voneinander unterscheiden.
Die Codeworte, als Folgen von Nullen und Einsen, können

als Vektoren aufgefasst werden. Mit der elementenweisen
Addition modulo 2 (die in diesem Fall mit der Subtraktion identisch

ist) und Multiplikation mit 0 und 1 bilden sie über dem

Galois-Körper GF{2) eine additive abelsche Gruppe und einen

/r-dimensionalen linearen Unterraum des «-dimensionalen
Vektorraumes aller möglichen Worte der Längen. Solche Codes

werden daher als lineare Codes bzw. Gruppencodes bezeichnet.

Die Codeworte (einschliesslich des Codewortes aus lauter
Nullen, das normalerweise nicht benutzt wird) müssen in ihrem
Informationsteil unterschiedlich sein, ihre Anzahl ist also der
Anzahl der ^'-Variationen von 2 Elementen, d.h. 2k gleich. Sie

bilden folglich eine Teilmenge der Menge aller möglichen
Worte der Länge n, deren Anzahl 2n ist.

Die r Paritätselemente werden so gewählt, dass zum Code

nur diejenigen Vektoren gehören, die die Bedingung HcT 0

erfüllen. Dabei ist H eine Matrix mit Elementen aus GF(2)
und cT der transponierte Codevektor, also ein Spaltenvektor
mit n Elementen. Die dem Code eigene Paritätsmatrix H hat

r Zeilen und n Spalten. Sie besteht aus einer rechteckigen
Matrix A mit k Spalten und einer Einheitsmatrix Ir vom
Grad r: H [A, Jr].

Diese Bedingung definiert den Code eindeutig. Sie bildet
auch die Grundlage für die selbsttätige Korrektur der Bitfehler
im empfangenen Wort. Wenn nämlich das gesendete Codewort
fehlerlos empfangen wird, so ist diese Bedingung offenbar
erfüllt. Wenn aber das obige Produkt vom Nullvektor
verschieden ist, so enthält es (als das sog. Syndrom) die Information

über die Stellen, an welchen Bitfehler aufgetreten sind,

vorausgesetzt, dass diese die für den Code zulässige Höchstzahl

e nicht übersteigen. Die Fehler können dann rückgängig
gemacht und das gesendete Codewort kann erkannt werden.

Wenn man sich die Endpunkte aller Codevektoren als

Mittelpunkte von Kugeln mit dem Radius e (im Sinne der
Hammingschen Metrik) im »-dimensionalen Raum denkt, so

muss die minimale Distanz zwischen den Codeworten zumindest

d 2c? -f-1 1

betragen, damit diese Kugeln disjunkt und somit die mit höchstens

e Bitfehlern behafteten Codeworte eindeutig identifizierbar

sind.

Unter den linearen Codes gibt es eine besondere Klasse der

sog. perfekten oder dichtgepackten Codes. Derartige Codes

(sofern sie existieren) erlauben es, mit der minimalen
Hamming-Distanz nach 1 bis zu e Bitfehlern innerhalb des

Codewortes (aber keine mehr) zu korrigieren. Sie sind «dichtgepackt»

in dem Sinne, dass die 2k w-dimensionalen Kugeln um
die Codeworte den gesamten Vektorraum restlos ausfüllen,
und zwar derart, dass jeder Vektor zu nur einer Kugel gehört
und dass es keine gibt, die zu keiner Kugel gehören. Die
notwendige Bedingung für eine solche Zerlegung des Vektorraumes
ist

2 (") 2"-k (2)
i 0

Die Anzahl der jeder Kugel zugehörigen Vektoren ist nämlich

gleich der Summe der Zahlen (jj der /-Kombinationen von

n Elementen für / 0, e. Diese Anzahl, multipliziert mit
der Anzahl 2k der Kugeln, muss die Anzahl 2" aller Vektoren
des Raumes ergeben, woraus die obige Bedingung unmittelbar
folgt.

Es gibt freilich verhältnismässig wenige ganzzahlige Werte-

tripel (/;, k, d), die (2) mit (1) erfüllen. Für diejenigen allerdings,
die dies erfüllen, ist auch die Bedingung (2) nicht hinreichend
für die Existenz eines entsprechenden Codes. Es muss in jedem
Fall zusätzlich nachgewiesen werden, dass der betreffende Code

tatsächlich existiert, d.h. nicht in sich widersprüchlich ist.

2. Die dichtgepackten Codes

Ein triviales Beispiel des dichtgepackten Codes ist der sog.
Wiederholungscode, in dem ein Informationsbit einfach mehrmals

wiederholt wird. Er enthält nur zwei Codeworte, bestehend

aus lauter Nullen (das Nullwort) oder aus lauter Einsen

(das Einswort). Mit e korrigierbaren Bitfehlern ist hier
(«, k, d) (2e + 1, 1, 2e + 1), was die Bedingung (2) erfüllt,
denn

i ü t ') - 2"
i 0

Ein praktisch viel wichtigeres Beispiel bilden die Hamming-
Codes (2r — 1, 2r — 1 — r, 3), die freilich nur einen Bitfehler

zu korrigieren vermögen [2; 3], Hier hat man nämlich
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Nach zahlreichen Versuchen hat Golay ') im Jahre 1949 [4]
für binäre Codes noch zwei Wertetripel (11, k, d) gefunden, die
die Bedingung (2) erfüllen, und zwar: (90, 78, 5) und (23, 12, 7).

Er hat aber gleichzeitig festgestellt [4; 5], dass es für das erste

Wertetripel keinen widerspruchslosen Code geben kann. Für
das zweite hingegen hat er ein konkretes Beispiel eines linearen
Codes (23, 12, 7) angegeben, definiert durch die Paritätsmatrix:

H

10 0 1 I

10 10 1

10 0 0 1 I 1

10 1 10 0 1

101101101010
101110110100
110011101100
110101110001
110110011010

10 0 10 10 1 10
10 10 10 0 0 1 1

1 10 0 0 0 1 10 1

1 I 1 1 1 I 1 1 1 1

1 1

1 1

1 1

0 1

1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

10 0 0

0 10 0
0 0 10
0 0 0 1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0"
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

10 0 0

0 10 0
0 0 10
0 0 0 L

(3)

"10 0 0
0 10 0
0 0 10
0 0 0 1

0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

.0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
10 0 0
0 10 0
0 0 10
0 0 0 1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

10 0 0
0 10 0
0 0 10
0 0 0 1

1 0"
1 I

1

1

I 1 1 I 11 I 1 1

0 0 0 0 11111
0 1 1 1 0 0 0 1 1 I

10 110 110 0 1

110 110 10 10 1

1110 110 10 0 1

0 0 1 1 1 I 0 0 1 0 I

0 10 10 1 1 10 0 1

0 110 10 10 0 11
10 0 110 0 10 11
10 10 0 0 1110 1

110 0 0 10 0 111

(4)

Unter den linearen Codes kommt den zyklischen Codes eine

besondere Bedeutung zu. Eine zyklische Permutation der
Elemente des Codewortes ergibt in diesem Fall wieder ein Codewort.

Zur Codierung und Decodierung werden hier nur
Schieberegister und verhältnismässig einfache logische
Folgeschaltungen benötigt.

Fasst man die Codeworte der Länge n als Polynome vom
Grade < n — 1 auf, deren Koeffizienten aus dem Galois-

Körper GF(2) den Codewortelementen

< Cl, C2 Cn ' : Cn I -r Cn

Der durch diese Matrix H eindeutig definierte Code kann
nach (1) bis zu 3 Bitfehler korrigieren. Er kann auch durch
seine erzeugende Matrix G definiert werden, die von der
Paritätsmatrix in ihrer kanonischen Form H [ A, Jrl unmittelbar

[3] als G [h,AT] abgeleitet werden kann. Dabei bedeutet
A'r die transponierte Teilmatrix A von H und Ik die Einheitsmatrix

vom Grad k. Die Zeilen der Matrix G bilden die
Basisvektoren des A-dimensionalen Coderaumes. Ihre linearen
Kombinationen über GF(2) ergeben alle Vektoren bzw. Worte des

Codes. Für den obigen Golay-Code erhält man demnach die

erzeugende Matrix als:

entsprechen, so kann der zyklische Golay-Code folgender-
massen definiert werden: der äquivalente zyklische Golay-Code
<23, 12, 7) ist ein Hauptideal im Polynomrestklassenring
modulo ,v" f / über GF (2) mit n 23, erzeugt durch ein

Polynom g(x) vom Grade r II. Alle Codeworte, als

Elemente des obigen Ideals, müssen dieses Polynom als Faktor
enthalten. Es muss auch ein Teiler von (.v23 4- 1) sein, denn

aus .v23 I 1 gix) h ix) F rix) folgt g(x) h(x) — rix) mod
(.v23

rix)
I) und, da rix) von kleinerem Grade als g(x) ist, muss
Osein. Die folgende Zerlegung über GF(2) [3]:

1 ix F \ )ixu r -v«

.v 1 .v11 i

X 6 | j^5

Jt5.V6 + F .v2 4 1

liefert zwei Polynome 11. Grades, die äquivalente zyklische
Golay-Codes erzeugen. Diese Polynome sind unzerlegbar
(irreduzibel) über GF(2) (siehe z.B. Anhang C in [2]) und
zueinander reziprok. Ein zu gix) reziprokes Polynom, definiert
als x11 gix-1), hat die gleichen Koeffizienten, aber in
umgekehrter Reihenfolge. Im vorliegenden Fall sind die Koeffizienten

beider Polynome:
< 101011100011 > und < 110001110101 >.

Die Multiplikation mod(.v23 4 1 eines Codewortpolynoms

cix) Cl.Y22 J- C2.Y21 | + C22-V I 1

mit ,v ergibt, da ,v23 1 mod(.v23 1 ist,

,V23 | C2 X"~ | 4 C22X2

I C23 X + Cl,

C23 -V C-sX-

Golay hat auch u.a. die Vermutung geäussert, dass es

möglicherweise ausser den früher erwähnten dichtgepackten Codes

und dem Code (23, 12, 7) keine perfekten binären Codes mehr
geben kann [6], Die Richtigkeit dieser Vermutung ist aber
erst 1973 von Tietäväinen bewiesen worden [3]. Der Golay-
Code (23, 12,7) kann also in dieser Hinsicht als einzigartig
angesehen werden. Er ist nicht nur theoretisch interessant,
sondern auch zur praktischen Anwendung sehr gut geeignet
und wird als solcher mit Vorteil verwendet. Es soll daher im

folgenden auf einige wichtige, meistens aber nur flüchtig
berührte Eigenschaften dieses Codes näher eingegangen werden.

3. Der zyklische Golay-Code
Für das Wertetripel (23, 12, 7) gibt es auch andere Codes,

die dem von Golay mit (3) definierten äquivalent sind, und

zwar in dem Sinne, dass sie in bezug auf Gewichtsverteilung
der Codeworte und Fehlerwahrscheinlichkeit gleichwertig sind,
sonst aber noch weitere nützliche Eigenschaften besitzen können.

Der Begriff Golay-Code kann also als eine Klasse von
äquivalenten dichtgepackten Codes aufgefasst werden.

') Marcel J. E.Golay, geb. 1902 in Neuchätel.

wieder ein Codewort, mit der zyklischen Permutation der

Koeffizienten:

a 3

2 22, 23 \

23, 1 / '

Durch wiederholte Multiplikation mit .y kann man aus dem

Polynom gix) k linear unabhängige Codeworte bzw. -vektoren
erhalten, die den A-dimensionalen Code-Unterraum aufspannen,

mithin die Zeilen der erzeugenden Matrix G bilden können.

Somit erhält man vom ersten der oben angegebenen
Polynome gix) .v11 + .y9 I x7 I xr' 4 x5 1 .y 1 die erzeugende

Matrix des Codes:

-1 0 1 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0~
0 1 0 1 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 1 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 I 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0

_0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1

_
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Tabelle I

Mit linearen Kombinationen der Zeilen kann diese Matrix
in die kanonische Form G [J12, Ä\ übergeführt werden:

~1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 ~
0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1

0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 0 1

0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 1

0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1

0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1 0

_0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 1

_

iraus folgt die Paritätsmatrix

~ 1 1 1 1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0-
0 1 1 1 1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 1 1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 1 1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0
1 1 0 0 1 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0
1 0 0 1 1 1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 1 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0

_
1 1 1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1

_
Das andere Polynom g(x) a'11 + x10 + .vu + .v5 + -y4 +

+ x2 F 1 führt zu einem äquivalenten (aber nicht identischen)
Code mit der erzeugenden Matrix

- 1 0 0 0 0 0 0 0 0 0 0 0 1 I 0 0 0 1 1 1 0 I 0

0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1

0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1

0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 1 0 0 1 I 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 1 0 0 I 1

0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 1 0 0 0 1 1

0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 1 1 1

_0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 1

Gewicht Anzahl der Worte

/• - 3 (i) (V)
/- 2 0 (2V j
i - 1 (i) CY'Mi) fr')

(i\ (23 - i\ (i\ 123 - A
l 00

i + 1 täCY'MD m
/ + 2 w m

/A /23 - A
/ 4~ 3 loj l 3

4. GewichtsVerteilung und Codeerweiterung
Zur Berechnung gewisser mit dem Code zusammenhängender

Wahrscheinlichkeiten ist die Kenntnis der Gewichtsverteilung

notwendig. Das Gewicht w eines Codewortes ist gleich
der Anzahl von Stellen, die nicht gleich null sind. Die
Gewichtsverteilung ist eine auf der Menge der Gewichte -[Vj
definierte Funktion A(w), deren Werte der Anzahl der Codeworte

vom Gewicht w gleich sind. Sie stellt auch die Verteilung
der Hammingschen Distanz der Codeworte vom Nullwort dar.

Um diese Verteilung für den Golay-Code zu bestimmen,
beachte man, dass je nachdem, ob die Bitfehler auf Nullen
oder Einsen im Codewort entfallen, jede H-dimensionale Kugel

um ein Codewort vom Gewicht i in die Gewichtsklassen von
Tabelle I zerlegt werden kann. Da der betrachtete Code
dichtgepackt ist, müssen alle Beiträge der Kugeln um die Codeworte

vom Gewicht (j — 3), (/' + 3) zur Gewichtsklasse j aller

möglichen Worte der Länge n 23 deren Anzahl |23) ergeben,

so dass

A(j ~ 3) (263 J)+A(j- 2) (252 '") +AU- 1) [24 -,/ + (./- 1) (242 y')] +

+ A(j) [l / (23 />j AI / F 1) [y + 1 + i' ') (22-./)] +A(j + 2) (7 + 2) + A(j+3) 3
3) - (23).

Mit der Substitution j w — 3 folgt daraus die Rekursionsbeziehung

A(w) ] + A (w — 1 Iw 2 + A (w — 2) |^M' — 2 + 2
~~) (25 — w)] — A (w — 3) ^1 + (w — 3) (26 — w)] -|-

+ A(w- 4) [27 - w + (w - 4) (27 2 H')] +A(w - 5) (28 ~ w) + A(w - 6) (29 ~
M') f^23 3).

Wie schon erwähnt, müssen alle Codewortpolynome eines

zyklischen Codes, im besonderen also auch die Zeilen der
erzeugenden Matrix G, das Polynom g(x) als gemeinsamen
Teiler enthalten. Wenn man nun z.B. die zwei letzten Zeilen
der Matrix (4) ins Auge fasst, so kann man sich leicht
überzeugen (z.B. mit Hilfe des euklidschen Algorithmus), dass diese

teilerfremd sind. Folglich ist der von Golay in [4] angegebene

perfekte Code nicht zyklisch. Die beiden äquivalenten Codes

hingegen, mit gleichen Parametern (11, k, d) (23, 12,7), die
die Bedingung (2) erfüllen, sind zugleich dichtgepackt und
zyklisch.

Mit ,4(0) 1, A( 1) .4(6) =0 erhält man aus (6)
nacheinander die weiteren Werte: A(7) 253, A(8) 506,

A(9) /4(10) 0, A( 11) 1288.

Weitere Berechnungen erübrigen sich, weil in einem
Gruppencode jedem Codewort mit dem Gewicht w ein Codewort
mit dem komplementären Gewicht n — w, das durch die
Addition des Einswortes zum ersteren entsteht, umkehrbar
eindeutig zugeordnet werden kann. Es gilt also A w) A (n — w),

so dass ,4(12) A( 11), ,4(13) ,4(10) usw.
Der Golay-Code (23, 12, 7) kann durch Hinzunahme einer

zusätzlichen, über das ganze Codewort erstreckten Paritäts-
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stelle zu einem Code (24, 12, 8) erweitert werden. Bei
gleichbleibender Anzahl der k Informationsstellen wird somit die

Länge der Codeworte und das Gewicht aller Codeworte mit
ungeradzahligem Gewicht, mithin auch die minimale Distanz
d, um 1 erhöht, was allerdings die Anzahl der korrigierbaren
Fehler nicht vergrössert.

Es ist leicht einzusehen, dass dadurch die Paritätsmatrix des

ursprünglichen Codes um eine Zeile und eine Spalte erweitert
wird. So erhält man z.B. aus der Matrix (5) des zyklischen
Golay-Codes (23, 12, 7) die folgende Paritätsmatrix des erweiterten

Golay-Codes (24, 12, 8):

111110010010 10000000000 0-
011111001001 01000000000 0

110001110110 00100000000 0

011000111011 00010000000 0

110010001111 00001000000 0

100111010101 00000100000 0

101101111000 00000010000 0
0 10 110 11110 0 00000001000 0

001011011110 00000000100 0

000101101111 00000000010 0

111100100101 00000000001 0

111111111111 11111111111 1_

Ein solcher Code ist offenbar nicht mehr dichtgepackt (und
auch nicht mehr zyklisch), hat aber andere interessante
Eigenschaften (z. B. Zusammenhänge mit anderen Codearten, nützliche

Automorphismen u.a.), auf die hier allerdings nicht näher
eingegangen werden kann. Es sei in diesem Zusammenhang
nur auf [3] verwiesen, wo besonders der erweiterte Golay-Code
ausführlich behandelt wird.

Die Gewichtsverteilung des erweiterten Golay-Codes kann
von derjenigen des perfekten Golay-Codes einfach abgeleitet
werden, indem alle Werte A(w) für ungerades w zu den Werten
A{w + 1) hinzuaddiert und A(w) =0 gesetzt werden. Somit
können die Gewichtsverteilungen für den dichtgepackten und
den erweiterten Golay-Code in Tabelle II zusammengestellt
werden.

5. Empfangswahrscheinlichkeit
Die Wahrscheinlichkeit, dass ein gesendetes Codewort richtig

empfangen wird, ist gleich derjenigen, dass nicht mehr als

3 Bitfehler im Codewort auftreten. Unter der Voraussetzung
der stochastischen Unabhängigkeit der Bitfehler innerhalb
eines Codewortes und dass die Bitfehlerrate p als Wahrscheinlichkeit

eines Fehlers an einer beliebigen Stelle des Codewortes

angenommen werden kann, ergibt sich für den Golay-Code
mit q 1 — p

Pi - 2 (/) P' 7n '- <7)
i o

Dabei ist für den perfekten Golay-Code n 23 und für den

erweiterten n 24 zu setzen.
Das Ereignis, dass ein nicht gesendetes Codewort trotzdem,

infolge von Bitfehlern, unerwünschterweise empfangen wird,
bedeutet z.B. in beweglichen Fernmeldesystemen einen störenden

falschen Anruf des betroffenen Teilnehmers. Zur Ermittlung

der Wahrscheinlichkeit P« eines solchen Ereignisses muss
die Distanzverteilung der Codeworte berücksichtigt werden.

Aus der Definition der Hammingschen Distanz h(c, co) und
des Gewichtes w(c) der Codeworte eines binären Gruppencodes

über GF(2) folgt, dass h(c, co) w(c + Co).

Es ist leicht einzusehen, dass die Abbildung /: c -> c + Co

eine Bijektion von C {cj auf sich ist. Die Anzahl der Codeworte

mit der Distanz h von co ist mithin der Anzahl der Codeworte

vom Gewicht w gleich. Die Distanzverteilung ist folglich
gegenüber /invariant und für jedes Codewort co mit der

Gewichtsverteilung A(w) identisch. Im besonderen ist auch die
minimale Distanz d gleich dem minimalen Gewicht.

Die gesuchte Wahrscheinlichkeit P2 ist gleich der
Wahrscheinlichkeit, dass ein Codewort co empfangen wird, unter
der Bedingung, dass ein Codewort mit der Distanz i # 0

gesendet wurde, erstreckt auf alle möglichen Werte i d, /;,

was offenbar exklusiven Ereignissen entspricht. Es ist also

n

p, y Pr {Co /} P,{i)
i=d

Infolge der Bitfehler kann die Distanz des gesendeten
Codewortes geändert, im besonderen auch vermindert werden.
Wenn sie dadurch bis auf höchstens 3 herabgesetzt wird, so

wird das empfangene Wort als das Codewort c0 identifiziert,
da der Golay-Code bis zu 3 Bitfehler zu korrigieren vermag.
Dies kann folgendermassen erfolgen:

1. Es können in einem mit der Distanz i gesendeten Codewort

genau i Bitfehler auftreten, die diese Distanz auf 0

herabsetzen, mit der Wahrscheinlichkeit

p\ qn- i

2. Die Anzahl der Bitfehler innerhalb der obigen i Stellen
kann i — j betragen, mit / y 3, mit der Wahrscheinlichkeit

(,•
' y) Pl : ?n-(1-1)

3. Die Anzahl der Bitfehler umfasst die obigen i Stellen und

beträgt / + j mit j y 3, mit der Wahrscheinlichkeit

(" 7 ') pilH) <7n"<i+jl

Diese Fälle schliessen einander aus, so dass die bedingte
Wahrscheinlichkeit

3

Pr {co /} p' qn-i + 2 (/) Pi~j cl" (M) +
Dt

+ 2 " 77 y-v '

Dl
ist.

Tabelle II

Gewicht u

Anzahl der Codewortc A(w) im Golay-Code:

(23. 12, 7) (24, 12. 8)

0 1 1

1 6 0 0

7 253 0

8 506 759

9, 10 0 0
11 1288 0

12 1288 2576

13, 14 0 0

15 506 0
16 253 759

17. 22 0 0

23 1 0

24 0 1

insgesamt 4096 4096
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Die Wahrscheinlichkeit dafür, dass ein Codewort mit der
Distanz i (einschliesslich des Nullwortes) gesendet wird,
beträgt

Pr{i) AU)
] 212

Somit ergibt sich für die Wahrscheinlichkeit des falschen

Anrufes im Golay-Code der Ausdruck
3

Po 2-12 '

^ ' ' l ;fri \j! \pi
(8)

+l|("7')(f)1]
Für den dichtgepackten Code ist in diesem Ausdruck n 23

und für den erweiterten n 24 einzusetzen. Die Werte der
Koeffizienten A (i) sind dabei der Tabelle II für A(w) mit
i w zu entnehmen.

Beide Formeln (7) und (8) ergeben für den perfekten Golay-
Code grössere Werte als für den erweiterten. Allerdings ist die

Differenz im Fall der Formel (7) unerheblich, so dass beide
Codes in bezug auf Decodierung als fast gleichwertig gelten
können. Für den Ausdruck (8) hingegen ist die Differenz
beträchtlich grösser. Der erweiterte Golay-Code ist also bezüglich
der Wahrscheinlichkeit unerwünschter Anrufe günstiger.
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Carl Emil Krarup 1872-1909

Als sich Ende des 19. Jahrhunderts die Telefonnetze auf immer grössere Gebiete
ausdehnten, machte sich die zu grosse Dämpfung der Leitungen in zunehmendem Mass
unangenehm bemerkbar. Heaviside hatte dieses Problem vorausgesehen und verschiedene
Wege zur Erhöhung der Selbstinduktion und damit Verkleinerung der Dämpfung
vorgeschlagen. Das Krarupkabel stellt eine solche Lösung dar.

Carl Emil Krarup, Sohn eines Textilkaufmannes, wurde am 12. Oktober 1872 in
Kopenhagen geboren. Mit 24 Jahren schloss er sein Studium als Bauingenieur ab und
arbeitete 2 Jahre lang beim Kopenhagener Amt für Strassen und Kanalisation. Darauf
trat er als technischer Ingenieur-Aspirant zum staatlichen Telegrafenwesen über, machte
1901 Studien am Physikalischen Institut in Würzburg, worauf er am 1. Dezember 1902

zum Telegrafeningenieur ernannt wurde.
Zu jener Zeit schrieb die Universität Kopenhagen eine Preisaufgabe aus über die

Selbstinduktion elektrischer Leitungen. Krarup beteiligte sich am Wettbewerb, wurde
ausgezeichnet und kam dadurch ins Gespräch mit Professor Pedersen von der Universität.
Dieser war überzeugt, dass Krarup mit seinem Vorschlag auf dem rechten Weg sei, und
förderte ihn. Schon im Spätherbst 1902 fabrizierte die Firma Feiten und Guillaume nach
Krarups Angaben ein erstes, 4 km langes Kabel, das durch den Oeresund verlegt wurde.
Beim Krarupkabel sind die feinen Kupferleiter mit etwa 0,2 bis 0,3 mm dickem Eisendraht
oder 0,15 mm dickem, etwa 3 mm breitem Eisenband umwickelt, was eine beträchtliche
Reduktion der Dämpfung bewirkt. Ein Jahr später folgte ein 20 km langes Seekabel
zwischen Dänemark und Deutschland (Fehmarn-Belt). Von da an fanden Krarupkabel
für Telefon- und später auch für Telegrafenleitungen regelmässig Verwendung.

1906 rückte Krarup zum Leiter der technischen Abteilung der Telegrafendirektion auf.
Er war bei radiotelegrafischen Versuchen auf den Lofoten (Norwegen) beteiligt, wirkte
als Berater der Telegrafenverwaltungen von Island, der Färöer-Inseln sowie in Baku.
Er war Mitglied der Meterkommission und spielte auch im IEC eine Rolle. Mitten aus
einer rastlosen Tätigkeit wurde er am 30. Dezember 1909 in Kopenhagen nach kurzer

Krankheit durch den Tod abberufen. Über sein Privatleben ist ausser seiner Heirat am 23. August 1904 nur wenig bekannt. Er soll sehr
beliebt gewesen sein.

Die Krarupkabel wurden weiter entwickelt und fanden bis etwa 1935 breite Anwendung. Die gleichmässige Verteilung der Selbstinduktion
über die ganze Kabellänge, der gleichbleibende Kabeldurchmesser und die leichte Reparaturmöglichkeit galten lange als Vorteil gegenüber
der fast gleichzeitig erfundenen und dem gleichen Zweck dienenden Pupin-Spule. Diese, etwa ab 1920 gebaut, hat später das teurere, etwas
schwerere und dickere Krarupkabel verdrängt. H. Wüger
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