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Berechnung von intermittierenden Schaithetriebszuständen
mittels Matrizen und Matrizenfunktionen
Von H.G. Gerlach

621.3.017:512.643.4;

Die thennischen Vorgänge, die sich hei unregelmässiger Belastung elektrischer Betriebsmittel (Motoren, Transformatoren, Kabelsysteme)
ergeben, setzen sich abschnittsweise aus Exponentialfunktionen zusammen. Ein indirekt gekühlter, geschlossener Elektromotor bietet hierfür
ein gutes Beispiel. Es werden die mathematischen Gesetzmässigkeiten über den Verlaufperiodisch angeregter «Kippschwingungen» in Systemen
mit definiter Matrix behandelt. Insbesondere wird auf die Zusammenhänge zwischen den Erwärmungsspitzen und möglicherweise gegebenen
Systemparametern (Schaltung) sowie zwischen den ersten Erwärmungsspitzen und denjenigen im Sättigungszustand eingegangen. Sind alle
Speicherstellen eines Mehrkörpersystems gleich gut geeignet für eine Messung der jeweiligen Temperaturen unter Testbedingungen, wie z.B.
die einzelnen Stränge eines gemeinsam verlegten Energiekabelsystems, so bieten sich die simultanen Übergangsfunktionen als Berechnungsgrundlage

an, die für beliebige Lastbedingungen und Schaltbetriebszyklen ausreichende Informationen enthalten sollten.

Les phénomènes thermiques qui résultent d'une charge irrégulière des moteurs, transformateurs et câbles se composent de fonctions exponentielles

par intervalle. Un moteur électrique fermé, à refroidissement indirect, en est un bon exemple. Les règles mathématiques de l'allure
d'oscillations de relaxation sont traitées dans des systèmes à matrice définie, notamment les relations entre pointes d'échauffément et paramètres
connus du système (circuit), ainsi qu'entre les premières pointes d'échauffement et les pointes à l'état de saturation. Lorsque tous les éléments
d'accumulation d'un système à plusieurs corps conviennent pour la mesure des températures dans des conditions de tests, par exemple les câbles
d'un système souterrain, les réponses transitoires simultanées peuvent constituer une base de calcul donnant suffisamment d'informations pour
des conditions de charge et des cycles de service quelconques.

1. Einleitung
Die Struktur eines irgendwie begrenzten Zustandsraumes

in elektrischen oder analogen Systemen (vor allem bei
thermischen Vorgängen) werde durch Diskretisierung näher
erklärt, so dass sich die Systemeigenschaften in vereinfachter
Form als die strukturtypischen Eigenschaften einer Schaltung
definieren lassen. Ob es sich bei dem sog. Quellennetz um eine

wirkliche elektrische Schaltung oder um das analoge Abbild
mit elektrischen Modellgrössen anstelle der wirklichen (z.B.
thermischen) handelt, ist belanglos. Im folgenden wird die
elektrische Nomenklatur zur Beschreibung eines
Wärmeleitungsmodells nach Fig. 1 mit Speichern (Kapazitäten CY) an
den mit Indices i(j) # 0 bezeichneten Knotenpunkten 1...4

verwendet, welche durch energieverzehrende Transportwege
(Leitwerte Gij) verbunden sind. Die Übertemperaturen der

Speicher (Potentialdifferenzen m) entspannen sich auf null
infolge dauernder Kühlung über die äusseren Ableitungen
(Gio parallel angeschlossen an die CO bzw. steigen oder kommen

zum Gleichgewicht unter der Einwirkung zugeführter
Wärmeströme (Ströme h).

Werden die Stromquellen (h oder Qi j'h dt) in einem
intermittierenden Schaltbetrieb ein- und ausgeschaltet, so

ergibt sich der zeitliche Verlauf als ein im wesentlichen
steigender Kurvenzug mit diskontinuierlichem Anstieg, d.i. eine

Sättigungslinie mit überlagerter nichtharmonischer Schwingung

(vgl. z.B. Fig. 5). Nachfolgend wird die End-Spitzen-
erwärmung in der Wicklung eines im sog. S5-Betrieb gefahrenen

Käfigläufermotors berechnet. Das Beispiel dieses Motors
ist ein Grenzfall, welcher die Ansätze zu vielen ähnlichen
Problemstellungen (Erwärmungszyklen von Transformatoren,
von Kabelanordnungen usw.) ohne weiteres umfasst. Die
Verwendung des Matrizenkalküls, insbesondere die Berechnung
diskontinuierlicher «Aufschaukelvorgänge» mittels Matrizen-
fimktionen, hat eine weit darüber hinausgehende Bedeutung.

2. Das 4-Knoten-Netz des indirekt gekühlten,
geschlossenen Käfigläufermotors

Der Motor mit seinen 4 Speichergebieten - Wicklung 1,

Statorblechpaket 2, Rotor (Käfig und Blechkörper) 3, übrige
Gewichte (Totgewicht ohne Verlusteinspeisung) 4 - ist in [1]

analysiert und beschrieben worden. Im Unterschied zu ande¬

ren einfacheren thermischen Anordnungen, wo die Wärmequellen

weniger stark gekoppelt sind, stellt er ein allgemeines
4-Körper-System dar (Fig. 1).

Der Knotenpunktsatz (Kirchhoff) beii, beispielsweise! 1^

erfasst die Bilanz der Wärmeströme I. Die Quellströme h sind
die Verlustleistungen der i-ten Wärmequellen, wobei verschiedene

Indizes i oder j angewendet werden, falls der betreffende
Knoten gerade zum Gegenstand der Bilanzierungsrechnung

genommen (i) oder als angekoppelte Senke betrachtet werden
soll (j); die mit j indizierten Knoten wirken nur mit ihren
Spannungen (//j), nicht aber mit ihren Strömen (/]) auf den

bilanzierten Knoten ein. Im Zuge einer zyklischen Permutation
schlüpft jeder der n 4 Knoten einmal in die Rolle des i-ten
Knotens hinein.

Die Temperaturen der Quellgebiete sind unbestimmten
elektrischen Potentialen vergleichbar: Erst die Gärtemperaturen

ni, m, (Erwärmungen) lassen sich in einem
Wärmeleitungsmodell in Relation zur Umgebung und zum Anfangszustand

der Speicher (Potential null) wie elektrische Spannungen

gegenüber Erde (Knoten 0) definieren. Dann erscheinen
die Wärmekapazitäten der Quellgebiete Ci als elektrische
Erdkapazitäten, jeweils parallel zu schalten mit direkten
Ableitungen Gio. Die Ableit- und Kopplungsleitwerte (Gm, Gij)
werden in einer Leitwertmatrix zusammengefasst, wobei jede
Matrixzeile durch einen anderen Index i adressiert ist und
wobei die Spalten der Matrix zusammen mit den Potentialen
oder Spannungen über alle Knoten laufen (j 1...4).

Insofern als es sich bei den Leitwertverbindungen zwischen
zwei Knoten i und j um ungerichtete Verbindungen Gij Gji
handelt, dürfen die Spalten und Zeilen der Leitwertmatrizen,
Ge im eingeschalteten oder Go im ausgeschalteten Zustand,
vertauscht werden (Symmetrie). Die Leitwertmatrizen (Ge,
Go), die lediglich diagonale - somit ebenfalls symmetrische -
Kapazitätsmatrix (C) und der Wärmequellenvektor (i)
bestimmen das thermische Verhalten des Motors vollständig und
ausreichend. Die charakteristischen Matrizen (C_1 • Ge, o)

werden définit genannt, d. h. dass die charakteristische
Determinante nur reelle Wurzeln (bzw. Zeitkonstanten der Dimension

C/G) haben und dass das System nur exponentiell
abklingende Ausgleichsfunktionen aufweisen kann.
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Es können 4 Knotenpunktgleichungen (Strombilanzen)
aufgeschrieben werden, welche das System in allen Einzelheiten

bestimmen. Beispielsweise lautet die Bilanz im 1. Knoten,
wenn dm/dt p m gesetzt ist (p Laplace-Operator) :

[(Gio + Gi2 + G13 + G14) + Ci-p] m — G]2 «2 —

Gil — Gl3 ks — G14 z/4 Ii
Entsprechend im i-ten Knoten :

(Gii - : Ci-p)lt[ ~ ^ Gij Z/j Ii (1)

jXi
Fasst man die variablen (oder gesuchten) Übertemperaturen,

kurz Potentiale, zu einem Vektor

[z/t]

z/1

Z/2

Z/3

Z/4

und weiter die konstanten Koeffizienten der untereinandergeschriebenen

Gleichungen zu Matrizen Ge, C zusammen,
so lautet das vollständige Gleichungssystem für die Potentiale

des laufenden Motors (Kennzeichen Index e bei Ge):

(Ge 4- C • p) u i

(Go + C • p) 0

det (Go, e 4- G p) — 0 Pk. 1...4

(5)z-i (t) =2 Wik CkePkt (i und k) 1...4

<k)

Die Gewichtsfaktoren /Wik- in Gl. (5) sind nach Zeilen (i) und

Spalten (k) in einer ebenfalls nur von der Schaltung abhängigen
Matrix Mo (oder Me) angeordnet (Mozfa/matrix). Man
bezeichnet die bis auf einen unerheblichen Maßstabsfaktor (die

Integrationskonstante Ck in Gl. 5) relativ zueinander durch
das System bestimmten Komponenten je einer k-ten Spalte

der Modalmatrix als den k-ten EigenreAzh/- oder als die Eigen-

richtung zum k-ten Eigenwert [2].
Die Schaltungsmatrizen des Systems (Go, C) können

geometrisch als eine Abbildungsvorschrift (Affinität) aufgefasst

werden, derzufolge eine Einheits-«Kugel» um die Einheitsvektoren

auf den Koordinatenachsen des 4dimensionalen

Raumes (welcher durch die 4 Spannungen als seine Koordinaten

definiert sein mag) in ein 4achsiges Ellipsoid verwandelt

wird. Die 4 Hauptachsen des Ellipsoids fallen in die

Eigenrichtungen für k 1...4, so dass ein Einheitsvektor in der

k-ten Eigenrichtung mi auch durch die 4 räumlichen Winkel
definiert sein kann, die dieser mit den Koordinatenachsen
einschliesst. Falls der 4dimensionale Abbildungsraum
Vorstellungsschwierigkeiten macht, so stelle man sich zunächst

2- und 3dimensionale Unterräume vor, in denen grundsätzlich
dieselben Beziehungen zwischen Matrizen leicht darstellbar
sind.

Die Eigenvektoren oder -richtungen ergeben sich aus
demselben homogenen Gleichungssystem wie die entsprechenden

Eigenwerte, d.i. Gl. (2 oder 3) beide Male mit rechter Seite als

Nullvektor (0) aufgefasst. Löst man Gl. (4) mit den konkreten
Daten (Go und C in der Legende von Fig. 1) für den
stillstehenden Motor nach p auf, so resultiert zunächst ein
Quadrupel von Dämpfungsdekrementen pk

pi...pA\ -4,174; -1,144; - 0,390; - 0,0758 (ks)-1

Einsetzen des ersten dieser Werte in Gl. (3) und willkürliches
Vorgeben irgendeines der 4 Potentiale Vi (z.B. v.% 1) liefert
mit den Zahlenwerten aus Go, C in Fig. 1 das folgende 3dimen-

(2)

Der Lösungsvektor u in Gl. (2) setze sich aus einem stationären

Anteil in und aus einem Ausgleichsvorgang v zusammen.
Beim Abkühlen des stillstehenden, ausgeschalteten Motors
(Kennzeichen Index 0 bei Go) ist die stationäre Lösung ein

Nullvektor (0), so dass nur der Ausgleichs- oder

Entspannungsvorgang (v) übrigbleibt :

(3)

Hat das System von Fig. 1 den Rang n 4, so haben die

Matrizen in Gl. (2, 3) die Dimension 4x4, und die
systembedingten sog. EigenvmLe Pk resultieren aus einer Gleichung
4. Grades in p (die charakteristische Gleichung):

(4)

Der Entspannungsvorgang (Gl. 3) enthält in allen

Komponenten vi des Lösungsvektors (v) jeweils dieselben

Zeitfunktionen Ck • exp (pkt) eines fundamentalen Exponential-
ansatzes exp (pt), in Verbindung mit relativen «Gewichten»

mik zum i-ten Ausgleichspotential (vi) und zum k-ten
Dämpfungsdekrement (— pk), so dass

Fig. 1 Galvanisches Quadrupolnetz als thermisches Motorabbild
zur Wärmebilanz am i-ten Knoten

Erklärungen im Text

Datensatz eines IEC-Drehstrommotors 225/4
(37,5 kW: 1500 min-1) nach [1]

Leitwertnetz im eingeschalteten Zustand (hei laufendem Motor) :

63,1 -33,3 -25
-33,3 123,8 -23,8
-25 -23,8 69,4 -16,6

— 16,6 16,6

W/K

Leitwertnetz im ausgeschalteten Zustand (hei stehendem Motor) :

Go

54,8 -33,3 - 16,7
-33,3 44,7
- 16,7 33,3 -16,6

-16,6 16,6

Kapazitätsmatrix:

15

C
60

36
36

W/K

kJ/K

Würmequellenvektor des Dauerbetriebs:

h 1010 1 Wicklung
/„ 460 w Eisen

h 1430 Rotor
Ja — 0
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sionale inhomogene System zur Bestimmung der übrigen
modalen Komponenten vi, vi, v3\

- 33,3 vi + (44,7 - 4,174 • 60) vi 0

- 16,7 vi + (33,3 - 4,174 36) v3 16,6

- 16,6 V3 4,174 36 — 16,6

also t'i 55,4; vi — 8,97; v3 — 8,05; 114 1. Aus den

Komponenten folgt für den Betrag des Vektors v (die sog.
Norm)

N (v) (n2 + vi2 + v32 + i>42)0'5 56,7

Damit erhält man als erste Spalte der gesuchten Modalmatrix
die Projektionen des betreffenden bezogenen Eigenvektors auf
die Koordinatenachsen (cos-Funktionen der räumlichen
Winkel) :

m ii, ".''k Mo
N (v) [Wik]

0,977

- 0,158

- 0,142
0,018

(6)

" 63
"

1,00
~

W Ge1 Î
34,6

72,5

72,5

K
0,55

1,15

1,15

p.u. (7)

Fig. 2 Allgemeines Produktschema zur Bildung der Exponentialsummen
von Gl. (5) als Skalarprodukte zweier Vektoren mit Matrizen
Das sog. Fallc-Schema [2] führt solche Komponenten je eines
horizontalen Vektors (z.B. m\) und eines vertikalen Vektors
(z.B. c oder F • c) als Faktoren zusammen, die in Richtung der
Laufvariablen (Index k) gleich weit vom Anfang k 1

entfernt sind. Die Summe der einzelnen Komponentenprodukte
(z.B. win exp(/?i t) ci + W7i2 • exp(/?2 0 • C2 + wird
im Kreuzungspunkt der Laufrichtungen der über k laufenden
Vektoren gespeichert und als das skalare Produkt der
Vektoren bezeichnet

Die erste Komponente (Index i 1 : Wicklung) diene als
normierte Bezugsgrösse für alle weiteren Erwärmungsangaben :

Sie sei vom Dauerbetrieb her zu anfangs 100 % bzw. 1 per-unit
(p.u.) festgelegt, wenn es um den Abkühlungsvorgang beim
Ausschalten der Nennlast geht; dabei gehen der Vektor der
Quellströme auf null (i 0) und, da der Motor beim
Abkühlen stillsteht, die Leitwertmatrix von Ge auf Go.

Im weiteren Verlauf nach dem Summengesetz von Gl. (5)
müssen die Integrationskonstanten ck aus der Anfangsbedingung

iv bei t 0 (8)

3. Die Übergangsfunktionen beim Ausschalten
oder beim Einschalten der Nennlast

Der Dauerbetrieb des Motors ist definiert durch eine
stationäre Potentialverteilung u iv seiner Speichergebiete,
welche sich nach Gl. (2) mit dem Vektor i der im Nennlastbetrieb

auftretenden Wärmeströme berechnen lässt, indem die

Ableitungen null gesetzt werden (p 0):

bestimmt werden. Fasst man die für jedes Speicherpotential
(also auch das i-te) zu bildende Produktsumme als das Skalar-
produkt zweier je über den Index k laufender Vektoren auf,
so lässt sich der ganze Potential!^ektor v(t), wie in Fig. 2

veranschaulicht, durch den Ansatz einer Transformation am
Konstantenvektor c [ck] darstellen:

v(t) M0 F0(t) c (9)

Die Funktionswerte sind darum in einer diagonalen
Funktionalmatrix

F(t) F0, e (t) Diag (ePkt)

angeordnet worden, um den in Fig. 2 senkrecht angeordneten
Vektor c in eine ebenfalls senkrechte Vektorspalte F c
[ck exp(pkt)] zu verwandeln. Das Produktschema in Fig. 2

deutet an, wie beispielsweise der skalare Betrag vi (und
entsprechend alle übrigen vi) gebildet wird, nämlich durch das

Produkt mi (F c), d.i. die Summe sämtlicher Produkte
von gleichindizierten Komponenten mik und fyCk.

Im ersten Augenblick wird die Funktionalmatrix zur iden-
titätsmatrix (Einsmatrix I), und der Konstantenvektor in
Gl. (9) bestimmt sich aus der Anfangsbedingung (8) durch
Inversion:

Mo - I c c Mo 1 w (10)

Damit schreibt sich der Abkühlungsvorgang in allgemeiner
Matrizenform :

v (t Mo Fo Mo~l w Ao (t - ti) m (ti) (11)

Das ist nach der Sprachregelung der Matrizentheorie [2]
eine Vektortransformation vom Dauerbetriebs-Endwert w aus
oder von einem anderen Anfangswert ui aus, zum
Entspannungspotential v(t), wobei die zusammengefasste Übergangsmatrix

(Ao) durch Ähnlichkeitstransformation (Mo..Mcr1) an
der Funktionalmatrix (F0 [/kk] Diag ePkt) entstanden ist.
Die Diagonalelemente /kk stellen gleichzeitig die Eigenwerte
der Matrizen Fo (wegen Diagonalität) und Ao (wegen Ähnlichkeit)

dar; sie sind alle kleiner als eins wegen der Tatsache, dass

die pk nur negativ vorkommen. Auf die Konsequenzen dieser

Feststellung wird noch in Gl. (24) näher einzugehen sein. Im
wesentlichen geht es darum, dass bei mehrfacher Wiederholung
der v-te Rekursionsschritt auf der Entspannungskurve (Gl. 11)

gegen null konvergiert, indem die Eigenwerte der Matrixpotenz
Aov mit v^« alle gegen null gehen. Eine aus lauter
Matrixpotenzen der Basis A (im besonderen Ao oder Ae, aber auch

Ao Ae) gebildete unendliche Reihe wird Matrizenfunktion
genannt; diese konvergiert gegen einen Sättigungs-Grenzwerte-
vektor, solange die /kk kleiner als eins und die pu kleiner als

null sind.
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Beim Aufheizen des unter Last laufenden eingeschalteten
Motors gelten dieselben Entspannungsgrundsätze der Funktion

v in Relation zum Beharrungszustand w (der hier an die
Stelle des beim Abkühlen nicht geschriebenen Nullvektors
tritt). Die spiegelbildliche Betrachtungsweise eines Heizvorgangs

(u) und eines Kühlvorgangs (v), genaugenommen u(t)
und v(t) in Fig. 3 axialsymmetrisch zur Linie w const nur
bei weiterlaufender Kühlung, ist auch bei der Messung mit
Erfolg angewendet worden. Die Messung von v w — u in
Fig. 3a (d.i. Abkühlung der ausgeschalteten, aber weiterhin
angetriebenen Maschine) lässt sich viel einfacher und genauer
ausführen als die Messung von u im eingeschalteten Zustand.
Indem überall die Indizes 0 durch e ersetzt werden, erhält man
daher anstelle von Gl. (11) jetzt für das Aufheizen:

u(t) w — v (t) W - Me Fe • Me'1 (w ~ Mo)

W - Ae (t) • [w - Mo (0)]
(12)

Dabei ist für den Fall, dass der Zustand der Speicher für t 0

nicht null sein sollte, der allgemeinere Anfangszustand Mo (0)
0 oder 0 in die Formel von Gl. (12) eingebaut worden,

wobei die Anregung (Differenzzustand w — uq) die gleiche
Rolle spielt wie der andere allgemeine Anfangswert u\ bei der

Abkühlung nach vorzeitig abgebrochenem Aufheizen (Gl. 11).

Es darf schon an dieser Stelle auf die besondere Leistungsfähigkeit

des Matrizenkalküls hingewiesen werden, der nämlich
die Berechnung der Exponentialfunktionen überflüssig macht,
dadurch dass man (um den Kurvenverlauf explizit Punkt für
Punkt darstellen zu können) mehr oder weniger kleine
Abszissenschritte At ausführt, wodurch die Übergangsmatrizen
Ao (Ar) oder Av (Ar zu Konstanten werden und die Anfangswerte

Mo, Mi zu den eigentlichen Veränderlichen. Das Rechnen

in Rekursionsschritten stellt unabhängig von der Schrittweite

0 Messpunkte

0.5-

Fig. 3 Berechnete und gemessene Dauerbetriebskurven

Übergangskurven zum Dauerbetrieb mit Nennlast

Die Kurven u(t), v(t) ohne Index stellen die
Wicklungserwärmung des in Fig. 1 erwähnten Käfigläufermotors dar
(d.i. Komponente 1 des Potentialvektors u). Sie entsprechen
dem Grenzzustand des sog. S3-Schaltbetriebs, wenn die
Einschaltzeit /.. und die Ausschaltzeit l0 beide gegen unendlich
gehen

a) Heizkurve u(t):
Messpunkt v ir

b) Kühlkurve v(t):
Messpunkt v

gemessen mit Hilfe des abnehmenden
Wicklungswiderstands beim Abkühlen
des angetriebenen Motors,
bei laufender Ventilation (Matrix Gr)

gemessen aus abnehmendem Widerstand

beim Abkühlen des stillstehenden
Motors (Matrix G„)

(At) eine Skalarproduktbildung (Vektortransformation) dar;
diese verläuft wesentlich wirtschaftlicher als das Ausrechnen
variabler Funktionswerte.

4. Das Hüpfen von einer Schaitspifze zur nächsten
im diskontinuierlichen Schaltbetrieh mit Pulslasten

Ein periodischer Schaltbetrieb ist durch die Betriebsart und
durch den zeitlichen Ablauf des Schaltspiels gekennzeichnet.
Beim thermischen Verhalten von Motoren kommt es auf die

Hüllkurve der Temperaturspitzen an, welche die Wicklung im
Laufe der Zeit annimmt, wenn Einschaltzeiten te und
Ausschaltzeiten to periodisch abwechseln. Im sog. S3-Betrieb hat
der Belastungsverlauf rechteckige Gestalt, d. h. man rechnet
mit gleichmässiger Last und mit konstanter Wärmeeinströmung

i const (Gl. 2) während der Einschaltzeit und mit
stehendem Motor bei i 0 während der Ausschaltzeit
(Fig. 4a). Der Potentialverlauf ist stetig (ohne Sprünge), wenn
auch nicht stetig differenzierbar. In den schwerwiegenderen
Betriebsarten S4 und S5 (Fig. 4b, 4c) treten zusätzliche Dirac-
Pulse der Wärmeeinströmung jeweils am Anfang bzw. am
Anfang und Ende der Einschaltperiode auf. Anlaufwärme Qà

und Bremswärme Qo hängen in erster Linie mit dem Trägheitsmoment

des Maschinensatzes zusammen, das meistens in
Relation zum Nenndrehmoment in Form der sog. Anlaufzeit
angegeben wird. Anlauf- und Bremswärme müssen berücksichtigt

werden, wenn die Anlaufzeit trotz /a te, to jenes
Mass überschreitet, das durch die Höhe zugehöriger
Temperatursprünge gegeben sein mag.

Die Pulsinhalte (Qu, Qo) sind im elektrischen Abbild (Fig. 1)

als Ladungsvektoren <?a, Qb zu qualifizieren, mit jeweils
Komponentenanteilen /h df bei den Knoten 1 und 3 (Wicklung

und Rotor). Es ergeben sich damit diskontinuierliche
Potentialverläufe. Die Potentialsprünge sind ebenfalls
Vektoren Am3, AMb, deren Komponenten sich aus jeweils
«Ladung/Kapazität» berechnen lassen. Ohne auf diese Berechnung
hier näher einzutreten, seien die nachfolgenden Sprungpotentiale

als numerisches Beispiel eingeführt, welches sich ausser
einer angenommenen Anlaufzeit von /a 10 s aus der
Drehmomentcharakteristik und aus den übrigen Daten des Motors
von [1] ableitet sowie ausserdem von einer angenommenen
Lastkennlinie:

A Ma

Ami, Qo

0,164
0

0,146
0

0,160
0

0,207
0

p.u.:

p.u.

(13)

Bei der Berechnung der Schaltspitzen geht man zunächst

von der ersten Spitze Mi aus, so dass das anschliessende

Entspannungspotential vi (Minimum vor Beginn der zweiten
Antriebsphase, Fig. 4a) ohne weiteres nach Gl. (11) angegeben

werden kann :

Vi (te i" to) A0 (to) Ml (14)

Als Anfangszustand des nächsten steigenden exponentiellen
Ausgleichsvorgangs wählt man die Summe aus diesem

Entspannungspotential und aus dem Anlaufsprung (vi + Amu),
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siehe Fig. 4b, anstelle des allgemeinen Anfangswerts uo (0) in
Gl. (12). Schliesslich ist zu berücksichtigen, dass am Ende des

Aufheizens u.U. noch ein fester Betrag für das Bremsen

(Aub) überlagert wird (Fig. 4c), so dass der zweite Spitzenwert
ähnlich wie in Gl. (12) bzw. durch Einsetzen von vi aus (14)
wie folgt herauskommt :

«2 (2te + to) w + Aub - Ae (te) ' (W ~ Aua - Vi)

IVb Wû (15)

Wb - Ae Wü + Ae Ao ûl

Die erste Spitze berechnet sich nach demselben Gesetz (15),

ausser dass der Anfangszustand jetzt ein Nullvektor ist, so dass

VO (0) 0, Ûi (te) Wo - Ae - We, (16)

Durch Einsetzen von Gl. (16) in (15) folgt mit A,. Ao A:

«2 «1 + A Ml (17)

Entsprechend erhält man durch Wiedereinsetzen von (17) in
(14) und (15) die für die laufende Berechnung der Spitzen
längs der einhüllenden Kurve wichtige Rekursionsformel (vgl.
Laufvariable Index v in Fig. 5):

«3 Ml + A ûs

ûv+i ûi + A • «v bzw. Differenzvektor
[<5i]v Mv+i - ûi A - ûv

(18)

pu-

4jAj

CL

L U
Qb

Fig. 4 Verlauf der Wärmeeinströmung und der Erwärmung
in verschiedenen Schaltbetriebsarten eines Motors

Komponenten 1 (Wicklungsverluste /, Q und
Wicklungserwärmung h, v) ohne Index 1 geschrieben

a) S3-Betrieb:

I gleichmässige Einströmung ins Einschaltnetz (Gt.)
während der Einschaltdauer tc bei vernachlässigbarer
Anlaufzeit

u steigender Abschnitt der Temperaturkurve
v fallender Abschnitt, Entspannung im Stillstandsnetz (Go)

während der Ausschaltzeit ta
û Hüllkurve der Temperaturspitzen
1,2 erste, zweite Spitze usw.

b) S4-Betrieb:

Qa Anlaufwärme bei nicht vernachlässigbarer Anlaufzeit ta;
Motor läuft aus

Alle Temperatursprung am Anfang des Heizzyklus auf Grund
der Anlaufwärmc

c) SS-Betrieb :

Qu Bremswärme am Ende des Einschaltzyklus tritt zusätz¬
lich zur Anlaufwärme in Anlagen auf, die elektrisch
mit Gegenstrom gebremst werden

Auu Temperatursprung am Ende des Heizzyklus auf Grund
der Bremswärme am Anfang des Entspannungszyklus

;îv v-te Spitze; alle Spitzen enthalten den Temperatur¬
sprung A iiu

5. Entwicklung der Übergangsmatrix (A)
aus äquidistanten Vektorzuständen der Übergangs-
kurvenschar ((J)

Die ersten n Rekursionsschritte <5V, v l...n lassen sich

durch Nebeneinanderanordnen der Vektoren mv bzw. der
Differenzvektoren [<5i]v zu quadratischen Matrizen U und zl

zusammenfassen, womit die Umkehrbarkeit der Beziehungen
zwischen den Stützwerten einer Übergangskurvenschar (mv)

und der Übergangsmatrix (auf) formal bewiesen ist:

A [of] — [oik]

U [ov] — [t/iv]

zl [À]v [<5lv]

A - U A (19)

Die Schaltbetriebskurve von Fig. 5 diene als numerisches
Beispiel eines allgemeinen Erwärmungsvorgangs, wobei im
folgenden nicht mehr von Heizen oder Kühlen (Indizes e, 0) zu

sprechen ist, weil die schaltungsmässige Herkunft der Matrix
(A) oder ihre Zusammensetzung aus Faktoren in Relation zu

den Vektorzuständen (U) ohne Bedeutung ist.
Bei der Berechnung von A aus U (Umkehrung des

Matrizenprodukts Gl. 19) ist mit der Problematik der kleinen
Determinanten zu rechnen, so dass diese Umwandlung in praktischen

Fällen nicht ohne weiteres möglich ist. Um die sehr

entscheidenden Fehlermöglichkeiten qualitativ beschreiben zu

können, soll folgendermassen vorgegangen werden: Die Matrix

U werde zunächst aus der mit den Zahlen von Fig. 5

berechneten, als gegeben betrachteten Eingabematrix A\
berechnet und dann gerundet. Die aus der gerundeten Matrix U
(anstelle einer supponierten Messdatenliste) hervorgehende
Ausgabematrix A* weist gegenüber Ai einen Fehler AA auf,
der zu diskutieren ist.

Die Eingabematrix Ai enthält einfach die Systemparameter
(Eigenwerte, Eigenvektoren) in Verbindung mit der digitalisierten

Zeitkoordinate (Intervallbreite, Spieldauer), während
alle Informationen über die Belastung in der vektorförmigen
Anfangsbedingung als weitere Dateneingabe wi enthalten sind

(Gl. 15, 16). Die Dateneingaben verstehen sich in abgeschlossenen

Zahlen, welche höchstens 3 Ziffern nach dem Komma
enthalten sollen:

Ai

0,107 0,386 0,226 0,080

0,087 0,467 0,095 0,029

0,087 0,190 0,420 0,211

0,030 0,027 0,246 0,689

" 0,450 "

Ml
0,065
0,461

0,022

p.u.

Dann ergeben sich beim Rechnen ohne Stellenverlust durch
fortlaufende Multiplikation die Stellenzahlen der mv, <5iV mit
wachsendem v zu 3, 6, 9...15. Nachstehend das auf ebenfalls

nur 3 Stellen gerundete Resultat der Vektorzustände:

U--

0,450 0,629 0,760 0,864

0,065 0,179 0,276 0,353

0,461 0,711 0,883 1,021

0,022 0,166 0,335 0,500

0,179 0,310 0,414 0,500
0,114 0,211 0,288 0,352

0,250 0,422 0,560 0,677

0,144 0,313 0,478 0,631

Betrachtet man umgekehrt die Vektorzustände als gegeben,

so können deren Rundungsfehler je nach «Kondition» der
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1 p.U. JO I
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a >\ 11X i'i\* \
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1 I v '

/I \ ' 1 M -
' / \ I M

\ I

\i

ks
1 1 1 r~
2 4 6 8

bzw. U' a\

0,179

0,310
0,414
0,500

(21)also ai' [ 0,087 0,335 0,252 0,100 ]

Entsprechend ergeben sich die ganze Matrix mit n Zeilen ai
wie oben

A2

0,087

-0,051
0,106

0,005

0,335

0,269

0,177

-0,017

0,252
0,255

0,404
0,277

0,100
0,081

0,222
0,701

und die Fehlermatrix AA A,~ Az aufgrund des Stellen-
verlusts beim Runden der nur 3stellig angegebenen Matrix U:

AA

0,020 0,051 -0,026 -0,020
0,138 0,198 -0,160 -0,052

-0,019 0,013 0,016 -0,011
0,025 0,044 -0,031 -0,012

Als ein repräsentatives ldimensionales Vergleichsmass können

die quadratischen Mittelwerte der Zahlenreihen der Matrix

(d.i. die Vektornorm bzw. der Betrag von ai oder Ok)

oder noch besser die mittlere Vektornorm (eine Art Effektivwert)

Am (A) N(A)/ n

Matrixnorm
(22)mit N(A) j/^ «ik2

benützt werden. Die n-te Potenz von Nm bezeichnet dann
eine orthogonale Vergleichskubatur zum volumetrischen Inhalt
des tatsächlich durch die Zeilen- oder Spaltenvektoren der

Matrix aufgespannten Epipeds (dargestellt durch den Zahlenwert

der Determinanten). Die Matrixinversion (Gl. 20) ist an
die Bedingung der Regularität det (U) A 0 geknüpft, wobei
mehr oder weniger ausgeprägte numerische Stabilität (die
Fehlerverstärkungseigenschaften) üblicherweise durch eine

Konditionszahl ausgedrückt wird [2]:

Fig. 5 S5-Betrieb des Elektromotors
Berechnete Wicklungserwärmung, ohne Index 1 geschrieben.
Mit Berücksichtigung von Anlauf- und Bremswärme.

Anlaufzeit r» 10 s

Spieldauer 1 ks

Einschaltdauer 25 % te 0,25 ks
Ausschaltdauer 75% to 0,75 ks

Matrix U beim Auflösen des Systems Gl. (19) nach A zu
abweichenden Ausgabedaten Az führen, welche aus numerischen

Gründen deutlich von Ai verschieden herauskommen.
Die Matrixinversion (aus Gl. 19)

A A U-1 und A' (U')-1 A' (20)

ist am besten lesbar in Form des transponierten Matrizenprodukts

(A' rechts mit vertauschter Zeilen-Spaltenanordnung
bewirkt eine Änderung in der Reihenfolge der transponierten
Faktoren), so dass die Spalten in A' (entsprechend Zeilen
in A) als Lösungen je eines Gleichungssystems berechnet werden

können, beispielsweise im Falle der ersten Zeile der
gesuchten Matrix Az:

a\ [nik] ["vi]"1- [<5iv]

K(U) det(U)/ Nm"(U) 0,000 024/(1,13)4 0,000 015

(23)

Im Vergleich der Matrizen A und U muss festgestellt werden,

dass die [/-Matrix etwa lOOOmal schlechter konditioniert
ist als die z4-Matrix. Der Fehler in der berechneten Matrix
(A^4), gemessen am grössten Komponentenbetrag Aaikmax

0,198 im Verhältnis zur mittleren Vektornorm Nm(A) 0,56

(relativ 0,198/0,56 0,35), mag etwa lOOOmal grösser sein als

die durch Rundung bewirkten Fehler in der [/-Matrix. Trotzdem

lässt sich mit der fehlerhaften Matrix Az sinnvolle
Berechnungsarbeit leisten, wie im nächsten Abschnitt gezeigt wird.

6. Extrapolation eines intermittierenden Erwärmungsverlaufs

und Sättigungseigenschaft der Hüllkurve
Die Frage nach dem Endspitzenwert einer periodisch

intermittierenden Belastungssituation ist experimentell nur schwer
oder mit grossem Aufwand zu beantworten. Auch beim Rechnen,

z.B. Hüpfen von Spitze zu Spitze, ist die grosse Zahl der

Spitzen bis zum Eintreten der Sättigung störend. Beispielsweise

kommt man mit den Zahlenwerten der Matrix Ar
(Motorbeispiel nach Fig. 5) erst nach 60 Schaltspielen bis auf
1% an den Endspitzenwert heran.

Das Springen von Spitze zu Spitze ist unnötig, wenn nur
der Endwert der Hüllkurve gesucht wird, weil von allem
Anfang an schon sämtliche Information im Vektor der ersten

Spitze Iii und in der zusammengesetzten Übergangsmatrix A
enthalten ist. Dabei ist es im Prinzip gleichgültig, ob die Matrix
aus einer Modellschaltung (^4i) oder aus einer numerischen

Kurvenanalyse (Az) hervorgegangen ist. Einsetzen von ûz aus

Gl. (17) in Gl. (18) bis ûv liefert als resultierenden
Transformationsfaktor bei ûi ein endliches Matrizenpolynom bis zur
(v — l)-ten Potenz, wobei schon im Anschluss an Gl. (11)

nachgewiesen worden ist, dass im Grenzübergang v -» °o die
höchsten Potenzen nur noch Nullbeiträge liefern. Damit
entsteht eine unendliche Matrizenreihe (eigentliche Matrizen-
funktion), im besonderen also eine konvergente geometrische
Reihe, die nach derselben Grenzwertformel wie bei den
einfachen Zahlen behandelt werden darf :

lim wv ([ + A -I- A2 T As-1) ûi
(/ — A) 1 ûi (24)
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Die Lösung Ci, entspricht somit der Lösung eines

Gleichungssystems mit den Koeffizienten der Matrix (I — Â) und
mit dem Vektor der ersten Spitze auf der rechten Seite:

(/ - A) Ci

(1 -0,107)
-0,087
-0,087
-0,030

Ml

-0,386
(1-0,467)

-0,190
-0,027

-0,226
-0,095

(1-0,420)
-0,246

0,450
0,065

0,461

0,022

p. u. also û

-0,080
-0,029
-0,211

(1-0,689)

1,52

0,82
1,96

1,84

(25)

p.u.

Die einzige Voraussetzung, welche an die ausserordentlich
einfache Extrapolationsmethode nach Gl. (24) geknüpft ist,
schreibt vor, dass das System linear sei, d.h. dass ein lineares

Differentialgleichungssystem wie Gl. (1) formulierbar sein

muss. Im Gegensatz zu höheren mathematischen Operationen,
wie z.B. den bekannten numerischen Integrationsverfahren
nach Runge-Kutta u.a. [3], liefert das Matrizenverfahren
exakte und zuverlässige Integrationsergebnisse fast ohne jede
Begrenzung (Anzahl n der Speicher und Integrationsbereich t
der Zeitachse), wenn nur das System und die Anfangsbedingungen

bekannt sind, was für alle anderen Verfahren ebenfalls

Bedingung ist.

Interessanterweise beruht die Extrapolation auf einer
wesentlich stabileren numerischen Situation als die analytische
Entwicklung (Umkehrmatrix von I—A in Gl. 24 statt von
U in Gl. 20). Die Extrapolationsrechnung vermag sogar Fehler,

die als Folge einer unzutreffenden Netztopologie oder als

Folge unzureichender Analysiergenauigkeit (vgl. Az aus U)
aufgetreten sind, teilweise wieder auszugleichen. Bezeichnenderweise

hat das Weiterrechnen mit der Matrix Az (relativer
Fehler 35 % auf der Stelle i, k 2,2) ein durchaus tragbares
Endresultat mx (Az) erbracht, welches in den einzelnen
Komponenten Abweichungen zwischen 5... 10% gegenüber ûœ(Ai)
nach Gl. (25) aufweist, was für thermische Abbilder noch
immer zulässig zu sein scheint:

mx As)

1,60

0,91

2,05

1,95

p.u.

7. Ausblick: Anwendung auf Kabel

Die Methode der thermischen Abbilder verlangt unter
Umständen einen Wechsel der Arbeitsweisen, wenn man
Betrachtungen über Motorwicklungen auf Kabelsysteme anwenden

will. Zunächst ist klar, dass die Angabe einer konkreten
Schaltung für eine gegebene Anordnung gemeinsam im Boden

verlegter Energiekabel sehr schwierig sein dürfte, da diese

Kabel zusammen mit dem sie umgebenden Sand in einem
ebenen Temperaturfeld liegen, das die Wärmekapazitäten
ebenso wie die Wärmewiderstände als in der Querschnittsebene

verteilte Grössen enthält. Die einleitend zitierte Diskre-
tisierung ist darum schwierig, weil man (anders als bei einem

Motor) die Kapazitäten nicht sicher unterscheiden kann;
wieviel Sand und wieviel Isolation ist zu einem Speicherbereich
zu rechnen, würde man sich typisch fragen müssen.

Wenn das Kabelsystem überhaupt durch Exponentialfunktionen

angenähert werden soll, dann reicht zur Nachbildung
des zeitlichen Verlaufs wahrscheinlich eine geringe Anzahl von
Speichern und Eigenwerten aus. Es wäre daher vernünftig, die
Rangzahl des Systems n mit der Anzahl von Mess-Potentialen
in der fraglichen Querschnittsebene in Einklang zu bringen,
indem gleichzeitig die Messpunkte der Ebene Durchschnitte
über die gesamte Kabellänge enthalten. Die nach der
Widerstandsmethode auszumessenden Kabelseelen repräsentieren im
wesentlichen Schwerpunkte der Speicherbereiche, wobei
ausserhalb der Energiekabel liegende inaktive Wärmekapazitäten
durch dünne Hilfskabel zu erfassen sind. Man hat also bei

Kabelsystemen, im Gegensatz zu einem Motor, grundsätzlich
die Möglichkeit, Vektorzustände u(t) zu messen.

Die gesuchte Matrix (A) hat nichts mit der Belastung
(Anfangsbedingungen Mi einer beliebigen Probelast oder û\
der späteren, spezifisch intermittierenden Last) zu tun; sie

kann nach Vorgabe der Zeitintervalle (At te, to) aus der
beliebigen Übergangsfunktion l/(iti,Ar) herausgelesen und
berechnet werden. Aus praktischen Gründen wird man das

Kabelsystem im Kurzschluss anwärmen und dann zur
Widerstandsbestimmung mit einem relativ kleinen Gleichstrom
beaufschlagen, der über je 2 Phasen desselben Kabels hin- und
zurück- sowie über mehrere Kabelstrecken in Reihe geleitet
wird. Während einer genügend langen Abkühlungszeit des

Systems müssen die Spannungsabfäile über sämtlichen
Kabelschleifen und der Strom (Spannung am Shunt) so genau wie

möglich (min. 1 °/oo genau) erfasst und gespeichert werden. Ist
die einmal erhaltene Messinformation auf einem Datenträger
festgehalten, so kann sie jederzeit zusammen mit der
Zeitkoordinaten abgerufen und rechnerisch weiterverarbeitet werden.

Es gibt bei den Kabeln keine Systemunterscheidung
zwischen Heizen und Kühlen. Aber wenn die spezifische Aufgabe
gestellt wird, dann können verschiedene Zeitwerte te, to

gegeben sein, welche es erforderlich machen, mit zwei Zeitvorgaben

verschiedene Matrizen Ue, Uo aus dem Datenspeicher
zu entnehmen, daraus durch Rechnung zwei Matrizen Ae, Ao
zu berechnen und diese dann abschliessend in eine einzige
Übergangsmatrix A umzuformen. Die Anfangsbedingungen,
z.B. stationäre Enderwärmungen (w) oder Sprungpotentiale
(Am) ergeben sich ähnlich wie bei den Motoren durch Rechnung.

Hat man in einem weiteren Vorversuch durch Belasten
eines Kabels nach dem anderen und Messen aller Kabel im

Beharrungszustand die überlagerungsfähigen Einflusszahlen

festgelegt, so ergibt sich der stationäre Vektor w als

Vektortransformation am Wärmestromvektor (i) mit der Matrix der
Einflusszahlen (eine Widerstandsmatrix); die Sprungpotentiale,

beispielsweise nach Netzkurzschlüssen, berechnen sich

aus der adiabatischen Erwärmung des Kupfers, womit
allerdings die Kapazität des nicht genau bekannten Wärmeknotens
unterschätzt und der Temperatursprung überschätzt wird.

Das Zahlenbeispiel des Motors hat gezeigt, dass ein
punktuelles Mehrkörpersystem mit genügendem messtechnischem

Aufwand einwandfrei aus den Übergangskurven identifiziert
werden kann. Anderseits kann die Übereinstimmung des in
Wirklichkeit verteilten Po/.s.vow-Feldes mit einem Mehrkörpersystem

u.U. durch Einführung zusätzlicher Messpotentiale
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(Hilfskabel) beliebig gesteigert werden. Es ist also zu erwarten,
dass trotz der numerisch mässig konditionierten [/-Matrizen
ein Verfahren realisierbar ist, welches gestattet, das Zeitverhalten

ausgeführter Kabelstrecken als digitale Basisinformation

permanent zu speichern, wobei im Prinzip eine Datenbank
über die Untertage-Energieübertragungsstränge aufgebaut
werden könnte, die dasselbe leisten würde wie entsprechende

analoge Modelle.
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Briefe an die Redaktion - Lettres à la rédaction

« Influence d'une rupture de barre ou d'un anneau
sur les caractéristiques externes d'un moteur asynchrone
à cage»
[Bull. SEV/VSE 69(1978)17, S. 921...925]

Zuschrift

This is timely and valuable work. It is necessary to improve our
knowledge and its application, about insipient defects of machines.
The eventual complete destruction of the machine should be avoided.
The new era of high energy costs forces the early recognition of
defects that reduce efficiencies.

The parasitic torque caused by the fracture has twice the slip
frequency. It is expected to cause vibration and stator pulsation at
twice slip frequency. This suggests that by monitoring vibration
and/or stator current at twice slip frequency may furnish good and
early warning of these fractures. Naturally, twice slip frequency will
show other defects and anomalies. The 2 pole machines may have
relatively higher twice slip frequency effects due to other deviations
from complete circular symmetry.

It is thought that the parasitic torques are sufficiently high for
detection by reduced voltage run-up tests. In this test the motor is

started (free acceleration) at various different reduced voltages.
Fracture of one bar, or of several adjacent bars will cause 'hang
up' at half speed on reduced voltage.

It is notable that the stator current pulsations caused by bar
fractures show different trends/patterns for the two motors. The
2300 kW, 3000 RPM, 2 pole motor shows a very steep rise in the
pulsating stator current as the slip increases. 1 have applied correlation

analysis and found that for one broken bar

/p 4.83 s1-83

Both /p and 5 (slip) in % ; the fit is good; coefficient of determination
is 99%.

This leads to very high extrapolated values for high slip values.
Possibly the rise would be far less steep if resistances were taken
into account; some of these may be in the form of equivalents of
stray load losses and parasitic core losses.

Similar analysis of the tested values of the small 4 kW, 3000 RPM,
2 pole motor leads to

/p 1.24 i°-59; for one broken bar
/p 1.22 s°-8 ; for two adjacent broken bars

Correlation is good, i.e. better than 98%. The tested values of the
4-kW-motor do not show levelling off or 'saturation effects',
notwithstanding that the rate of rise with increasing slip is substantially
lower than for the 2300-kW-motor.

A comparison of extrapolated values emphasizes these patterns:

Motor
3 phase, 50 Hz,
3000 RPM

/„% Remarks

Slip
25%

Slip
50%

Slip
100%

# 1 2300 kW 1 680 5 940 20 960 one broken bar

#2 4kW 8 12 19 one broken bar

#2 4kW 16 29 50 two broken bars

Caveats must be applied before extrapolating. What could have
caused the choice of levelling off (saturation) slope for the relationship

between /p and 5 for the 4-kW-motor #2? The test results do
not appear to justify that choice.

The increase in the current of the rotor bars adjacent to the
fractured bars is substantial as it goes up to 40% for fracture of three
adjacent bars for the 2300-kW-motor 4k 1. Others report that adjacent

to the fractured bar of a motor having 28 bars, the increase in
current in the adjacent bars is 91% at 50 Hz, i.e. locked rotor,
v 100%. Rapid, near violent heating follows and causes temperatures

of 114 °C in 15 s [1],
The case of the fracture of two bars not adjacent but diametrically

opposite to each other, is expected to be very different. A special
case will be fractures that are more or less evenly distributed in a

manner that corresponds to the number of poles. This might be
caused by certain kinds of intolerably long time at zero speed on
full voltage as it might occur on failure to start.

J. Szogyen, Glen Ridge, USA

Réponse de l'auteur

Les différentes remarques de M. John Szogyen-Delmar appellent
les réponses suivantes:

1. Il est exact que des dissymétries de construction telles
qu'excentricité du rotor, ovalisation du stator ou du rotor, etc. peuvent
créer également une pulsation du courant. Cependant, dans tous les

cas, une rupture de barre provoque un changement de l'amplitude
d'oscillation du courant. C'est alors la variation d'amplitude qui est
indicatrice du phénomène.

2. Des tests basés sur des tensions d'alimentation réduites ne
sont pratiquement pas réalisables en exploitation.

3. Les approximations proposées pour l'évaluation du courant
puisant en fonction du glissement ne sont valables que pour des

glissements faibles, n'excédant pas quelques %. A titre d'illustration,
le calcul complet a été effectué pour le moteur N° 1, avec une barre
cassée (fig. 1). On constate que le courant puisant se stabilise à une
valeur de 5% et non pas à 20960% pour un glissement égal à
l'unité.

Fig. 1 Courant statoriquc puisant relatif en fonction du glissement
pour une barre cassée, moteur 1

De plus, le courant puisant s'annule pour un glissement égal
à 0,5, soit à mi-vitesse. Ce phénomène est dû à l'effet de Gorge, bien
connu dans les cas des machines synchrones démarrant en
asynchrone.
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