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Berechnung von intermittierenden Schaltbetriebszustianden
mittels Matrizen und Matrizenfunktionen

Von H.G. Gerlach

621.3.017:512.643.4;
Die thermischen Vorginge, die sich bei unregelmdssiger Belastung elektrischer Betriebsmittel ( Motoren, Transformatoren, Kabelsysteme)
ergeben, setzen sich abschnittsweise aus Exponentialfunktionen zusammen. Ein indirekt gekiihlter, geschlossener Elektromotor bietet hierfiir
ein gutes Beispiel. Es werden die mathematischen Gesetzmdssigkeiten iiber den Verlauf periodisch angeregter « Kippschwingungen» in Systemen
mit definiter Matrix behandelt. Insbesondere wird auf die Zusammenhdnge zwischen den Erwdrmungsspitzen und maoglicherweise gegebenen
Systemparametern (Schaltung) sowie zwischen den ersten Erwdrmungsspitzen und denjenigen im Sdttigungszustand eingegangen. Sind alle
Speicherstellen eines Mehrkorpersystems gleich gut geeignet fiir eine Messung der jeweiligen Temperaturen unter Testbedingungen, wie z.B.
die einzelnen Striinge eines gemeinsam verlegten Energiekabelsystems, so bieten sich die simultanen Ubergangsfunktionen als Berechnungs-
grundlage an, die fiir beliebige Lastbedingungen und Schaltbetriebszyklen ausreichende Informationen enthalten sollten.

Les phénomeénes thermiques qui résultent d’une charge irréguliére des moteurs, transformateurs et cables se composent de fonctions exponen-
tielles par intervalle. Un moteur électrique fermé, a refroidissement indirect, en est un bon exemple. Les régles mathématiques de Uallure d’os-
cillations de relaxation sont traitées dans des systémes a matrice définie, notamment les relations entre pointes d’échauffement et paramétres
connus du systéme (circuit), ainsi qu’entre les premiéres pointes d’échauffement et les pointes a I’état de saturation. Lorsque tous les éléments
d’accumulation d’un systéme a plusieurs corps conviennent pour la mesure des températures dans des conditions de tests, par exemple les cdbles
d’un systéme souterrain, les réponses transitoires simultanées peuvent constituer une base de calcul donnant suffisamment d’informations pour

des conditions de charge et des cycles de service quelconques.

1. Einleitung

Die Struktur eines irgendwie begrenzten Zustandsraumes
in elektrischen oder analogen Systemen (vor allem bei ther-
mischen Vorgingen) werde durch Diskretisierung nédher er-
klart, so dass sich die Systemeigenschaften in vereinfachter
Form als die strukturtypischen Eigenschaften einer Schaltung
definieren lassen. ODb es sich bei dem sog. Quellennetz um eine
wirkliche elektrische Schaltung oder um das analoge Abbild
mit elektrischen Modellgrossen anstelle der wirklichen (z.B.
thermischen) handelt, ist belanglos. Im folgenden wird die
elektrische Nomenklatur zur Beschreibung eines Warmelei-
tungsmodells nach Fig. 1 mit Speichern (Kapazititen Ci) an
den mit Indices i(j) #% 0 bezeichneten Knotenpunkten 1...4
verwendet, welche durch energieverzehrende Transportwege
(Leitwerte Gij) verbunden sind. Die Ubertemperaturen der
Speicher (Potentialdifferenzen ;) entspannen sich auf null
infolge dauernder Kiihlung iiber die dusseren Ableitungen
(Gio parallel angeschlossen an die C;) bzw. steigen oder kom-
men zum Gleichgewicht unter der Einwirkung zugefiihrter
Wirmestrome (Strome I;).

Werden die Stromquellen (/i oder Qi = fIidr) in einem
intermittierenden Schaltbetrieb ein- und ausgeschaltet, so
ergibt sich der zeitliche Verlauf als ein im wesentlichen stei-
gender Kurvenzug mit diskontinuierlichem Anstieg, d.i. eine
Sattigungslinie mit tberlagerter nichtharmonischer Schwin-
gung (vgl. z.B. Fig. 5). Nachfolgend wird die End-Spitzen-
erwarmung in der Wicklung eines im sog. S5-Betrieb gefah-
renen Kifigliufermotors berechnet. Das Beispiel dieses Motors
ist ein Grenzfall, welcher die Ansitze zu vielen dhnlichen Pro-
blemstellungen (Erwidrmungszyklen von Transformatoren,
von Kabelanordnungen usw.) ohne weiteres umfasst. Die Ver-
wendung des Matrizenkalkiils, insbesondere die Berechnung
diskontinuierlicher «Aufschaukelvorginge» mittels Matrizen-
© funktionen, hat eine weit dariiber hinausgehende Bedeutung.

2. Das 4-Knoten-Netz des indirekt gekiihiten,
geschlossenen Kifiglaufermotors

Der Motor mit seinen 4 Speichergebieten — Wicklung 1,
Statorblechpaket 2, Rotor (Kifig und Blechkorper) 3, tibrige
Gewichte (Totgewicht ohne Verlusteinspeisung) 4 — ist in [1]
analysiert und beschrieben worden. Im Unterschied zu ande-
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ren einfacheren thermischen Anordnungen, wo die Wirme-
quellen weniger stark gekoppelt sind, stellt er ein allgemeines
4-Korper-System dar (Fig. 1).

Der Knotenpunktsatz ( Kirchhoff) beii, beispielsweisei =1
erfasst die Bilanz der Warmestrome 1. Die Quellstrome I; sind
die Verlustleistungen der i-ten Wirmequellen, wobei verschie-
dene Indizes i oder j angewendet werden, falls der betreffende
Knoten gerade zum Gegenstand der Bilanzierungsrechnung
genommen (i) oder als angekoppelte Senke betrachtet werden
soll (j); die mit j indizierten Knoten wirken nur mit ihren
Spannungen («;), nicht aber mit ihren Stromen (I;) auf den
bilanzierten Knoten ein. Im Zuge einer zyklischen Permutation
schliipft jeder der n = 4 Knoten einmal in die Rolle des i-ten
Knotens hinein.

Die Temperaturen der Quellgebiete sind unbestimmten
elektrischen Potentialen vergleichbar: Erst die Ubertempera-
turen ui, uj (Erwdrmungen) lassen sich in einem Wéirmelei-
tungsmodell in Relation zur Umgebung und zum Anfangs-
zustand der Speicher (Potential null) wie elektrische Spannun-
gen gegeniiber Erde (Knoten 0) definieren. Dann erscheinen
die Wiarmekapazititen der Quellgebiete Cj als elektrische Erd-
kapazititen, jeweils parallel zu schalten mit direkten Ablei-
tungen Gio. Die Ableit- und Kopplungsleitwerte (Gio, Gij)
werden in einer Leitwertmatrix zusammengefasst, wobei jede
Matrixzeile durch einen anderen Index i adressiert ist und
wobei die Spalten der Matrix zusammen mit den Potentialen
oder Spannungen iiber alle Knoten laufen (j = 1...4).

Insofern als es sich bei den Leitwertverbindungen zwischen
zwei Knoten i1 und j um ungerichtete Verbindungen Gi; = Giji
handelt, diirfen die Spalten und Zeilen der Leitwertmatrizen,
G. im eingeschalteten oder Go im ausgeschalteten Zustand,
vertauscht werden (Symmetrie). Die Leitwertmatrizen (Ge,
Gy), die lediglich diagonale — somit ebenfalls symmetrische —
Kapazititsmatrix (C) und der Wirmequellenvektor (i) be-
stimmen das thermische Verhalten des Motors vollstindig und
ausreichend. Die charakteristischen Matrizen (C-1- Ge,0)
werden definit genannt, d.h. dass die charakteristische Deter-
minante nur reelle Wurzeln (bzw. Zeitkonstanten der Dimen-
sion C/G) haben und dass das System nur exponentiell ab-
klingende Ausgleichsfunktionen aufweisen kann.

Bull. ASE/UCS 70(1979)7, 14 avril



Es konnen 4 Knotenpunktgleichungen (Strombilanzen) auf-
geschrieben werden, welche das System in allen Einzelheiten
bestimmen. Beispiclsweise lautet die Bilanz im 1. Knoten,
wenn dui/dt = p - u1 gesetzt ist (p Laplace-Operator):

[(GIO + Gi2 + Gis + Gia) + C1 'p] ur — Gio us —
G111

— Gisus — Guraws = I
Entsprechend im i-ten Knoten:

(Gii + Ci-p) ui —Z Gijuj = Ii

j#i

(1

Fasst man die variablen (oder gesuchten) Ubertemperatu-
ren, kurz Potentiale, zu einem Vektor

251

Uz
u — [Hi] =

us

g

und weiter die konstanten Koeffizienten der untereinander-
geschriebenen Gleichungen zu Matrizen Ge, € zusammen,
so lautet das vollstindige Gleichungssystem fiir die Potentiale
des laufenden Motors (Kennzeichen Index e bei Ge):

(Ge “C-p)-u=i 2)

Der Losungsvektor u in Gl. (2) setze sich aus einem statio-
niren Anteilw und aus einem Ausgleichsvorgang v zusammen.
Beim Abkiihlen des stillstehenden, ausgeschalteten Motors
(Kennzeichen Index 0 bei Gy) ist die stationdre Losung ein
Nullvektor (0), so dass nur der Ausgleichs- oder Entspan-
nungsvorgang (v) ubrigbleibt:

(Go+C-p)-v=20 ©)

Hat das System von Fig. 1 den Rang n = 4, so haben die
Matrizen in Gl. (2, 3) die Dimension 4 x4, und die system-
bedingten sog. Eigenwerte px resultieren aus einer Gleichung
4. Grades in p (die charakteristische Gleichung):

k=1.4 “@

Der Entspannungsvorgang (Gl. 3) enthilt in allen Kom-
ponenten vi des Losungsvektors (v) jeweils dieselben Zeit-
funktionen cxk - exp (pxt) eines fundamentalen Exponential-
ansatzes exp (pt), in Verbindung mit relativen «Gewichteny
mix zum i-ten Ausgleichspotential (v;) und zum k-ten Damp-
fungsdekrement (— px), so dass

vi (1) = Z mik - cxePs

k)
~ Die Gewichtsfaktoren mix in GI. (5) sind nach Zeilen (i) und
Spalten (k) in einer ebenfalls nur von der Schaltung abhingigen
Matrix Mo (oder M.) angeordnet (Modalmatrix). Man be-
zeichnet die bis auf einen unerheblichen Maf@stabsfaktor (die
Integrationskonstante ¢ in Gl. 5) relativ zueinander durch
das System bestimmten Komponenten je einer k-ten Spalte
der Modalmatrix als den k-ten Eigenvekror oder als die Eigen-
richtung zum K-ten Eigenwert [2].

Die Schaltungsmatrizen des Systems (Go, €) kdnnen geo-
metrisch als eine Abbildungsvorschrift (Affinitit) aufgefasst
werden, derzufolge eine Einheits-«Kugel» um die Einheits-
vektoren auf den Koordinatenachsen des 4dimensionalen
Raumes (welcher durch die 4 Spannungen als seine Koordi-
naten definiert sein mag) in ein 4achsiges Ellipsoid verwandelt

det (Go,e +C-p) =0

- Pk,

(iund k) = 1.4 (5)
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wird. Die 4 Hauptachsen des Ellipsoids fallen in die Eigen-
richtungen fiir k = 1...4, so dass ein Einheitsvektor in der
k-ten Eigenrichtung m auch durch die 4 rdumlichen Winkel
definiert sein kann, die dieser mit den Koordinatenachsen
einschliesst. Falls der 4dimensionale Abbildungsraum Vor-
stellungsschwierigkeiten macht, so stelle man sich zunéchst
2- und 3dimensionale Unterrdume vor, in denen grundsitzlich
dieselben Beziehungen zwischen Matrizen leicht darstellbar
sind.

Die Eigenvektoren oder -richtungen ergeben sich aus dem-
selben fhomogenen Gleichungssystem wie die entsprechenden
Eigenwerte, d.i. Gl. (2 oder 3) beide Male mit rechter Seite als
Nullvektor (0) aufgefasst. Lost man Gl. (4) mit den konkreten
Daten (Go und C in der Legende von Fig. 1) fiir den still-
stehenden Motor nach p auf, so resultiert zundchst ein Qua-
drupel von Dampfungsdekrementen px

pi..pa:  — 4,174; — 1,144; —0,390; — 0,0758 (ks)~!

Finsetzen des ersten dieser Werte in Gl. (3) und willkiirliches
Vorgeben irgendeines der 4 Potentiale vi (z.B. va = 1) liefert
mit den Zahlenwerten aus Go, C in Fig. 1 das folgende 3dimen-
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Fig. 1 Galvanisches Quadrupolnetz als thermisches Motorabbild

zur Wirmebilanz am i-ten Knoten
Erklirungen im Text

Datensatz eines IEC-Drehstrommotors 225/4
(37,5 kW 1500 min—1') nach [1]

Leitwertnetz im eingeschalteten Zustand (bei laufendem Motor):
63,1 —33,3 =25 ]
—33,3 123,8 —23,8

—25 —238 69,4 —16,6
—16,6 16,6 |

Ge = W/K

Leitwertnetz im ausgeschalteten Zustand (bei stehendem Motor) :

54,8 —333 —16,7

| 33,3 447
Go= - 16,7 33,3 —16,6 Wik
| —=16,6 16,6 |
Kapazititsmatrix:
s =
60
C = 36 kJ/K
36

Wiirmequellenvektor des Dauerbetriebs:

[ 7. = 1010 Wicklung
s I. = 460 | W Eisen
T =430 Rotor
Iy = 0
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sionale inhomogene System zur Bestimmung der iibrigen
modalen Komponenten vy, ve, vs:

—3330v1 | (44,7 — 4,174 - 60) v2 = 0
— 16,7 v1 (33,3 — 4,174 - 36) v3 — 16,6
— 16,6 v3 = 4,174 - 36 — 16,6

also v1 = 55,4; v2 = —8,97; vs = — 8,05; va = 1. Aus den
Komponenten folgt fiir den Betrag des Vektors v (die sog.
Norm)

N (D) = (1% + v22 + v32 + v42)%5 = 56,7

Damit erhdlt man als erste Spalte der gesuchten Modalmatrix
die Projektionen des betreffenden bezogenen Eigenvektors auf
die Koordinatenachsen (cos-Funktionen der
Winkel):

rdumlichen

0,977

o (v)ket I T 0,158
mix = N (v)*, MO — [mlk] — _ 0,142
0,018

(6)

3. Die Ubergangsfunktionen beim Ausschalten
oder beim Einschalten der Nennlast

Der Dauerbetrieb des Motors ist definiert durch eine sta-
tiondre Potentialverteilung w = w seiner Speichergebiete,
welche sich nach GI. (2) mit dem Vektor i der im Nennlast-
betrieb auftretenden Warmestrome berechnen lédsst, indem die
Ableitungen null gesetzt werden (p = 0):

63 1,00
34,6 0,55
_ T . ) _ ]
w=Ggl-i 7.5 K 115 | P-u (7)
12,5 1,15

€y
€3
diel
C3
k
Ca
v
A
o, ]
F(t) o o\ ™ F-c
tr
o
m’
My
—a-k
M l e v(t)
; M3,
May

Fig. 2 Allgemeines Produktschema zur Bildung der Exponentialsummen
von Gl. (5) als Skalarprodukte zweier Vektoren mit Matrizen
Das sog. Falk-Schema [2] fiihrt solche Komponenten je eines
horizontalen Vektors (z.B. m1’) und eines vertikalen Vektors
(z.B. ¢ oder F - ¢) als Faktoren zusammen, die in Richtung der
Laufvariablen (Index k) gleich weit vom Anfang k = 1
entfernt sind. Die Summe der einzelnen Komponentenprodukte
(z.B. my1 exp(prt) c1 + muz - exp(pat) - e2 -+ ...) wird
im Kreuzungspunkt der Laufrichtungen der iiber k laufenden
Vektoren gespeichert und als das skalare Produkt der
Vektoren bezeichnet
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Die erste Komponente (Index i = 1: Wicklung) diene als
normierte Bezugsgrosse flir alle weiteren Erwdrmungsangaben :
Sie sei vom Dauerbetrieb her zu anfangs 100 %, bzw. 1 per-unit
(p.u.) festgelegt, wenn es um den Abkiihlungsvorgang beim
Ausschalten der Nennlast geht; dabei gehen der Vektor der
Quellstrome auf null (i — @) und, da der Motor beim Ab-
kiihlen stillsteht, die Leitwertmatrix von Ge auf Gy.

Im weiteren Verlauf nach dem Summengesetz von Gl.(5)
missen die Integrationskonstanten ¢k aus der Anfangsbedin-
gung

v =w bei

r=0 (8)

bestimmt werden. Fasst man die fiir jedes Speicherpotential
(also auch das i-te) zu bildende Produktsumme als das Skalar-
produkt zweier je tiber den Index k laufender Vektoren auf,
so ldsst sich der ganze Potentialvekzor v (r), wie in Fig.2 ver-
anschaulicht, durch den Ansatz einer Transformation am
Konstantenvektor ¢ = [Ck] darstellen:

’U(I):M()‘Fo(f)'c )

Die Funktionswerte sind darum in einer diagonalen Funk-
tionalmatrix

F (1) = Fy,c (1) = Diag (e

angeordnet worden, um den in Fig. 2 senkrecht angeordneten
Vektor ¢ in eine ebenfalls senkrechte Vektorspalte F' - ¢ =
[c'k exp (pkr)] zu verwandeln. Das Produktschema in Fig. 2
deutet an, wie beispielsweise der skalare Betrag vi (und ent-
sprechend alle iibrigen vi) gebildet wird, nidmlich durch das
Produkt m - (F'- ¢), d.i. die Summe simtlicher Produkte
von gleichindizierten Komponenten mx und fx ck.

Im ersten Augenblick wird die Funktionalmatrix zur Iden-
tititsmatrix (Einsmatrix I), und der Konstantenvektor in
Gl. (9) bestimmt sich aus der Anfangsbedingung (8) durch
Inversion:

My I-c=w c¢c=My! w (10)

Damit schreibt sich der Abkiihlungsvorgang in allgemeiner
Matrizenform:

v(t)=My Fo- Mo -w=Ay(t— 1) u (1) (1

Das ist nach der Sprachregelung der Matrizentheorie [2]
eine Vektortransformation vom Dauerbetriebs-Endwert w aus
oder von einem anderen Anfangswert u; aus, zum Entspan-
nungspotential v(r), wobei die zusammengefasste Ubergangs-
matrix (4o) durch Ahnlichkeitstransformation (My...My-1) an
der Funktionalmatrix (Fo = [fkk] = Diag eprxt) entstanden ist.
Die Diagonalelemente fix stellen gleichzeitig die Eigenwerte
der Matrizen Fy (wegen Diagonalitit) und 4o (wegen Ahnlich-
keit) dar; sie sind alle kleiner als eins wegen der Tatsache, dass
die pi nur negativ vorkommen. Auf die Konsequenzen dieser
Feststellung wird noch in Gl. (24) niher einzugehen sein. Im
wesentlichen geht es darum, dass bei mehrfacher Wiederholung
der v-te Rekursionsschritt auf der Entspannungskurve (GI. 11)
gegen null konvergiert, indem die Eigenwerte der Matrixpotenz
Ao’ mit v — co alle gegen null gehen. Eine aus lauter Matrix-
potenzen der Basis 4 (im besonderen Ay oder A., aber auch
Ao - Ae) gebildete unendliche Reihe wird Matrizenfunktion
genannt; diese konvergiert gegen einen Sittigungs-Grenzwerte-
vektor, solange die fix kleiner als eins und die pi kleiner als
null sind.

Bull. ASE/UCS 70(1979)7, 14 avril



Beim Aufheizen des unter Last laufenden eingeschalteten
Motors gelten dieselben Entspannungsgrundsitze der Funk-
tion v in Relation zum Beharrungszustand w (der hier an die
Stelle des beim Abkiihlen nicht geschriebenen Nullvektors
tritt). Die spiegelbildliche Betrachtungsweise eines Heizvor-
gangs (u) und eines Kihlvorgangs (v), genaugenommen u(7)
und »(z) in Fig. 3 axialsymmetrisch zur Linie w = const nur
bei weiterlaufender Kiihlung, ist auch bei der Messung mit
Erfolg angewendet worden. Die Messung von » = w — u in
Fig. 3a (d.i. Abkiihlung der ausgeschalteten, aber weiterhin
angetriebenen Maschine) ldsst sich viel einfacher und genauer
ausfihren als die Messung von « im eingeschalteten Zustand.
Indem uberall die Indizes 0 durch e ersetzt werden, erhilt man
daher anstelle von GI. (11) jetzt fiir das Aufheizen:

u(@) =w—v@t)=w—Me - Fe-Mc1 - (w0 — ug) =

—w — Ae (1) [w — uo(0)] (2

Dabei ist fiir den Fall, dass der Zustand der Speicher fiir 7 = 0
nicht null sein sollte, der allgemeinere Anfangszustand u (0)
= 0 oder # 0 in die Formel von Gl. (12) eingebaut worden,
wobei die Anregung (Differenzzustand w — uo) die gleiche
Rolle spielt wie der andere allgemeine Anfangswert w2 bei der
Abkiithlung nach vorzeitig abgebrochenem Aufheizen (GI. 11).

Es darf schon an dieser Stelle auf die besondere Leistungs-
fahigkeit des Matrizenkalkiils hingewiesen werden, der nimlich
die Berechnung der Exponentialfunktionen zberfliissig macht,
dadurch dass man (um den Kurvenverlauf explizit Punkt fir
Punkt darstellen zu konnen) mehr oder weniger kleine Ab-
szissenschritte Az ausfiihrt, wodurch die Ubergangsmatrizen
Ao (Ar) oder A (Af) zu Konstanten werden und die Anfangs-
werte wo, w1 zu den eigentlichen Verdnderlichen. Das Rechnen
in Rekursionsschritten stellt unabhingig von der Schrittweite

9 Messpunkte

T
|
i
|

0,51 u v(t)

T

2 4 6 8

@

|
|
|

— ks | )
2 4 6 !

Fig. 3 Berechnete und gemessene Dauerbetriebskurven
Ubergangskurven zum Dauerbetrieb mit Nennlast

Die Kurven u(t), v(¢) ohne Index stellen die Wicklungs-
erwidrmung des in Fig. 1 erwihnten Kifigliufermotors dar
(d.i. Komponente | des Potentialvektors u). Sie entsprechen
dem Grenzzustand des sog. S3-Schaltbetriebs, wenn die
Einschaltzeit fe und die Ausschaltzeit 7o beide gegen unendlich
gehen

a) Heizkurve u(t):

Messpunkt v = w — u gemessen mit Hilfe des abnehmenden
Wicklungswiderstands beim Abkiihlen
des angetricbenen Motors,
bei laufender Ventilation (Matrix G¢)

b) Kiihlkurve v(t):

Messpunkt v gemessen aus abnehmendem Wider-

stand beim Abkiihlen des stillstehenden

Motors (Matrix Go)
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(At) eine Skalarproduktbildung (Vektortransformation) dar;
diese verlauft wesentlich wirtschaftlicher als das Ausrechnen
variabler Funktionswerte.

4. Das Hiipfen von einer Schaltspitze zur nichsten
im diskontinuierlichen Schaltbetrieb mit Pulslasten

Ein periodischer Schaltbetrieb ist durch die Betriebsart und
durch den zeitlichen Ablauf des Schaltspiels gekennzeichnet.
Beim thermischen Verhalten von Motoren kommt es auf die
Hiillkurve der Temperaturspitzen an, welche die Wicklung im
Laufe der Zeit annimmt, wenn Einschaltzeiten 7 und Aus-
schaltzeiten fo periodisch abwechseln. Im sog. S3-Betrieb hat
der Belastungsverlauf rechteckige Gestalt, d.h. man rechnet
mit gleichmassiger Last und mit konstanter Wéarmeeinstro-
mung £ = const (Gl. 2) wihrend der Einschaltzeit und mit
stethendem Motor bei i = 0 wihrend der Ausschaltzeit
(Fig. 4a). Der Potentialverlauf ist stetig (ohne Spriinge), wenn
auch nicht stetig differenzierbar. In den schwerwiegenderen
Betriebsarten S4 und S5 (Fig. 4b, 4¢) treten zusitzliche Dirac-
Pulse der Wirmeeinstromung jeweils am Anfang bzw. am
Anfang und Ende der Einschaltperiode auf. Anlaufwidrme Qa,
und Bremswirme Qp hdngen in erster Linie mit dem Tréigheits-
moment des Maschinensatzes zusammen, das meistens in
Relation zum Nenndrehmoment in Form der sog. Anlaufzeit
angegeben wird. Anlauf- und Bremswidrme miissen bertick-
sichtigt werden, wenn die Anlaufzeit trotz . < te, fo jenes
Mass iiberschreitet, das durch die Hohe zugehoriger Tempe-
raturspriinge gegeben sein mag.

Die Pulsinhalte (Qa, On) sind im elektrischen Abbild (Fig. 1)
als Ladungsvektoren Qa, (v zu qualifizieren, mit jeweils
Komponentenanteilen [ /i d7 bei den Knoten 1 und 3 (Wick-
lung und Rotor). Es ergeben sich damit diskontinuierliche
Potentialverldufe. Die Potentialspriinge sind ebenfalls Vek-
toren Au., Auyn, deren Komponenten sich aus jeweils «La-
dung/Kapazitit» berechnen lassen. Ohne auf diese Berechnung
hier niher einzutreten, seien die nachfolgenden Sprungpoten-
tiale als numerisches Beispiel eingeflihrt, welches sich ausser
einer angenommenen Anlaufzeit von #, = 10 s aus der Dreh-
momentcharakteristik und aus den {ibrigen Daten des Motors
von [1] ableitet sowie ausserdem von einer angenommenen
Lastkennlinie:

[ 0,164 ]
0
0,146
0

Au, = C-1- Qa == p.u.,

[ 0,160 ]
0
0,207
0

(13)

AUI) - C71 . Qh - p.u.

Bei der Berechnung der Schaltspitzen geht man zunachst
von der ersten Spitze #i; aus, so dass das anschliessende Ent-
spannungspotential v; (Minimum vor Beginn der zweiten
Antriebsphase, Fig. 4a) ohne weiteres nach Gl. (11) angegeben
werden kann:

v (e + 1) = Ao (20) - T (14)

Als Anfangszustand des nichsten steigenden exponentiellen
Ausgleichsvorgangs wihlt man die Summe aus diesem Ent-
spannungspotential und aus dem Anlaufsprung (v: + Au),
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siehe Fig. 4b, anstelle des allgemeinen Anfangswerts zo (0) in
Gl. (12). Schliesslich ist zu beriicksichtigen, dass am Ende des
Aufheizens u.U. noch ein fester Betrag fiir das Bremsen
(Auy) iiberlagert wird (Fig. 4¢), so dass der zweite Spitzenwert
dhnlich wie in GI1. (12) bzw. durch Einsetzen von v: aus (14)
wie folgt herauskommt:

G2 (2te + 10) = w + Aup — Ae (te) - (W — Ay — V1) =

N— e’

. YV
Wy Wa,

=wp — Ae wy + Ae- Ao - 1

as)

Die erste Spitze berechnet sich nach demselben Gesetz (15),
ausser dass der Anfangszustand jetzt ein Nullvektor ist, so dass

0o (0) = 0, ity (te) = wp — Ae-w, (16)

Durch Einsetzen von Gl. (16) in (15) folgt mit A - Ao = A:
(17)

Entsprechend erhilt man durch Wiedereinsetzen von (17) in
(14) und (15) die fur die laufende Berechnung der Spitzen
lings der einhiillenden Kurve wichtige Rekursionsformel (vgl.
Laufvariable Index v in Fig. 5):

o =1 + A4 -

s = i +A- e

fiy+1 = i1 + A - @iy bzw. Differenzvektor

. A A 18
[5i]v:uv+1_u1=A'uv (18)
A
u,,
A Aultt
2
p.u. u -
1.~ Au,
U \'4
\V
ul
o .
T, !
1 & 0y b
| o a C
I |
[ : Qa Qb
| |
|
Fig. 4 Verlauf der Wirmeeinstromung und der Erwirmung
in verschiedenen Schaltbetriebsarten eines Motors
Komponenten 1 (Wicklungsverluste 7, Q und Wicklungs-
erwdrmung u, v) ohne Index 1 geschrieben
a) S3-Betrich:
I gleichmiissige Einstrdomung ins Einschaltnetz (Ge.)
wilhrend der Einschaltdauer 7. bei vernachlissigbarer
Anlaufzeit
u steigender Abschnitt der Temperaturkurve

v fallender Abschnitt, Entspannung im Stillstandsnetz (Go)
wihrend der Ausschaltzeit 7o

i Hiillkurve der Temperaturspitzen

1, 2 erste, zweite Spitze usw.

b) S4-Betrieb:

Q. Anlaufwirme bei nicht vernachlidssigbarer Anlaufzeit fa;
Motor lduft aus

Au, Temperatursprung am Anfang des Heizzyklus auf Grund
der Anlaufwidrme

c) S5-Betrieb:

Oy Bremswidrme am Ende des Einschaltzyklus tritt zusitz-

lich zur Anlaufwirme in Anlagen auf, die elektrisch

mit Gegenstrom gebremst werden

Temperatursprung am Ende des Heizzyklus auf Grund

der Bremswirme am Anfang des Entspannungszyklus

fiy  v-te Spitze; alle Spitzen enthalten den Temperatur-
sprung Aduy

Auy
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5. Entwicklung der Ubergangsmatrix (4.)
aus dquidistanten Vektorzustéinden der Ubergangs-
kurvenschar ({J)

Die ersten n Rekursionsschritte dy, v = 1...n lassen sich
durch Nebeneinanderanordnen der Vektoren iy bzw. der
Differenzvektoren [di], zu quadratischen Matrizen U und 4
zusammenfassen, womit die Umkehrbarkeit der Beziehungen
zwischen den Stiitzwerten einer Ubergangskurvenschar (uiv)
und der Ubergangsmatrix (aix) formal bewiesen ist:

A = [a/] = [aix]
U = [iiv] =[]
4 =[a:], = [6w]

Die Schaltbetriebskurve von Fig. 5 diene als numerisches Bei-
spiel eines allgemeinen Erwdrmungsvorgangs, wobei im fol-
genden nicht mehr von Heizen oder Kiihlen (Indizes e, 0) zu
sprechen ist, weil die schaltungsméssige Herkunft der Matrix
(A) oder ihre Zusammensetzung aus Faktoren in Relation zu
den Vektorzustinden (U) ohne Bedeutung ist.

Bei der Berechnung von 4 aus U (Umkehrung des Matri-
zenprodukts Gl. 19) ist mit der Problematik der kleinen Deter-
minanten zu rechnen, so dass diese Umwandlung in prakti-
schen Fillen nicht ohne weiteres moglich ist. Um die sehr
entscheidenden Fehlermoglichkeiten qualitativ beschreiben zu
koénnen, soll folgendermassen vorgegangen werden: Die Ma-
trix U werde zunichst aus der mit den Zahlen von Fig. 5
berechneten, als gegeben betrachteten Eingabematrix 41 be-
rechnet und dann gerundet. Die aus der gerundeten Matrix U
(anstelle einer supponierten Messdatenliste) hervorgehende
Ausgabematrix 4. weist gegeniiber 4; einen Fehler AA auf,
der zu diskutieren ist.

Die Eingabematrix 4 enthilt einfach die Systemparameter
(Eigenwerte, Eigenvektoren) in Verbindung mit der digitali-
sierten Zeitkoordinate (Intervallbreite, Spieldauer), wihrend
alle Informationen tiber die Belastung in der vektorformigen
Anfangsbedingung als weitere Dateneingabe @ enthalten sind
(Gl. 15, 16). Die Dateneingaben verstehen sich in abgeschlos-
senen Zahlen, welche hochstens 3 Ziffern nach dem Komma
enthalten sollen:

A-U=4 (19)

0,107 0,386 0,226 0,080 0,450

0,087 0,467 0,095 0,029 | 0,065
Ar=1 087 0,190 0420 0211 | = | 0461 | PV

0,030 0,027 0,246 0,689 0,022

Dann ergeben sich beim Rechnen ohne Stellenverlust durch
fortlaufende Multiplikation die Stellenzahlen der wiv, diy mit
wachsendem v zu 3, 6, 9...15. Nachstehend das auf ebenfalls
nur 3 Stellen gerundete Resultat der Vektorzustdnde:

0,450 0,629 0,760 0,864 ]

0,065 0,179 0,276 0,353

0,461 0,711 0,883 1,021
0,022 0,166 0,335 0,500 |

U=

0,179 0,310 0,414 0,500 ]
0,114 0,211 0,288 0,352
0,250 0,422 0,560 0,677
| 0,144 0,313 0,478 0,631 |

Betrachtet man umgekehrt die Vektorzustinde als gegeben,
so konnen deren Rundungsfehler je nach «Kondition» der
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Fig. 5 S5-Betrieb des Elektromotors

Berechnete Wicklungserwirmung, ohne Index 1 geschrieben.
Mit Beriicksichtigung von Anlauf- und Bremswédrme.

Anlaufzeit ta=10s
Spieldauer 1ks
Einschaltdauer 25% fte = 0,25 ks
Ausschaltdauer 75% to = 0,75 ks

Matrix U beim Auflésen des Systems GI. (19) nach 4 zu
abweichenden Ausgabedaten A. fithren, welche aus numeri-
schen Griinden deutlich von A; verschieden herauskommen.
Die Matrixinversion (aus Gl. 19)

A=4-U1l und A'=U)"'1 -4 (20)

ist am besten lesbar in Form des transponierten Matrizen-
produkts (A’ rechts mit vertauschter Zeilen-Spaltenanordnung
bewirkt eine Anderung in der Reihenfolge der transponierten
Faktoren), so dass die Spalten in A’ (entsprechend Zeilen
in A) als Losungen je eines Gleichungssystems berechnet wer-
den konnen, beispielsweise im Falle der ersten Zeile der ge-
suchten Matrix As:

ay = [a] = [uni] - [01v]

0,179
0,310
0,414
0,500

bzw. U’ a1’ =

2D

Entsprechend ergeben sich die ganze Matrix mit n Zeilen ay”
wie oben

also a’ = [ 0,087 0,335 0,252 0,100 |

0,087 0,335 0,252 0,100

—0,051 0,269 0,255 0,081

Az = 0,106 0,177 0,404 0,222
0,005 —0,017 0277 0,701

und die Fehlermatrix A4 = A; — A aufgrund des Stellen-
verlusts beim Runden der nur 3stellig angegebenen Matrix U':

0,020 0,051 —0,026 —0,020
0,138 0,198 —0,160 —0,052
Ad=1_0019 0013 0016 —0011
0,025 0,044 —0,031 —0,012
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Als ein reprisentatives 1dimensionales Vergleichsmass kon-
nen die quadratischen Mittelwerte der Zahlenreihen der Ma-
trix (d.i. die Vektornorm bzw. der Betrag von a; oder ax)
oder noch besser die mittlere Vektornorm (eine Art Effektiv-
wert)

Nm(A) = N(A)/In

mit N(A) = Z aix®>= Matrixnorm 2
ik

beniitzt werden. Die n-te Potenz von Nm bezeichnet dann
eine orthogonale Vergleichskubatur zum volumetrischen Inhalt
des tatsdchlich durch die Zeilen- oder Spaltenvektoren der
Matrix aufgespannten Epipeds (dargestellt durch den Zahlen-
wert der Determinanten). Die Matrixinversion (Gl. 20) ist an
die Bedingung der Regularitit det (U) # 0 gekniipft, wobei
mehr oder weniger ausgeprigte numerische Stabilitdt (die
Fehlerverstirkungseigenschaften) {iblicherweise durch eine
Konditionszahl ausgedriickt wird [2]:

K(U) = det (U)/ Nw™ (U) = 0,000 024/ (1,13)* = 0,000 015
(23)

Im Vergleich der Matrizen 4 und U muss festgestellt wer-
den, dass die U-Matrix etwa 1000mal schlechter konditioniert
ist als die A-Matrix. Der Fehler in der berechneten Matrix
(AA), gemessen am grossten Komponentenbetrag Adikmax =
0,198 im Verhiltnis zur mittleren Vektornorm Nm(4) = 0,56
(relativ 0,198/0,56 = 0,35), mag etwa 1000mal grésser sein als
die durch Rundung bewirkten Fehler in der U-Matrix. Trotz-
dem lisst sich mit der fehlerhaften Matrix A sinnvolle Berech-
nungsarbeit leisten, wie im ndchsten Abschnitt gezeigt wird.

6. Extrapolation eines intermittierenden Erwarmungs-
verlaufs und Sattigungseigenschaft der Hiillkurve

Die Frage nach dem Endspitzenwert einer periodisch inter-
mittierenden Belastungssituation ist experimentell nur schwer
oder mit grossem Aufwand zu beantworten. Auch beim Rech-
nen, z.B. Hiipfen von Spitze zu Spitze, ist die grosse Zahl der
Spitzen bis zum Eintreten der Sittigung storend. Beispiels-
weise kommt man mit den Zahlenwerten der Matrix A;
(Motorbeispiel nach Fig. 5) erst nach 60 Schaltspielen bis auf
19 an den Endspitzenwert heran.

Das Springen von Spitze zu Spitze ist unndtig, wenn nur
der Endwert der Hiillkurve gesucht wird, weil von allem An-
fang an schon sdmtliche Information im Vektor der ersten
Spitze i1 und in der zusammengesetzten Ubergangsmatrix A
enthalten ist. Dabei ist es im Prinzip gleichgiiltig, ob die Matrix
aus einer Modellschaltung (A1) oder aus einer numerischen
Kurvenanalyse (A2) hervorgegangen ist. Einsetzen von it2 aus
Gl. (17) in Gl (18) bis i, liefert als resultierenden Transfor-
mationsfaktor bei i1 ein endliches Matrizenpolynom bis zur
(v — 1)-ten Potenz, wobei schon im Anschluss an Gl. (11)
nachgewiesen worden ist, dass im Grenziibergang v — c die
hochsten Potenzen nur noch Nullbeitrige liefern. Damit ent-
steht eine unendliche Matrizenreihe (eigentliche Matrizen-
funktion), im besonderen also eine konvergente geometrische
Reihe, die nach derselben Grenzwertformel wie bei den ein-
fachen Zahlen behandelt werden darf:

i, =limav =T +A+A2+ ...+ AV iy =

—d-Hra @

v—> 00
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Die Losung i, entspricht somit der Losung eines Glei-
chungssystems mit den Koeffizienten der Matrix (I — A4) und
mit dem Vektor der ersten Spitze auf der rechten Seite:

-4 b, =i

(1-0,107) —0,386 —0,226 —0,080
—0,087 (1—-0,467) —0,095 —0,029 .
—0,087 —-0,190 (1—0,420) —0,211 e
—0,030 —0,027 —0,246 (1—0,689)
(25)
0,450 1,52 ]
0,065 . 0,82
= 0.461 p.u. alsou., = 1.96 p.u
0,022 1,84 |

Die einzige Voraussetzung, welche an die ausserordentlich
einfache Extrapolationsmethode nach GI. (24) gekniipft ist,
schreibt vor, dass das System linear sei, d.h. dass ein lineares
Differentialgleichungssystem wie Gl. (1) formulierbar sein
muss. Im Gegensatz zu hoheren mathematischen Operationen,
wie z.B. den bekannten numerischen Integrationsverfahren
nach Runge-Kutta u.a. [3], liefert das Matrizenverfahren
exakte und zuverlissige Integrationsergebnisse fast ohne jede
Begrenzung (Anzahl n der Speicher und Integrationsbereich 7
der Zeitachse), wenn nur das System und die Anfangsbedin-
gungen bekannt sind, was fur alle anderen Verfahren ebenfalls
Bedingung ist.

Interessanterweise beruht die Extrapolation auf einer we-
sentlich stabileren numerischen Situation als die analytische
Entwicklung (Umkehrmatrix von I —A4 in GIl. 24 statt von
U in Gl. 20). Die Extrapolationsrechnung vermag sogar Feh-
ler, die als Folge einer unzutreffenden Netztopologie oder als
Folge unzureichender Analysiergenauigkeit (vgl. As aus U)
aufgetreten sind, teilweise wieder auszugleichen. Bezeichnen-
derweise hat das Weiterrechnen mit der Matrix 4 (relativer
Fehler 359, auf der Stelle i, k = 2,2) ein durchaus tragbares
Endresultat i (A2) erbracht, welches in den einzelnen Kom-
ponenten Abweichungen zwischen 5...10 %, gegeniiber ., (A1)
nach GL. (25) aufweist, was fiir thermische Abbilder noch
immer zuldssig zu sein scheint:

1,60
0,91
2,05
1,95

U, (A2) = p.u.

7. Ausblick: Anwendung auf Kabel

Die Methode der thermischen Abbilder verlangt unter
Umstidnden einen Wechsel der Arbeitsweisen, wenn man Be-
trachtungen iiber Motorwicklungen auf Kabelsysteme anwen-
den will. Zunichst ist klar, dass die Angabe ciner konkreten
Schaltung fiir eine gegebene Anordnung gemeinsam im Boden
verlegter Energiekabel sehr schwierig sein diirfte, da diese
Kabel zusammen mit dem sie umgebenden Sand in einem
ebenen Temperaturfeld liegen, das die Wirmekapazititen
ebenso wie die Wirmewiderstinde als in der Querschnitts-
ebene verteilte Grossen enthélt. Die einleitend zitierte Diskre-
tisierung ist darum schwierig, weil man (anders als bei einem
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Motor) die Kapazititen nicht sicher unterscheiden kann;
wieviel Sand und wieviel Isolation ist zu einem Speicherbereich
zu rechnen, wiirde man sich typisch fragen miissen.

Wenn das Kabelsystem iiberhaupt durch Exponentialfunk-
tionen angenihert werden soll, dann reicht zur Nachbildung
des zeitlichen Verlaufs wahrscheinlich eine geringe Anzahl von
Speichern und Eigenwerten aus. Es wire daher verniinftig, die
Rangzahl des Systems n mit der Anzahl von Mess-Potentialen
in der fraglichen Querschnittsebene in Einklang zu bringen,
indem gleichzeitig die Messpunkte der Ebene Durchschnitte
liber die gesamte Kabellinge enthalten. Die nach der Wider-
standsmethode auszumessenden Kabelseelen reprasentieren im
wesentlichen Schwerpunkte der Speicherbereiche, wobei aus-
serhalb der Energiekabel liegende inaktive Wirmekapazititen
durch diinne Hilfskabel zu erfassen sind. Man hat also bei
Kabelsystemen, im Gegensatz zu einem Motor, grundsitzlich
die Moglichkeit, Fektorzustinde w (1) zu messen.

Die gesuchte Matrix (4) hat nichts mit der Belastung
(Anfangsbedingungen u: einer beliebigen Probelast oder
der spiteren, spezifisch intermittierenden Last) zu tun; sie
kann nach Vorgabe der Zeitintervalle (Ar = te, fo) aus der
beliebigen Ubergangsfunktion U (u1, Ar) herausgelesen und
berechnet werden. Aus praktischen Griinden wird man das
Kabelsystem im Kurzschluss anwidrmen und dann zur Wider-
standsbestimmung mit einem relativ kleinen Gleichstrom be-
aufschlagen, der liber je 2 Phasen desselben Kabels hin- und
zuriick- sowie liber mehrere Kabelstrecken in Reihe geleitet
wird. Wihrend einer geniigend langen Abkiihlungszeit des
Systems miissen die Spannungsabfille iber simtlichen Kabel-
schleifen und der Strom (Spannung am Shunt) so genau wie
moglich (min. 1%/90 genau) erfasst und gespeichert werden. Ist
die einmal erhaltene Messinformation auf einem Datentrager
festgehalten, so kann sie jederzeit zusammen mit der Zeit-
koordinaten abgerufen und rechnerisch weiterverarbeitet wer-
den.

Es gibt bei den Kabeln keine Systemunterscheidung zwi-
schen Heizen und Kiihlen. Aber wenn die spezifische Aufgabe
gestellt wird, dann konnen verschiedene Zeitwerte re, o ge-
geben sein, welche es erforderlich machen, mit zwei Zeitvor-
gaben verschiedene Matrizen Ue, Uy aus dem Datenspeicher
zu entnehmen, daraus durch Rechnung zwei Matrizen A., Ao
zu berechnen und diese dann abschliessend in eine einzige
Ubergangsmatrix 4 umzuformen. Die Anfangsbedingungen,
z.B. stationidre Enderwdrmungen (w) oder Sprungpotentiale
(Au) ergeben sich dhnlich wie bei den Motoren durch Rech-
nung. Hat man in einem weiteren Vorversuch durch Belasten
cines Kabels nach dem anderen und Messen aller Kabel im
Beharrungszustand die {iberlagerungsfihigen Einflusszahlen
festgelegt, so ergibt sich der stationdre Vektor v als Vektor-
transformation am Wirmestromvektor (i) mit der Matrix der
Einflusszahlen (eine Widerstandsmatrix); die Sprungpoten-
tiale, beispielsweise nach Netzkurzschliissen, berechnen sich
aus der adiabatischen Erwidrmung des Kupfers, womit aller-
dings die Kapazitit des nicht genau bekannten Wiarmeknotens
unterschitzt und der Temperatursprung tiberschitzt wird.

Das Zahlenbeispiel des Motors hat gezeigt, dass ein punk-
tuelles Mehrkorpersystem mit genligendem messtechnischem
Aufwand einwandfrei aus den Ubergangskurven identifiziert
werden kann. Anderseits kann die Ubereinstimmung des in
Wirklichkeit verteilten Poisson-Feldes mit einem Mehrkorper-
system u.U. durch Einfithrung zusitzlicher Messpotentiale
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(Hilfskabel) beliebig gesteigert werden. Es ist also zu erwarten,
dass trotz der numerisch missig konditionierten U-Matrizen
ein Verfahren realisierbar ist, welches gestattet, das Zeitver-
halten ausgefihrter Kabelstrecken als digitale Basisinforma-
tion permanent zu speichern, wobei im Prinzip eine Datenbank
iiber die Untertage-Energietibertragungsstrange aufgebaut
werden konnte, die dasselbe leisten wiirde wie entsprechende
analoge Modelle.
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Briefe an die Redaktion — Lettres a la rédaction

« Influence d'une rupture de barre ou d’un anneau

sur les caractéristiques externes d'un moteur asynchrone
a cage»

[Bull. SEV/VSE 69(1978)17, S. 921...925]

Zuschrift

This is timely and valuable work. It is necessary to improve our
knowledge and its application, about insipient defects of machines.
The eventual complete destruction of the machine should be avoided.
The new era of high energy costs forces the early recognition of
defects that reduce efficiencies.

The parasitic torque caused by the fracture has twice the slip
frequency. It is expected to cause vibration and stator pulsation at
twice slip frequency. This suggests that by monitoring vibration
and/or stator current at twice slip frequency may furnish good and
early warning of these fractures. Naturally, twice slip frequency will
show other defects and anomalies. The 2 pole machines may have
relatively higher twice slip frequency effects due to other deviations
from complete circular symmetry.

It is thought that the parasitic torques are sufficiently high for
detection by reduced voltage run-up tests. In this test the motor is
started (free acceleration) at various different reduced voltages.
Fracture of one bar, or of several adjacent bars will cause ‘hang
up’ at half speed on reduced voltage.

It is notable that the stator current pulsations caused by bar
fractures show different trends/patterns for the two motors. The
2300 kW, 3000 RPM, 2 pole motor shows a very steep rise in the
pulsating stator current as the slip increases. 1 have applied correla-
tion analysis and found that for one broken bar
I, = 4.83 s1-82
Both I, and s (slip) in % ; the fit is good; coefficient of determination
is 99%.

This leads to very high extrapolated values for high slip values.
Possibly the rise would be far less steep if resistances were taken
into account; some of these may be in the form of equivalents of
stray load losses and parasitic core losses.

Similar analysis of the tested values of the small 4 kW, 3000 RPM,
2 pole motor leads to
Iy, = 1.24 50-5%; for one broken bar
I, = 1.22 58 ; for two adjacent broken bars
Correlation is good, i.e. better than 98 %. The tested values of the
4-kW-motor do not show levelling off or ‘saturation effects’, not-
withstanding that the rate of rise with increasing slip is substantially
lower than for the 2300-kW-motor.

A comparison of extrapolated values emphasizes these patterns:

Motor Iy % Remarks
3 phase, 50 Hz,
3000 RPM Slip Slip Slip
25% 50% 100 %
+ 1 2300 kW 1 680 5940 | 20960 one broken bar
1+ 2 4kW 8 12 19 one broken bar
H2 4kW 16 29 50 two broken bars
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Caveats must be applied before extrapolating. What could have
caused the choice of levelling off (saturation) slope for the relation-
ship between /I, and s for the 4-kW-motor #= 2? The test results do
not appear to justify that choice.

The increase in the current of the rotor bars adjacent to the frac-
tured bars is substantial as it goes up to 40 % for fracture of three
adjacent bars for the 2300-kW-motor 3 1. Others report that adja-
cent to the fractured bar of a motor having 28 bars, the increase in
current in the adjacent bars is 91% at 50 Hz, i.e. locked rotor,
s = 100%. Rapid, near violent heating follows and causes tempera-
tures of 114 °C in 15 s [1].

The case of the fracture of two bars not adjacent but diametri-
cally opposite to each other, is expected to be very different. A special
case will be fractures that are more or less evenly distributed in a
manner that corresponds to the number of poles. This might be
caused by certain kinds of intolerably long time at zero speed on
full voltage as it might occur on failure to start.

J. Szogyen, Glen Ridge, USA

Réponse de I'auteur

Les différentes remarques de M. John Szogyen-Delmar appellent
les réponses suivantes:

1. II est exact que des dissymétries de construction telles qu’ex-
centricité du rotor, ovalisation du stator ou du rotor, etc. peuvent
créer également une pulsation du courant. Cependant, dans tous les
cas, une rupture de barre provoque un changement de I'amplitude
d’oscillation du courant. C’est alors la variation d’amplitude qui est
indicatrice du phénomene.

2. Des tests basés sur des tensions d’alimentation réduites ne
sont pratiquement pas réalisables en exploitation.

3. Les approximations proposées pour I’évaluation du courant
pulsant en fonction du glissement ne sont valables que pour des
glissements faibles, n’excédant pas quelques %. A titre d’illustration,
le calcul complet a été effectué pour le moteur N° 1, avec une barre
cassée (fig. 1). On constate que le courant pulsant se stabilise & une
valeur de 5% et non pas 4 20960% pour un glissement égal a
l'unité.

*a

wlf Y

A \

2
0
0 02 0,4 06 08 — > 10
Fig.1 Courant statorique pulsant relatif en fonction du glissement

pour une barre cassée, moteur 1

De plus, le courant pulsant s’annule pour un glissement égal
4 0,5, soit a mi-vitesse. Ce phénomene est dii a I'effet de Gorge, bien
connu dans les cas des machines synchrones démarrant en asyn-
chrone.
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