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Bestimmung der dielektrischen Eigenschaften
der Ummantelung eines Kabels mit Hilfe eines Optimierungsprogrammes
Von Ch. Hafner

621.315.2.001.4:: 519.699;

Mit einem Optimierungsprogramm kann eine Kopplung theoretischer Resultate mit Kontrollmessungen erreicht werden, aus der man einerseits

Aussagen über die Zuverlässigkeit der Theorie erhält, und mit der anderseits gleichzeitig ungenau bekannte Parameter (wie z.B.
Materialkonstanten) besser bestimmt werden können. Dieses Programm wird auf den Fall eines zweiadrigen Netzkabels angewendet. Damit wird eine

Näherungsformelfür die Fortpflanzungskonstante der Leitungswelle bei hohen Frequenzen 1 MHz bis 250 MHz) geprüft, und zugleich werden
die dielektrischen Eigenschaften der Ummantelung bestimmt.

A l'aide d'un programme d'optimalisation, on peut obtenir une correlation entre des résultats théoriques et des mesures de contrôle, qui donne

une information sur la fiabilité de la théorie et permet de mieux déterminer des paramètres inconnus, tels que des constantes de matières. Ce

programme est appliqué au cas d'un câble de réseau à deux conducteurs. Une formule approchée pour la constante de propagation de l'onde à

des fréquences élevées (là 250 MHz) est ainsi contrôlée, et on détermine en outre les propriétés diélectriques du blindage.

1. Einleitung
Seit dem Bekanntwerden der Maxwellschen Gleichungen

wurde das Problem der Wellenausbreitung längs elektrischen
Leitungen intensiv untersucht [z.B. 1...4]1), ohne dass exakte

Lösungen des Mehrleiterproblems gefunden werden konnten.
Für die Technik genügen fast immer Näherungsformeln, die

ihrer Einfachheit halber auch bevorzugt werden. Sehr oft ist
es schwierig oder gar nicht möglich, aus theoretischen
Überlegungen Angaben über die Genauigkeit und Anwendbarkeit
solcher Näherungen zu machen, so dass man gezwungen ist,
Vergleiche mit Kontrollmessungen durchzuführen.

Bei der Untersuchung von schnellen Störimpulsen auf
Netzkabeln stand eine Näherungsformel zur Berechnung der

Fortpflanzungskonstanten harmonischer Wellen im Blickpunkt
des Interesses. Diese Formel, deren Herleitung im folgenden
skizziert wird, musste auf ihre Anwendbarkeit auf typische
Netzkabel geprüft werden. Zu diesem Zweck wurden Messungen

an einem Kabel mit zwei Cu-Adern und PVC-Isolation
durchgeführt (Fig. 1). Eine direkte Kontrolle der Näherungsformel

war aber damit nicht möglich, da die dielektrischen

Eigenschaften der Ummantelung handelsüblicher Netzkabel
zuwenig genau bekannt sind. Diese Schwierigkeit konnte mit
einem Optimierungsverfahren überwunden werden.

2. Theoretisches Modell des zweiadrigen Kabels

Die Maxwellschen Gleichungen bilden die physikalische
Grundlage der Elektrodynamik. Sie lauten für ruhende Medien:

rot E — (pH)

rot H (bE) + j + qv

div (eE) q

div (pH) 0

*) Siehe Literatur am Schluss des Aufsatzes.

Fig. 1 Typisches Netzkabel
1 Kupfer 2 Weich-PVC

Setzt man homogene, isotrope, lineare Medien voraus, so

sind e und p Konstanten. Diese Voraussetzungen sind bei
Materialien, die zur Herstellung von Kabeln verwendet werden,

fast immer gut erfüllt. Zudem gilt das Ohmsche Gesetz :

j — a E. Dabei ist auch er eine Konstante. In allen hier
interessierenden Fällen verändern sich die Materialien zeitlich so

wenig, dass man auch zeitliche Konstanz der Materialkonstanten

annehmen kann. Setzt man ferner voraus, dass q
—^

räumlich konstant und qv räumlich und zeitlich konstant ist,
so erhält man die bekannten Wellengleichungen :

(A- ßO

A - pa

dt

dt

pe

ps

d°- \

dt2)

e^
dt2 )H

0

0

(e)

(f)

Aus diesen Gleichungen gewinnt man zeitunabhängige
Differentialgleichungen durch Separation der Zeit:

E(r, t) Eo (r) • T(t)
H(r,t - Ho (r) T(t

(g)

00

(a)

(b)

(c)

(d)

Die Zeitabhängigkeit T(t) ist üblicherweise durch die

Quellen gegeben und kann bekanntlich in Fourierreihen oder

Fourierintegrale entwickelt werden. Man kann deshalb folgenden

Ansatz machen :

T(t) To e-irat,

wobei ohne Einschränkung der Allgemeinheit 7o 1 gesetzt
werden kann. Damit bleiben die zeitunabhängigen
Differentialgleichungen

(A + k2) Eo (r) 0

(A + k2) Ho (7) 0

wobei k2 w2 p + j —

(eO

(f)

(i)

Untersucht man die Wellenausbreitung längs Leitungen,
so hat man meistens näherungsweise zylindrische Symmetrie.
Man wählt also ein zylindrisches Modell und legt eine
Koordinatenachse parallel zur Zylinderachse. Ist diese Achse die

z-Achse, so lässt sich auch die z-Abhängigkeit in den
Gleichungen (e') und (f') separieren. Werden die Koordinaten in
den zur z-Achse senkrechten Ebenen mit //, v bezeichnet, so

—V —^

gilt für Eo (resp. Ho) der Ansatz

Eo (u, v, z) E* (u, v) • Z (z)
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Man erhält für die z-Abhängigkeit

Z (z) Zo eiyz + Zi e--bz (k)

Für die komplexe Fortpflanzungskonstante y schreibt man

7 ß + j a mit a^O, ß 0

Dabei ist a die Dämpfungskonstante, ß die Phasenkonstante.
In (k) bezeichnet damit der erste Summand eine Welle, die

in positiver z-Richtung läuft, der zweite eine umgekehrt
laufende Welle. Man kann deshalb ohne Einschränkung der
Allgemeinheit Zi 0 und Zo 1 setzen.

Es bleiben anstelle der Wellengleichungen (e) und (f) die

folgenden einfachen Differentialgleichungen:

(Auv + k'1 - y2) E* (u, v) 0

(Auv + k* - y2) H* (u, v) =0

E (h, v, z, t) E* («, v) • eitY2"0")

H(u, v, z, t) H* (u, v) eJCyz-co')

(Auv + k2- 72) Ez* («, v) 0 (e'")

(e")

(f")

Dabei bezeichnet Auv den ebenen Laplace-Operator in den

Koordinaten u, v, und es gilt

(1)

(m)

Bei zylindrischer Symmetrie folgt ferner aus den Maxwell-
Gleichungen, dass die Feldkomponenten Eu, E\, Hu, Hv aus
den z-Komponenten Ez, Hz abgeleitet werden können [4], Es

genügt also, (e") und (f") nur für die z-Komponenten zu lösen.

Auf Zwei- und Mehrdrahtleitungen sind bekanntlich bei nicht
sehr hohen Frequenzen nur die TM-Wellen von Bedeutung,
d.h. es gilt Hz*(u, v) 0. Dies ist die triviale Lösung der

Gleichung (f "), und es bleibt

zu lösen.

Das Problem besteht nun vor allem darin, dass (e'") nur in
homogenen Gebieten gilt, also im Falle zylindrischer
Leitungsanordnungen nicht im ganzen Räume, sondern in begrenzten

zylindrischen Bereichen. Im Falle eines zweiadrigen ummantelten

Netzkabels hat man mindestens vier solche Bereiche

(Fig. 2a).

Hat man die allgemeine Lösung von (e'") für jeden einzelnen

dieser Bereiche gefunden, so müssen alle Lösungen
ausgeschlossen werden, die an den Übergängen von zwei Bereichen

die Maxwell-Gleichungen nicht erfüllen. Aus den Maxwell-
Gleichungen in Integralform leitet man diese Randbedingungen

ab [4]. Es sind die bekannten Aussagen über die Stetigkeit
——y~

der Tangentialkomponenten von E und H an einer Trennfläche.

Die Erfüllung der Randbedingungen liefert eine transzendente

Gleichung für die Fortpflanzungskonstante y. Diese

Gleichung muss iterativ gelöst werden. Da mit der Anzahl der
Trennflächen die Anzahl der Randbedingungen und damit der
Rechenaufwand stark anwachsen, soll für den Fall des

zweiadrigen Kabels eine Vereinfachung gemacht werden : die Um-
mantelung 3 sei so dick, dass nur ein kleiner Teil der Energie
ausserhalb der Ummantelung transportiert wird, eine

Annahme, die für die meisten handelsüblichen Netzkabel genügend

genau erfüllt ist. Damit kann das wesentlich einfachere
Modell nach Fig. 2b verwendet werden.

Zur Lösung von (e'") wird man versuchen, Auv mit dem

Ansatz Ez*(u, v) U{u) V(v) zu separieren. Dies gelingt aber

nur in wenigen Koordinatensystemen, wie z.B. karthesischen

Fig. 2 Querschnitt durch das Netzkabel

a Kabel mit Aussenraum
b Vereinfachtes Modell
1, 2 Leiter (meist Kupfer)
3 Umhüllung (Isolation)
4 Aussenraum

Koordinaten, Polarkoordinaten. Anderseits ist man gezwungen,

in jedem Gebiet ein Koordinatensystem (u, v) so zu

wählen, dass die Berandung mit einer Koordinatenlinie
(// bzw. v konstant) zusammenfällt. Nur so können die
Randbedingungen ohne Schwierigkeiten mathematisch formuliert
werden.

Bei kreisförmigen Drahtquerschnitten wird man also im
Innern der Drähte Polarkoordinaten mit Zentrum auf der

jeweiligen Drahtachse verwenden. Bekanntlich führt dies auf
eine Besseische Differentialgleichung für den Radialteil, während

die Winkelabhängigkeit durch harmonische Funktionen
gegeben ist. Zur Formulierung der Randbedingungen verwendet

man ausserhalb der Drähte ein Bipolarkoordinatensystem,
in dem jedoch der Laplace-Operator nicht separierbar ist. Man
muss also (e'") im Gebiet z. B. in Polarkoordinaten lösen und
dann eine Koordinatentransformation vornehmen. Da dabei
sehr grosse mathematische Schwierigkeiten entstehen, ist man

gezwungen, gewisse zusätzliche Annahmen zu treffen, wie
z.B. hohe Leitfähigkeit der Drähte, ferner Drahtradien und
Drahtabstände viel kleiner als die Wellenlänge usw. [1...4].
Da diese Annahmen in der Praxis sehr gut erfüllt sind, erhält

man damit genügend genaue Resultate.
Einen wesentlich einfacheren Weg zur Bestimmung der

Fortpflanzungskonstanten y hat A. Sommerfeld [4] angegeben:

Vernachlässigt man alle Verluste, so erhält man an Stelle der
TM-Welle eine TEM-Welle. Zur Lösung lässt sich eine
konforme Abbildung verwenden. Die Koordinatenlinien des Bi-—^polarkoordinatensystems sind gerade die E- und //-Feldlinien.
Diese Resultate kann man als erste Näherung zur Bestimmung
einer Näherungsformel für die Fortpflanzungskonstante y

verwenden :

y.
1 1

1 - p- r In (p)
(n)

or 2nf Kreisfrequenz

r
p 7——-d+ \d--~r2
/• Drahtradius
2d Drahtabstand
£a, yia Materialkonstanten der Kabelummantelung
£i, ßi, a Materialkonstanten der Drähte

(n) ist gültig für hohe Leitfähigkeit a der Drähte und nicht zu
tiefe Frequenzen /. Für verlustbehaftete Kabelummantelung
wird £a komplex mit: sa £a*(l + j tg<5). Dabei soll der
Verlustwinkel ô nicht zu gross werden.

Berücksichtigt man die Abweichungen praktisch verwendeter

Kabel vom verwendeten Modell (endliche Ausdehnung
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der Umhüllung, geometrische Abweichungen durch
Fertigungstoleranzen, Inhomogenitäten usw.), so wird klar, dass

einerseits eine genauere Bestimmung von y [1] sinnlos ist, und
dass anderseits keine sehr hohen Ansprüche an die Genauigkeit

der Resultate gestellt werden können.

3. Unterschiede zwischen theoretischem Modell
und praktischer Anordnung

Zusammenfassend sollen alle Voraussetzungen angegeben
werden, die dem verwendeten theoretischen Modell zugrunde
liegen und bei der praktischen Anordnung nie exakt erfüllt
sind:

1. Die Maxwell-Gleichungen (a) bis (d) sind gültig, wenn

- die Medien ruhen;
- keine zusätzlichen Kräfte vorhanden sind (Vernachlässigung der

Gravitation).

2. Zur Herleitung der Wellengleichungen (e), (f) wurde angenommen :

- die Medien sind homogen, linear, isotrop;
- die Materialkonstanten innerhalb eines Mediums sind räumlich

und zeitlich unveränderlich;
- die Raumladungsdichte q verschwindet oder ist räumlich und

zeitlich konstant.

3. Das endgültige Modell setzt zusätzlich voraus:

- zylindrische Symmetrie (und damit unendliche Leitungslänge,
keine geometrischen Inhomogenitäten wie Änderung der
Drahtdicke usw.),

- sinusförmige Anregung,
- nur Leitungswelle angeregt,
- Drahtabstand klein gegen Wellenlänge,
- hohe Leitfähigkeit der Drähte, niedrige Leitfähigkeit der

Ummantelung (geringe Verluste),
- Querschnitt der beiden Drähte identisch und kreisförmig,
- dicke Ummantelung

Forderungen wie hohe Leitfähigkeit, dicke Ummantelung
usw. sind ungenau. Sie bedeuten, dass die Resultate mit
zunehmender Leitfähigkeit, zunehmender Dicke der Ummantelung

usw. genauer werden. Wie genau die Resultate bei einer
gegebenen Anordnung sind, kann aber nur in den seltensten
Fällen angegeben werden, da der Aufwand für genauere
Rechnungen meist zu gross wird. Die sinnvollste Prüfung der
Resultate ist deshalb sicher der Vergleich mit Kontrollmessungen.

4. Vergleich von Theorie und Kontrollmessungen
Der Sinn theoretischer Berechnungen liegt vor allem darin,

für verschiedenartige Anordnungen Angaben über zu erwartende

Resultate zu liefern, so dass man sich mühsame
Messreihen ersparen kann. Da fast alle theoretischen Berechnungen
mit Annahmen verknüpft sind, die praktisch nicht exakt
erfüllt werden, sind zur Erhärtung der Theorie Kontrollmessungen

nötig. Beim Vergleich theoretischer und experimenteller

Daten ergeben sich dann stets Abweichungen, die durch
Messfehler und Differenzen der verwendeten Modelle bedingt
sind.

Eine weitere Schwierigkeit besteht oft darin, dass gewisse

Parameter, wie die Materialkonstanten, in der Theorie als

bekannt vorausgesetzt werden, praktisch aber oft zuwenig
genau bekannt sind. Da Netzkabel nicht für hohe Frequenzen
gebaut sind, ist wenig über ihr Verhalten und die Zuverlässigkeit

der beschriebenen Theorie bekannt.
Zur Bestätigung der Theorie wurden Kontrollmessungen

an einem zweiadrigen, PVC-isolierten Kabel Td 2x0,75 der

Kabelwerke Cossonay durchgeführt. Es wurden Amplituden-
und Phasengänge für die Kabellängen 5 m, 10 m, 20 m, 30 m
und für den Frequenzbereich 1 MHz bis 250 MHz gemessen.
Der Wellenwiderstand dieser Kabel beträgt im genannten
Frequenzbereich ca. 100 £2. Auf eine genaue Anpassung der
Wellenwiderstände an den Enden der Leitung wurde aus
verschiedenen Gründen verzichtet.

Über die dielektrischen Eigenschaften der Ummantelung
im interessierenden Frequenzbereich standen nur sehr grobe
Aussagen zur Verfügung, so dass eine direkte Anwendung der
Theorie nicht möglich war, da eine Messung der erforderlichen
Daten nicht in Frage kam. Zudem ist zu beachten, dass bei
Fertigungsprozessen vor allem der Verlustwinkel so stark
geändert werden kann, dass eine Messung des Verlustwinkels
am Rohmaterial vor der Fertigung unbrauchbar wäre.

5. Anwendung der nichtlinearen Optimierung
Es liegt nahe, die ungenau bekannten Grössen als Parameter

bei der theoretischen Berechnung zu verwenden und diese

Parameter so lange zu variieren, bis alle Messwerte von den
berechneten nur noch wenig abweichen. Um dies zu erreichen,
kann man die bekannte Summe der Fehlerquadrate bilden:

m

2 C^messi ~ -Fthi (P1,P2, .../?n))2 S (pi, />2, ...^n) (1)
i=l
.fmess i i-ter Messwert
Em i i-ter berechneter Wert
pt,P2,...pn Parameter

Die Summe der Fehlerquadrate S(pi,pz, ...pn) ist eine
Funktion der n Parameter pi, pz, Die Aufgabe besteht
nun darin, das absolute Minimum dieser Funktion zu suchen.
Im allgemeinen wird S mehrere lokale Minima aufweisen, so
dass diese Aufgabe ein recht heikles mathematisches und
numerisches Problem darstellt.

Oft können die Parameter nicht beliebige Werte annehmen,
da gewisse Nebenbedingungen erfüllt werden müssen. Zum
Beispiel muss für die dielektrischen Eigenschaften von PVC
sicher gelten

epvc Jï £o, \ô \ <~
Ein Optimierungsprogramm, das derartige Minimisie-

rungsaufgaben lösen kann, ist in [8] beschrieben [siehe auch
9; 10; 11],

Es sei noch bemerkt, dass es in vielen Fällen günstig ist, die
Summanden von S zu gewichten. Ist z. B. die Messgenauigkeit
nicht für alle Messpunkte gleich, so kann man diesem
Umstand durch eine geeignete Wahl von Gewichtsfaktoren Rechnung

tragen.
Im untersuchten Falle kann man nach Formel (n) den

Wert der Fortpflanzungskonstanten y näherungsweise berechnen,

wenn alle Voraussetzungen des theoretischen Modells
genügend genau erfüllt sind. Dabei sind aber die dielektrischen
Eigenschaften der Kabelummantelung, d. h. die komplexe
Dielektrizitätskonstante ea, unbekannt. Mit ga £o £r (1 + j tg <5)

enthält die Formel (n) zwei reelle Parameter er und <5, somit
y y (co, st, S).

Es werde nun zunächst angenommen, er und <5 seien im
interessierenden Bereich frequenzunabhängig, und die Formel
(n) sei gültig. Zur Kontrolle wurden Messungen der
Spannungsamplituden am Leitungsanfang und am Leitungsende
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sowie der Phasendifferenzen zwischen Leitungsanfang und
-ende bei bestimmten Kreisfrequenzen cot durchgeführt. Aus
diesen Messwerten erhält man Werte für die Phasen- und
Dämpfungskonstanten ß und a :

ymess k — ßmess k ~ r j (Xmess k î k ~ 1, 2, N
(N Anzahl Messpunkte)

Anderseits liefert (n) für jeden Wert Ok die Fortpflanzungskonstante

y als Funktion der zwei reellen Parameter srund <5:

y (®k, Er, 3) ß (C0k, e,; 3) + j a (0Jk, Er, (5)

Das Optimierungsprogramm soll nun er und 3 so bestimmen,

dass sowohl [ß (cok, Er, 3) — ßme.ss k] als auch [a (a>k, Er, 3)
— amessk] für alle k möglichst klein werden. Dazu wird die

Summe der Fehlerquadrate gebildet:

N
S (Er, 3) — 2 [kk (ß (Wk, Er, 3) ~ ßmessk) +

^ ' -f hk (a (<Z)k, Er, 3) OCmess k) ]

Mit den Gewichtsfaktoren ^k und hk kann man sowohl die

Messpunkte einzeln als auch Phasenwerte gegen Dämpfungswerte

gewichten. Will man z.B. nicht die absoluten Fehler,

sondern die relativen Fehler minimisieren, so erreicht man
dies durch folgende Wahl der Gewichtsfaktoren ^k und hk'.

gk — (/im ess k -, hk — (Öfmessk) 2

Die Wahl der Gewichtsfaktoren hat selbstverständlich einen
bedeutenden Einfluss auf die Qualität der Resultate.

6. Messresultate und Auswertung
Die Funktion S (er, 3) konnte mit dem in [8] beschriebenen

Programm minimisiert werden. Um Anhaltspunkte über die

Zuverlässigkeit dieses Verfahrens zu erhalten, wurde dasselbe

Programm auf vier gleiche Messreihen der genannten Leitung
mit den Längen 5 m, 10 m, 20 m, 30 m angewendet. Es ergaben
sich folgende Werte:

Leitungslänge 5 m 10 m 20 m 30 m

optimierter Wert von Er 2.84 2.83 2.84 2.82

optimierter Wert von tg <5 0.0351 0.0315 0.0325 0.0309

Die Figuren 3 bis 6 zeigen die Amplitudengänge für diese

Leitungslängen unter Annahme frequenzunabhängiger Werte

von Er und tg<5. Zusätzlich sind darin die Amplitudengänge

Fig. 3 Amplitudengang einer symmetrischen Doppeldrahtleitung

Drahtquerschnitt 0,75 mm2, Drahtabstand 3 mm, Länge 5 m
Berechnete Kurven unter Annahme einer
frequenzunabhängigen Dielektrizitätskonstanten der Kabelummantelung
£r £ro 2,84 und folgenden Verlustwinkeln:
(1) tgi5o 0,0351, (2) tgä 2 tg<5o, (3) tg<5 3 tg<5o

(4) tg<5 4 tgdo, (5) tgä 5 tg<5o

Dabei sind ero und tg<5n die optimierten Werte.
Die Messpunkte sind durch Kreise markiert

Fig. 5 Amplitudengang analog Fig. 3

Jedoch für 20 m Leitungslänge, £ro 2,84, tg<5o 0,0325

0 50 100 150 200 MHz 250
f

0 50 100 150 200 MHz 250
•- f

Fig. 4 Amplitudengang analog Fig. 3 Fig. 6 Amplitudengang analog Fig. 3

Jedoch für 10 m Leitungslänge, e,o 2.83, tg<5o 0,0315 Jedoch für 30 m Leitungslänge, Ero 2,82, tg<5o 0,0309

0 50 100 150 200 MHz 250
>- f

50 100 150 200 MHz 250
î>- f
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f

Fig. 7 Zu Fig. 4 gehöriger Phasengang
Die Kurven (1)...(5) fallen nahezu zusammen. Ebenso
zeigen die zu den übrigen Figuren gehörigen Phasengänge
dieselbe Linearität und sind daher nicht extra abgebildet

bei 2-, 3-, 4- und 5fachem Verlustwinkel (Kurven 2 bis 5) und
die gemessenen Werte angegeben. Da die zugehörigen Phasengänge

optisch keine wesentlichen Unterschiede zeigen, wird in
Fig. 7 nur die Phase bei 10 m angegeben.

Da die relative Dielektrizitätskonstante & vor allem die
Ausbreitungsgeschwindigkeit beeinflusst, zeigt Fig. 7, dass die
Annahme eines frequenzunabhängigen Wertes für er recht gut
erfüllt ist. Die aus den verschiedenen Messreihen optimierten
Werte von er weichen von ihrem linearen Mittelwert &
2.8325 um weniger als 0,5 % ab, was einen Hinweis auf die
Zuverlässigkeit dieser Werte gibt.

Anders steht es beim Verlustwinkel S. Vom Mittelwert
tg<5 0.0325 weicht vor allem der bei 5 m Leitungslänge
erhaltene tg<5 recht stark ab (8%). Zudem wird auch aus den

Figuren 3...6 klar, dass tgc) bei Frequenzen um 1 MHz wesentlich

höher liegt als bei Frequenzen über 100 MHz. Die
Annahme der Frequenzunabhängigkeit von tg<5 muss deshalb
fallengelassen werden.

Man könnte durch geeignete Wahl des Frequenzganges von
tg(5 erzwingen, dass der damit errechnete Amplitudengang
exakt durch die einzelnen Messpunkte verläuft. Dies ist aber
nicht sinnvoll. Vor allem in Figur 3 und 4 fällt ein
wellenförmiger Verlauf der Messwerte auf, der offenbar nicht von
einem frequenzabhängigen Verlustwinkel, sondern von
Reflexionen an den Leitungsenden herrührt. Da erwartet werden

muss, dass die Reflexionskoeffizienten ebenfalls frequenzabhängig

sind, besteht kaum eine Aussicht, durch Optimierung
den Frequenzgang der Reflexionskoeffizienten und des
Verlustwinkels zu bestimmen. Aus bekannten Messungen [5] lässt
sich vermuten, dass die Frequenzabhängigkeit von tg<5

näherungsweise logarithmisch angesetzt werden kann. Unter der
Annahme reeller konstanter Reflexionskoeffizienten und eines

logarithmischen Frequenzganges von tg<5 (tg <5 0.158 bei
1 MHz und tg<5 0.03 bei 250 MHz) errechnet man Fig. 8,

die eine annehmbare Übereinstimmung der berechneten Kurve
mit den Messwerten zeigt.

Es bleibt noch die Frage zu untersuchen, warum bei der
kürzesten Leitung (5 m) der optimierte Wert für tg<5 so stark
von den übrigen abweicht. Eine Erklärung dafür ist in den
Strahlungsverlusten zu suchen, die im theoretischen Modell
vernachlässigt wurden. Dieses Modell setzt eine unendlich
lange Anordnung voraus, vernachlässigt also die Effekte an

f

Fig. 8 Amplitudengang einer symmetrischen Doppeldrahtleitung
Gleiche Abmessungen und Dielektrizitätskonstante wie
bei Fig. 3, jedoch unter Annahme des im Text angegebenen
Frequenzgangs von tgö" und mit näherungsweiser
Berücksichtigung der Reflexionen am Anfang und Ende der Leitung

den Leitungsenden. Im vorliegenden Fall ist hier ein Übergang
von einem rotationssymmetrischen Feldgebiet (Koaxialkabel)
in ein Feldgebiet ohne Rotationssymmetrie (Doppeldrahtleitung)

zu finden. In der Gegend der Leitungsenden ist deshalb
mit dem Auftreten von Strahlungsverlusten zu rechnen. Bei
der Optimierung werden diese Verluste zu den dielektrischen
Verlusten geschlagen, so dass ein zu hoher Wert für tg S

errechnet wird. Der so gemachte Fehler nimmt mit zunehmenden
Leitungslängen ab, da die Strahlungsverluste vor allem an den

Leitungsenden auftreten und daher nicht proportional zur
Leitungslänge zunehmen. Aus den verschiedenen optimierten
Werten für tg<5 lässt sich grob abschätzen, dass, im untersuchten

Falle, die Strahlungsverluste etwa so gross wie die
dielektrischen Verluste von 1 m Kabel sind. Unter Verwendung
grösserer und eventuell genauerer Messreihen dürfte es ohne
weiteres möglich sein, mit dem dargestellten Verfahren zu
zuverlässigen Aussagen über die Strahlungsverluste und die
Frequenzabhängigkeit des Verlustwinkels <5 zu kommen.

Abschliessend sollen die optimierten Werte von sr und tg<5

mit Messungen an PVC der Firma BASF [5] verglichen werden.

Der Vergleich ist allerdings problematisch, da diese
Werte durch kleine Mengen von Verunreinigungen, Additiven
oder Wasser (schon weniger als 0,1%) stark verändert werden

[6], Bei einer schwachen Temperaturabhängigkeit lauten
die Messwerte bei 30 °C [5] :

tg<5 0.027; Gr 2.9 bei 100 kHz
tg<5 0.022; Et 2.9 bei 1 MHz
tg<5 0.016; £r 2.9 bei 10 MHz
tg<5 0.010; Et 2.8 bei 100 MHz
tg<5 0.006; Er 2.8 bei 1 GHz

Das beschriebene Optimierungsverfahren liefert £r «s 2.83
bei 1 MHz...250 MHz und Zimmertemperatur mit einer völlig
befriedigenden Übereinstimmung. Dagegen stimmen die
Messwerte von tg<5 mit den optimierten Werten wenig überein.

In [7] wurden verschiedene Messungen der dielektrischen
Eigenschaften von Hart- und Weich-PVC durchgeführt, aus
denen hervorgeht, dass bei Weich-PVC - also auch für das
Material der untersuchten Leitung - die Werte von tg<5 bei
100kHz und Raumtemperatur grösser als 0.1 sind, d.h. ca.
5mal grösser als die angegebenen Werte für Hart-PVC. Leider
sind darin keine Messungen bei höheren Frequenzen gemacht
worden. Es kann aber extrapoliert werden, dass ein logarith-
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mischer Frequenzgang von tg<5 mit tg<5 0.15 bei 1 MHz und
tg<5 0.03 bei 250 MHz bei Raumtemperatur für das

verwendete PVC recht gut stimmt.
Dies bedeutet, dass das Optimierungsverfahren es ermöglicht,

die dielektrischen Eigenschaften der Ummantelung
näherungsweise zu bestimmen und dass die Näherungsformel
(n) das untersuchte zweiadrige Kabel auch bei hohen

Frequenzen noch befriedigend beschreibt.

7. Zusammenfassung
Die Messung von Materialkonstanten ist oft mit grossen

Schwierigkeiten verbunden. In vielen Fällen gestattet das

gezeigte Optimierungsverfahren eine messtechnisch einfachere

Bestimmung dieser Grössen mit Hilfe eines theoretischen
Modells. Dieses Verfahren wurde zur Bestimmung der
dielektrischen Eigenschaften der Ummantelung eines zweiadrigen
Kabels im Frequenzbereich von 1...250 MHz angewendet.
Die Dielektrizitätskonstante und der Frequenzgang des

Verlustwinkels konnten näherungsweise bestimmt werden. Zudem

ergab sich eine grobe Abschätzung der Strahlungsverluste der
verwendeten Anordnung. Die Gültigkeit der verwendeten

Näherungsformel (n) für die Fortpflanzungskonstante der

Leitungswelle auf zweiadrigen Kabeln wird durch die Ergebnisse

im untersuchten Frequenzbereich (1...250 MHz) bestätigt.
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DK: 518 : 621.316.1 : 681.3.04 : 681.3.06 SEV-Nr. A 704

Numerische Berechnung linearer Netzwerke und Systeme. Von
Hermann Kremer. Berlin/Heidelberg/New York, Springer
Verlag, 1978; 8°, X/179 S. 29, Fig. Preis: kart. DM 48.-.

Das Buch hat zum Ziel, die bei der Computeranalyse linearer
Netzwerke und Systeme im Frequenzbereich typischen Probleme
in einer auf den Ingenieur bezogenen Form darzustellen. Bei der

Darstellung der einzelnen Verfahren wird deshalb weitgehend
auf eine strenge Beweisführung verzichtet. Stattdessen werden bei
der Programmierung wichtige Gesichtspunkte in den Vordergrund

gerückt.
An Vorkenntnissen werden die Grundlagen der linearen

Algebra und der Netzwerktheorie vorausgesetzt. Im ersten Teil des

Buches werden die rechnerischen Gesichtspunkte für die Knotenanalyse

linearer Systeme vorgestellt. Es folgt dann ein Abschnitt
über die Berechnung beliebiger Tormatrizen, ausgehend von der
Knotenleitwertmatrix.

Im zweiten Teil wird die Lösung linearer Gleichungssysteme
mit Schwergewicht auf komplexen Systemen behandelt. Anschliessend

werden iterative Verfahren zur Verbesserung der
Lösungsgenauigkeit diskutiert. Auch Probleme der Skalierung linearer
Gleichungssysteme und der Verträglichkeit einer Lösung mit
Datenfehlern des linearen Gleichungssystems werden besprochen.
Dann folgen kurze Abschnitte über die Analyse von Netzwerken
mit einstellbaren Parametern, die Berechnung der Übertragungs-
grössen und der Parameterempfindlichkeit eines Netzwerkes.
Das Buch schliesst mit einem Ausblick auf weitere Verfahren zur
Lösung linearer Gleichungssysteme. In einem Anhang findet man
nochmals eine Auswahl der wichtigsten Verfahren in Form von
getesteten FORTRAN-Unterprogrammen.

Der Text ist didaktisch gut aufgebaut und in sich abgeschlossen.

Das Buch bildet deshalb eine gute Grundlage zur Einarbeitung

in das Gebiet der numerischen Behandlung linearer
Netzwerke und Systeme. G. Fischer

DK: 53 SEV-Nr. A 705

Aktuelle Physik. Von Edgar Lüscher. München, Karl-Thiemig-
Verlag, 1978. kl. 8° VIII/136 S„ 44 Fig., 5 Tab. - Thiemig-
Taschenbücher, Band 67 - Preis: kart. DM 16.80.

Das Buch versucht, Interesse für die Physik zu erwecken. Der
Autor bemüht sich, in leichtverständlicher Weise das Gebäude
der Physik zu umreissen. Da technische Dinge im Leben der
Menschen heute einen hohen Anteil einnehmen, ist dies äusserst
verdankenswert. Schliesslich sollen Gegebenheiten, die für dieses
Leben bestimmend sein können, nicht einfach erduldet werden,
ohne zu versuchen, sie einigermassen zu verstehen.

Ausgehend von grundlegenden Überlegungen - Geographischer

Weg der Physik, Wende im physikalischen Denken, Einteilung

und weitere Massstäbe, grosse Ideen der Physik - behandelt
der Autor das Gebiet der festen Materie. Uber Materialkunde,
Kristallbau, Bindungskräfte in Kristallen gelangen seine Ausführungen

zur Darstellung der elektrischen Leitfähigkeit, der Halbleiter,

Supraleiter und ihrer Anwendung in der Elektronik, in
Energieübertragungsleitungen usw.

Das Kapitel Atome und Atomkerne vermittelt eine Übersicht
über die Struktur der Atome, Physik des Atomkernes sowie die
Kernspaltung und Fusion.

Leichtverständlich ist auch die Darstellung der Laserentwicklung.

Deren Beschreibung reicht von den experimentellen
Vorarbeiten durch Auguste Pérot, Charles Fabry (1905) und besonders

Albert Einstein (1917) zu der modernen Lasertechnik und zu
den sich im vollen Fluss befindlichen Forschungen über Infrarot-
und Ultraviolettstrahlung von benachbarten Fixsternen.

Das Taschenbuch ist ideal für den Jugendlichen. Aber auch
dem nicht speziell im «engeren» Kreis der Physik Tätigen kann
das Buch - nicht zuletzt als Hilfe für eine Standortsbestimmung
seines Weltbildes - bestens empfohlen werden. A. O. Wuillemin
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