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Bestimmung der dielektrischen Eigenschaften
der Ummantelung eines Kabels mit Hilfe eines Optimierungsprogrammes

Von Ch.Hafner

621.315.2.001.4::519.699;

Mit einem Optimierungsprogramm kann eine Kopplung theoretischer Resultate mit Kontrollmessungen erreicht werden, aus der man einer-
seits Aussagen iiber die Zuverlissigkeit der Theorie erhdlt, und mit der anderseits gleichzeitig ungenau bekannte Parameter (wie z. B. Material-
konstanten) besser bestimmt werden kénnen. Dieses Programm wird auf den Fall eines zweiadrigen Netzkabels angewendet. Damit wird eine
Néiherungsformel fiir die Fortpflanzungskonstante der Leitungswelle bei hohen Frequenzen (1 MHz bis 250 MHz) gepriift, und zugleich werden

die dielektrischen Eigenschaften der Ummantelung bestimmit.

A laide d’un programme d’optimalisation, on peut obtenir une correlation entre des résultats théoriques et des mesures de contréle, qui donne
une information sur la fiabilité de la théorie et permet de mieux déterminer des paramétres inconnus, tels que des constantes de matiéres. Ce
programme est appliqué au cas d’un cdble de réseau a deux conducteurs. Une formule approchée pour la constante de propagation de I'onde a
des fréquences élevées (1 a 250 MHz) est ainsi contrélée, et on détermine en outre les propriétés diélectriques du blindage.

1. Einleitung

Seit dem Bekanntwerden der Maxwellschen Gleichungen
wurde das Problem der Wellenausbreitung lings elektrischen
Leitungen intensiv untersucht [z.B. 1...4]1), ohne dass exakte
Losungen des Mehrleiterproblems gefunden werden konnten.
Fir die Technik gentigen fast immer N&herungsformeln, die
ihrer Einfachheit halber auch bevorzugt werden. Sehr oft ist
es schwierig oder gar nicht méglich, aus theoretischen Uber-
legungen Angaben iiber die Genauigkeit und Anwendbarkeit
solcher Niherungen zu machen, so dass man gezwungen ist,
Vergleiche mit Kontrollmessungen durchzuftihren.

Bei der Untersuchung von schnellen Storimpulsen auf
Netzkabeln stand eine Niherungsformel zur Berechnung der
Fortpflanzungskonstanten harmonischer Wellen im Blickpunkt
des Interesses. Diese Formel, deren Herleitung im folgenden
skizziert wird, musste auf ihre Anwendbarkeit auf typische
Netzkabel gepriift werden. Zu diesem Zweck wurden Messun-
gen an einem Kabel mit zwei Cu-Adern und PVC-Isolation
durchgefiihrt (Fig. 1). Eine direkte Kontrolle der Niherungs-
formel war aber damit nicht moglich, da die dielektrischen
Eigenschaften der Ummantelung handelsiiblicher Netzkabel
zuwenig genau bekannt sind. Diese Schwierigkeit konnte mit
einem Optimierungsverfahren tiberwunden werden.

2. Theoretisches Modell des zweiadrigen Kabels

Die Maxwellschen Gleichungen bilden die physikalische
Grundlage der Elektrodynamik. Sielauten fiir ruhende Medien:

> 0 —

rot E = — a7 (uH) (a)
- = 0 - - —

rot H = - (EE) +j + ov b
div (¢E) = o ©
div (uH) = 0 (d)

1) Siehe Literatur am Schluss des Aufsatzes.

Fig. 1 Typisches Netzkabel

1 Kupfer 2 Weich-PVC
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Setzt man homogene, isotrope, lineare Medien voraus, so
sind ¢ und x Konstanten. Diese Voraussetzungen sind bei
Materialien, die zur Herstellung von Kabeln verwendet wer-
den fast immer gut erfiillt. Zudem gilt das Ohmsche Gesetz:
_] — g E. Dabei ist auch ¢ eine Konstante. In allen hier inter-
essierenden Féllen verdndern sich die Materialien zeitlich so
wenig, dass man auch zeitliche Konstanz der Materialkon-
stanten annehmen kann. Setzt man ferner voraus, dass ¢
raumlich konstant und @3 raumlich und zeitlich konstant ist,
so erhilt man die bekannten Wellengleichungen:

(A—,ua—gt-—;w%)fz (e)
(A — uc 66; — ue aatiz) }7 =0 )

Aus diesen Gleichungen gewinnt man zeitunabhidngige
Differentialgleichungen durch Separation der Zeit:

E(t) = Eo(r)-T(t) (@
H(r 1) = Ho(r) - T(2) (h)

Die Zeitabhdngigkeit 7'(¢) ist ublicherweise durch die
Quellen gegeben und kann bekanntlich in Fourierreihen oder
Fourierintegrale entwickelt werden. Man kann deshalb folgen-
den Ansatz machen:

T(t) = Toe-ion,

wobei ohne Einschrinkung der Allgemeinheit 7o = 1 gesetzt
werden kann. Damit bleiben die zeitunabhingigen Differen-
tialgleichungen

A+ k2 Eo(r) =0 )
(A+k2) Ho(r) = 0 ()
wabel J— g (s 4 %) (i)

Untersucht man die Wellenausbreitung lidngs Leitungen,
so hat man meistens ndherungsweise zylindrische Symmetrie.
Man wiahlt also ein zylindrisches Modell und legt eine Koordi-
natenachse parallel zur Zylinderachse. Ist diese Achse die
z-Achse, so lidsst sich auch die z-Abhingigkeit in den Glei-
chungen (¢”) und (f’) separieren. Werden die Koordinaten in
den zur z-Achse senkrechten Ebenen mit u, v bezeichnet, so
gilt fiir Eo (resp. ﬁo) der Ansatz

Eo (u, v, z) = E* (u,v) - Z(2)
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Man erhélt fiir die z-Abhédngigkeit
Z(z) = Zoeivz+ Zy e-ivz k)
Fiir die komplexe Fortpflanzungskonstante y schreibt man

7y=Ff+ja mit « =0, =0

Dabei ist a die Dampfungskonstante,  die Phasenkonstante.
In (k) bezeichnet damit der erste Summand eine Welle, die
in positiver z-Richtung l4auft, der zweite eine umgekehrt lau-
fende Welle. Man kann deshalb ohne Einschrinkung der All-
gemeinheit Z; = 0 und Zy = 1 setzen.
Es bleiben anstelle der Wellengleichungen (e) und (f) die
folgenden einfachen Differentialgleichungen:

(Auv + k2 = 2) E* (u,0) = 0
(Auv’Jr‘k2 - VZ)ﬁ* (H,U) =0

(9]
(")

Dabei bezeichnet Auv den ebenen Laplace-Operator in den
Koordinaten «, v, und es gilt

E(u,v,2,1) = E* (u,v) - eitz-o) )
Hu, v,z 1) = H* (1, v) - eitvz-o) (m)

Bei zylindrischer Symmetrie folgt ferner aus den Maxwell-
Gleichungen, dass die Feldkomponenten Eu, Ev, Hu, Hy aus
den z-Komponenten E;, H, abgeleitet werden konnen [4]. Es
geniigt also, (¢”) und (f”) nur fiir die z-Komponenten zu I6sen.
Auf Zwei- und Mehrdrahtleitungen sind bekanntlich bei nicht
sehr hohen Frequenzen nur die TM-Wellen von Bedeutung,
d.h. es gilt H,*(u,v) = 0. Dies ist die triviale Losung der
Gleichung (f”), und es bleibt

(Buv +k* = %) E* (u,0) = 0 ©)
zu 16sen.
Das Problem besteht nun vor allem darin, dass (¢”) nur in

homogenen Gebieten gilt, also im Falle zylindrischer Leitungs-
anordnungen nicht im ganzen Raume, sondern in begrenzten
zylindrischen Bereichen. Im Falle eines zweiadrigen ummantel-
ten Netzkabels hat man mindestens vier solche Bereiche
(Fig. 2a).

Hat man die allgemeine Losung von (e”) fiir jeden einzel-
nen dieser Bereiche gefunden, so miissen alle Losungen aus-
geschlossen werden, die an den Ubergingen von zwei Bereichen
die Maxwell-Gleichungen nicht erfiillen. Aus den Maxwell-
Gleichungen in Integralform leitet man diese Randbedingun-
gen ab [4]. Es sind die bekannten Aussagen iiber die Stetigkeit
der Tangentialkomponenten von E und H an einer Trenn-
flache.

Die Erfiillung der Randbedingungen liefert eine transzen-
dente Gleichung fiir die Fortpflanzungskonstante y. Diese
Gleichung muss iterativ gelost werden. Da mit der Anzahl der
Trennflichen die Anzahl der Randbedingungen und damit der
Rechenaufwand stark anwachsen, soll fur den Fall des zwei-
adrigen Kabels eine Vereinfachung gemacht werden: die Um-
mantelung 3 sei so dick, dass nur ein kleiner Teil der Energie
ausserhalb der Ummantelung transportiert wird, eine An-
nahme, die fiir die meisten handelsiiblichen Netzkabel genii-
gend genau erfiillt ist. Damit kann das wesentlich einfachere
Modell nach Fig. 2b verwendet werden.

Zur Losung von (e”) wird man versuchen, Ayy mit dem
Ansatz E.*(u, v) = U(u) -V (v) zu separieren. Dies gelingt aber
nur in wenigen Koordinatensystemen, wie z. B. karthesischen

I
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Fig. 2 Querschnitt durch das Netzkabel

a Kabel mit Aussenraum
b Vereinfachtes Modell

1, 2 Leiter (meist Kupfer)
3 Umbhiillung (Isolation)
4. Aussenraum

Koordinaten, Polarkoordinaten. Anderseits ist man gezwun-
gen, in jedem Gebiet ein Koordinatensystem (u, v) so zu
wihlen, dass die Berandung mit einer Koordinatenlinie
(& bzw. v konstant) zusammenfillt. Nur so kénnen die Rand-
bedingungen ohne Schwierigkeiten mathematisch formuliert
werden.

Bei kreisformigen Drahtquerschnitten wird man also im
Innern der Drihte Polarkoordinaten mit Zentrum auf der
jeweiligen Drahtachse verwenden. Bekanntlich fiithrt dies auf
eine Besselsche Differentialgleichung fiir den Radialteil, wih-
rend die Winkelabhdngigkeit durch harmonische Funktionen
gegeben ist., Zur Formulierung der Randbedingungen verwen-
det man ausserhalb der Drihte ein Bipolarkoordinatensystem,
in dem jedoch der Laplace-Operator nicht separierbar ist. Man
muss also (¢”) im Gebiet z.B. in Polarkoordinaten 16sen und
dann eine Koordinatentransformation vornehmen. Da dabei
sehr grosse mathematische Schwierigkeiten entstehen, ist man
gezwungen, gewisse zusitzliche Annahmen zu treffen, wie
z.B. hohe Leitfdhigkeit der Dréhte, ferner Drahtradien und
Drahtabstinde viel kleiner als die Wellenldnge usw. [1...4].
Da diese Annahmen in der Praxis sehr gut erfiillt sind, erhilt
man damit geniigend genaue Resultate.

Einen wesentlich einfacheren Weg zur Bestimmung der
Fortpflanzungskonstanten y hat A. Sommerfeld [4] angegeben:
Vernachldssigt man alle Verluste, so erhidlt man an Stelle der
TM-Welle eine TEM-Welle. Zur Losung ldsst sich eine kon-
forme Abbildung verwenden. Die Koordinatenlinien des Bi-
polarkoordinatensystems sind gerade die E- und H-Feldlinien.
Diese Resultate kann man als erste Naherung zur Bestimmung
einer Niherungsformel fiir die Fortpflanzungskonstante y
verwenden:

e

1—p2 rin(p)

éa Hi

(6i +j %) Ha,

Y= l//la éa + % (n)

o = 27nf Kreisfrequenz
-
P == R
d+ Vdz—r2

r Drahtradius
2d Drahtabstand
Ea, Ua Materialkonstanten der Kabelummantelung

i, ui, o Materialkonstanten der Dréhte

(n) ist giiltig fiir hohe Leitfihigkeit o der Drihte und nicht zu
tiefe Frequenzen f. Fiir verlustbehaftete Kabelummantelung
wird ea komplex mit: ¢a = &.*(1 -+ j tgd). Dabei soll der Ver-
lustwinkel 6 nicht zu gross werden.

Beriicksichtigt man die Abweichungen praktisch verwen-
deter Kabel vom verwendeten Modell (endliche Ausdehnung

Bull. ASE/UCS 69(1978)24, 16 décembre



der Umihiillung, geometrische Abweichungen durch Ferti-
gungstoleranzen, Inhomogenititen usw.), so wird klar, dass
einerseits eine genauere Bestimmung von y [1] sinnlos ist, und
dass anderseits keine sehr hohen Anspriiche an die Genauig-
keit der Resultate gestellt werden konnen.

3. Unterschiede zwischen theoretischem Maodell
und praktischer Anordnung

Zusammenfassend sollen alle Voraussetzungen angegeben
werden, die dem verwendeten theoretischen Modell zugrunde
liegen und bei der praktischen Anordnung nie exakt erfiillt
sind:

1. Die Maxwell-Gleichungen (a) bis (d) sind giiltig, wenn

— die Medien ruhen;
— keine zusdtzlichen Krifte vorhanden sind (Vernachldssigung der
Gravitation).

2. Zur Herleitung der Wellengleichungen (e), (f) wurde angenommen:

— die Medien sind homogen, linear, isotrop;

— die Materialkonstanten innerhalb eines Mediums sind raumlich
und zeitlich unverdnderlich;

— die Raumladungsdichte p verschwindet oder ist rdumlich und
zeitlich konstant.

3. Das endgliltige Modell setzt zusétzlich voraus:

— zylindrische Symmetrie (und damit unendliche Leitungslinge,
keine geometrischen Inhomogenititen wie Anderung der
Drahtdicke usw.),

— sinusférmige Anregung,

— nur Leitungswelle angeregt,

— Drahtabstand klein gegen Wellenlinge,

— hohe Leitfdhigkeit der Drihte, niedrige Leitfdhigkeit der
Ummantelung (geringe Verluste),

— Querschnitt der beiden Drihte identisch und kreisférmig,

— dicke Ummantelung

Forderungen wie hohe Leitfihigkeit, dicke Ummantelung
usw. sind ungenau. Sie bedeuten, dass die Resultate mit zu-
nehmender Leitfihigkeit, zunehmender Dicke der Ummante-
lung usw. genauer werden. Wie genau die Resultate bei einer
gegebenen Anordnung sind, kann aber nur in den seltensten
Fillen angegeben werden, da der Aufwand fiir genauere Rech-
nungen meist zu gross wird. Die sinnvollste Priifung der
Resultate ist deshalb sicher der Vergleich mit Kontrollmes-
sungen.

4. Vergleich von Theorie und Kontrollmessungen

Der Sinn theoretischer Berechnungen liegt vor allem darin,
fiir verschiedenartige Anordnungen Angaben iiber zu erwar-
tende Resultate zu liefern, so dass man sich mithsame Mess-
reihen ersparen kann. Da fast alle theoretischen Berechnungen
mit Annahmen verkniipft sind, die praktisch nicht exakt
erfullt werden, sind zur Erhdrtung der Theorie Kontrollmes-
sungen notig. Beim Vergleich theoretischer und experimen-
teller Daten ergeben sich dann stets Abweichungen, die durch
Messfehler und Differenzen der verwendeten Modelle bedingt
sind.

Eine weitere Schwierigkeit besteht oft darin, dass gewisse
Parameter, wie die Materialkonstanten, in der Theorie als
bekannt vorausgesetzt werden, praktisch aber oft zuwenig
genau bekannt sind. Da Netzkabel nicht fiir hohe Frequenzen
gebaut sind, ist wenig tiber ihr Verhalten und die Zuverlissig-
keit der beschriebenen Theorie bekannt.

Zur Bestitigung der Theorie wurden Kontrollmessungen
an einem zweiadrigen, PVC-isolierten Kabel Td 20,75 der

Bull. SEV/VSE 69(1978)24, 16. Dezember

Kabelwerke Cossonay durchgefiihrt. Es wurden Amplituden-
und Phasengénge fiir die Kabelléingen 5 m, 10 m, 20 m, 30 m
und fiir den Frequenzbereich 1 MHz bis 250 MHz gemessen.
Der Wellenwiderstand dieser Kabel betrigt im genannten
Frequenzbereich ca. 100 Q. Auf eine genaue Anpassung der
Wellenwiderstinde an den Enden der Leitung wurde aus ver-
schiedenen Griinden verzichtet.

Uber die dielektrischen Eigenschaften der Ummantelung
im interessierenden Frequenzbereich standen nur sehr grobe
Aussagen zur Verfiigung, so dass eine direkte Anwendung der
Theorie nicht moglich war, da eine Messung der erforderlichen
Daten nicht in Frage kam. Zudem ist zu beachten, dass bei
Fertigungsprozessen vor allem der Verlustwinkel so stark
gedndert werden kann, dass eine Messung des Verlustwinkels
am Rohmaterial vor der Fertigung unbrauchbar wire.

5. Anwendung der nichtlinearen Optimierung

Es liegt nahe, die ungenau bekannten Grossen als Parameter
bei der theoretischen Berechnung zu verwenden und diese
Parameter so lange zu variieren, bis alle Messwerte von den
berechneten nur noch wenig abweichen. Um dies zu erreichen,
kann man die bekannte Summe der Fehlerquadrate bilden:

m
Z (Fmessi — Fni (p1, p2, ...pn))2 = S (p1, p2, ...pn) (1)
=1
" Fuessi i-ter Messwert
Funs i-ter berechneter Wert

D1, P2, ...pn Parameter

Die Summe der Fehlerquadrate S (pi, p2, ...pn) ist eine
Funktion der » Parameter pi, po, ...pn. Die Aufgabe besteht
nun darin, das absolute Minimum dieser Funktion zu suchen.
Im allgemeinen wird § mehrere lokale Minima aufweisen, so
dass diese Aufgabe ein recht heikles mathematisches und
numerisches Problem darstellt.

Oft konnen die Parameter nicht beliebige Werte annehmen,
da gewisse Nebenbedingungen erfiillt werden miissen. Zum
Beispiel muss fiir die dielektrischen Eigenschaften von PVC
sicher gelten

epve = &o, ]5]<%.

Ein Optimierungsprogramm, das derartige Minimisie-
rungsaufgaben 16sen kann, ist in [8] beschrieben [siche auch
9;10; 11].

Es sei noch bemerkt, dass es in vielen Fillen giinstig ist, die
Summanden von S zu gewichten, Ist z. B. die Messgenauigkeit
nicht fiir alle Messpunkte gleich, so kann man diesem Um-
stand durch eine geeignete Wahl von Gewichtsfaktoren Rech-
nung tragen.

Im untersuchten Falle kann man nach Formel (n) den
Wert der Fortpflanzungskonstanten y naherungsweise berech-
nen, wenn alle Voraussetzungen des theoretischen Modells
geniigend genau erfiillt sind. Dabei sind aber die dielektrischen
Eigenschaften der Kabelummantelung, d.h. die komplexe
Dielektrizitédtskonstante ea, unbekannt. Mit ga = go &r (1 +j tgd)
enthilt die Formel (n) zwei reelle Parameter & und &, somit
y =7 (W, &, ).

Es werde nun zundchst angenommen, & und J seien im
interessierenden Bereich frequenzunabhingig, und die Formel
(n) sei giiltig. Zur Kontrolle wurden Messungen der Span-
nungsamplituden am Leitungsanfang und am Leitungsende
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sowie der Phasendifferenzen zwischen Leitungsanfang und
-ende bei bestimmten Kreisfrequenzen wx durchgefiihrt. Aus
diesen Messwerten erhidlt man Werte fiir die Phasen- und
Dampfungskonstanten f und o:

k=12,..,N

Ymessk — ﬁmessk +] Omess k 5

(N = Anzahl Messpunkte)

Anderseits liefert (n) fiir jeden Wert wi die Fortpflanzungs-
konstante y als Funktion der zwei reellen Parameter & und o:

7 (0x, &r, 6) = B (wx, &r, 0) +] a (wx, &, 6)

Das Optimierungsprogramm soll nun & und J so bestim-
men, dass sowohl [B (wx, &r, 6) — Pmess k] als auch [« (@i, &r, O)
— amessk] fur alle & moglichst klein werden. Dazu wird die
Summe der Fehlerquadrate gebildet:

N
S (er, 6) = > g (B (wx, &r, 6) — Bmess k)" +

k=1 -+ Iy (o( (0x, €r, §) — dmess k)2]

Mit den Gewichtsfaktoren gk und /x kann man sowohl die

Messpunkte einzeln als auch Phasenwerte gegen Dampfungs-
werte gewichten. Will man z.B. nicht die absoluten Fehler,

¢))

\

.75\

50 \ \
\ L
\\5 4 \3 2
0.
0 50 100 150 200 MHz 250

—_—F

sondern die relativen Fehler minimisieren, so erreicht man
dies durch folgende Wahl der Gewichtsfaktoren gx und /x:

grx = (Pmessx)™2, Ak = (Xmess k)2

Die Wahl der Gewichtsfaktoren hat selbstverstindlich einen
bedeutenden Einfluss auf die Qualitit der Resultate. '

6. Messresultate und Auswertung

Die Funktion S (er, 6) konnte mit dem in [8] beschriebenen
Programm minimisiert werden. Um Anhaltspunkte iiber die
Zuverlassigkeit dieses Verfahrens zu erhalten, wurde dasselbe
Programm auf vier gleiche Messreihen der genannten Leitung
mit den Lidngen 5 m, 10 m, 20 m, 30 m angewendet. Es ergaben
sich folgende Werte:

Leitungslange S5m 10m 20m 30m
optimierter Wert von é&r 2.84 2.83 2.84 2.82
optimierter Wert von tgd 0.0351 0.0315 0.0325 0.0309

Die Figuren 3 bis 6 zeigen die Amplitudenginge fiir diese
Leitungslingen unter Annahme frequenzunabhidngiger Werte
von & und tgd. Zusitzlich sind darin die Amplitudenginge

l- k
.75\
N

A

.50

°

* ‘\\ R \\
5 % 3 ~—— 2 \h\
0 50 100 150

—_—f

——
200 MHz 250

Fig. 3 Amplitudengang einer symmetrischen Doppeldrahtleitung
Drahtquerschnitt 0,75 mm?2, Drahtabstand 3 mm, Ldnge 5 m
Berechnete Kurven unter Annahme einer frequenz-
unabhingigen Dielektrizititskonstanten der Kabelummantelung
& = &ro = 2,84 und folgenden Verlustwinkeln:

(1) tgdo = 0,0351, (2) tgd = 2tgdo, (3) tgd = 3 tgdo
(4)tgd = 41tgdy, (5)tgd = 5tgdo

Dabei sind &ro und tgdo die optimierten Werte.

Die Messpunkte sind durch Kreise markiert

1
75
A
T
s \\ - M~ .
1

0 \\5$3 P 9

0 50 100 150 200 MHz 250

Fig. 5 Amplitudengang analog Fig. 3
Jedoch fur 20 m Leitungslinge, ero = 2,84, tgdo = 0,0325

75

LN
N

54 3

0 50 100 150
—_—f

\2\&’\“% X 1

200 MHz 250

Fig. 4 Amplitudengang analog Fig. 3
Jedoch fiir 10 m Leitungslinge, o = 2.83, tgdo = 0,0315

1318 (A 693)

Fig. 6 Amplitudengang analog Fig. 3
Jedoch fiir 30 m Leitungsldnge, &0 = 2,82, tgdo = 0,0309
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Fig. 7 Zu Fig. 4 gehoriger Phasengang

Die Kurven (1)...(5) fallen nahezu zusammen. Ebenso
zeigen die zu den iibrigen Figuren gehdrigen Phasenginge
dieselbe Linearitdt und sind daher nicht extra abgebildet

bei 2-, 3-, 4- und 5fachem Verlustwinkel (Kurven 2 bis 5) und
die gemessenen Werte angegeben. Da die zugehorigen Phasen-
gange optisch keine wesentlichen Unterschiede zeigen, wird in
Fig. 7 nur die Phase bei 10 m angegeben.

Da die relative Dielektrizititskonstante & vor allem die
Ausbreitungsgeschwindigkeit beeinflusst, zeigt Fig. 7, dass die
Annahme eines frequenzunabhingigen Wertes fiir & recht gut
erfiillt ist. Die aus den verschiedenen Messreihen optimierten
Werte von & weichen von ihrem linearen Mittelwert & —
2.8325 um weniger als 0,59%, ab, was einen Hinweis auf die
Zuverldssigkeit dieser Werte gibt.

Anders steht es beim Verlustwinkel 6. Vom Mittelwert
tg_6:0.0325 weicht vor allem der bei 5 m Leitungslinge
erhaltene tgo recht stark ab (89;). Zudem wird auch aus den
Figuren 3...6 klar, dass tgd bei Frequenzen um 1 MHz wesent-
lich hoher liegt als bei Frequenzen iiber 100 MHz. Die An-
nahme der Frequenzunabhingigkeit von tgd muss deshalb
fallengelassen werden.

Man konnte durch geeignete Wahl des Frequenzganges von
tgo erzwingen, dass der damit errechnete Amplitudengang
exakt durch die einzelnen Messpunkte verlduft. Dies ist aber
nicht sinnvoll. Vor allem in Figur 3 und 4 fillt ein wellen-
formiger Verlauf der Messwerte auf, der offenbar nicht von
einem frequenzabhingigen Verlustwinkel, sondern von Re-
flexionen an den Leitungsenden herriihrt. Da erwartet werden
muss, dass die Reflexionskoeffizienten ebenfalls frequenz-
abhéngig sind, besteht kaum eine Aussicht, durch Optimierung
den Frequenzgang der Reflexionskoeffizienten und des Ver-
lustwinkels zu bestimmen. Aus bekannten Messungen [5] ldsst
sich vermuten, dass die Frequenzabhingigkeit von tgd nihe-
rungsweise logarithmisch angesetzt werden kann. Unter der
Annahme reeller konstanter Reflexionskoeffizienten und eines
logarithmischen Frequenzganges von tgd (tgd = 0.158 bei
1 MHz und tgd = 0.03 bei 250 MHz) errechnet man Fig. 8,
die eine annehmbare Ubereinstimmung der berechneten Kurve
mit den Messwerten zeigt.

Es bleibt noch die Frage zu untersuchen, warum bei der
kiirzesten Leitung (5 m) der optimierte Wert fiir tgd so stark
von den ibrigen abweicht. Eine Erklirung dafiir ist in den
Strahlungsverlusten zu suchen, die im theoretischen Modell
vernachlissigt wurden. Dieses Modell setzt eine unendlich
lange Anordnung voraus, vernachlissigt also die Effekte an
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Fig. 8 Amplitudengang einer symmetrischen Doppeldrahtleitung

Gleiche Abmessungen und Dielektrizitdtskonstante wie

bei Fig.3, jedoch unter Annahme des im Text angegebenen
Frequenzgangs von tgd und mit niherungsweiser Beriick-
sichtigung der Reflexionen am Anfang und Ende der Leitung

den Leitungsenden. Im vorliegenden Fall ist hier ein Ubergang
von einem rotationssymmetrischen Feldgebiet (Koaxialkabel)
in ein Feldgebiet ohne Rotationssymmetrie (Doppeldrahtlei-
tung) zu finden. In der Gegend der Leitungsenden ist deshalb
mit dem Auftreten von Strahlungsverlusten zu rechnen. Bei
der Optimierung werden diese Verluste zu den dielektrischen
Verlusten geschlagen, so dass ein zu hoher Wert fiir tgd er-
rechnet wird. Der so gemachte Fehler nimmt mit zunehmenden
Leitungslidngen ab, da die Strahlungsverluste vor allem an den
Leitungsenden auftreten und daher nicht proportional zur
Leitungslinge zunehmen. Aus den verschiedenen optimierten
Werten fiir tgo 14sst sich grob abschitzen, dass, im untersuch-
ten Falle, die Strahlungsverluste etwa so gross wie die dielek-
trischen Verluste von 1m Kabel sind. Unter Verwendung
grosserer und eventuell genauerer Messreihen diirfte es ohne
weiteres moglich sein, mit dem dargestellten Verfahren zu
zuverldssigen Aussagen iber die Strahlungsverluste und die
Frequenzabhingigkeit des Verlustwinkels § zu kommen.

Abschliessend sollen die optimierten Werte von & und tgd
mit Messungen an PVC der Firma BASF [5] verglichen wer-
den. Der Vergleich ist allerdings problematisch, da diese
Werte durch kleine Mengen von Verunreinigungen, Additiven
oder Wasser (schon weniger als 0,19)) stark verdndert wer-
den [6]. Bei einer schwachen Temperaturabhiingigkeit lauten
die Messwerte bei 30 °C [5]:

tgd = 0.027; & = 2.9 bei 100 kHz
tgd = 0.022; & =29bei 1 MHz
tgd = 0.016; & = 2.9 bei 10 MHz
tgd = 0.010; & = 2.8 bei 100 MHz
tgé = 0.006; & = 2.8bei 1GHz

Das beschriebene Optimierungsverfahren liefert e ~ 2.83
bei 1 MHz...250 MHz und Zimmertemperatur mit einer vollig
befriedigenden Ubereinstimmung. Dagegen stimmen die
Messwerte von tgd mit den optimierten Werten wenig iiberein.

In [7] wurden verschiedene Messungen der dielektrischen
Eigenschaften von Hart- und Weich-PVC durchgefiihrt, aus
denen hervorgeht, dass bei Weich-PVC — also auch fiir das
Material der untersuchten Leitung — die Werte von tgd bei
100 kHz und Raumtemperatur grosser als 0.1 sind, d.h. ca.
Smal grosser als die angegebenen Werte fiir Hart-PVC. Leider
sind darin keine Messungen bei hoheren Frequenzen gemacht
worden. Es kann aber extrapoliert werden, dass ein logarith-
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mischer Frequenzgang von tgd mit tgd = 0.15 bei | MHz und
tgd = 0.03 bei 250 MHz bei Raumtemperatur fiir das ver-
wendete PVC recht gut stimmt.

Dies bedeutet, dass das Optimierungsverfahren es ermog-
licht, die dielektrischen Eigenschaften der Ummantelung
ndherungsweise zu bestimmen und dass die Naherungsformel
(n) das untersuchte zweiadrige Kabel auch bei hohen Fre-
quenzen noch befriedigend beschreibt.

7. Zusammenfassung

Die Messung von Materialkonstanten ist oft mit grossen
Schwierigkeiten verbunden. In vielen Féllen gestattet das
gezeigte Optimierungsverfahren eine messtechnisch einfachere
Bestimmung dieser Grossen mit Hilfe eines theoretischen
Modells. Dieses Verfahren wurde zur Bestimmung der dielek-
trischen Eigenschaften der Ummantelung eines zweiadrigen
Kabels im Frequenzbereich von 1..250 MHz angewendet.
Die Dielektrizititskonstante und der Frequenzgang des Ver-
lustwinkels konnten nidherungsweise bestimmt werden. Zudem
ergab sich eine grobe Abschitzung der Strahlungsverluste der
verwendeten Anordnung. Die Giiltigkeit der verwendeten
Niherungsformel (n) fiir die Fortpflanzungskonstante der
Leitungswelle auf zweiadrigen Kabeln wird durch die Ergeb-
nisse im untersuchten Frequenzbereich (1...250 MHz) besta-
tigt.
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Numerische Berechnung linearer Netzwerke und Systeme. Von
Hermann Kremer. Berlin/Heidelberg/New York, Springer
Verlag, 1978; 8°, X/179 S. 29, Fig. Preis: kart. DM 48.—.

Das Buch hat zum Ziel, die bei der Computeranalyse linearer
Netzwerke und Systeme im Frequenzbereich typischen Probleme
in einer auf den Ingenieur bezogenen Form darzustellen. Bei der
Darstellung der einzelnen Verfahren wird deshalb weitgehend
auf eine strenge Beweisfiihrung verzichtet. Stattdessen werden bei
der Programmierung wichtige Gesichtspunkte in den Vorder-
grund geriickt.

An Vorkenntnissen werden die Grundlagen der linearen Al-
gebra und der Netzwerktheorie vorausgesetzt. Im ersten Teil des
Buches werden die rechnerischen Gesichtspunkte fiir die Knoten-
analyse linearer Systeme vorgestellt. Es folgt dann ein Abschnitt
iiber die Berechnung beliebiger Tormatrizen, ausgehend von der
Knotenleitwertmatrix.

Im zweiten Teil wird die Loésung linearer Gleichungssysteme
mit Schwergewicht auf komplexen Systemen behandelt. Anschlies-
send werden iterative Verfahren zur Verbesserung der Losungs-
genauigkeit diskutiert. Auch Probleme der Skalierung linearer
Gleichungssysteme und der Vertraglichkeit einer Losung mit
Datenfehlern des linearen Gleichungssystems werden besprochen.
Dann folgen kurze Abschnitte iiber die Analyse von Netzwerken
mit einstellbaren Parametern, die Berechnung der Ubertragungs-
grossen und der Parameterempfindlichkeit eines Netzwerkes.
Das Buch schliesst mit einem Ausblick auf weitere Verfahren zur
Losung linearer Gleichungssysteme. In einem Anhang findet man
nochmals eine Auswahl der wichtigsten Verfahren in Form von
getesteten FORTRAN-Unterprogrammen.

Der Text ist didaktisch gut aufgebaut und in sich abgeschlos-
sen. Das Buch bildet deshalb eine gute Grundlage zur Einarbei-
tung in das Gebiet der numerischen Behandlung linearer Netz-
werke und Systeme. G. Fischer
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DK: 53 SEV-Nr. A 705

Aktuelle Physik. Von Edgar Liischer. Miinchen, Karl-Thiemig-
Verlag, 1978. k. 82, VIII/136 S., 44 Fig., 5 Tab. — Thiemig-
Taschenbiicher, Band 67 — Preis: kart. DM 16.80.

Das Buch versucht, Interesse fiir die Physik zu erwecken. Der
Autor bemiiht sich, in leichtverstindlicher Weise das Gebiaude
der Physik zu umreissen. Da technische Dinge im Leben der
Menschen heute einen hohen Anteil einnehmen, ist dies dusserst
verdankenswert. Schliesslich sollen Gegebenheiten, die fiir dieses
Leben bestimmend sein konnen, nicht einfach erduldet werden,
ohne zu versuchen, sie einigermassen zu verstehen.

Ausgehend von grundlegenden Uberlegungen — Geographi-
scher Weg der Physik, Wende im physikalischen Denken, Eintei-
lung und weitere Massstibe, grosse Ideen der Physik — behandelt
der Autor das Gebiet der festen Materie. Uber Materialkunde,
Kristallbau, Bindungskrifte in Kristallen gelangen seine Ausfiih-
rungen zur Darstellung der elektrischen Leitfdahigkeit, der Halb-
leiter, Supraleiter und ihrer Anwendung in der Elektronik, in
Energieiibertragungsleitungen usw.

Das Kapitel Atome und Atomkerne vermittelt eine Ubersicht
iiber die Struktur der Atome, Physik des Atomkernes sowie die
Kernspaltung und Fusion.

Leichtverstindlich ist auch die Darstellung der Laserentwick-
lung. Deren Beschreibung reicht von den experimentellen Vor-
arbeiten durch Auguste Pérot, Charles Fabry (1905) und beson-
ders Albert Einstein (1917) zu der modernen Lasertechnik und zu
den sich im vollen Fluss befindlichen Forschungen iiber Infrarot-
und Ultraviolettstrahlung von benachbarten Fixsternen.

Das Taschenbuch ist ideal fiir den Jugendlichen. Aber auch
dem nicht speziell im «engeren» Kreis der Physik Tétigen kann
das Buch — nicht zuletzt als Hilfe fiir eine Standortsbestimmung
seines Weltbildes — bestens empfohlen werden. A.O. Wuillemin
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