
Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de
l'Association suisse des électriciens, de l'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitätsunternehmen

Band: 69 (1978)

Heft: 22: Sondernummer Elektrotechnik 1978 = Edition spéciale
Electrotechnique 1978

Artikel: Arbres de décision pour systèmes logiques câblés ou programmés

Autor: Mange, D.

DOI: https://doi.org/10.5169/seals-914960

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-914960
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Arbres de décision pour systèmes logiques câblés ou programmés
Par D. Mange

164.053:621.3.049.73:681.3.06
Tout système logique combinatoire peut être décrit par un mode de représentation semblable à un organigramme: Varbre de décision binaire.

Les propriétés de cet arbre et son éventuelle transformation en un algorithme de décision binaire sont étudiées. On montre enfin qu'un réseau
de démultiplexeurs (système combinatoire) ou qu'un processeur à un bit, la machine de décision binaire (système séquentiel), peuvent réaliser
n'importe quel arbre ou algorithme.

Jedes System logischer Verknüpfungen kann mittels einer organigrammähnlichen Darstellung beschrieben werden, dem binären
Entscheidungsbaum. Dessen Eigenschaften und mögliche Umwandlung in einen Algorithmus für binäre Entscheidungen werden untersucht. Abschliessend
wird gezeigt, dass ein Netz von Demultiplexern (kombinatorisches System) oder ein 1-Bit-Prozessor, die binäre Entscheidungsmaschine (sequentielles

System), jeden Entscheidungsbaum oder Algorithmus verwirklichen kann.

1. Introduction
A l'aide d'un exemple simple, un comparateur de deux

nombres binaires, on montre que tout système logique peut
être représenté par un arbre de décision binaire ; celui-ci peut,
dans certains cas, être transformé en un mode de représentation

plus général, l'algorithme de décision binaire. Tout
algorithme ou tout arbre de décision binaire est réalisable par un
réseau de démultiplexeurs (système logique combinatoire) ou
par un programme pour un processeur à un bit (système logique

séquentiel).
Les arbres et algorithmes de décision binaire décrivent

aussi bien le matériel (systèmes logiques câblés) que le logiciel
(systèmes logiques programmés), et suggèrent une unification
possible du langage des informaticiens.

2. Arbres de décision binaire
2.1 Exemple: comparateur de deux nombres

Deux nombres décimaux A et B sont représentés dans le
système de numération binaire à l'aide de deux bits chacun:
Ai, Ao pour le nombre A et Bi, Bu pour le nombre B (table I).
Un système logique combinatoire doit déterminer si A est
supérieur à B (A > B), égal (A B) ou inférieur à B (A B)
(fig. 1). La table de vérité (table II) est une représentation
possible du comportement de ce système: les quatre variables
Ai, Bi, An. Bo déterminent 24 16 états d'entrée (numérotés
de 0 à 15), tandis que la comparaison des nombres A et B
produit trois états de sortie Z distincts (A > B, A — B,
A < B); un codage possible de ces trois états est donné dans
la table III.

Représentation binaire des nombres A et B Table I

Ai A o A
B\ Bo B

0 0 0
0 1 1

1 0 2
1 1 3

Fig. 1 Système logique combinatoire comparant les nombres A et B

Les formes canoniques décimales et algébriques des trois
fonctions Zz, Zi et Zo découlent de la table de vérité (table II) :

Zo(Ai, Bi, Ao, So) 2 3, 12, 15

Ai Si A o So + Ai Si Ao So + Ai Si An Bo +
+ Ai Si Ao Bo (1)

Zi(Au Si, Ao, Bo) 2 1, 4...7, 13

Ai Si Ao So + Ai Si Ao Bo + Ai Si Ao Bo +
+ Ai Si Ao Bo + Ai Si Ao Bo + Ai Si Ao Bo (2)

Z0(Ai, Si, Ao, Bo) 2 2, 8...11, 14

Ai Si Ao Bo + Ai Si Ao Bo + Ai Si Ao Bo +
Ai Si Ao Bo + Ai Si Ao Bo + Ai Si Ao Bo (3)

La réalisation des expressions (1), (2) et (3), éventuellement
simplifiées, à l'aide d'opérateurs logiques tels que ET, OU,
NON, NAND, NOR, constitue la méthode classique de

synthèse des systèmes combinatoires [l]1).

2.2 Arbre de décision binaire

Un arbre de décision binaire (fig. 2a) est un mode de
représentation des systèmes logiques combinatoires qui est constitué
par l'assemblage de deux types d'éléments ou instructions:

- une instruction de test (en anglais «if..then...eise»), représentée
par un losange; chaque instruction de test est définie par un numéro
décimal ou adresse i (1 T i < 15), une variable a (a e {Ai, Bi, Ao,
Bo}), une entrée (provenant d'une instruction précédente ou réalisant
le début de l'arbre) et deux sorties (a 1, a 0) conduisant à une
instruction suivante selon l'état de la variable a.

- une instruction de sortie, représentée par un rectangle; chaque
instruction de sortie est définie par son adresse i (16 sj ; îJ 31), un
état de sortie (Z e {0, 1, 2}) et une entrée (provenant d'une instruction

précédente).

Les règles d'assemblage sont définies ainsi:

- il existe une, et une seule, instruction initiale
(i 1 dans la figure 2a) ;

- une sortie d'une instruction de test n'est reliée qu'à une seule
entrée d'une instruction suivante;

- une entrée d'une instruction (de test ou de sortie) n'est reliée
qu'à une seule sortie d'une instruction précédente.

Chaque chemin reliant l'instruction initiale à une instruction

de sortie est une branche de l'arbre. Il existe ainsi seize
branches dans l'arbre de la figure 2a : chacune d'elles représente
un état d'entrée du système combinatoire (table II) ainsi que
l'état de sortie associé. L'arbre de décision binaire de la
figure 2a est un mode de représentation équivalent à celui de
la table de vérité (table II).

1) Voir la bibliographie à la fin de l'article.

Zo IA> B)

Z, M < Ä A Z

Z, M B)

1238 (A 668) Bull. ASE/UCS 69(1978)22, 18 novembre



Table de vérité du comparateur des nombres A (Ai, Au)
et B (Bi, Bo)

Codage des trois états de sortie

Table II

N"
i

-tl Bi
1

1

Ao Bo
1

z Zi Zo

0 0 0 0 0 2 1 0 0

1 0 0 0 1 1 0 1 0

2 0 0 1 0 0 0 0 1

3 0 0 1 1 2 1 0 0

4 0 1 0 0 1 0 1 0
5 0 1 0 1 1 0 1 0
6 0 1 1 0 1 0 1 0

7 0 1 1 1 1 0 1 0

8 1 0 0 0 0 0 0 1

9 1 0 0 1 0 0 0 1

10 1 0 1 0 0 0 0 1

11 1 0 1 1 0 0 0 1

12 1 1 0 0 2 1 0 0

13 1 1 0 1 1 0 1 0

14 1 1 1 0 0 0 0 1

15 1 1 1 1 2 1 0 0

2.3 Arbre complet et arbre partiel
On remarque dans la figure 2a, comme dans la table II,

que l'état d'entrée Ai, Bi 01 produit l'état de sortie Z 1

indépendamment des valeurs de A o et B» ; de même, l'état
d'entrée Ai, Bi 10 produit l'état de sortie Z 0. Il en

découle un nouvel arbre de décision binaire, équivalent au

précédent et représenté dans la figure 2b.

De façon plus générale, on appellera arbre complet (ou

canonique) tout arbre réalisant les 2n états de n variables avec
211 branches (cas de la figure 2a avec n 4 et 2n 16); on
admet de plus que, dans une même branche, une même

variable n'apparaît qu'une fois: chaque branche contient donc

n instructions de test. Dans le cas où le nombre de branches b

est inférieur à 2" (cas de la fig. 2b avec b 10 < 16), on dira

que l'arbre est partiel (ou simplifié).
Dans un arbre qui possède m instructions de test, il existe

2 m sorties de ces instructions et m entrées dont l'une est

l'entrée de l'instruction initiale et les (m — 1) autres sont des

entrées reliées à des sorties précédentes. Il existe alors b

branches avec

Table III 2m — (m — \) m + \ (4)

z Z-i Zi Zo donc

A> B 0 0 0 1 m b — 1 (5)

A < B 1 0 1 0

A B 2 1 0 0

Fig. 2a Arbre complet du comparateur

Fig. 2b Arbre partiel du comparateur

Bull. SEV/VSE 69(1978)22, 18. November (A 669) 1239



L'arbre (complet) de la fig. 2a comporte en effet seize

branches et quinze instructions de test, celui de la fig. 2b dix
branches et neuf instructions de test.

2.4 Représentations algébrique et tabulaire

Chaque branche d'un arbre complet représente un état
d'entrée de toutes les variables du système combinatoire
(Ai, B\, Ao, Bo dans la fig. 2a) et réalise ainsi un minterme de

ces variables. Chaque branche d'un arbre partiel réalise un
minterme ou un produit partiel (monôme) des variables d'entrée;

on déduit de la fig. 2b les formes algébriques suivantes
(polynômes) des trois fonctions Z2, Z\ et Zo:

Z'i Ai Bi Ao Bo + Ai Bi Ao Bo + Ai Bi Ao Bo +
(- Ai Bi Ao Bo (6)

Zi Ai Bi Âo Bo + Ai Bi + Ai B, J„ B0 (7)

Zo Ai Bi Ao Bo + Ai Bi + Ai Bi Ao Bo (8)

En utilisant la représentation bidimensionnelle [2, pp. 19 à

37] définie par

Programme de Varbre partiel de la figure 2b Table IV

a b ab (9)

les relations (6), (7), (8) peuvent s'écrire sous la forme

Bi

Bi

Bi

Bi

Ao

Ao

Bo e Z2
Bo e Zi
Bo £ Zo
Bo e Zo

£ z,
£ Zo

Bo £ z2
Bo £ Zi
Bo £ Zo
Bo £ z2

(10)

qui reflète exactement la topologie de l'arbre partiel; en
particulier, chaque trait vertical de (10) représente une instruction
de test de la figure 2b.

Chaque minterme ou produit partiel réalisé par la branche
d'un arbre est appelé produit de branche. Les dix produits de

branche de l'arbre partiel (fig. 2b) peuvent être représentés
dans la table de Karnaugh de la figure 3.

2.5 Propriétés

L'examen de l'expression (10) et de la table de Karnaugh
(fig. 3) met en évidence les trois propriétés d'un arbre de

décision binaire:

vA\ ,/40

CL) CD 0 0

CD© 0 0

i i ©©
i i ©©

i a i+ (a 1) /+ (a 0)

î Ai 3 2

2 Bi Z 1 4
3 Bi [7] 4 Z 0
4 [7] Ao 9 8

[7 Ao (15)9 (14) 8]
8 (14) Bo Z 1 Z 2

9(15) Bo Z 2 Z 0

(14 Bo Z 1 Z 2)
(15 Bo Z 2 Z 0)

Fig. 3 Table de Karnaugh de l'arbre partiel du comparateur
(Z 0:A>B; Z=1:A<B; Z 2:A B)

a) L'ensemble des produits de branche recouvre les 2n

mintermes des n variables (dans la figure 3, les dix produits
de branche recouvrent les seize mintermes des quatre variables).

Cette propriété est appelée la couverture.
b) L'ensemble des produits de branche définit une partition

sur l'ensemble des mintermes; chaque minterme est recouvert
par un seul produit, et chaque produit ne contient qu'un seul

état de sortie (fig. 3) : c'est la propriété de séparation.
c) Chaque produit de branche contient la variable (vraie

ou inversée) de l'instruction de test initiale (Ai ou Ai dans la
figure 2b et dans l'expression (10)); de façon plus générale,
chaque portion de branche, comprise entre l'entrée d'une
instruction de test définie par la variable a et une instruction
de sortie, réalise un produit contenant la variable a ou son
complément a (dans la figure 2b, par exemple, les quatre
portions de branche, comprises entre l'instruction de test 4 et les

instructions de sortie, réalisent quatre produits de branche

qui contiennent chacun la variable 4o ou son complément
Ao: Ao Bo, Ao Bo, AoBo, Ao Bo). Cette propriété est la
compatibilité-, un ensemble de produits logiques vérifie cette propriété
s'il peut être représenté par une forme bidimensionnelle telle

que (10).
Un ensemble de produits de branche qui vérifie les trois

propriétés précédentes (couverture, séparation, compatibilité)
est un ensemble standard. Un tel ensemble est toujours réalisable

par un arbre et, inversement, un arbre produit toujours
un ensemble standard [3].

2.6 Arbre minimal

Une même table de vérité peut généralement être représentée

par plusieurs arbres de décision binaire distincts, mais
équivalents. Ceux d'entre eux qui comportent le plus petit nombre
d'instructions de test, c'est-à-dire le plus petit nombre de

branches (en vertu de la relation (4)), sont les arbres minimaux
de cette table. La détermination d'un arbre minimal nécessite

la recherche d'un ensemble standard comportant un nombre
minimal de produits de branche (§ 2.5).

2.7 Conception des arbres

Pour certains systèmes logiques, en particulier ceux décrits

par des fonctions symétriques [4, pp. 508-515, 585-586],
l'intuition permet d'établir directement un arbre, complet ou
partiel [5], La recherche systématique d'un arbre est toujours
possible si l'on détermine, dans une table de Karnaugh par
exemple, un ensemble standard de produits de branche. En
minimisant cet ensemble standard [6; 7], on peut alors
déterminer un arbre minimal.

1240 (A 670) Bull. ASE/UCS 69(1978)22, 18 novembre



3. Algorithmes de décision binaire

3.1 Programme

Une autre représentation tabulaire de l'arbre de décision

binaire (fig. 2b) peut être obtenue en procédant comme suit

(table IV):

- on trace autant de lignes que d'instructions de test

(neuf lignes, avec 1 Si i Si 15);

- chaque instruction de test (chaque ligne) est définie par son
adresse /, sa variable a, les adresses de l'instruction suivante /! pour
a 1 et pour a 0;

- lorsque l'instruction suivante est une instruction de sortie, on
remplace l'adresse de celle-ci par l'état de sortie (Z 2,1 ou 0).

La table obtenue est le programme de l'arbre.

3.2 Réduction d'un programme

Deux instructions de test d'adresses i et j sont identiques

(ou équivalentes) si elles ont la même variable (ai a\ a),

les mêmes adresses de l'instruction future (ji+ i\ et/ou les

mêmes états de sortie (Zi Zj), pour a 1 comme pour
a 0. Dans un tel cas, une seule instruction résultante

d'adresse i peut remplacer la paire d'instructions initiales
d'adresses i et j.

Les instructions 9 et 15 de la table 4 sont identiques: elles

ont la même variable (a So) et les mêmes états de sortie

(Z 2 pour a 1, Z 0 pour a 0); les instructions 8 et

14 sont également identiques. Chaque groupe d'instructions

identiques (9=15, 8 14) est représenté par une seule

instruction résultante (9, 8) et l'on remplace dans la table TV toute

apparition des adresses supprimées (15, 14) par les adresses

résultantes (9, 8) : ces transformations sont indiquées entre

parenthèses.

Fig. 4 Algorithme de décision binaire du comparateur des nombres

A (Ai, do) et U (Si, So)

Il apparaît alors que les instructions 4 et 7 sont identiques
à leur tour et peuvent être remplacées par une instruction

unique (4): cette transformation est indiquée entre crochets.

Aucune autre réduction n'est ensuite possible.
Le programme original à neuf instructions de test est donc

transformé en un programme équivalent, mais plus simple,
à six instructions; une représentation possible, apparentée à

celle d'un arbre, est donnée par la figure 4.

3.3 Algorithme de décision binaire

Un algorithme de décision binaire (fig. 4, sans les connexions

en trait discontinu) est un mode de représentation des systèmes

combinatoires qui a toutes les propriétés d'un arbre de décision

binaire (§ 2.2), à l'exception de la règle d'assemblage suivante:

une entrée d'une instruction (de test ou de sortie) peut être

reliée aux sorties de plusieurs instructions précédentes (l'entrée
de l'instruction 4, p. ex., est reliée aux instructions 2 et 3).

L'arbre de décision binaire constitue un cas particulier de

l'algorithme de décision binaire. Tout algorithme peut être

transformé en un arbre équivalent [3], mais la réciproque n'est

pas toujours vraie.
Le calcul des algorithmes minimaux (c'est-à-dire ceux qui

réalisent une table de vérité donnée avec un nombre minimal
d'instructions de test) constitue un problème combinatoire
très complexe et n'a pas encore fait l'objet de recherches

systématiques [8]; une méthode exhaustive peut être envisagée à

partir des algorithmes proposés pour la simplification des

arbres [6; 7], si l'on réduit les programmes de tous les arbres

possibles d'une table de vérité donnée.

3.4 Généralisation

On remarque, dans la figure 4, que les instructions 1, 2, 3

(test Ai, 131) et 4, 8, 9 (test A0, B0) constituent des assemblages

dont la topologie est identique: l'algorithme met en évidence

le caractère répétitif de la comparaison des bits de même poids
des deux nombres A et B; on pourrait aisément généraliser

l'algorithme pour comparer deux nombres ayant un nombre de

bits plus élevé.

1

1 0

/ » /•

Fig. 5a Schéma d'un démultiplexeur d'une variable a

>1 >i > i

Zo

(.4 >B) (A B)

Fig. 5b Réseau de démultiplexeurs et de portes OU réalisant
l'algorithme de la figure 4

Bull. SEV/VSE 69(1978)22, 18. November (A 671) 1241



4. Réalisation combinatoire: réseau de démultiplexeurs
4.1 Démultiplexeur

Un démultiplexeur d'une variable est un système logique
(fig. 5a) réalisant les équations

x=ja y ja (11)

où a est la variable de test, j la variable d'entrée et .v, y les

variables de sortie. Le démultiplexeur réalise ainsi une instruction

de test selon la définition du § 2.2.

4.2 Réseau de démultiplexeurs

Un réseau de démultiplexeurs est un assemblage de
démultiplexeurs et de portes OU (fig. 5b). Le réseau réalisant les fonctions

Z2 (6), Zi (7), Zo (8) du comparateur de nombres est
directement construit à partir de l'algorithme de la figure 4,

en procédant comme suit :

- chaque instruction de test est réalisée par un démultiplexeur;
- chaque instruction de sortie est réalisée par une porte OU ;

- l'entrée d'une instruction de test, qui est commune à plusieurs
sorties d'instructions précédentes, est réalisée par une porte OU
(entrée de l'instruction 4);

- la variable d'entrée de l'instruction de test initiale (i 1)

prend la valeur j — 1.

En appliquant les relations (11) à chacun des démultiplexeurs

de la figure 5b, on peut calculer les produits de branche
du réseau et retrouver les équations (6), (7) et (8).

4.3 Réalisation spatiale d'un algorithme

Le réseau de démultiplexeurs est une réalisation spatiale
(ou combinatoire) de l'algorithme de décision binaire; si les

opérateurs logiques (démultiplexeurs, portes OU) sont idéaux,
c'est-à-dire sans délai, un état d'entrée Ai, Bi, A0, Bo produit
sans délai l'état de sortie Z2, Zi, Zo correspondant.

Programme de l'algorithme bouclé de la figure 4 Table v

i T a /+ (a 1) 1+ (a — 0)

1 1 Ai 3 2
2 1 Bi 17 4
3 1 B, 4 18

4 1 An 9 8

8 1 Bo 17 16

9 1 Bo 16 18

i T a 1+ z

18 0 a 1 0
11 0 a 1 1

16 0 0 1 2

Codage des variables d'entrée Table Vi

a ai ao

Ai 0 0
B1 0 1

Ao 1 0
Bo 1 1

5. Réalisation séquentielle: machine de décision binaire
5.1 Réalisation temporelle d'un algorithme

Le programme de la table IV suggère une réalisation temporelle

(ou séquentielle) des fonctions Z2, Zi, Zo; à chaque
période d'un signal de référence (ou signal d'horloge), un système
séquentiel exécute une instruction de l'algorithme. Sitôt qu'un
état de sortie Z est déterminé, il faut reprendre le calcul à

l'instruction initiale pour tenir compte d'une éventuelle variation

de l'état d'entrée Ai, Bi, Ao, Bo: l'algorithme doit être

Fig. 6 Machine de décision binaire exécutant le programme de la table VII

1242 (A 672) Bull. ASE/UCS 69(1978)22, 18 novembre

Tabic VII

DÉMUl.



Programme de la table V codé Table VII

i is is il io T ai ao '3+ h+ il+ io+ /3+
ou
Zs

i2+

Z'i

<1+

Z\

io+

Zo

i 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

2 0 0 0 1 1 0 1 0 1 I 1 0 0 1 1

3 0 0 1 0 1 0 1 0 0 1 1 0 1 1 0

4 0 0 1 1 1 1 0 0 1 0 1 0 1 0 0

8 0 1 0 0 1 1 1 0 1 1 I 1 0 0 0

9 0 1 0 1 1 1 1 1 0 0 0 0 1 I 0

18 0 1 1 0 0 - _ 0 0 0 0 - 0 0 1

17 0 1 1 1 0 - - 0 0 0 0 - 0 1 0

16 1 0 0 0 0 - — 0 0 0 0 — 1 0 0

complété par une boucle, représentée en trait discontinu dans

la figure 4. Pour effectuer l'algorithme complet, c'est-à-dire

calculer un état de sortie à partir de l'instruction de test initiale,

il faut, dans l'exemple traité, cinq périodes du signal d'horloge

au plus (produit de branche Ai Bi Ao Bo et sortie Z 2) et

trois périodes au moins (produit Ai Bi et sortie Z 1).

5.2 Programmes

L'algorithme bouclé de la figure 4 peut être représenté par
le programme de la table V dans lequel on distingue par une

variable logique Lies instructions de test (T 1) des instructions

de sortie (T 0); pour chacune de celles-ci, on donne:

- l'adresse de l'unique instruction suivante (/+) qui ne dépend

pas de la variable a {a a);
- l'état de sortie (Z).

En codant les variables d'entrée (Ai, Bi, A o, Bo) à l'aide

de deux variables ai, an (table VI) et les neuf instructions du

programme de la table V à l'aide de quatre variables i3, h,

il, io, on obtient enfin le programme codé de la table VII.

5.3 Machine de décision binaire

On appelle machine de décision binaire tout système séquentiel

capable de réaliser un algorithme de décision binaire

bouclé (fig. 4 par exemple), c'est-à-dire d'exécuter un

programme codé tel celui de la table VII. Il existe une grande

variété d'architectures [9, pp. 75-96] et [10], et l'on propose ici

une réalisation possible dans laquelle on s'est efforcé de rechercher

la plus grande simplicité de structure (logigramme) et

d'utilisation (programmation).
Le logigramme de la figure 6 est un assemblage d'éléments

combinatoires (multiplexeurs: MUL; démultiplexeur: DÉ-

MUL) et d'éléments séquentiels (bascules bistables du type D,

regroupées en registres : REG ; mémoires : MÉM).
Si l'instruction présente est une instruction de test (T 1),

les variables ai, an du multiplexeur MUL 1 choisissent la

variable d'entrée (a e {Ai, Bi, An, Bo})', selon la valeur de cette

variable a, les multiplexeurs MUL 2 choisissent l'adresse de

l'instruction future i3+, h+, n+, i'o+ dans la mémoire MÉM 2

(a — 1) ou dans la mémoire MÉM 3 (a 0), tandis que les

multiplexeurs MUL 3, commandés par la variable T (T 1),

admettent l'état de sortie présent Z3, Za, Zi, Zo. A la montée

du signal d'horloge CK, l'adresse h ', h+, ii+, io+ est transférée

aux sorties des bascules du registre d'instructions REG 1, puis

décodée par le démultiplexeur DÉMUL, tandis que l'état de

sortie est inchangé.
Si l'instruction présente est une instruction de sortie (T 0),

les multiplexeurs MUL 2 choisissent l'unique adresse de l'ins¬

truction future i3+, h ', h :, in ' dans la mémoire MÉM 2, tandis

que les multiplexeurs MUL 3 choisissent l'état de sortie Z3,

Za, Zi, Zo dans la mémoire MÉM 3, pour le présenter à l'entrée

du registre de sortie REG 2. A la montée du signal d'horloge

CK, l'adresse i3+, k+, ii+, io+ est transférée à la sortie du

registre d'instructions REG 1, tandis que l'état de sortie
apparaît à la sortie du registre REG 2.

Le signal CLR permet de remettre à zéro le registre REG 1

et impose l'instruction de test initiale (h, h, ii, io 0000).

6. Conclusions

Une ou plusieurs fonctions logiques, complètement ou
incomplètement définies, peuvent toujours être représentées

par un arbre de décision binaire et, éventuellement, par un

algorithme de décision binaire. Cet arbre ou cet algorithme
sont directement réalisables par un système combinatoire (un
réseau de démultiplexeurs) ou par un système séquentiel (une

machine de décision binaire); le premier est un système logique
câblé (l'information réside dans l'assemblage des

démultiplexeurs), le second est un système logique programmé
(l'information réside dans une mémoire).

La conception des machines de décision binaire (cas
particulier des processeurs à un bit) et leur utilisation constituent
l'axe principal des recherches entreprises actuellement à la

Chaire de systèmes logiques de l'EPFL. Sur le plan pédagogique,

il semble que les arbres et algorithmes de décision

binaire soient spécialement bien adaptés pour faire le pont
entre les systèmes logiques câblés et programmés, entre la

théoriè du matériel et celle du logiciel.

Bibliographie
[1] D. Mange: Analyse et synthèse des systèmes logiques. Traité d'Electricité.

Vol. V. Saint-Saphorin, Editions Georgi, 1978.

[2] R. Li. Vallée: Analyse binaire. Tome 1: Théorie et applications aux circuits
combinatoires. Paris, Masson, 1970.

[3] M. Davio et A. Thayse: Sequential evaluation of Boolean functions. MBLE
Report R 341. Bruxelles, Manufacture Belge de Lampes et de Matériel
Electronique, 1977.

[4] F.J.Hill and G.R. Peterson: Introduction to switching theory and logical
design. Second Edition. New York, John Wiley, 1974.

[5] S.B. Akers: Binary decision diagrams. IEEE Trans. C 27(1978)6, S. 509...516.

[6] D. Mange et E. Sanchez: Synthèse des fonctions logiques avec des multi¬
plexeurs. Digital Processes 4(1978)1, p. 29...44.

[7] E. Cerny, D. Mange and E. Sanchez: Synthesis of minimal demultiplexer,
multiplexer, and binary-decision trees. Montreal/Canada, Concordia
University, 1977 (IEEE-Repository-No. R77-372).

[8] M. Silva Suarez: Contributions à la synthèse programmée des automatismes
logiques. Thèse de l'Institut National Polytechnique de Grenoble, 1978.

[9] C.R. Clare: Designing logic systems using state machines. New York,
McGraw-Hill, 1973.

[10] R. T. Boute: The binary decision machine as programmable controller.
Euromicro Newsletter 2(1976)1, p. 16...22.

Adresse de l'auteur
Daniel Mange, Professeur EPFL, Chaire de systèmes logiques,
16, chemin de Bellerive, 1007 Lausanne.

Bull. SEV/VSE 69(1978)22, 18. November (A 673) 1243


	Arbres de décision pour systèmes logiques câblés ou programmés

