Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitatsunternehmen = Bulletin de
I'Association suisse des électriciens, de I'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitatsunternehmen

Band: 69 (1978)

Heft: 22: Sondernummer Elektrotechnik 1978 = Edition spéciale

Electrotechnique 1978

Artikel: Arbres de décision pour systémes logiques cablés ou programmés
Autor: Mange, D.
DOl: https://doi.org/10.5169/seals-914960

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-914960
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Arbres de décision pour systémes logiques cablés ou programmeés

Par D. Mange

164.053: 621.3.049.73: 681.3.06

Tout systéme logique combinatoire peut étre décrit par un mode de représentation semblable ¢ un organigramme: I'arbre de décision binaire.
Les propriétés de cet arbre et son éventuelle transformation en un algorvithme de décision binaire sont étudiées. On montre enfin qu’un réseau
de démultiplexeurs (systéme combinatoire) ou qu’un processeur a un bit, la machine de décision binaire (systéme séquentiel), peuvent réaliser

wimporte quel arbre ou algorithme.

Jedes System logischer Verkniipfungen kann mittels einer organigrammdhnlichen Darstellung beschrieben werden, dem bindren Entschei-
dungsbaum. Dessen Eigenschaften und mégliche Umwandlung in einen Algorithmus fiir binéire Entscheidungen werden untersucht. Abschliessend
wird gezeigt, dass ein Netz von Demultiplexern (kombinatorisches System) oder ein 1 -Bit-Prozessor, die binire Entscheidungsmaschine (sequen-
tielles System), jeden Entscheidungsbaum oder Algorithmus verwirklichen kann.

1. Introduction

A Taide d’un exemple simple, un comparateur de deux
nombres binaires, on montre que tout systéme logique peut
étre représenté par un arbre de décision binaire; celui-ci peut,
dans certains cas, étre transformé en un mode de représenta-
tion plus général, l'algorithme de décision binaire. Tout algo-
rithme ou tout arbre de décision binaire est réalisable par un
réseau de démultiplexeurs (systéme logique combinatoire) ou
par un programme pour un processeur a un bit (systéme logi-
que séquentiel).

Les arbres et algorithmes de décision binaire décrivent
aussi bien le matériel (systémes logiques cablés) que le logiciel
(systémes logiques programmés), et suggérent une unification
possible du langage des informaticiens.

2. Arbres de décision binaire
2.1 Exemple: comparateur de deux nombres

Deux nombres décimaux A et B sont représentés dans le
systéme de numération binaire a I’aide de deux bits chacun:
A1, Ao pour le nombre A et Bi, By pour le nombre B (table I).
Un systéme logique combinatoire doit déterminer si A4 est
supérieur a B (4 > B), égal (4 = B) ou inférieur & B (4 < B)
(fig. 1). La table de vérité (table II) est une représentation pos-
sible du comportement de ce systéme: les quatre variables
A1, B1, Ao, Bo déterminent 24 = 16 états d’entrée (numérotés
de 0 a 15), tandis que la comparaison des nombres 4 et B
produit trois états de sortie Z distincts (4 > B, A4 = B,
A < B); un codage possible de ces trois états est donné dans
la table III.

Représentation binaire des nombres A et B Table I
Ar - Ao A
By By B
0 0 0
0 1 1
1 0 2
1 1 3

P 4, 1 - > Z0 (A>B)
“O.—.“
’Hl » b—® 7, (A<B) Z
) Bo —— > 2, (1=5)

Fig.1 Systéme logique combinatoire comparant les nombres A et B

1238 (A 668)

Les formes canoniques décimales et algébriques des trois
fonctions Zs, Z1 et Zo découlent de la table de vérité (table T1):

Z2(A1, Bi, Ao, Bo) = > 0,3,12,15 =
A1 By Ao By + A1 B1 Ao Bo - A1 By Ao By -
-+ A1 B1 Ao Bo (D

Z1(A1, B, Ao, Bo) = Z 1,4,.7 13 =
A1 B1 Ao Bo + A1 Bi Ao Bo + A1 B1 Ao Bo +
+ A1 B1 Ao Bo + A1 B1 Ao Bo + A1 B1 Ao Bo 2

Zo(As, Bi, 4o, Bo) = > 2,8..11, 14 =

A1 B1 Ao Bo + A1 By Ao Bo + A1 By Ao Bo -+
A1 B1 Ao Bo + A1 Bi Ao Bo + A1 Bi Ao By 3)

La réalisation des expressions (1), (2) et (3), éventuellement
simplifiées, & I'aide d’opérateurs logiques tels que ET, OU,
NON, NAND, NOR, constitue la méthode classique de
synthése des systémes combinatoires [1]1).

2.2 Arbre de décision binaire

Un arbre de décision binaire (fig. 2a) est un mode de repré-
sentation des systémes logiques combinatoires qui est constitué
par I'assemblage de deux types d’éléments ou instructions:

— une instruction de test (en anglais «if...then...else»), représentée
par un losange; chaque instruction de test est définie par un numéro
décimal ou adresse i (1 =i = 15), une variable a (a € {41, B1, Ao,
Bo}), une entrée (provenant d’une instruction précédente ou réalisant
le début de I’arbre) et deux sorties (@ = 1, @ = 0) conduisant a une
instruction suivante selon I’état de la variable a.

— une instruction de sortie, représentée par un rectangle; chaque
instruction de sortie est définie par son adresse i (16 = i =< 31), un
état de sortie (Z € {0, 1, 2}) et une entrée (provenant d’une instruc-
tion précédente).

Les regles d’assemblage sont définies ainsi:

— 1l existe une, et une seule, instruction initiale
(7 = 1 dans la figure 2a);

- une sortie d’une instruction de test n’est reliée qu’a une seule
entrée d’une instruction suivante;

— une entrée d’une instruction (de test ou de sortie) n’est reliée
qu’a une seule sortie d’'une instruction précédente.

Chaque chemin reliant I'instruction initiale & une instruc-
tion de sortie est une branche de I’arbre. Il existe ainsi seize
branches dans I’arbre de la figure 2a: chacune d’elles représente
un état d’entrée du systéme combinatoire (table II) ainsi que
I’état de sortie associé, L’arbre de décision binaire de la
figure 2a est un mode de représentation équivalent a celui de
la table de vérité (table II).

1) Voir la bibliographie 4 la fin de I’article.

Bull. ASE/UCS 69(1978)22, 18 novembre

Table de vérité du comparateur des nombres A (A1, Ao) 2.3 Arbre complet et arbre partiel

et B (By, Bo) Table Il On remarque dans la figure 2a, comme dans la table II,
 — que ’état d’entrée A1, B1 = 01 produit Iétat de sortie Z = 1
No° A1 B1 Ao Bo ¥4 Zs Zi Zo . . R .,
e indépendamment des valeurs de Ao et Bo; de méme, I'état
0 o 0 o0 0) L o o d'entree A1, B1 = 10 produit lre'tgt de .501"t1e Z = 0. Il en
1 0 0 0 1 1 o 1 0 découle un nouvel arbre de décision binaire, équivalent au
2 0 O 1 0 0 0 o0 1 précédent et représenté dans la figure 2b.
3 0o 0 1 1 2 1 0 0 De facon plus générale, on appellera arbre complet (ou
4 o 1 0 o 1 o 1 o0 canonique) tout arbre réalisant les 2 états de n variables avec
5 0 1 0 1 I 0 1 0 2n pranches (cas de la figure 2a avec n = 4 et 2* = 16); on
6 o 1 1 0 1 0 1 0 admet de plus que, dans une méme branche, une méme va-
7 0 1 1 1 1 g 1 g riable n’apparait qu’une fois: chaque branche contient donc
8 1 0 0 O 0 0o 0 1 n instructions de test. Dans le cas ou le nombre de branches b
9 I o 0 1 0 0o o I est inférieur a 20 (cas de la fig. 2b avec b = 10 < 16), on dira
10 1 0 1 0 0 0 0 1 s . . e
1 . o 1 1 0 o o0 1 que I’arbre est partiel (ou simplifié).
Dans un arbre qui posséde m instructions de test, il existe
g i : g (1) % (1) (1) g 2 m sorties de ces instructions et m entrées dont I'une est
14 1 1 1 o0 0 0o o0 1 I’entrée de Iinstruction initiale et les (i — 1) autres sont des
15 1 1 1 1 2 1 0 0 entrées reliées a des sorties précédentes. Il existe alors b
branches avec
Codage des trois états de sortie Table III =2m—(m—-1)=m+1 4)
z Zy Z1 Zo donc
A>B 0 0o 0 1 m=»b—1 (5)
A<B 1 0 1 0
A =B 2 1 0 0

Fig.2a Arbre complet du comparateur

Fig.2b Arbre partiel du comparateur

Bull. SEV/VSE 69(1978)22, 18. November (A 669) 1239

L’arbre (complet) de la fig. 2a comporte en effet seize
branches et quinze instructions de test, celui de la fig. 2b dix
branches et neuf instructions de test.

2.4 Représentations algébrique et tabulaire

Chaque branche d’un arbre complet représente un état
d’entrée de toutes les variables du systéme combinatoire
(A1, B1, Ao, Bo dans la fig. 2a) et réalise ainsi un minterme de
ces variables. Chaque branche d’un arbre partiel réalise un
minterme ou un produit partiel (mondme) des variables d’en-
trée; on déduit de la fig. 2b les formes algébriques suivantes
(polyndmes) des trois fonctions Zs, Z1 et Zy:

Z> = Ay B1 Ao Bo + A1 B1 Ao By + A1 B1 Ao By +

+ A1 B1 Ao Bo (6)
Zy = A1 B1 Ao Bo + A1 By + A1 By Ao Bo 7
Zy = A1 B1 Ao Bo + A1 By + A1 B1 Ao Bo 8)

En utilisant la représentation bidimensionnelle [2, pp. 19 &
37] définie par

a+b:|

: a
a-b=|ab| |5)]
les relations (6), (7), (8) peuvent s’écrire sous la forme
— By €Z»
Ao ’
B Boe
- Bo € Zo
‘ . As ‘ Bo €Zo
| B Z
- . (10)
B1 € Zo
o Bo €Zs
A Ao
! ‘ ‘ By €2y
By | _
‘ } Bo e€Zp
|Bo € Zo

qui reflete exactement la topologie de I’arbre partiel; en parti-
culier, chaque trait vertical de (10) représente une instruction
de test de la figure 2b.

Chaque minterme ou produit partiel réalisé par la branche
d’un arbre est appelé produit de branche. Les dix produits de
branche de Pl’arbre partiel (fig. 2b) peuvent étre représentés
dans la table de Karnaugh de la figure 3.

2.5 Propriétés

L’examen de I’expression (10) et de la table de Karnaugh
(fig. 3) met en évidence les trois propriétés d’un arbre de
décision binaire:

Al’AO
By, B, 00

e
30
i
o

Fig. 3 Table de Karnaugh de I’arbre partiel du comparateur
(Z=0:4A>B; Z=1:A<B; Z=2:4A=B)

o
o]
©)
O,

Z

=)
Ge]e]s

1240 (A 670)

Programme de 'arbre partiel de la figure 2b Table IV

i a it(a=1) i+ (a=0)

1 A 3 2

2 B Z=1 4
3 B [7]1 4 Z=0

4 [7] Ao 9 8
[7 Ao 159 (14) 8]
8 (14) Bo Z =1 Z =2
9 (15) Bo Z =32 Z =9
(14 By Z =1 Z=2)
(15 Bo Z =132 Z =0)

a) L’ensemble des produits de branche recouvre les 20
mintermes des n variables (dans la figure 3, les dix produits
de branche recouvrent les seize mintermes des quatre varia-
bles). Cette propriété est appelée la couverture.

b) L’ensemble des produits de branche définit une partition
sur I’ensemble des mintermes; chaque minterme est recouvert
par un seul produit, et chaque produit ne contient qu’un seul
état de sortie (fig. 3): c’est la propriété de séparation.

c¢) Chaque produit de branche contient la variable (vraie
ou inversée) de I'instruction de test initiale (41 ou 4: dans la
figure 2b et dans I’expression (10)); de fagon plus générale,
chaque portion de branche, comprise entre 1’entrée d’une
instruction de test définie par la variable a et une instruction
de sortie, réalise un produit contenant la variable a ou son
complément a (dans la figure 2b, par exemple, les quatre por-
tions de branche, comprises entre 'instruction de test 4 et les
instructions de sortie, réalisent quatre produits de branche
qui contiennent chacun la variable 4o ou son complément
Ao: Ao Bo, Ao Bo, Ao Bo, Ao Bo). Cette propriété est la compa-
tibilité ; un ensemble de produits logiques vérifie cette propriété
s’il peut étre représenté par une forme bidimensionnelle telle
que (10).

Un ensemble de produits de branche qui vérifie les trois
propriétés précédentes (couverture, séparation, compatibilité)
est un ensemble standard. Un tel ensemble est toujours réali-
sable par un arbre et, inversement, un arbre produit toujours
un ensemble standard [3].

2.6 Arbre minimal

Une méme table de vérité peut généralement étre représentée
par plusieurs arbres de décision binaire distincts, mais équi-
valents. Ceux d’entre eux qui comportent le plus petit nombre
d’instructions de test, c’est-a-dire le plus petit nombre de
branches (en vertu de la relation (4)), sont les arbres minimaux
de cette table. La détermination d’un arbre minimal nécessite
la recherche d’un ensemble standard comportant un nombre
minimal de produits de branche (§ 2.5).

2.7 Conception des arbres

Pour certains systémes logiques, en particulier ceux décrits
par des fonctions symétriques [4, pp.508-515, 585-586],
I’intuition permet d’établir directement un arbre, complet ou
partiel [5]. La recherche systématique d’un arbre est toujours
possible si I'on détermine, dans une table de Karnaugh par
exemple, un ensemble standard de produits de branche. En
minimisant cet ensemble standard [6; 7], on peut alors déter-
miner un arbre minimal.

Bull. ASE/UCS 69(1978)22, 18 novembre

3. Algorithmes de décision binaire
3.1 Programme

Une autre représentation tabulaire de I'arbre de décision
binaire (fig. 2b) peut étre obtenue en procédant comme suit
(table 1V):

— on trace autant de lignes que d’instructions de test
(neuf lignes, avec 1 =i < 15);

— chaque instruction de test (chaque ligne) est définie par son
adresse 7, sa variable a, les adresses de I'instruction suivante i pour
a = 1et poura = 0;

— lorsque l'instruction suivante est une instruction de sortie, on
remplace I’adresse de celle-ci par I’état de sortie (Z = 2,1 ou 0).

La table obtenue est le programme de I'arbre.

3.2 Réduction d’un programme

Deux instructions de test d’adresses i et j sont identiques
(ou équivalentes) si elles ont la méme variable (@i = a; = a),
les mémes adresses de I'instruction future (ii* = i;*) et/ou les
mémes états de sortie (Zi = Z;), pour ¢ = 1 comme pour
a = 0. Dans un tel cas, une seule instruction résultante
d’adresse i peut remplacer la paire d’instructions initiales
d’adresses i et j.

Les instructions 9 et 15 de la table 4 sont identiques: elles
ont la méme variable (¢ = Bo) et les mémes états de sortie
(Z =2 poura =1, Z =0 pour a = 0); les instructions 8 et
14 sont également identiques. Chaque groupe d’instructions
identiques (9 = 15, 8 = 14) est représenté par une seule ins-
truction résultante (9, 8) et 'on remplace dans la table IV toute
apparition des adresses supprimées (15, 14) par les adresses
résultantes (9, 8): ces transformations sont indiquées entre
parenthéses.

Fig. 4 Algorithme de décision binaire du comparateur des nombres
A (A1, Ao) et B (B1, Bo)

Il apparait alors que les instructions 4 et 7 sont identiques
a leur tour et peuvent étre remplacées par une instruction
unique (4): cette transformation est indiquée entre crochets.
Aucune autre réduction n’est ensuite possible.

Le programme original & neuf instructions de test est donc
transformé en un programme équivalent, mais plus simple,
a six instructions; une représentation possible, apparentée a
celle d’un arbre, est donnée par la figure 4.

Bull. SEV/VSE 69(1978)22, 18. November

3.3 Algorithme de décision binaire

Un algorithme de décision binaire (fig. 4, sans les connexions
en trait discontinu) est un mode de représentation des systémes
combinatoires qui a toutes les propriétés d’un arbre de décision
binaire (§ 2.2), a ’exception de la régle d’assemblage suivante:

une entrée d’une instruction (de test ou de sortie) peut étre
reliée aux sorties de plusieurs instructions précédentes (I'entrée
de I’instruction 4, p.ex., est reliée aux instructions 2 et 3).

L’arbre de décision binaire constitue un cas particulier de
’algorithme de décision binaire. Tout algorithme peut étre
transformé en un arbre équivalent [3], mais la réciproque n’est
pas toujours vraie.

Le calcul des algorithmes minimaux (c’est-a-dire ceux qui
réalisent une table de vérité donnée avec un nombre minimal
d’instructions de test) constitue un probléme combinatoire
trés complexe et n’a pas encore fait I’'objet de recherches systé-
matiques [8]; une méthode exhaustive peut étre envisagée a
partir des algorithmes proposés pour la simplification des
arbres [6; 7], si ’'on réduit les programmes de tous les arbres
possibles d’une table de vérité donnée.

3.4 Generalisation

On remarque, dans la figure 4, que les instructions 1, 2, 3
(test A1, B1) et 4, 8, 9 (test Ao, Bo) constituent des assemblages
dont la topologie est identique: I’algorithme met en évidence
le caractére répétitif de la comparaison des bits de méme poids
des deux nombres 4 et B; on pourrait aisément généraliser
I’algorithme pour comparer deux nombres ayant un nombre de
bits plus élevé.

Fig. 5a Schéma d’un démultiplexeur d’une variable a

Zo Z2 z,
(4>8) (4=8)

Fig. 5b Réseau de démultiplexeurs et de portes OU réalisant
P’algorithme de la figure 4

(A 671) 1241

4. Réalisation combinatoire: réseau de démultiplexeurs
4.1 Démultiplexeur

Un démultiplexeur d’une variable est un systéme logique
(fig. 5a) réalisant les équations

X =ja

€3]

ou a est la variable de test, j la variable d’entrée et x, y les
variables de sortie. Le démultiplexeur réalise ainsi une instruc-
tion de test selon la définition du § 2.2.

y=ja

4.2 Réseau de démultiplexeurs

Un réseau de démultiplexeurs est un assemblage de démulti-
plexeurs et de portes OU (fig. 5b). Le réseau réalisant les fonc-
tions Zs (6), Z1(7), Zo (8) du comparateur de nombres est
directement construit a partir de I’algorithme de la figure 4,
en procédant comme suit:

— chaque instruction de test est réalisée par un démultiplexeur;

— chaque instruction de sortie est réalisée par une porte OU;

— P’entrée d’une instruction de test, qui est commune a plusieurs
sorties d’instructions précédentes, est réalisée par une porte OU
(entrée de l'instruction 4);

— la variable d’entrée de linstruction de test initiale (i = 1)
prend la valeur j = 1.

En appliquant les relations (11) a chacun des démultiple-
xeurs de la figure 5b, on peut calculer les produits de branche
du réseau et retrouver les équations (6), (7) et (8).

4.3 Réalisation spatiale d’un algorithme

Le réseau de démultiplexeurs est une réalisation spatiale
(ou combinatoire) de I’algorithme de décision binaire; si les
opérateurs logiques (démultiplexeurs, portes OU) sont idéaux,
c’est-a-dire sans délai, un état d’entrée A1, Bi, Ao, Bo produit
sans délai I’état de sortie Z2, Z1, Zo correspondant.

Programme de l'algorithme bouclé de la figure 4 Table V
i T a I it (a=1) it (@a=0)
1 1 Ar 3 2
2 1 B 17 4
3 1 B 4 18
4 1 Ao 9 8
8 1 Bo 17 16
9 1 Bo 16 18
i T a it z
18 0 o] 1 0
17 0 5] 1 1
16 (VI %) 1 2
Codage des variables d’entrée Table VI
a ar ao
A 0 0
B 0 I
Ao 1 0
Bo 1 1

5. Réalisation séquentielle: machine de décision binaire
5.1 Réalisation temporelle d’un algorithme

Le programme de la table IV suggére une réalisation tempo-
relle (ou séquentielle) des fonctions Zs, Z1, Zo; & chaque pé-
riode d’un signal de référence (ou signal d’horloge), un systéme
séquentiel exécute une instruction de I’algorithme. Sitdt qu’un
état de sortie Z est déterminég, il faut reprendre le calcul a
Pinstruction initiale pour tenir compte d’une éventuelle varia-
tion de I'état d’entrée A, Bi, Ao, Bo: I’algorithme doit étre

; . . i*@=1) *(@a=0)ouZ
————————
. N
0000 110 0 0 0 1 o 0 0 0 1
0001 o 0 1 1 1 0 0 1 1
0010 ot 0 0 1 1 0 1 1 0
001 1 111 0 0 1 0 1 0 1 0 0
0100 1o 0 1 1 1 1 0 0 0 Table VII
0101 a1 1 0 0 0 0 1 1 0
0110 of - - 0 0 0 0 = 0 0 1
0111 0 0 0 0 0 0 1 0
; 7000 0 0 0 0 0 1 0 0
. . . bl
. . °
T| a y a i 5 i L - % N
"1 ' o is 2o i
iy b iy Ip z & % 26
DEMUL MEM | i MEM 2 MEM 3
— ///
i 001
010 s
011 \ T+a
Ay——— 100 r | | I
By 101
At 1 10 10 1 0 10 1 o0 Tfo 1 01 0 1 0o 1
By L 11
MUL 2 MUL 3
oK MUL | Jl l] l
P D D VD, D 7]
CLR
1o Lol oo | | l I
| REG 1 REG 2
i
iz
i

Lo

Fig. 6 Machine de décision binaire exécutant le programme de la table VII

1242 (A 672)

Bull. ASE/UCS 69(1978)22, 18 novembre

Programme de la table V codé

Table VIL

i i3 iy i1 io T ay ao igt ot i1+ iot igt igt+ ht+ iot

OZl; Z zZ Zy
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
2 0 0 0 1 1 0 1 0 1 1 1 0 0 1 1
3 0 0 1 0 1 0 1 0 0 1 1 0 1 1 0
4 0 0 1 1 1 1 0 0 1 0 1 0 1 0 0
8 0 1 0 0 1 1 1 0 1 1 1 1 0 0 0
9 0 1 0 1 1 1 1 1 0 0 0 0 1 1 0
18 0 1 1 0 0 - 0 0 0 0 0 0 1
17 0 1 1 1 0 = = 0 0 0 0 - 0 1 0
16 1 0 0 0 0 - - 0 0 0 0 - 1 0 0

complété par une boucle, représentée en trait discontinu dans
la figure 4. Pour effectuer I’algorithme complet, c’est-a-dire
calculer un état de sortie & partir de 'instruction de test initiale,
il faut, dans I’exemple traité, cing périodes du signal d’horloge
au plus (produit de branche A1 By Ao Bo et sortie Z = 2) et
trois périodes au moins (produit 41 B; et sortie Z = 1).

5.2 Programmes

L’algorithme bouclé de la figure 4 peut étre représenté par
le programme de la table V dans lequel on distingue par une
variable logique 7 les instructions de test (7" = 1) des instruc-
tions de sortie (7' = 0); pour chacune de celles-ci, on donne:

— T’adresse de 'unique instruction suivante (i*) qui ne dépend
pas de la variable a (a = 9);

— Tétat de sortie (Z).

En codant les variables d’entrée (A1, Bi, Ao, Bo) & l'aide
de deux variables a1, ao (table VI) et les neuf instructions du
programme de la table V a l'aide de quatre variables is, 7,
i1, io, on obtient enfin le programme codé de la table VIL

5.3 Machine de décision binaire

On appelle machine de décision binaire tout systéme séquen-
tiel capable de réaliser un algorithme de décision binaire
bouclé (fig. 4 par exemple), c’est-a-dire d’exécuter un pro-
gramme codé tel celui de la table VIL Il existe une grande
variété d’architectures [9, pp. 75-96] et [10], et ’'on propose ici
une réalisation possible dans laquelle on s’est efforcé de recher-
cher la plus grande simplicité de structure (logigramme) et
d’utilisation (programmation).

Le logigramme de la figure 6 est un assemblage d’¢éléments
combinatoires (multiplexeurs: MUL; démultiplexeur: DE-
MUL) et d’éléments séquentiels (bascules bistables du type D,
regroupées en registres: REG; mémoires: MEM).

Si ’instruction présente est une instruction de test (7' = 1),
les variables @1, ao du multiplexeur MUL 1 choisissent la
variable d’entrée (a € {41, B1, Ao, Bo}); selon la valeur de cette
variable g, les multiplexeurs MUL 2 choisissent I’adresse de
Pinstruction future is*, is*, i1", iot dans la mémoire MEM 2
(a = 1) ou dans la mémoire MEM 3 (a = 0), tandis que les
multiplexeurs MUL 3, commandés par la variable 7(7 = 1),
admettent I’état de sortie présent Zs, Zo, Z1, Zo. A la montée
du signal d’horloge CK, I’adresse ist, iat, i1t, ioT est transférée
aux sorties des bascules du registre d’instructions REG 1, puis
décodée par le démultiplexeur DEMUL, tandis que I’état de
sortie est inchangé.

Si’instruction présente est une instruction de sortie (7" = 0),
les multiplexeurs MUL 2 choisissent I"'unique adresse de I'ins-

Bull. SEV/VSE 69(1978)22, 18. November

truction future s+, is*, i1*, io* dans la mémoire MEM 2, tandis
que les multiplexeurs MUL 3 choisissent I’état de sortie Zs,
Zo, Z1, Zo dans la mémoire MEM 3, pour le présenter a I'en-
trée du registre de sortie REG 2. A la montée du signal d’hor-
loge CK, I'adresse ist, iot, T, ot est transférée a la sortie du
registre d’instructions REG 1, tandis que 1’état de sortie ap-
parait a la sortie du registre REG 2.

Le signal CLR permet de remettre a zéro le registre REG 1
et impose I'instruction de test initiale (is, iz, i1, fo = 0000).

6. Conclusions

Une ou plusieurs fonctions logiques, complétement ou
incomplétement définies, peuvent toujours étre représentées
par un arbre de décision binaire et, éventuellement, par un
algorithme de décision binaire. Cet arbre ou cet algorithme
sont directement réalisables par un systéme combinatoire (un
réseau de démultiplexeurs) ou par un systéme séquentiel (une
machine de décision binaire); le premier est un systéme logique
cablé (information réside dans lassemblage des démulti-
plexeurs), le second est un systéme logique programmé (I'in-
formation réside dans une mémoire).

La conception des machines de décision binaire (cas parti-
culier des processeurs a un bit) et leur utilisation constituent
I’axe principal des recherches entreprises actuellement a la
Chaire de systémes logiques de PEPFL. Sur le plan pédago-
gique, il semble que les arbres et algorithmes de décision
binaire soient spécialement bien adaptés pour faire le pont
entre les systémes logiques cAblés et programmeés, entre la
théori¢ du matériel et celle du logiciel. ‘

Bibliographie

[1] D. Mange: Analyse et synthése des systemes logiques. Traité d’Electricité.
Vol. V. Saint-Saphorin, Editions Georgi, 1978.

[2] R.L. Vallée: Analyse binaire. Tome 1: Théorie et applications aux circuits
combinatoires. Paris, Masson, 1970.

[3] M. Davio et A. Thayse: Sequential evaluation of Boolean functions. MBLE
Report R 341. Bruxelles, Manufacture Belge de Lampes et de Matériel Elec-
tronique, 1977.

[4] F.J. Hill and G.R. Peterson: Introduction to switching theory and logical
design. Second Edition. New York, John Wiley, 1974.

[5] S.B. Akers: Binary decision diagrams. IEEE Trans, C 27(1978)6, S. 509...516.

[6] D. Mange et E.Sanchez: Synthése des fonctions logiques avec des multi-
plexeurs. Digital Processes 4(1978)1, p. 29...44.

[7] E. Cerny, D. Mange and E. Sanchez: Synthesis of minimal demultiplexer,
multiplexer, and binary-decision trees. Montreal/Canada, Concordia Uni-
versity, 1977 (IEEE-Repository-No. R77-372).

[8] M. Silva Suarez: Contributions a la synthése programmée des automatismes
logiques. Thése de I'Institut National Polytechnique de Grenoble, 1978.

[9] C.R. Clare: Designing logic systems using state machines. New York,
McGraw-Hill, 1973.

[10] R.T. Boute: The binary decision machine as programmable controller.
Euromicro Newsletter 2(1976)1, p. 16...22.

Adresse de ’auteur

Daniel Mange, Professeur EPFL, Chaire de systémes logiques,
16, chemin de Bellerive, 1007 Lausanne.

(A 673) 1243

	Arbres de décision pour systèmes logiques câblés ou programmés

