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Berechnung von Dipol- und Quadrupolfeldern in Magneten
mit zylindrischen und konzentrischen Erregerwicklungen mit linear
veränderlicher Stromdichte
VonA.Asner

537.811:621.318.3;

Es werden Ausdrücke zur Bestimmung von Dipol- und Quadrupolfeldern in Magneten mit zylindrischen und konzentrischen Sektorwicklungen

mit linear veränderlicher Stromdichte abgeleitet; derartige Stromdichten treten beispielsweise in Wicklungen mit dünnen und hohen verseilten

supraleitenden Kabelleitern auf. Numerische Auswertung und Vergleich mit Wicklungen konstanter Stromdichte führten zum gleichen Betrag des

Magnetfeldes, wenn im Kabelleiter eine konstante Durchschnitts-Stromdichte angenommen wird.

On développe des expressions pour les champs dipolaires et quadrupolaires des aimants avec des enroulements cylindriques et concentriques

à densité de courant linéaire, comme c'est p. ex. le cas dans des enroulements en câbles supraconducteurs minces et hauts. Une comparaison des

résultats numériques avec des enroulements à densité de courant constante donne les mêmes valeurs de champ si on introduit une densité moyenne

pour le conducteur en forme de cable.

1. Einleitung
In einem früheren Aufsatz [l]1) sind Ausdrücke zur Berechnung

von Magnetfeldmultipolen für zylindrische und konzentrische

Sektorwicklungen mit konstanter Stromdichte abgeleitet

worden. Mehrere klassische und supraleitende Magnete

dieser Konzeption und Bauart sind seitdem entwickelt und

erfolgreich erprobt worden [2; 3; 4], Die konstante Stromdichte

ist durch Anwendung kompakter Leiter oder Supraleiter mit

geringen Abmessungen und durch eine relativ hohe Windungszahl

erreicht worden.
Bei supraleitenden Magneten mit Schalenwicklungen mit

vorzugsweise hohen Strömen und geringer Windungszahl werden

trapezförmige, verseilte Kabelleiter verwendet, die eine

veränderliche Stromdichte aufweisen. Diese proportional mit

dem Wicklungsradius abfallende Stromdichte kommt
zustande, indem der Kabelleiter aus einer Anzahl von Drähten

mit konstantem Durchmesser um ein beispielsweise

trapezförmiges zentrales Kupfer- oder Stahlband verseilt wird,
damit der Geometrie des Wicklungssektors möglichst gut ange-

passt wird (Fig. 1). Die Stromdichte j(r) kann dann angenähert

werden als

je 7(2 Ri ~ r)/Ri (1)

2. Ableitung der Formeln für die Feldberechnung

Für die Berechnung der Magnetfeldkomponenten wird das

gleiche polare Koordinatensystem wie in [1] vorausgesetzt.

Fig. 2 zeigt einen unendlich lang angenommenen Wicklungssektor,

der durch die Radien Ri und Rz sowie durch die Winkel

ai und aa begrenzt ist.

Bei vorausgesetzter linearer Stromdichtenänderung erhält

man für das Stromelement dl im Punkte Q (/', a)

dI =jr dr da j 2
—— r dr da

-Kl
(2)

und für das durch d/ hervorgerufene Vektorpotential im

Punkte P(cp, y)

dA /rd;dg//0 In [r2 + e2 - 2 ro cos(« - tp)\
4 7t L

(3)

Die Komponenten des Magnetfeldes Be und B,p sind folglich

analog [1]

dB, _
1 8(dÄ)

Bo
jpo 2 Ri — r r2 sin(a — <p)

wobei j der maximalen Stromdichte am Innenradius Ri
entspricht. Der Zweck der nachfolgenden Berechnungen ist nun

zu bestimmen, ob durch die veränderliche Stromdichte etwa

ein geringeres Magnetfeld in der Bohrung Bo zu befürchten ist,

als im Falle einer durchschnittlichen, jedoch über den

trapezförmigen Kabelquerschnitt gleichmässig angenommenen
konstanten Stromdichte jo erhalten wird, oder ob die in [1]

abgeleiteten Gleichungen auch weiterhin ihre Gültigkeit bewahren.

Im vorliegenden Aufsatz werden nun analytische Formeln

für die Berechnung der Magnetfeld-Multipole für den Fall
eines Dipol- und Quadrupolmagneten gegeben, und zwar für
das Bohrungsfeld, das Feld in der Wicklung und das durch

eine konzentrische Eisenabschirmung erzeugte Feld. Die
Resultate werden mit den Formeln für den Fall einer konstanten

Stromdichte in der Wicklung verglichen [1]; es wird gezeigt,

dass die gleichen Werte für das Dipol- und Quadrupolfeld in

der Bohrung erhalten werden, vorausgesetzt, dass im Kabelleiter

eine durchschnittliche, über den Querschnitt konstante

Stromdichte vorhanden ist. Desgleichen erhält man praktisch

die gleichen optimalenWinkel dereinzelnen Schalenwicklungen,

wobei eine Kompensierung der einzelnen Feldharmonischen

erreicht wird.

2 n Ri r2 + q2 - 2 rg cos(a - <p)

7) Siehe Literatur am Schluss des Aufsatzes.

Cu oder Inox

dr da (4)

Fig. 1 Anordnung der Supraleiter um einen trapezförmigen,
verseilten Kabelleiter
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R2 «2

B, Mff r2cos(a ~ <p) - rp - —k- [>3cos(a - <p) - r2 p]

r2 + o2 — 2 rp cos(a — ç?)

vRi «

Unter Anwendung der in [1] angegebenen Reihenentwick
lung erhält man für o/r < 1, d.h. für das Magnetfeld innerhalb
der Bohrung :

B„ ßoj
Rä os 2

' sm(a -<p)- r3 sin(a -<p)II\Rl 0L2

R2 0C2

^LfJ

r2 + p2 — 2 rg cos(a — cp)

sin(a — q>) + — sin2 (a - <p) +

dr da

Ri ai

/ o \n—1 1 r r+ sin« (a - <p) - y sin(a - q>) + (6)

O n2
+ y - sin2 (a — <p) + sin3 (a - <p) +

g"-1 "|\+ - Rl rn-2 sin« (a ~ <P)J I de da.

Analog ergeben die Feldkomponenten Bes und B,ps, die
durch Spiegelung des Strombelages an der konzentrischen
Eisenabschirmung mit dem Radius Rs hervorgerufen werden

+ Ri'

R2' ai (7)

2 Ri
pn-i \

" TAUa-j Sln" (« " P) dr' da

und B0s die entsprechende Formel mit negativem Vorzeichen
und mit cos 77 (a <p) anstelle von sin 77 (a <p). Dabei gilt für
die gespiegelten Radien und Stromdichten

r' Rs2/r; Ri Rs2/Ri; Ri Rs2/Ra (8)

/ /(-Ks/r')4 (9)

dr — r'~2 Rs2 dr' (10)

2.1 Der Dipol
Für den Fall eines Dipoles (Fig. 3) mit der durch die Winkel

± ao und 71 ± ao begrenzten Sektorwicklung erhält man unter
Anwendung der Gleichungen 6 und 7

für die Komponenten des Bohrungsfeldes

COS (p 00

Q'(r\a)

Fig. 2 Zur Ableitung der Magnetfeldkomponenten von
Sektorwicklungen mit linear veränderlicher Stromdichte
Ri, R2, Ri, Rz Radien des reellen und gespiegelten

Wicklungssektors mit den Winkeln ai, or.2

Rs Radius der Eisenabschirmung
r, q Radien

j Stromdichte am Innenradius des Sektors
a, (p Winkel

Fig. 3 Dipolvvicklung

± jr veränderliche Stromdichte
ao Winkel der Sektorwicklung

Bqi

BQ2

4 ßoj
(R2 R,) cosao 2 (2 n + 1) (2 n — 1) [ R^UT " ' cos (2 n + 1)

cos(2 n + 1) tp\

ao (11)

B.

2 ßoj 1 Ri2- R{2
7t I 2 Ri

sinç) — «=i

cosp

sin (2 n + \)q>.

cosao In Ri
cos 3 <p

3 Ri Ri cos 3 ao +
'cp2 sinç?

+

sin 3

OO

V e2n+3 r 1 ii(2 77 + 3) 2 77 Ri LrT2^ ^25-J cos (2 77+ 3)

cos (2 77 + 3) <p\
(12)

ao

sin (2 77 + 3)
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Fig. 4 Dipol mit Doppellagenwicklung F'g- 5 Quadrupolwicklung

Än, *22 Radien der äusseren Schale mit den Winkeln au, a22

für die Komponenten der Spiegelung

Bea
cos(2 n - 1) <p\

Bqs

4 ßoj
n Z-i

02n-2 r ^2n+l _ g2n+l 1 g2n-2 Rl r j?22" ~ *12" 1
f? „ - 1)

(27mH2^1)"L \~l2^1)4n-[ *s4-2 JC0( ao

sin(2 n — 1) (p >

(13)

Bei Schalenwicklungen mit mehreren Sektoren (Fig. 4) können die Winkel ou, ct2, «n, «22 usw. derart gewählt bzw. optimiert

werden, dass die störenden Sextupol-, Dekapol- und höheren Harmonischen des Magnetfeldes kompensiert werden, wobei fur

eine Wicklung mit m konzentrischen Schalen m Feldharmonische kompensiert werden können. Für den in Fig. 4 dargestellten

Fall eines Dipoles mit zweifacher Schalenwicklung können die Sextupol- und Dekapolkomponenten eliminiert werden, falls

folgende Bedingungen erfüllt sind :

Für den Fall einer konstanten Stromdichte in der Wicklung [1]

Rf ~ Ri5IM- J
3 l*i **2

ki

=u

15 *s6

*i2R12 (J_
"15" l *i3" Rz3 I 35 *s10

k3

cos 3 ai +

(*27 - *i7)

1 / 1 1 \ *225 - *115
3" 1*11 *22/ 15 *s8

cos 3 a3 0

k-z (14)

cos 5 ai +
R12

15

*i2
Rn3

Rz-z3) + 35 *s:

ki

H (*227 ~~ *117) cos 5 0:2 0

Für den Fall einer linear veränderlichen Stromdichte

"
1 1

_
1 \

3 1 Ri *21 24
1 *2 *25 - *i5 Rl (Rz4-Ri4)
l*i ln *1 + 15 *s6 24 \ *s6 1

cos 3 ou' +

ki

i/± - Ü-J
3 \*n *22/ 6ü

*22 *225 - *115 *11 / *224 - *1
*11

ln Äu + 15 *s6 24
/ *224 - *114 \
[ R? cos 3 az 0

k-z

*i2 / 1 1 \ Ri (J M
15 U13 *23 / 20 1 *12 *22 I

Rr2 ,B _ p Vx
Rl3 l Rz3 - *16

+ T5 *sl lf
} 60 l *s10 /35 *s10

ks

cos 5 on'

+
r*t2 1 1 *i2 1

TT R113 *223 20 *n *n2
*11 *12 /*226 -*ll6

60 *s10

(15)

cos 5 0,-z 0

ki
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2.2 Der Quadrupol

Für den Fall eines Quadrupoles mit den Winkeln der Sektorwicklung nach Fig. 5 erhält man

für die Komponenten des Bohrungsfeldes

Bo

Bm

4 pajj „ l"i, ^2 Bo - Ri 1

V" * I'n Ry ~ - 2ÄH
COS 2 (p oo

cos 2 ao

sin2 q n=i
y e_

2 n (4 n

1

i?l4n+3 i?24n+3
J cos (4 n + 6) ao

(*)-(*)'
cos (4 n + 6) <p

2)

cos (4 n + 2) <p

cos (4 n + 2) ao 2 (4 n
sin(4/z+2)ç> n=o

+ 3) (4 n + 6)
(16)

für die Komponenten der Spiegelung

Bqs F f oo

mßoj

BifS — (n=0

„4n+l

sin (4 n + 6) <p

R„4n+i _ _Rl4n+4

(n + 1) (2 n + 1) 7fe8n+4

2 p4n+1 R1 R24n+3 - i?i4n+3
(4 ii + 3) (2 n + 1) i?s8n+4

cos (4 n +2) r/n
(17)

• cos (4 « + 2) a0

sin (4 n + 2) (p

Für eine Quadrupolwicklung mit zwei Schalen können ähnlich wie beim Dipol die Winkel ai, a2, au, a22 optimiert werden,
um die dritte und fünfte Feldharmonische zu kompensieren. Die entsprechenden Bedingungen sind:

für eine konstante Stromdichte [1]

f
A
24

m'

-m

i?i5 R28 - Ri8 | | Ri
24 J?s12

cos6œi +

ki

Ri» R212-Ri12 I | R,
60 Rs°-° I

cos 10 ai + {
24

ks

yyu (Xk)4
\ fin / \ R22 I

k2

'( Ri \8 Rz yUn/ UiJ
ki

Ri5 R2of-Rns
~24 R~sÏ2 / cos 6 a2 0

(18)

Rl9 i?2212 - i?ll12
60

"

i?s20 cos 10 a2 0

für eine linear veränderliche Stromdichte

Ri5 Rof - Ri* 7?i4 1Äi
1 (£)* + 24 ife12 18 (äi3 R2S)

42 Rsi2

ki

Ri6 Ä27 - jRi7
cos 6 ai' +

+ Ri
\ 7?n / \ )?22 /

i^l5 i?228 — 7?u8 Äi4 / 1

24 Äs12 18 (i?n3 A223)
42

k2

Ri6 R227 ~ R11'
Rs12 cos 6 a2' 0

(19)

Ri
24 (£)' Ri9 R212 ~ Ri12

_ Ri8 1 1 \ J?!4« t r2H -
60 Rs20
^ ^ JYI Al- I 1 1 \ JJjlO / R2u - ^11 l

70 U17 JÎ27/ 110 l Rs29 j/cosl0ai +

kf
I Äi

24
/UlV_ / 2?1 \s
l ifii / l Ä22 /

+
7?i9 7?2212 - Ä1112 Rl8 l 1

60
1 1 \ 7?!10 /

Uli7 TJ227 / 110 li?s20 70 Uli7 TJ227

ki

Ri10 Ä2211 - Ru11
Rs20 j cos 10 af 0
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Fig. 6 Quadrupel rait Doppellagenwicklung Fig. 7 Leiter für den supraleitenden Dipolmagneten des CERN
Masse in mm

Die Gleichungen 7, 12 und 17 gelten für den Fall einer
ungesättigten Eisenabschirmung mit y/r °o. Für gesättigtes
Eisen sind die entsprechenden Ausdrücke mit (/tr — 1 + 1)

zu multiplizieren.
Vergleicht man nun Gl. 11 und 12 für die Hauptkomponenten

des Bohrungsfeldes Be und B<p mit den Gl. 17 und 18 des

Aufsatzes [1] für konstante Stromdichte, wobei ein Vergleich
der Grundharmonischen völlig genügt, so ergibt sich der
Zusammenhang zwischen der linear veränderlichen Stromdichte

/r und der konstanten Stromdichte y'o.

Um in beiden Fällen das gleiche Bohrungsfeld Be und B0 zu
erhalten, muss für den Dipol eine äquivalente, über den

trapezförmigen Leiterquerschnitt konstant angenommene
Stromdichte y'o wie folgt gewählt werden :

(R2 _ Rl) im. r2 (R2 ; ^il
71 71 L 2 Ki 1

also y'o y (3 Ri - R2)l2 Ri (20)

Das gleiche Ergebnis wird durch eine Integration der
konstanten bzw. der veränderlichen Stromdichten y'o und y'r erhalten.

Es ist somit erwiesen, dass Dipol- (und Quadrupol-)Wick-
lungen mit linear veränderlicher Stromdichte die gleichen
Bohrungsfelder ergeben wie bei einer konstant angenommenen
durchschnittlichen Stromdichte im Leiter nach Gl. 17 und 18

sowie 27 und 28 von [1],

3. Numerisches Beispiel
Als Beispiel soll die in Fig. 6 gezeigte Wicklungsanordnung

des geplanten 5 m langen supraleitenden Dipolmagneten des

CERN, Genf, untersucht werden. Ähnliche Magnete werden
zurzeit für den Energieverdoppelungsbeschleuniger des Fermi-
labs in Batavia, USA, entwickelt [5].

Der Magnet soll mit einem aus 27 Drähten verseilten,
trapezförmigen supraleitenden Kabel mit den Abmessungen nach
Fig. 7 bewickelt werden. Die durchschnittliche Stromdichte im
Kabel beträgt y'o 3.5 • 108 A/m2. In Wirklichkeit weist das

Kabel eine lineare verteilte Stromdichte auf, mit dem Maximalwert

von j 3.91 108 A/m2 auf der inneren, schmalen Seite.
Unter Annahme einer ungesättigten Eisenabschirmung

erhält man nach den beiden Berechnungsmethoden das gleiche
Bohrungsfeld von B0 =4.715 T.

Für den Fall der konstanten Stromdichte y'o 3.5 • 108 A/m2
und der Koeffizienten nach Gl. 18 und 19 von ki 2.05273,
k-2 1.2295, k'3 803.46, ki 283.16 ergeben sich die
optimierten Winkel der Schalenwicklungen zu ou 18.2°, <X2 54°.

Bei linear veränderlicher Stromdichte mit j 3.91 • 108 A/m2
und den Koeffizienten von k\ 0.8973, k«' 0.5554,
k\{ 12.441, ki 4.511 erhält man für die optimierten Winkel

<xi 18.0°, oi2 54.0°; der Unterschied ist folglich sehr
gering.
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