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Computergestiitzte Schaltungsanalyse:

Verfiigbare Sprachen und Methoden )

Von J.S.Vogel

621.3.049.7: 681.3 01::62.001.13;

Die starke Verbesserung des Preis-Leistungs-Verhdiltnisses von Computern und die Entwicklung neuer numerischer Verfahren fiir die Losung
von Gleichungs- und Differentialgleichungssystemen haben den Einsatz des Rechners fiir die Schaltungsentwicklung wirtschaftlich gemacht.
Die Ausbildung der Ingenieure trigt dieser Entwicklung Rechnung, und eine grossere Anzahl von Analysenprogrammen gestatten es, Schaltungen

in kurzer Zeit zu testen, zu selektionieren und optimal auszulegen.

Die Anforderungen, welche der Benutzer an Netzwerkprogramme stellt, werden beschrieben und die Erfiillung dieser Anspriiche bei ver-
schiedenen Programmen einander gegeniibergestellt. Wesentliche Fortschritte wurden in den letzten Jahren bei der konzisen Formulierung der
Netzwerkgleichungen, bei der Losung von linearen und nichtlinearen Gleichungssystemen und bei der Integration steifer Differentialgleichungen
erzielt. Als Beispiele fiir diese Entwicklungen wird fiir jeden Bereich ein Verfahren kurz erliutert.

Le rapport prix|performance des calculateurs électroniques étant devenu bien meilleur et de nouveaux procédés numériques ayant été congus
pour la solution de systémes d’équations différentielles et auires, Pemploi d’un calculateur pour I'élaboration de circuits se justifie économiquement.
La formation des ingénieurs tient compte de cette évolution, et un grand nombre de programmes d’analyses permettent de controler, sélectionner

ou élaborer d’une facon optimale des circuits.

Les exigences que pose l'utilisateur a des programmes de réseaux sont décrites et la satisfaction de ces exigences par divers programmes est
comparée. Ces derniéres années, d’importants progrés ont été réalisés pour une formulation concise des équations de réseaux, pour la solution
de systémes d’équations linéaires ou nonlinéaires, ainsi que pour I'intégration d’équations différentielles «stiff». Un procédé est décrit pour chaque

domaine, a titre d’exemple de ces développements.

1. Einfithrung

Der Einsatz des Computers in der Elektrotechnik hat in den
letzten 10 Jahren einen derartigen Umfang angenommen, dass
gewisse Arbeiten, wie beispielsweise die optimale Auslegung
von gedruckten Schaltungen, ohne den Rechner fast nicht
denkbar sind. Zwei Hauptgriinde kénnen fiir die Entwicklung
dieser computergestiitzten Arbeitsweise angefiihrt werden:
Einerseits trigt die Ausbildung der Ingenieure an den hoheren
technischen Lehranstalten dem Bediirfnis nach Kenntnissen
iiber den Computer und Informationen iiber dessen sinnvolle
Beniitzung Rechnung. Immer mehr Ingenieure suchen und
finden dementsprechend bei rechenintensiven Problemen den
Zugang zum Elektronenrechner und fordern zweckdienliche
Software an. Anderseits ist das Preis-Leistungsverhiltnis in der
elektronischen Datenverarbeitung dank der modernen Tech-
nologie derart giinstig geworden, dass heute in kiirzester Zeit,
selbst auf Kleinrechnern, Arbeiten durchgefiihrt werden kon-
nen, an welche man sich anfangs der sechziger Jahre iiberhaupt
nicht herangewagt hat. Als Beispiel sei hier nur die Analyse
einer nichtlinearen Schaltung, in der sich transiente Vorginge
abspielen, angefiihrt, wobei infolge von toleranzbehafteten
Parametern die Monte-Carlo-Technik zur Anwendung kom-
men muss.

Die Software-Palette, die dem Elektro-Ingenieur heute zur
Verfiigung steht, ist reichhaltig. Die erwdhnten Programme
zur Schaltungsauslegung werden erginzt durch solche zur
optimalen Verdrahtung. Fiir die Analyse von digitalen und,
in grosserem Umfang, von analogen Schaltungen werden lau-
fend neue Systeme entwickelt, und schliesslich sind schon seit
Jahren die Simulatoren kontinuierlicher Systeme fiir Aufgaben
aus der Elektrotechnik im Gebrauch. Im nachfolgenden wird
besonders auf die Netzwerkanalysenprogramme eingegangen,
welche von Computer-Dienstleistungsunternehmen oder an
Hochschulrechenzentren angeboten werden.

1) Einleitendes Referat der SEV-Informationstagung iiber «der Com-
puter als Werkzeug der Elektronik» vom 23. Mai 1978. Der Sammelband
aller Referate kann beim SEV, Abt. VVW noch bezogen werden (Fr. 40.—
+Versandspesen). Der Tagungsbericht ist in Bull. SEV/VSE 69(1978)16,
S. 893...894 enthalten.
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2. Anforderungen an Analysenprogramme

Die Anforderungen, die an die Software gestellt werden,
sind oft stark problembezogen und dementsprechend derart
vielfiltiger Natur, dass selbst die modernsten Mehrzweck-
programme nicht allen Anspriichen gentigen konnen. Der
versierte Ingenieur wird sich deshalb auch im allgemeinen nicht
nur auf die Beniitzung eines einzigen Programms beschrinken,
sondern von Fall zu Fall versuchen, das fiir die gestellte Auf-
gabe geeignetste System zu finden. Die Mehrzahl der nach-
folgenden, haufigsten Anforderungen werden heute von meh-
reren Analysenprogrammen erfiillt.

a) Beniitzerfreundliche Sprache: Die Codiersprache zur Be-
schreibung der Schaltungstopologie und der Elemente sollte
auch von EDV-Laien innert weniger Stunden erlernt werden
kénnen. Die Instruktionen miissen selbsterklirend und auch
fiir diejenigen verstindlich sein, die das Programm nicht ge-
schrieben haben. Befehle wie
RLAST, KN5 — GROUND = 5.6 KOHM
START FREQ = 100
POINTS PER DECADE = 20
PRINT VCI1, IR3
erfiillen diese Forderung. Ersatzschemas fiir die gebréuchlich-
sten Halbleiter (BJT, FET, MOSFET, Dioden) sollten wie die
{iblichen Schaltungselemente bereits vorprogrammiert vorhan-
den sein oder zumindest nach einmaliger Definition permanent
in der Systembibliothek abgespeichert und nach Bedarf wieder
aufgerufen werden konnen. Das letztere gilt auch fiir hiufig
gebrauchte Teilschaltungen, z.B. ein logisches Gatter oder
einen Operationsverstirker, und fithrt auf eine erhebliche
Reduktion des Programmieraufwands.

Die Beniitzerfreundlichkeit eines Systems steht und fillt
auch mit der zugehorigen Dokumentation, welche nicht nur
die Syntax beschreibt, sondern auch Aufschluss iiber die ver-
wendeten numerischen Verfahren mit deren Fallstricken und
Limiten geben muss.

b) Beliebig umfangreiche oder selektive Resultatausgabe:
Ein Analysenprogramm muss dem Beniitzer nicht nur alle jene
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Informationen liefern, die er durch Messungen im Labor er-
halten kann, sondern ihm Resultate auch numerisch oder
graphisch in wunschgemiiss skalierter, selektiver Form auf
Papier oder am Bildschirm ausgeben. Neben den iiblichen
Darstellungen von Zeitverliufen und Bodediagrammen
wiinscht man neuerdings im Zusammenhang mit Monte-
Carlo-Analysen Streudiagramme, Histogramme, Enveloppen-
darstellungen u.a.m. (Fig. 1).

¢) Einfache Anderung von Schaltungsparametern: Soll eine
Schaltung optimal ausgelegt werden, so wird man mehrfache
Analysen mit wechselnden Parameterwerten durchfiihren wol-
len, ohne das Programm jeweils neu aufsetzen zu miissen.
Wiinschenswert sind auch Méglichkeiten zur Topologieinde-
rung, u.a. zur Entfernung von Elementen oder Einfiigung
neuer Knoten und Zweige. Befehle wie
CHANGE, CIRCUIT, TOPOLOGY, REMOVE,

RLAST, CSTREU

CHANGE, CIRCUIT, TOPOLOGY, ADD LZUL,
A-BASIS = 20 MILLIHENRY

gehdren bei einigen Systemen zum Standardwerkzeug.

d) Automatische Genauigkeitskontrolle: In Rechenprozes-
sen, wie der Losung von Gleichungssystemen, der Integration
oder der Bestimmung von Polen und Nullstellen, konnen fiir
schlecht geartete Probleme Schwierigkeiten numerischer Art
auftreten. Die dabei entstchenden Rechenfehler schaukeln sich
oft auf, und die Resultate verlieren jeglichen Aussagewert. Der
Programmbeniitzer muss in solchen Fillen gewarnt und, sofern
dies iiberhaupt mdoglich ist, auf die Ursache der Fehler hin-
gewiesen werden.

e) Behandlung aktiver und nichtlinearer Schaltungen: Ob-
wohl in vielen Bereichen der Analogtechnik mit linearen Netz-
werken gearbeitet wird, muss ein modernes Analysenpro-
gramm, insbesondere im Zusammenhang mit Halbleiterschal-
tungen, in der Lage sein, Nichtlinearititen zu behandeln. Oft
werden letztere in Form eines FORTRAN-dhnlichen Aus-
drucks beschrieben :

CSPERR, BASIS-COLL = CO*EXP (— VJDI/K),

sind durch Interpolation aus einer Tabelle zu entnehmen:
CTABEL, (0,3 PF), (1, 2.71 PF), (2, 2.46 PF), (4, 2.01 PF)

oder durch eine Polynomfunktion definiert:
G15,7—4,POLY (3), 6— 2, 6E— 3, 0.025, 0.008, 0.002

Polynomkoeffizienten

In diesem Beispiel wird mittels eines Polynoms dritten
Grades eine Stromquelle zwischen den Knoten 7 und 4 defi-
niert, welche durch eine Spannung zwischen den Knoten 6 und
2 gesteuert ist.

f) Verschiedene Analysenarten: Zur Bestimmung von
Arbeitspunkten, Transfercharakteristiken, Belastungen und
Sensitivitidten bendtigt man die Gleichstromanalyse. Die Wech-
selstromanalyse dient der Bestimmung von linearen Ubertra-
gungsfunktionen, Verstarkungseigenschaften, Frequenzgin-
gen, Polen und Nullstellen, Verzerrungsprodukten, Vierpol-
und N-Port-Parametern sowie von Rauschfaktoren. Eine
transiente Analyse ist erwiinscht, wenn man periodische oder
aperiodische Prozesse in nichtlinearen Netzwerken beobachten
oder Schaltvorgéinge untersuchen will. Vielfach méchte man
Netzwerkelemente mit Toleranzen versehen und priifen, ob
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eine Schaltung bei Abweichungen von den Parameter-Nomi-
nalwerten immer noch ihre Funktion erfiillt. Fiir eine Toleranz-
analyse wird jeder Netzwerkparameter dementsprechend mit
einer Wabhrscheinlichkeitsverteilungsfunktion versehen und
unter Einsatz von Monte-Carlo-Verfahren die Anzahl der Aus-
falle gezéhlt bzw. die Ausbeute bestimmt. Aufgrund der Sen-
sitivitdtsberechnung oder der Monte-Carlo-Analyse kann oft
auch eine Berechnung des schlimmsten Falls, d.i. eine sog.
Worst-Case-Analyse, angeschlossen werden.

3. Verfiighare Mehrzweckprogramme

An vielen Hochschulen werden laufend neue Analysen-
programme entwickelt, welche aber oft auf spezifische, gerade
aktuelle Probleme zugeschnitten sind. In Tab. I, die keinen
Anspruch auf Vollstindigkeit erhebt, sind die wichtigsten,
momentan in der Schweiz allgemein zuginglichen Mehrzweck-
Analysenprogramme aufgefiihrt. Dabei wurde das Programm
ECAP-360 mit seinen Varianten PAN und GOCAP weggelas-
sen, da es vielen der aufgefiihrten Forderungen nicht mehr ent-
spricht.

Die Programme ASTAP [1]2), LISA [2] und SIMELEC [3]
stammen von einem Computer-Hersteller, SPICE-2 [4] wurde
an der Stanford University, CORNAP [5] an der Cornell
University entwickelt, SCEPTRE [6] entspringt einer gemein-
samen Entwicklung der U.S. Air Force und eines Computer-
Herstellers und wurde an einer Universitit weiterentwickelt
[7]. NAP-3 [8] und ANP-3 [9] werden seit einiger Zeit in
Dinemark erfolgreich eingesetzt. Weitere Programme, die in
kiirzlich erschienenen Gegeniiberstellungen [10; 11] gute Qua-
lifikationen erhalten haben, in der Schweiz bisher aber nicht
installiert wurden, sind u.a. NET II, CIRCUS II, ISPICE und
BELAC. Die Bewertung der verschiedenen Systeme erfolgte in
diversen Publikationen einerseits aufgrund der Erfiillung der
in Abschnitt 2 beschriebenen Anforderungen, dariiber hinaus
in bezug auf die topologischen Limiten, d.h. die Grosse der
erlaubten Netzwerke, die Rechengeschwindigkeit, Genauigkeit
und schliesslich den Speicherbedarf.

In Tab. I sind einige der wichtigsten Eigenschaften der aus-
gewihlten Programme zusammengestellt, wobei zu vermerken
ist, dass bei all diesen Systemen mit verschiedenartigen Erwei-
terungen versehene Versionen im Umlauf sind. Die Erweite-
rungen von SUPERSCEPTRE gegeniiber SCEPTRE sind
durch Einklammerung der entsprechenden Tabelleneintragun-
gen gekennzeichnet.

4. Numerische Methoden

Eine Anzahl von neueren numerischen Verfahren hat den
Zeitbedarf von Netzwerkanalysen stark verringert und dadurch
die computergestiitzte Schaltungsentwicklung wirtschaftlich
gemacht. Insbesondere erzielte man grossere Fortschritte im
Bereich der konzisen Formulierung von Netzwerkbeziehungen
mittels topologischer Matrizen, bzw. mittels Tableaux, der
Losung von linearen und nichtlinearen Gleichungssystemen,
bei der numerischen Integration von steifen Differentialglei-
chungen und bei der zeitsparenden Durchfiihrung von Monte-
Carlo-Analysen.

Nachfolgend wird eine kleine Auswahl dieser Methoden,
die bereits in vielen Analysenprogrammen implementiert sind,
kurz beschrieben.

2) Siehe Literatur am Schluss des Aufsatzes.

Bull. ASE/UCS 69(1978)18, 23 septembre



4.1 Die Formulierung der Netzwerkgleichungen
unter Beniitzung von Graphen

Mit Hilfe von topologischen Matrizen, welche sich auf
gerichtete Graphen beziehen, lassen sich die Netzwerkglei-
chungen in eleganter Form beschreibzn [12; 13]. Die Formu-
lierung kann aufgrund von Zweig-Knoten-, Zweig-Maschen-
oder Trennbiindelmatrizen erfolgen; auch gemischte Verfahren
[13] sind in Gebrauch. Stellt Y die Zweig-Admittanzmatrix
eines Netzwerkes dar, so lautet das Ohmsche Gesetz, d.h. die
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Fig. 1 Graphische Ausgabeoptionen moderner Analysenprogramme
a Darstellung des Zeitverlaufs,
Enveloppendarstellung und Mittelwertkurve
b Frequenzverlauf nach Betrag (logarithmisch) und Phase
¢ Streudiagramm PTONDIN = f(PIDBG)

d Histogramm
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Tabelle I

Merkmale ANP3 ASTAP CORNAP | LISA NAP 2 SIMELEC | (SUPER) SPICE 2
SCEPTRE
Topologische Limiten
Knoten 40 n 50 50 1050 300 n
Zweige 100 n 70 125 200 1000 300 n
Analysenarten
DC X X X X x X X
AC X X X X X X (x) X
Transient X X X X X X X x
Sensitivitdt X X X X (x) X
Monte Carlo X X (x)
Temperatur X X
Ausfall X
Worst Case X X (%)
Nichtlinearitdten X X X X X
Halbleitermodelle X X X X X
Teilschaltungen X X X X
Aufruf von Unterprogrammen X X X
Parametermodifikation X X X X X X
Topologische Anderungen X X
Vierpolparameter X X
N-Port-Parameter X
Ubertragungsfunktionen X X (x) X
Pole, Nullstellen X X X
Rauschen X X X
Tabellenbearbeitung D.< X X X
Fourieranalyse X X (x) X

n: nur vom verfiigbaren Speicherplatz abhiingig

aufstellen, wobei i fiir die Zweigstrome (Elementstrome minus
Quellen) steht und der Index T die Transposition anzeigt
(Fig. 2). Auch der Zusammenhang zwischen den Knotenspan-
nungen #° und den Zweigspannungen u ldsst sich mit der
A-Matrix einfach darstellen

u=Au )]

und schliesslich ergeben sich die Kirchhoffschen Maschen-
gleichungen zu

CTu=0 (€))

wenn C die Zweig-Maschenmatrix ist.

Bezeichnet man die unabhédngigen Stromquellen mit 7 und
die Spannungsquellen mit U und beriicksichtigt die Zusammen-
hiange

v=u+U wnd i=j-1 (5,6)
so ergibt sich aus den GI. (1) bis (6)
(A*YA)-u' = AT - (1— YU) @

mithin ein Gleichungssystem zur Bestimmung des Knoten-
spannungsvektors «’. Das Produkt

YK = AT YA 8
wird als Knoten-Leitwertmatrix bezeichnet, der Ausdruck

IX= AT (1-YU) ©
als dquivalenter Stromvektor. Damit ergibt sich aus Gl. (7)

Yxu — [x (10)
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Dies ist eine der moglichen Darstellungen der Netzwerkglei-
chungen; andere Formen, welche die Zweig-Maschen- oder die
Trennbiindelmatrix verwenden, findet man oft in der Literatur,
und sie sind bei der Implementierung von Netzwerk-Analysen-
programmen zum Einsatz gekommen.

In manchen Programmen (z.B. LISA) wird die Knoten-
admittanzmatrix YX direkt aus der Schaltungsbeschreibung
erstellt, dies ohne Umweg lber topologische Matrizen. Ein
neueres Programm [14] erweitert das beschriebene Konzept,
das urspriinglich fiir lineare Schaltungen entwickelt wurde, auf
nichtlineare Netzwerkbeziehungen unter Inkaufnahme eines
iterativen LOsungsprozesses bei der Gleichstromanalyse und
der wiederholten iterativen Losung nach jedem Zeitschritt bei
der transienten Analyse.

4.2 Losung von linearen Gleichungssystemen

Das bekannteste Verfahren zur Losung des linearen Glei-
chungssystems

Ax=5h an

ist die GauBsche Elimination. Besitzt die Matrix 4 die Dimen-
sion NxN, so sind zur Bestimmung des unbekannten Vektors x
insgesamt z = N3/3 — N2/2 4+ N/6 wesentliche Rechenopera-
tionen (Multiplikationen, Divisionen) erforderlich. Die rechte
Seite b enthilt die unabhingigen Quellen des Netzwerks., Will
man deren Werte variieren, was z. B. bei der Bestimmung von
Gleichstrom-Ubertragungsfunktionen der Fall ist, so bedingt
dies eine wiederholte Durchrechnung mit der gleichen Anzahl

Bull. ASE/UCS 69(1978)18, 23 septembre



Anzahl wesentliche Operationen Tabelle IT
N =20 N=50 N =200
K= K=5 K=20 K=1 K=5 K=20 K=1 K=5 K=20
Gauss K- N33 2667 13333 53333 41 667 | 208333 | 833333 | 2.67-10% | 133.107 533.107
Inversion N? 4 KN? 8 400 10 000 16000 | 127500 | 137500 | 175000 | 8.04-108 8.2 - 106 8.8 - 108
Iﬁl‘;?cfcj N33 + KN* 3067 | 4667 | 11067 | 44167 | 34167 | 91667 | 2.71-10° | 2.87-10% | 3.47 . 10¢

Unterstrichen ist der jeweils giinstigste Wert.

von Operationen. Bei K verschiedenen rechten Seiten b ergeben

sich

2 = KN3/3 — KN2/2 4+ KNJ6 12)

wesentliche Operationen.

Fiir grosse Werte von K erhilt man eine starke Verbesse-
rung durch vorgingige Inversion der Matrix 4 und nachfol-
gende Multiplikation der Inversen mit den diversen Quellen-
vektoren b: ’

xi=A1h (13)

Die Inversion bendtigt N8 und die Matrix-Vektor-Multi-
plikation N2 Operationen. Bei K rechten Seiten & ergibt sich
mit

zk = N3+ KN? (14)

|

b & @

Fig. 2 Standard-Netzwerkzweig:
r-ter Zweig zwischen den Knoten a und b

a’, wy’ Knotenspannungen
Ur Zweigspannung

Ue unabhingige Spannungsquelle
Ur Elementspannung

ir Zweigstrom

Jr Elementstrom

I unabhéngige Stromquelle

ir* abhingige (gesteuerte) Stromquelle
YI'!'

Selbstadmittanz, Eigenleitwert

I
>

Fig. 3 L-U-Dekomposition
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bereits fiir £ > 3 ein Vorteil gegeniiber der GauBischen Elimi-
nation.

Mit drei neueren Verfahren [12], der L-U-Dekomposition,
der Crout-Methode und der Bi-Faktorisierung kann der
Rechenaufwand noch stark verringert werden. Alle drei Ver-
fahren benotigen etwa die gleiche Anzahl von Operationen
und einen fast identischen Speicheraufwand; eine kurze Er-
lduterung der L-U-Dekomposition soll hier als Beispiel genii-
gen.

Entsprechend Fig. 3 wird die Matrix A in ein Produkt von
zwei Dreiecksmatrizen zerlegt

LU=4 s
Die direkte Losung von GIL. (11) durch Inversion ergibe
x=A1h=LU)'b=U1L"1h 16)
Statt dessen wird aus der Matrixgleichung

Ly=5b an
ein Hilfslosungsvektor y

y=L1h (18)

ermittelt und letzterer dann als neue rechte Seite in ein weiteres
zu 16sendes Gleichungssystem eingefiihrt:

U x*=y (19)
Dessen Losung ergibt sich zu
x*=Uly=U"L1L"5 (20)

Der Vergleich mit Gl (16) zeigt, dass x* = x ist und die
Originalmatrixgleichung in zwei Schritten geldst wurde. Die
rechnerische Einsparung ergibt sich dadurch, dass zwar die
Dekomposition nach GI. (15) etwa N3/3 Operationen, also
gleichviel wie die Gaufische Elimination bendtigt, die nach-
folgenden Losungen der Gleichungssysteme Gl. (18) und (20)
jedoch sehr einfach werden. Wegen der Dreiecksform der
Matrizen L und U besteht dieser Losungsprozess nur noch
aus einem rekursiven Einsetzen bereits gefundener Kompo-
nenten der Losungsvektoren y bzw. x, wobei in Gl. (17) von
oben her, d.h. mit y1 und in GL. (19) von unten her, d.h. mit
xx begonnen wird. Die einmalige Losung eines dreiecksformi-
gen Gleichungssystems erfordert etwa N 2/2 wesentliche Ope-
rationen, bei K verschiedenen rechten Seiten b ergibt sich somit

ein totaler Rechenaufwand von
7k = N3/3 + KN? @1)

Operationen. In Tab. IT ist eine Gegeniiberstellung der drei
erwihnten Verfahren fiir verschieden grosse Netzwerke mit
Knotenzahlen N von 20, 50 bzw. 200 gemacht.
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4.3 Losung von nichtlinearen Gleichungssystemen

Zur Bestimmung des Arbeitspunktes einer elektronischen
Schaltung, welche Halbleiter enthélt, sowie zur Durchfiihrung
von transienten Analysen ist fast immer das Losen von Syste-
men nichtlinearer Gleichungen erforderlich. Die in diesem
Bereich bekanntesten Methoden [15] sind das Newton-Raph-
son-Verfahren in diversen Varianten, das Sekanten-Verfahren
und die Gauss-Seidel-Methode. Letztere wird insbesondere bei
der numerischen Behandlung betrieblicher und Skonometri-
scher Modelle eingesetzt, die ersten beiden vorwiegend im
Ingenieurbereich. Nachfolgend wird das Vorgehen bei einem
modifizierten Newton-Raphson-Prozess kurz beschrieben.

Soll das nichtlineare Gleichungssystem

uK(xl, X9 ...xN) =0 k=1..N (22)

bzw. in Vektorschreibweise u(x) = 0 gelost werden, so iiber-
trigt man die aus dem eindimensionalen Fall (Fig. 4) bekannte
Taylorreihe-Approximation auf den mehrdimensionalen Fall:

' ‘ du ) 1 (Pu
u (xUH) = u (x0) + (W = F3 ( B 23)
X ) i) = /xU
. (A_x(j))Z “F wee

Darin stellt die Grosse du/0x die Jacobi-Matrix dar. Der Index
J zeigt den jten iterativen Schritt an.

Im linearen Fall verschwinden die zweiten Ableitungen,
d.h. 02 u/0x® = 0, wodurch das Gleichungssystem in einem
Schritt gelost werden kann:

u (x(j+1)) = ()
Aus Gl. (23) ergibt sich der dazu notwendige Schritt Ax() zu

u (x()

N= = -
gt (Ouf0x)x

(24)
Da im Nenner eine Matrix vorkommt, erfordert diese Berech-
nung die Inversion einer Nx/N-Matrix. Im allgemeinen, nicht-
linearen Fall stellt dieser Schritt eine erste Néidherung in Rich-
tung der Nullstelle dar, und der einfache Newton-Raphson-
Algorithmus lautet dementsprechend

u (x())
xU+1) = x0) 4 Ax(i) = x() ==

=7 _(ég/aic)x(j) @5

u (x4

)1 ()
<>
Ax(,j])

Um ein Oszillieren des iterativen Prozesses zu verhindern
bzw. die Konvergenz zu beschleunigen, wird in modifizierten
Newton-Raphson-Verfahren der Schritt AxW durch einen pas-
senden Faktor R korrigiert:

x(+1) = x() 4+ R Ax® (26)

Die Wahl von R erfolgt derart, dass fiir jede Iteration das
Skalarprodukt y = u®(xU+D) - u (xU+D) minimisiert wird.
In Fig. 5 sind einige mogliche Verlidufe y = f(R) aufgetragen.
Das Minimum der Kurven erhilt man durch einen eindimen-
sionalen Suchprozess [16], was eine Anzahl von Funktions-
bestimmungen fiir ausgewihlte Werte von R bedingt. Gewohn-
lich geniigt es, den Kurvenverlauf durch eine quadratische
oder kubische Parabel zu approximieren und hieraus analy-
tisch den optimalen Wert Ropt zu bestimmen. In Ausnahme-
fallen sind aber aufwendigere Verfahren (z. B. Goldener Schnitt
oder Fibonacci) erforderlich, um das Minimum zu lokalisieren.
Im linearen Fall ergibt sich das Minimum y = 0 fiir R = 1.
Man wird den iterativen Prozess abbrechen, sobald z(+1)
einen vorgegebenen Fehlerwert unterschreitet.

4.4 Die Integration

In elektrischen Systemen ist es hiufig, dass rasche und
langsame Vorginge nebeneinander ablaufen. Um eine genii-
gend hohe Rechengenauigkeit zu erzielen war es iiblich, den
Integrationsschritt der kiirzestens vorkommenden Zeitkon-
stanten anzupassen. Betrugen die Unterschiede zwischen
kleinster und grosster Zeitkonstanten mehrere Zehnerpoten-
zen, so ergaben sich auf diese Weise sehr viele Integrations-
schritte mit untragbar hohen Rechenzeiten, in extremen Fillen
sogar eine Instabilitdt des Rechenprozesses. Neuere implizite
Integrationsverfahren, mehrheitlich basierend auf Arbeiten von
Gear [17], erlauben es, die Rechenschritte bedeutend grosser zu
wihlen und jeweils den momentanen Erfordernissen anzupas-
sen. Insbesondere bei der Behandlung von Impulsschaltungen
ist dies von Bedeutung, wenn in der Umgebung der Impuls-
flanken eine geniigend hohe Genauigkeit beibehalten werden
soll. Diese modernen Verfahren zur Behandlung von «steifen
Systemen» erlauben es auch, den optimalen nichsten Integra-

AV i

lineares
Problem

0.75 4
0.5 4
a
0.25 1
Ymin — — -
S |
0 T = T — T > R
0 0.5 1 1.6 | 2 2.5
RODI

Fig. 4 Newton-Verfahren zur Losung einer nicht-linearen Gleichung
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Fig. 5 Mogliche Verlidufe y = f(R) bei nichtlinearen
und linearen Gleichungssystemen
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tionsschritt jeweils auf Grund vorgegebener Fehlerkriterien zu
ermitteln.

Aus Fig. 6 ist das Vorgehen beim Gear-Verfahren ersicht-
lich. Das Differentialgleichungssystem

i=1..s
j=s+1.m

Yi=fi(Y1, Yo, .. Ym, 1)

0=fi(Y1, Y2, .Ym, 1) (28)

soll fiir den Zeitpunkt # = #n geldst werden, unter der Voraus-
setzung Y; und Y fiir i = 1...m seien fiir alle vorangehenden
Zeitpunkte fo, f1...tn—1 bekannt. Man legt zu diesem Zweck
durch die letzten k -1 Stiitzwerte ein Polynom von Grad k

Yi(t) =P [Yi (tn), Yi(tn-1), ..., Yi(fn-x), t] (29)

wobei diese Funktionen mit Hilfe der Lagrange-Interpolations-
polynome direkt angeschrieben werden kénnen, ohne dass die
Polynom-Koeffizienten (durch Losung eines Gleichungs-
systems) explizit berechnet werden miissen:

k
Yi(t) = > L Yi(tar) (30)
r=0

k
11 @ — tay)
=0
B . S @31

k
1T nr — t09)
i=0
j#r

Der infolge einer endlichen Anzahl von Stiitzwerten entste-
hende Fehler wurde hier vernachldssigt.

Leitet man Gl. (29) nach der Zeit ab, so ergibt sich fir
t=1In

k
Yi (tn) = ax [Yj (tn) + Z bir * Y (fnr)] (32)
r=1
b 1
mit ax = jg:l m‘ (33)
k
Br — L I1_Ga—fu-)) (34)

ax - (fn — tn-1) i=1 (tn—r — fn—j)
J#r
Setzt man GI. (32) in die Beziehung Gl. (28) ein, so erhilt
man Gleichungen, in denen die Variablen Yi(fn), Y2(fn),
...Ym(tn) im Zeitpunkt fn unbekannt sind. Nimmt man alle
Terme auf eine Seite, so ergibt sich die tibliche Schreibweise
fiir ein Gleichungssystem mit m Unbekannten:

r /

Interpolation Extrapolation
YP(tn)
_,/
Aty At,
< P | »
» t
th-k-1 th-2 fh-1 th
= tn_k fir k=2

Fig. 6 Integration steifer Systeme mittels Polynom-Approximation

k
Yi(t) = > LrYi(ta-1-1)

r=0

(36)

was unter Beriicksichtigung von GI. (31) fiir # = ¢tn (Extra-
polation!) auf

k
YiP (tn) = z dice * Yi(tn-1-1) (37)
r=0
k
a,kr e H (tn - tn—lfj) (38)

fithrt. Damit besitzt man einen Satz von Voraussagewerten
fiir den unbekannten Vektor Y(fn), die iterativ verbessert
werden.

Was die Wahl der Grosse & anbelangt, sind die Werte
k = 1...5 gebriuchlich, in den meisten praktischen Fillen
geniigt jedoch k = 1 oder k = 2.

Gear-Verfahren, 1. Ordnung, k = [: Die implizite Formel
fiir die Ableitung nach Gl. (32) fiir den j-ten iterativen Schritt
lautet

k
fi(Y1, ... Ym, tn) — ax l:Yl (tn) — Z bxr
r=1
Fl (Yl, ...Ym, tn) = = 1..5%
fj (Yls -~-Ym, tn)
j=s+1.m

- Y (lnr)]

(35

Da GL. (28) im allgemeinen Fall ein nichtlineares Differential-
gleichungssystem darstellt, ist die Approximation nach GI. (35)
ein nichtlineares Gleichungssystem, das fiir jeden Zeitpunkt 7n
neu gelost werden muss.

Tterative Verfahren konnen stark beschleunigt werden,
wenn man iiber gute Start-Niherungswerte fiir die Unbekann-
ten verfiigt. Im vorliegenden Fall legt man analog zu Gl. (30)
ein Polynom durch die letzten k -+ 1 Stiitzpunkte vor dem
interessierenden Zeitpunkt 7x:
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Vi () = r—L [vi@) -7 (a0

n — fn-1

(39)

Der Voraussagewert fiir den ersten iterativen Schritt nach
Gl. (36) wird

In— fn— tn — fn—
N 1-2 Yi(tn—l)"r—n—vL Yi(tn—2)

n—-1 — In-2

YiP (tn) = ¢

n—-1 — In-2

(40)
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Er entspricht einer linearen Extrapolation. Es kann gezeigt
werden, dass der Abschneidefehler sich sehr einfach darstellen
ldsst:

Py =t [Yi* (ta) — YiP (tn)]

In— fn-2

(41)

Y;i*ist der Konvergenzwert von Y;inach Abbruch des iterativen
Prozesses. Aufgrund der Kenntnis des Abschneidefehlers fiir
Jeden Schritt kann bei vorgegebenen absoluten und relativen
Fehlerschranken fiir die einzelnen Integratoren jeweils der
optimale nichste Integrationsschritt ermittelt werden.

5. Schlussfolgerung

Zwar entheben auch der schnellste Computer und die aus-
gefeilteste Software den Ingenieur nicht von seiner Aufgabe,
ein Problem sauber zu formulieren und mogliche Losungen
aufgrund durchdachter Schaltungsentwiirfe vor jeder In-
anspruchnahme eines Rechners eingehend zu priifen. Haben
sich aber bei diesem Prozess erfolgversprechende Alternativen
herausgeschilt, so erlauben es die heute verfiigbaren Analysen-
programme, eine Schaltung in kurzer Zeit eingehend zu testen,
zu selektionieren und optimal auszulegen.
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