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Computergestützte Schaltungsanalyse :

Verfügbare Sprachen und Methoden1)
Von J.S.Vogel

621.3.049.7:681.3 01::62.001.13;

Die starke Verbesserung des Preis-Leistungs-Verhältnisses von Computern und die Entwicklung neuer numerischer Verfahren für die Lösung

von Gleichungs- und Differentialgleichungssystemen haben den Einsatz des Rechners für die Schaltungsentwicklung wirtschaftlich gemacht.

Die Ausbildung der Ingenieure trägt dieser Entwicklung Rechnung, und eine grössere Anzahl von Analysenprogrammen gestatten es, Schaltungen

in kurzer Zeit zu testen, zu selektionieren und optimal auszulegen.

Die Anforderungen, welche der Benutzer an Netzwerkprogramme stellt, werden beschrieben und die Erfüllung dieser Ansprüche bei

verschiedenen Programmen einander gegenübergestellt. Wesentliche Fortschritte wurden in den letzten Jahren bei der konzisen Formulierung der

Netzwerkgleichungen, bei der Lösung von linearen und nichtlinearen Gleichungssystemen und bei der Integration steifer Differentialgleichungen

erzielt. Als Beispiele für diese Entwicklungen wird für jeden Bereich ein Verfahren kurz erläutert.

Le rapport prix/performance des calculateurs électroniques étant devenu bien meilleur et de nouveaux procédés numériques ayant été conçus

pour la solution de systèmes d'équations différentielles et autres, l'emploi d'un calculateurpour l'élaboration de circuits se justifie économiquement.

La formation des ingénieurs tient compte de cette évolution, et un grand nombre de programmes d'analyses permettent de contrôler, sélectionner

ou élaborer d'une façon optimale des circuits.
Les exigences que pose l'utilisateur à des programmes de réseaux sont décrites et la satisfaction de ces exigences par divers programmes est

comparée. Ces dernières années, d'importants progrès ont été réalisés pour une formulation concise des équations de réseaux, pour la solution

de systèmes d'équations linéaires ou nonlinéaires, ainsi que pour l'intégration d'équations différentielles «stiff». Un procédé est décrit pour chaque

domaine, à titre d'exemple de ces développements.

1. Einführung
Der Einsatz des Computers in der Elektrotechnik hat in den

letzten 10 Jahren einen derartigen Umfang angenommen, dass

gewisse Arbeiten, wie beispielsweise die optimale Auslegung

von gedruckten Schaltungen, ohne den Rechner fast nicht

denkbar sind. Zwei Hauptgründe können für die Entwicklung
dieser computergestützten Arbeitsweise angeführt werden:

Einerseits trägt die Ausbildung der Ingenieure an den höheren

technischen Lehranstalten dem Bedürfnis nach Kenntnissen

über den Computer und Informationen über dessen sinnvolle

Benützung Rechnung. Immer mehr Ingenieure suchen und

finden dementsprechend bei rechenintensiven Problemen den

Zugang zum Elektronenrechner und fordern zweckdienliche

Software an. Anderseits ist das Preis-Leistungsverhältnis in der

elektronischen Datenverarbeitung dank der modernen

Technologie derart günstig geworden, dass heute in kürzester Zeit,
selbst auf Kleinrechnern, Arbeiten durchgeführt werden können,

an welche man sich anfangs der sechziger Jahre überhaupt

nicht herangewagt hat. Als Beispiel sei hier nur die Analyse

einer nichtlinearen Schaltung, in der sich transiente Vorgänge

abspielen, angeführt, wobei infolge von toleranzbehafteten

Parametern die Monte-Carlo-Technik zur Anwendung kommen

muss.
Die Software-Palette, die dem Elektro-Ingenieur heute zur

Verfügung steht, ist reichhaltig. Die erwähnten Programme

zur Schaltungsauslegung werden ergänzt durch solche zur

optimalen Verdrahtung. Für die Analyse von digitalen und,

in grösserem Umfang, von analogen Schaltungen werden

laufend neue Systeme entwickelt, und schliesslich sind schon seit

Jahren die Simulatoren kontinuierlicher Systeme für Aufgaben

aus der Elektrotechnik im Gebrauch. Im nachfolgenden wird
besonders auf die Netzwerkanalysenprogramme eingegangen,

welche von Computer-Dienstleistungsunternehmen oder an

Hochschulrechenzentren angeboten werden.

Einleitendes Referat der SEV-Informationstagung über «der Computer

als Werkzeug der Elektronik» vom 23. Mai 1978. Der Sammelband
aller Referate kann beim SEV, Abt. VVW noch bezogen werden (Fr. 40.-
+Versandspesen). Der Tagungsbericht ist in Bull. SEV/VSE 69(1978)16,
S. 893...894 enthalten.

2. Anforderungen an Analysenprogramme
Die Anforderungen, die an die Software gestellt werden,

sind oft stark problembezogen und dementsprechend derart

vielfältiger Natur, dass selbst die modernsten Mehrzweckprogramme

nicht allen Ansprüchen genügen können. Der
versierte Ingenieur wird sich deshalb auch im allgemeinen nicht

nur auf die Benützung eines einzigen Programms beschränken,

sondern von Fall zu Fall versuchen, das für die gestellte
Aufgabe geeignetste System zu finden. Die Mehrzahl der

nachfolgenden, häufigsten Anforderungen werden heute von
mehreren Analysenprogrammen erfüllt.

a) Benützerfreundliche Sprache: Die Codiersprache zur
Beschreibung der Schaltungstopologie und der Elemente sollte

auch von EDV-Laien innert weniger Stunden erlernt werden

können. Die Instruktionen müssen selbsterklärend und auch

für diejenigen verständlich sein, die das Programm nicht
geschrieben haben. Befehle wie

RLAST, KN5 — GROUND 5.6 KOHM
START FREQ 100

POINTS PER DECADE 20

PRINT VC1, IR3

erfüllen diese Forderung. Ersatzschemas für die gebräuchlichsten

Halbleiter (BJT, FET, MOSFET, Dioden) sollten wie die

üblichen Schaltungselemente bereits vorprogrammiert vorhanden

sein oder zumindest nach einmaliger Definition permanent
in der Systembibliothek abgespeichert und nach Bedarf wieder

aufgerufen werden können. Das letztere gilt auch für häufig

gebrauchte Teilschaltungen, z.B. ein logisches Gatter oder

einen Operationsverstärker, und führt auf eine erhebliche

Reduktion des Programmieraufwands.
Die Benützerfreundlichkeit eines Systems steht und fällt

auch mit der zugehörigen Dokumentation, welche nicht nur
die Syntax beschreibt, sondern auch Aufschluss über die

verwendeten numerischen Verfahren mit deren Fallstricken und

Limiten geben muss.

b) Beliebig umfangreiche oder selektive Resultatausgabe:

Ein Analysenprogramm muss dem Benützer nicht nur alle jene
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Informationen liefern, die er durch Messungen im Labor
erhalten kann, sondern ihm Resultate auch numerisch oder
graphisch in wunschgemäss skalierter, selektiver Form auf
Papier oder am Bildschirm ausgeben. Neben den üblichen
Darstellungen von Zeitverläufen und Bodediagrammen
wünscht man neuerdings im Zusammenhang mit Monte-
Carlo-Analysen Streudiagramme, Histogramme, Enveloppen-
darstellungen u.a.m. (Fig. 1).

c) Einfache Änderung von Schaltungsparametern: Soll eine
Schaltung optimal ausgelegt werden, so wird man mehrfache
Analysen mit wechselnden Parameterwerten durchführen wollen,

ohne das Programm jeweils neu aufsetzen zu müssen.
Wünschenswert sind auch Möglichkeiten zur Topologieände-
rung, u.a. zur Entfernung von Elementen oder Einfügung
neuer Knoten und Zweige. Befehle wie

CHANGE, CIRCUIT, TOPOLOGY, REMOVE,
RLAST, CSTREU

CHANGE, CIRCUIT, TOPOLOGY, ADD LZUL,
A-BASIS 20 MILLIHENRY

gehören bei einigen Systemen zum Standardwerkzeug.

d) Automatische Genauigkeitskontrolle : In Rechenprozessen,

wie der Lösung von Gleichungssystemen, der Integration
oder der Bestimmung von Polen und Nullstellen, können für
schlecht geartete Probleme Schwierigkeiten numerischer Art
auftreten. Die dabei entstehenden Rechenfehler schaukeln sich
oft auf, und die Resultate verlieren jeglichen Aussagewert. Der
Programmbenützer muss in solchen Fällen gewarnt und, sofern
dies überhaupt möglich ist, auf die Ursache der Fehler
hingewiesen werden.

e) Behandlung aktiver und nichtlinearer Schaltungen:
Obwohl in vielen Bereichen der Analogtechnik mit linearen
Netzwerken gearbeitet wird, muss ein modernes Analysenprogramm,

insbesondere im Zusammenhang mit Halbleiterschaltungen,

in der Lage sein, Nichtlinearitäten zu behandeln. Oft
werden letztere in Form eines FORTRAN-ähnlichen
Ausdrucks beschrieben:

CSPERR, BASIS-COLL CO*EXP (- VJD1/K),

sind durch Interpolation aus einer Tabelle zu entnehmen:
CTABEL, (0,3 PF), (I, 2.71 PF), (2, 2.46 PF), (4, 2.01 PF)

oder durch eine Polynomfunktion definiert :

G15, 7-4, POLY (3), 6-2, 6E-3, 0.025, 0.008, 0.002

Polynomkoeffizienten

In diesem Beispiel wird mittels eines Polynoms dritten
Grades eine Stromquelle zwischen den Knoten 7 und 4
definiert, welche durch eine Spannung zwischen den Knoten 6 und
2 gesteuert ist.

f) Verschiedene Analysenarten: Zur Bestimmung von
Arbeitspunkten, Transfercharakteristiken, Belastungen und
Sensitivitäten benötigt man die Gleichstromanalyse. Die
Wechselstromanalyse dient der Bestimmung von linearen Übertra-
gungsfunktionen, Verstärkungseigenschaften, Frequenzgängen,

Polen und Nullstellen, Verzerrungsprodukten, Vierpol-
und N-Port-Parametern sowie von Rauschfaktoren. Eine
transiente Analyse ist erwünscht, wenn man periodische oder
aperiodische Prozesse in nichtlinearen Netzwerken beobachten
oder Schaltvorgänge untersuchen will. Vielfach möchte man
Netzwerkelemente mit Toleranzen versehen und prüfen, ob

eine Schaltung bei Abweichungen von den Parameter-Nominalwerten

immer noch ihre Funktion erfüllt. Für eine Toleranzanalyse

wird jeder Netzwerkparameter dementsprechend mit
einer Wahrscheinlichkeitsverteilungsfunktion versehen und
unter Einsatz von Monte-Carlo-Verfahren die Anzahl der Ausfälle

gezählt bzw. die Ausbeute bestimmt. Aufgrund der Sen-

sitivitätsberechnung oder der Monte-Carlo-Analyse kann oft
auch eine Berechnung des schlimmsten Falls, d.i. eine sog.
Worst-Case-Analyse, angeschlossen werden.

3. Verfügbare Mehrzweckprogramme
An vielen Hochschulen werden laufend neue

Analysenprogramme entwickelt, welche aber oft auf spezifische, gerade
aktuelle Probleme zugeschnitten sind. In Tab. I, die keinen
Anspruch auf Vollständigkeit erhebt, sind die wichtigsten,
momentan in der Schweiz allgemein zugänglichen Mehrzweck-
Analysenprogramme aufgeführt. Dabei wurde das Programm
ECAP-360 mit seinen Varianten PAN und GOCAP weggelassen,

da es vielen der aufgeführten Forderungen nicht mehr
entspricht.

Die Programme ASTAP [l]2), LISA [2] und SIMELEC [3]
stammen von einem Computer-Hersteller, SPICE-2 [4] wurde
an der Stanford University, CORNAP [5] an der Cornell
University entwickelt, SCEPTRE [6] entspringt einer gemeinsamen

Entwicklung der U.S. Air Force und eines Computer-
Herstellers und wurde an einer Universität weiterentwickelt
[7], NAP-3 [8] und ANP-3 [9] werden seit einiger Zeit in
Dänemark erfolgreich eingesetzt. Weitere Programme, die in
kürzlich erschienenen Gegenüberstellungen [10; 11] gute
Qualifikationen erhalten haben, in der Schweiz bisher aber nicht
installiert wurden, sind u.a. NET II, CIRCUS II, ISPICE und
BELAC. Die Bewertung der verschiedenen Systeme erfolgte in
diversen Publikationen einerseits aufgrund der Erfüllung der
in Abschnitt 2 beschriebenen Anforderungen, darüber hinaus
in bezug auf die topologischen Limiten, d.h. die Grösse der
erlaubten Netzwerke, die Rechengeschwindigkeit, Genauigkeit
und schliesslich den Speicherbedarf.

In Tab. I sind einige der wichtigsten Eigenschaften der
ausgewählten Programme zusammengestellt, wobei zu vermerken
ist, dass bei all diesen Systemen mit verschiedenartigen
Erweiterungen versehene Versionen im Umlauf sind. Die Erweiterungen

von SUPERSCEPTRE gegenüber SCEPTRE sind
durch Einklammerung der entsprechenden Tabelleneintragungen

gekennzeichnet.

4. Numerische Methoden
Eine Anzahl von neueren numerischen Verfahren hat den

Zeitbedarf von Netzwerkanalysen stark verringert und dadurch
die computergestützte Schaltungsentwicklung wirtschaftlich
gemacht. Insbesondere erzielte man grössere Fortschritte im
Bereich der konzisen Formulierung von Netzwerkbeziehungen
mittels topologischer Matrizen, bzw. mittels Tableaux, der
Lösung von linearen und nichtlinearen Gleichungssystemen,
bei der numerischen Integration von steifen Differentialgleichungen

und bei der zeitsparenden Durchführung von Monte-
Carlo-Analysen.

Nachfolgend wird eine kleine Auswahl dieser Methoden,
die bereits in vielen Analysenprogrammen implementiert sind,
kurz beschrieben.

2) Siehe Literatur am Schluss des Aufsatzes.

966 (A 501) Bull. ASE/UCS 69(1978)18, 23 septembre



4.1 Die Formulierung der Netzwerkgleichungen
unter Benützung von Graphen

Mit Hilfe von topologischen Matrizen, welche sich auf
gerichtete Graphen beziehen, lassen sich die Netzwerkgleichungen

in eleganter Form beschreiben [12; 13]. Die Formulierung

kann aufgrund von Zweig-Knoten-, Zweig-Maschenoder

Trennbündelmatrizen erfolgen; auch gemischte Verfahren
[13] sind in Gebrauch. Stellt Y die Zweig-Admittanzmatrix
eines Netzwerkes dar, so lautet das Ohmsche Gesetz, d.h. die

Beziehung zwischen Elementströmen j und -Spannungen v, in
Matrixform

J=Yv (1)

Bezeichnet man die Knoteninzidenzmatrix mit A, so lässt

sich das Kirchhoffsche Knotengesetz mittels

AT i 0 (2)

PEEDBACK-N ETWORK-T ERMINAL S

PLOT SYMBOL VARIABLE NAME

MAXIMUM -0.36812

MINIMUM MAXIMUM.

2.SS13 3.3082

PLOT SYMBOL VARIABLE NAME

X — PTONDIN

Fig. 1 Graphische Ausgabeoptionen moderner Analysenprogramme

a Darstellung des Zeitverlaufs,
Enveloppendarstellung und Mittelwertkurve

b Frequenzverlauf nach Betrag (logarithmisch) und Phase
c Streudiagramm PTONDIN f(PIDBG)
d Histogramm
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Tabelle I

Merkmale ANP3 ASTAP CORNAP LISA NAP 2 SIMELEC (SUPER) SPICE 2
SCEPTRE

Topologische Limiten
Knoten 40 n 50 50 1050 300 n
Zweige 100 n 70 125 200 1000 300 n

Analysenarten
DC X X X X X X X

AC X X X X X X (X) X
Transient X X X X X X X X

Sensitivität X X X X (X) X

Monte Carlo X X (X)
Temperatur X X

Ausfall X

Worst Case X X (X)

Nichtlinearitäten X X X X X

Halbleitermodelle X X X X X

Teilschaltungen X X X X

Aufruf von Unterprogrammen X X X

Parametermodifikation X X X X X X

Topologische Änderungen X X

Vierpolparameter X X
N-Port-Parameter X

Übertragungsfunktionen X X (x) X
Pole, Nullstellen X X X

Rauschen X X X
Tabellenbearbeitung X X X X

Fourieranalyse X X (X) X

n: nur vom verfügbaren Speicherplatz abhängig

aufstellen, wobei i_ für die Zweigströme (Elementströme minus
Quellen) steht und der Index T die Transposition anzeigt
(Fig. 2). Auch der Zusammenhang zwischen den Knotenspannungen

u' und den Zweigspannungen u_ lässt sich mit der
^4-Matrix einfach darstellen

A u' (3)

und schliesslich ergeben sich die Kirchhoffschen
Maschengleichungen zu

CT u 0 (4)

wenn C die Zweig-Maschenmatrix ist.
Bezeichnet man die unabhängigen Stromquellen mit / und

die Spannungsquellen mit_C/ und berücksichtigt die Zusammenhänge

v—ji+U und i ]_

so ergibt sich aus den Gl. (1) bis (6)

(AT YA) Ii AT (I - YU)

(5, 6)

(7)

mithin ein Gleichungssystem zur Bestimmung des

Knotenspannungsvektors i/. Das Produkt

YK AT YA (8)

wird als Knoten-Leitwertmatrix bezeichnet, der Ausdruck

/k At (/ - YU) (9)

als äquivalenter Stromvektor. Damit ergibt sich aus Gl. (7)

YKu'=IK (10)

Dies ist eine der möglichen Darstellungen der Netzwerkgleichungen;

andere Formen, welche die Zweig-Maschen- oder die
Trennbündelmatrix verwenden, findet man oft in der Literatur,
und sie sind bei der Implementierung von Netzwerk-Analysenprogrammen

zum Einsatz gekommen.
In manchen Programmen (z.B. LISA) wird die Knoten-

admittanzmatrix YK direkt aus der Schaltungsbeschreibung
erstellt, dies ohne Umweg über topologische Matrizen. Ein
neueres Programm [14] erweitert das beschriebene Konzept,
das ursprünglich für lineare Schaltungen entwickelt wurde, auf
nichtlineare Netzwerkbeziehungen unter Inkaufnahme eines
iterativen Lösungsprozesses bei der Gleichstromanalyse und
der wiederholten iterativen Lösung nach jedem Zeitschritt bei
der transienten Analyse.

4.2 Lösung von linearen Gleichungssystemen

Das bekannteste Verfahren zur Lösung des linearen
Gleichungssystems

A x b OD

ist die Gaußsche Elimination. Besitzt die Matrix A die Dimension

NxN, so sind zur Bestimmung des unbekannten Vektors x
insgesamt z N3/3 — N2/2 + N/6 wesentliche Rechenoperationen

(Multiplikationen, Divisionen) erforderlich. Die rechte
SeiteJ> enthält die unabhängigen Quellen des Netzwerks. Will
man deren Werte variieren, was z.B. bei der Bestimmung von
Gleichstrom-Übertragungsfunktionen der Fall ist, so bedingt
dies eine wiederholte Durchrechnung mit der gleichen Anzahl
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Anzahl wesentliche Operationen Tabelle II

20 iV= 50 N ~ 200

K« I K= 5 K=20 K= 1 K 5 K= 20 K - 1 K= 5 K= 20

Gauss K-N313
Inversion N3 + KN2

B/S") W +.'

2 667

8 400

3 067

13 333

10 000

4 667

53 333

16 000

11 067

41 667

127 500

44 167

208 333

137 500

54 167

833 333

175 000

91 667

2.67 • 106

8.04 • 10«

2.71 • 106

133 • 107

8.2- 106

2.87- 10°

533 107

8.8 • 106

3.47 • 106

Unterstrichen ist der jeweils günstigste Wert.

von Operationen. Bei K verschiedenen rechten Seiten ^ergeben
sich

Zk KN3ß - 20V2/2 + KN/6 (12)

wesentliche Operationen.
Für grosse Werte von K erhält man eine starke Verbesserung

durch vorgängige Inversion der Matrix A und nachfolgende

Multiplikation der Inversen mit den diversen
Quellenvektoren by

Xi A"1 by (13)

Die Inversion benötigt N3 und die Matrix-Vektor-Multiplikation

N2 Operationen. Bei K rechten Seiten b_ ergibt sich

mit

Zk N 3 + KN2 (14)

©

k
©

Fig. 2 Standard-Netzwerkzweig :

/-ter Zweig zwischen den Knoten a und b

Ma', Hb Knotenspannungen
Ur Zweigspannung
Ut unabhängige Spannungsquelle
!/r Elementspannung
ir Zweigstrom
jt Elementstrom
Ir unabhängige Stromquelle
iT* abhängige (gesteuerte) Stromquelle
En Selbstadmittanz, Eigenleitwert

bereits für k > 3 ein Vorteil gegenüber der Gaußschen
Elimination.

Mit drei neueren Verfahren [12], der L-U-Dekomposition,
der Cra/ü-Methode und der Bi-Faktorisierung kann der
Rechenaufwand noch stark verringert werden. Alle drei
Verfahren benötigen etwa die gleiche Anzahl von Operationen
und einen fast identischen Speicheraufwand; eine kurze
Erläuterung der L-U-Dekomposition soll hier als Beispiel genügen.

Entsprechend Fig. 3 wird die Matrix A in ein Produkt von
zwei Dreiecksmatrizen zerlegt

LU A (15)

Die direkte Lösung von Gl. (11) durch Inversion ergäbe

x A~xb_ (L Uy1 b_ U-1- L~xb (16)

Statt dessen wird aus der Matrixgleichung

L y b (17)

ein Hilfslösungsvektor y_

y L'1 b (18)

ermittelt und letzterer dann als neue rechte Seite in ein weiteres

zu lösendes Gleichungssystem eingeführt :

U x* y_

Dessen Lösung ergibt sich zu

x* U~x y LA1 L1 b

(19)

(20)

Der Vergleich mit Gl. (16) zeigt, dass £* x_ ist und die

Originalmatrixgleichung in zwei Schritten gelöst wurde. Die
rechnerische Einsparung ergibt sich dadurch, dass zwar die

Dekomposition nach Gl. (15) etwa N3/3 Operationen, also

gleichviel wie die Gaußsche Elimination benötigt, die

nachfolgenden Lösungen der Gleichungssysteme Gl. (18) und (20)

jedoch sehr einfach werden. Wegen der Dreiecksform der
Matrizen L und U besteht dieser Lösungsprozess nur noch

aus einem rekursiven Einsetzen bereits gefundener Komponenten

der Lösungsvektoren y_ bzw. x, wobei in Gl. (17) von
oben her, d.h. mit yi und in Gl. (19) von unten her, d.h. mit

xn begonnen wird. Die einmalige Lösung eines dreiecksförmi-

gen Gleichungssystems erfordert etwa N2/2 wesentliche

Operationen, bei K verschiedenen rechten Seiten_6 ergibt sich somit
ein totaler Rechenaufwand von

Zk N313 + KN2 (21)

Fig. 3 L-U-Dekomposition

Operationen. In Tab. II ist eine Gegenüberstellung der drei
erwähnten Verfahren für verschieden grosse Netzwerke mit
Knotenzahlen N von 20, 50 bzw. 200 gemacht.
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4.3 Lösung von nichtlinearen Gleichungssystemen

Zur Bestimmung des Arbeitspunktes einer elektronischen
Schaltung, welche Halbleiter enthält, sowie zur Durchführung
von transienten Analysen ist fast immer das Lösen von Systemen

nichtlinearer Gleichungen erforderlich. Die in diesem
Bereich bekanntesten Methoden [15] sind das Newton-Raph-
son-Verfahren in diversen Varianten, das Sekanten-Verfahren
und die Gauss-Seidel-Methode. Letztere wird insbesondere bei
der numerischen Behandlung betrieblicher und ökonometri-
scher Modelle eingesetzt, die ersten beiden vorwiegend im
Ingenieurbereich. Nachfolgend wird das Vorgehen bei einem
modifizierten Newton-Raphson-Prozess kurz beschrieben.

Soll das nichtlineare Gleichungssystem

uK(xi, XI, ...IN) 0 1...N

X«) (23)
j du \ i / 8'2 u \

u (*.+!)) u (*«>) + (-^ Aj«> +2 (-8^)
• (Ax(i>)3 +

Darin stellt die Grösse 8u/8x die Jacobi-Matrix dar. Der Index

j zeigt den /ten iterativen Schritt an.
Im linearen Fall verschwinden die zweiten Ableitungen,

d.h. 8'2u/8x2 0, wodurch das Gleichungssystem in einem
Schritt gelöst werden kann :

u (x<i+D) 0

Aus Gl. (23) ergibt sich der dazu notwendige Schritt Ax<J) zu

u (x«>)
Ax<»

(du/8.v)x(i)
(24)

Da im Nenner eine Matrix vorkommt, erfordert diese Berechnung

die Inversion einer ,Vx,V-Matrix. Im allgemeinen,
nichtlinearen Fall stellt dieser Schritt eine erste Näherung in Richtung

der Nullstelle dar, und der einfache Newton-Raphson-
Algorithmus lautet dementsprechend

xh+i) x(i> + Ax'h x(j')
u (x">)

(8u/8x)x<. i)

Um ein Oszillieren des iterativen Prozesses zu verhindern
bzw. die Konvergenz zu beschleunigen, wird in modifizierten
Newton-Raphson-Verfahren der Schritt Ax'j) durch einen
passenden Faktor R korrigiert :

XÜ+l) jc(j) + R AX<« (26)

(22)

bzw. in Vektorschreibweise u(x) 0 gelöst werden, so überträgt

man die aus dem eindimensionalen Fall (Fig. 4) bekannte
Taylorreihe-Approximation auf den mehrdimensionalen Fall:

(25)

Die Wahl von R erfolgt derart, dass für jede Iteration das

Skalarprodukt y uT (x<i+D) u (x<j+1>) minimisiert wird.
In Fig. 5 sind einige mögliche Verläufe y f(R) aufgetragen.
Das Minimum der Kurven erhält man durch einen eindimensionalen

Suchprozess [16], was eine Anzahl von
Funktionsbestimmungen für ausgewählte Werte von R bedingt. Gewöhnlich

genügt es, den Kurvenverlauf durch eine quadratische
oder kubische Parabel zu approximieren und hieraus analytisch

den optimalen Wert Ropt zu bestimmen. In Ausnahmefällen

sind aber aufwendigere Verfahren (z. B. Goldener Schnitt
oder Fibonacci) erforderlich, um das Minimum zu lokalisieren.
Im linearen Fall ergibt sich das Minimum y 0 für R 1.

Man wird den iterativen Prozess abbrechen, sobald uü'+i)

einen vorgegebenen Fehlerwert unterschreitet.

4.4 Die Integration

In elektrischen Systemen ist es häufig, dass rasche und
langsame Vorgänge nebeneinander ablaufen. Um eine genügend

hohe Rechengenauigkeit zu erzielen war es üblich, den

Integrationsschritt der kürzestens vorkommenden Zeitkonstanten

anzupassen. Betrugen die Unterschiede zwischen
kleinster und grösster Zeitkonstanten mehrere Zehnerpotenzen,

so ergaben sich auf diese Weise sehr viele Integrationsschritte

mit untragbar hohen Rechenzeiten, in extremen Fällen
sogar eine Instabilität des Rechenprozesses. Neuere implizite
Integrationsverfahren, mehrheitlich basierend auf Arbeiten von
Gear [17], erlauben es, die Rechenschritte bedeutend grösser zu
wählen und jeweils den momentanen Erfordernissen anzupassen.

Insbesondere bei der Behandlung von Impulsschaltungen
ist dies von Bedeutung, wenn in der Umgebung der Impulsflanken

eine genügend hohe Genauigkeit beibehalten werden
soll. Diese modernen Verfahren zur Behandlung von «steifen
Systemen» erlauben es auch, den optimalen nächsten Integra-

uk

uk

x+/// \l/

Uk

j// J Ymin

Ax(i>

Fig. 4 Newton-Verfahren zur Lösung einer nicht-linearen Gleichung

-*R

Fig. 5 Mögliche Verläufe y — f(R) bei nichtlinearen
und linearen Gleichungssystemen
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(125-
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0
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tionsschritt jeweils auf Grund vorgegebener Fehlerkriterien zu

ermitteln.
Aus Fig. 6 ist das Vorgehen beim Gear-Verfahren ersichtlich.

Das Differentialgleichungssystem

Yl=fl(Y1,Y2,...Ym,t) i 1...J

0 =/s(Fi, F2,...Fm,f) j s + l...m
(28)

soll für den Zeitpunkt t tn gelöst werden, unter der Voraussetzung

Yi und Yi für i=\...m seien für alle vorangehenden

Zeitpunkte to, ti...tn-i bekannt. Man legt zu diesem Zweck

durch die letzten k + 1 Stützwerte ein Polynom von Grad k

Fi 0) Pi [Fi On), Fi On-l), Yi On-k), t] (29)

r=0

Il 0 tn-j)

mit Lv(t)
j 0

j^r
k

n (Gi
j 0

t n-i)

Fi (tn) — «k Fi On) + 2 ^kr ' Yi (tn-r)
r=l

mit ßk 'S —
jti

1

^n-

bkr
1 H Qn In-j)

Clk " (tn ~~ tn-r) j l 0n-r — fn-j)
jVr

wobei diese Funktionen mit Hilfe der Lagrange-Interpolations-

polynome direkt angeschrieben werden können, ohne dass die

Polynom-Koeffizienten (durch Lösung eines Gleichungssystems)

explizit berechnet werden müssen:

k

Fi (t) y Li • Fi 0n-r) (30) Fig. 6 Integration steifer Systeme mittels Polynom-Approximation

(31)
K

Fi (t) —- 2 Gr Yi (tn-l-r) (36)

Der infolge einer endlichen Anzahl von Stützwerten entstehende

Fehler wurde hier vernachlässigt.

Leitet man Gl. (29) nach der Zeit ab, so ergibt sich für

t tn

was unter Berücksichtigung von Gl. (31) für t tn
(Extrapolation!) auf

k
FiP On) — ^ äk r ' Fi i t n -1 -i)

r=0
(37)

(32)

(33)

(34)

Setzt man Gl. (32) in die Beziehung Gl. (28) ein, so erhält

man Gleichungen, in denen die Variablen FiOn), Fj(fn),
...FmOn) im Zeitpunkt tn unbekannt sind. Nimmt man alle

Terme auf eine Seite, so ergibt sich die übliche Schreibweise

für ein Gleichungssystem mit m Unbekannten:

Ar n (38)
j=0 (/n-r fn-l-j/

j#r—1

führt. Damit besitzt man einen Satz von Voraussagewerten

für den unbekannten Vektor F(/n), die iterativ verbessert

werden.
Was die Wahl der Grösse k anbelangt, sind die Werte

le 1...5 gebräuchlich, in den meisten praktischen Fällen

genügt jedoch k 1 oder k 2.

Gear-Verfahren, 1. Ordnung, k 1: Die implizite Formel

für die Ableitung nach Gl. (32) für den /'-ten iterativen Schritt

lautet

Fi (Fi, Fm, tn)

fi(Y\, ...Fm, tn) Uk

i 1...S

Fj (t n) 2 (Jkr

r=l
Fi (tn-r)

fi (Yl, ...Fm, tn)

j S + 1...7M

(35)

Da Gl. (28) im allgemeinen Fall ein nichtlineares
Differentialgleichungssystem darstellt, ist die Approximation nach Gl. (35)

ein nichtlineares Gleichungssystem, das für jeden Zeitpunkt tn

neu gelöst werden muss.

Iterative Verfahren können stark beschleunigt werden,

wenn man über gute Start-Näherungswerte für die Unbekann- Gl. (36) wird

ten verfügt. Im vorliegenden Fall legt man analog zu Gl. (30)

ein Polynom durch die letzten k + 1 Stützpunkte vor dem YiP (/n)

interessierenden Zeitpunkt tn:

V On) 7—zZTt [Fi'Oh) Fi On-l) 1

in tn—1 L J
(39)

Der Voraussagewert für den ersten iterativen Schritt nach

tn t n-2 Yi(tn-l)~ /" Yi((n^)tn-1^n-1 tn—2 ^n-2
(40)

ExtrapolationInterpolation

Vi-k-l tn-2 (n-1 ln

Vkfürk=2
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Er entspricht einer linearen Extrapolation. Es kann gezeigt
werden, dass der Abschneidefehler sich sehr einfach darstellen
lässt:

rE - 37 Y? (tn) - Yil> (tn)l (41)ln ln-2 L J

Ei* ist der Konvergenzwert von Ei nach Abbruch des iterativen
Prozesses. Aufgrund der Kenntnis des Abschneidefehlers für
jeden Schritt kann bei vorgegebenen absoluten und relativen
Fehlerschranken für die einzelnen Integratoren jeweils der
optimale nächste Integrationsschritt ermittelt werden.

5. Schlussfolgerung
Zwar entheben auch der schnellste Computer und die

ausgefeilteste Software den Ingenieur nicht von seiner Aufgabe,
ein Problem sauber zu formulieren und mögliche Lösungen
aufgrund durchdachter Schaltungsentwürfe vor jeder
Inanspruchnahme eines Rechners eingehend zu prüfen. Haben
sich aber bei diesem Prozess erfolgversprechende Alternativen
herausgeschält, so erlauben es die heute verfügbaren
Analysenprogramme, eine Schaltung in kurzer Zeit eingehend zu testen,
zu selektionieren und optimal auszulegen.
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