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Eigenwertuntersuchungen an einer Drehstrom-Asynchronmaschine

bei selbsterregten Drehschwingungen
Von B.B. Palit

621.313.33;

Die Eigenwerte einer Asynchronmaschine werden bei selbsterregten Drehschwingungen untersucht, die durch Vergrosserung des Stator-
kreiswiderstandes verursacht werden. Die Auswertung der Eigenwerte erfolgt aus den gemessenen Stromoszillogrammen, aus den digital
simulierten Stromverliufen und aus der linearisierten S ystemgleichungsmatrix.

Les valeurs intrinséques d’une machine asynchrone sont étudiées dans le cas de vibrations de rotation, dues a augmentation de la résistance
du circuit statorique. L'interprétation de ces valeurs a lieu d’aprés les oscillogrammes de courant mesurés, les circuits de courant simulés numeé-

riguement et la matrice linéarisée de I'équation du systéme.

1. Einleitung

Die Einfithrung von ohmschen Widerstinden in einen be-
stehenden elektrischen Kreis erhéht normalerweise die Dimp-
fung des Stromkreises. Dadurch schwingen elektrische Aus-
gleichsvorginge rascher auf einen neuen stationdren Zustand
ein. In Drehstrom-Asynchronmaschinen entstehen aber beim
Zuschalten von Widerstdnden bestimmter Grosse in den Sta-
torkreis selbsterregte Pendelungen [1; 2]%).

In dieser Arbeit soll das Verhalten einer Asynchronmaschine
beziiglich selbsterregter Drehschwingungen bei sukzessiv zu-
nehmenden Reihenwiderstinden zuerst experimentell unter-
sucht werden. Dabei soll der Grund der selbsterregten Dreh-
schwingungen bei den Eigenwerten der Asynchronmaschine
gesucht werden. Diese werden einerseits aus den Stromoszillo-
grammen ermittelt. Bei der digitalen Simulation sind die Eigen-
werte aus den vom Computer gedruckten zeitlichen Strom-
verldufen auszuwerten. Zuletzt sollen die Eigenwerte aus der
linearisierten Systemgleichungsmatrix numerisch berechnet
werden. Alle diese Eigenwertuntersuchungen werden im Leer-
laufbetrieb der Asynchronmaschine vorgenommen und die
Ergebnisse untereinander verglichen. Zur weiteren Aufklirung
iber die Stabilitit werden die Eigenwerte auch bei verschie-
denem Schlupf rechnerisch untersucht.

1) Siehe Literatur am Schluss des Aufsatzes.

?) Diese Untersuchungen wurden am Institut fiir Elektrische Maschi-
nen der ETHZ im Rahmen einer Diplomarbeit durchgefiihrt.
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Schilddaten der untersuchten Asynchronmaschine Tabelle T
Nennleistung Pn 205 PS
Nennspannung 1/3 Ui 500 vV
Nennstatorstrom Lia 215 A
Frequenz f 50 Hz
Anzahl Phasen m 3
Nenndrehzahl M 2940 U/min
Rotorspannung Uzo 420V
Rotornennstrom Ion 225 A
Statorschaltung Stern
Rotorschaltung Stern

2. Experimentelle Untersuchungen

Die experimentellen Untersuchungen2) beschrinken sich
auf den Leerlaufbetrieb einer ungekuppelten Schleifringanker-
Asynchronmaschine, deren Nenndatenin Tab. I angegeben sind.

2.1 Versuchsdurchfiihrung

Zur Durchfiihrung der Versuche wurden die dreiphasigen
Reihenwiderstinde dem Stator so vorgeschaltet, dass sie durch
einen dreipoligen Schalter iiberbriickt werden konnten (Fig. 1).
Die Asynchronmaschine wurde bei iiberbriicktem R, ange-
fahren und der Uberbriickungsschalter erst nach Erreichen der
stationdren Leerlaufdrehzahl ge6ffnet. Um das Schwingungs-
verhalten festzustellen, wurde der Vorwiderstand R, stufen-
weise erhoht und jeder neue Widerstand Ry jeweils auf den
stationdren Leerlaufbetrieb zugeschaltet. Fiir die Auswertung
erschien es zweckmdssig, als Parameter an Stelle von R, den
auf den Statorstrangwiderstand R; bezogenen Widerstand
C = R./R: zu verwenden.

In Fig. 2 sind die Oszillogramme des Statorstrangstromes
zusammengestellt. Im Bereich C = 0...31 treten Drehschwin-
gungen auf, die mit der Zeit abklingen. Wird der Reihenwider-
stand auf einen kritischen Wert erhoht (C = 32), schwingt die
Drehzahl des Rotors stindig, obwohl die Pendelintensitit mit
der Zeit etwas abnimmt. Die Drehschwingungen werden beim
Steigern des Reihenwiderstandes sogar angefacht (C = 58).
Erhoht man den Widerstand noch weiter (C = 80), so verlieren
die Pendelungen ihre Intensitit. Nach Uberschreiten eines
zweiten kritischen Wertes (C = 223) hort der Rotor auf, stindig
zu pendeln.

An dieser Stelle muss bemerkt werden, dass nicht alle Asyn-
chronmaschinen auf selbsterregte Pendelungen gleich empfind-
lich sind. Untersuchungen an verschieden grossen Asynchron-
maschinen zeigen, dass die Tendenz zur Pendelung im all-
gemeinen mit abnehmender Nennleistung abnimmt.
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Eigenwerte aus den Oszillogrammen des Statorstromes Tabelle 1T
(6] u(t)_ & o J ] Eigenwerte
UG+T) ™) (Hz) ™) o +jo™)
16 1,66 0,507 22,4 3,56 —1,81 —1,81  +j224
32 1,02 0,0179 15,7 2,50 —0,0447 —0,0447 + j15,7
58 0,83 —0,182 10,8 1,72 +0,313 +0,313 +j10,8
80 0,88 —0,133 73 1,16 +0,154 40,154 +37,3
159 ~1 ~0 5,42 0,86 ~0 + 35,42
223 1,08 0,0723 4,55 0,72 —0,0523 —0,0523 4 j4,55
278 1,22 0,196 3,83 0,61 —0,119 —0,119 433,83
2.2 Bestimmung der Eigenwerte
Aus den Oszillogrammen kann die Einschwingfrequenz im  Daten der Asynchronmaschine Tabelle 111
Falle voriibergehender Pendelung und die Pendelfrequenz im vt - Nomerioch
" . ezeic. un mbo umerischer
Falle dauerhafter Pendelung bestimmt werden. Nimmt man 5 Y Wert
an, dass die Asynchronmaschine ein schwingungsfihiges 4 B 3
. . . . . Widerstand eines Statorstranges R 0,0306 Q2
Syst wesentlich .0 n t, so rd ihr ] . ’
¥ e‘m im wesentlichen von .2 r.dm.] g 18L, 50 Wi ! Widerstand eines Rotorstranges R 0,0188 Q
tra'nsu:ntes Verhalten von zwei konjulgler.t komplexen Polen Selbstinduktivitt der Spule D = 00182 H
(Eigenwerten) bestimmt, deren Realteil die Dampfung ¢ und Selbstinduk tivitit der Spule d La 0,0133 H
deren Imaginirteil die Eigenkreisfrequenz « des Systems dar- Drehfeld-Gegeninduktivitédt M 0,0151 H
stellt. Ist die Eigenkreisfrequenz o der Schwingung bekannt goipaatzihl_t po 1
g ; . _ : o olartragheitsmoment
1¥nd lassen sich d_1e Funk?lonswerte u(.t) und u(¢r + T) im zeit iy — 7 2,29 Nms®
lichen Abstand einer Periode 7T graphisch auswerten, so kann Reibungsmoment im Leerlauf Trein 11,4 Nm
die Dampfung ¢ wie folgt berechnet werden [3]: Leerlaufschlupf 50 0,0365 %
c=—390/2 1 eY)
wobei & = In u(¢)/u(t +T 2 .
1(O)fult +T) 2) Bewegungsgleichung:
als logarithmisches Dekrement bezeichnet wird. poMm(iniq — igia) = Tmw — ﬁ (&) % + Trein )

Aus den gemessenen Stromoszillogrammen der Fig. 2 er-
folgt in Tab.II diec Auswertung der Eigenkreisfrequenz , der
Schwingungsfrequenz fund der Ddmpfunga; u(t) stellt jeweils
die Amplitude der ersten Stromschwingung nach dem Zu-
schalten von Ry dar. Der Realteil des Eigenwertes ist bei
C = 58 und 80 eindeutig positiv: die Maschine regt sich selbst
zu Pendelungen an. Ab einer bestimmten Pendelamplitude
bleiben die Schwingungen stationdr. Die Grenzfille treten
dagegen etwa bei C = 32 und 159 auf. Bei diesen C-Werten
pendelt die Asynchronmaschine mit schwach gedampfter
Intensitéit.

3. Digitale Simulation

Fiir die digitale Simulation der Asynchronmaschine beim
Betrieb tiber Reihenwiderstinde wurde ein Modell der Asyn-
chronmaschine benutzt, das aus pseudo-stationédren Stator- und
Rotorspulen besteht [4]. Bei diesem Modell braucht man zur
Aufrechterhaltung des Maschinenbetriebs nur eine einzige
Statorspule mit einer Gleichspannung der Hohe 13 U zu spei-
sen, in Fig. 3 die D-Spule. Das Gleichungssystem der Modell-
maschine besteht aus den Spannungsgleichungen fiir die vier
Spulen D, Q, d, q und einer Bewegungsgleichung.

3.1 Gleichungssystem
Spannungsgleichungen mit p = d/ds

Die Bedeutung der Symbole ist aus Tab. III ersichtlich.
Im vorliegenden Fall (Leerlauf) wird das mechanische Dreh-
moment an der Welle

Tmw =0 (5)

Das Reibungsmoment Treip wird konstant und gleich dem
Reibungsmoment bei der Leerlaufdrehzahl angenommen.

3.2 Maschinendaten

Die Maschinendaten, die aus verschiedenen Messungen
gewonnen wurden, sind in Tab. IIT zusammengestellt.

3.3 Verlauf des Statorstrangsiromes

Gemiss dem Computerprogramm erhdlt man aus den
nichtlinearen Systemgleichungen (3) und (4) die zeitlichen Ver-
ldufe der Modellstrome ip und iq. Damit ldsst sich nach einer
Transformationsbeziechung [4] die Hiillkurve des zeitlichen
Stromverlaufs eines Statorstranges berechnen. Ein solcher
Verlauf des Statorstrangstromes bei C = 80 fiir die Dauer von
drei Stromschwingungen nach dem Zuschalten des Wider-
standes ist in Fig. 4 zu sehen. Vergleicht man diesen mit dem
Stromoszillogramm der Fig. 2, so ist eine gute qualitative
Ubereinstimmung zwischen Messung und Simulation zu er-
kennen.

V3 UL Ri+Lop oLp Mmnp ©Mn
0 | —olLop Ri+Lpp — ®wMn Mmnp
0 - Mmp s Mm Re+Lap swLq
0 —soMm Mmp — sw La Rz -+ Lap

. 3)
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Bestimmung der Eigenwerte aus den simulierten Statorstromveridufen Tabelle IV
(63 u(r) @ w f o Eigenwerte
WGt T) ) (Hz) G oo
16 1,41 0,345 20,9 3,33 —1,15 —1,15 4 j20,9
58 0,64 —0,445 10,3 1,64 40,728 10,728 + j10,3
159 1,37 0,314 5,93 0,944 —0,296 —0,296 4+ j5,93

3.4 Bestimmung der Eigenwerte

Die digitale Simulation wurde bei drei C-Werten ausgefiihrt.
Aus dem jeweiligen zeitlichen Verlauf des simulierten Stator-
strangstromes wurde, gleich wie in Abschnitt 2.2, zuerst die
Eigenkreisfrequenz w ermittelt und daraus, gemiss G1. (1) und
(2), die zugehdrige Dampfung o berechnet. Die Auswertung
der Eigenwerte ist in Tab. IV enthalten. Vergleicht man diese
Eigenwerte mit jenen von Tab. II, so ist im allgemeinen eine
qualitative Ubereinstimmung festzustellen. Die quantitativen
Unterschiede sind klein bei den Eigenfrequenzen, jedoch gross
bei den Dampfungen. Bis auf grossen C-Wert dimpft die reale
Maschine stirker als die Modellmaschine wegen der Dimp-
fungseigenschaften elektromagnetischen Ursprungs, die bei der
Simulation nicht beriicksichtigt wurden.

4. Eigenwertberechnung aus der Systemgleichungsmatrix

Eine dritte Methode der Eigenwertberechnung geht von den
Systemgleichungen der Modellmaschine (GI. 3, 4) aus. Um die
fiir die Eigenwertberechnung geeignete Systemgleichungs-

Fig. 2 Schleifenoszillogramme des Statorstromes

i Momentanwert des Statorstrangstromes
C Reihenwiderstand pro Phase bezogen auf den
Statorstrangwiderstand
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matrix zu erhalten, muss zuerst die Stabilitdtsuntersuchung bei
kleinen Abweichungen vorgenommen werden. Dazu sucht man
zundchst die stationdre Losung fiir einen beliebigen Schlupf,
entwickelt dann die Variablen an diesem Punkt, linearisiert
die Gleichungen und ermittelt schliesslich mit einem elektro-
nischen Digitalrechner die Wurzeln der charakteristischen
Gleichung der linearisierten Systemmatrix numerisch. Man
bezeichnet die Wurzeln dieser Gleichung auch als Eigenwerte
der Matrix.

Zur Berechnung der Eigenwerte der Asynchronmaschine
werden bezogene, dimensionslose Gréssen eingefiihrt, die mit
einem Stern gekennzeichnet sind. Die Gleichungen werden
nicht mit den bezogenen Stromen, sondern mit bezogenen
Flussverkettungen ausgedriickt [S]. Unter Vernachléssigung
der Produkte der Abweichungen erhélt man aus dem urspriing-
lichen Ausgangsgleichungssystem das Gleichungssystem der
Abweichungen. Beschrinkt man sich auf die Betrachtung sehr
kleiner Abweichungen der Drehzahl von der stationiren Leer-

Querachse

Langsachse

Fig. 3 Modellmaschine

D, Q pseudo-stationére Statorspulen

d, g pseudo-stationdre Rotorspulen

up, uq bzw. i, iqp Momentanwert der Spannungen bzw.
Strome der Spulen D und Q

ua, uq bzw.iq, iq Momentanwert der Spannungen bzw.
Strome der Spulen d und q

) elektrische Winkelgeschwindigkeit des Drehfeldes

s Schlupf des Rotors

U Netzspannung pro Phase

C=80

Fig. 4 Digital simulierter zeitlicher Statorstromverlauf
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laufdrehzahl (so + As ~ so), so lassen sich die erwdhnten Glei-
chungen linearisieren. Das linearisierte Gleichungssystem hat
dann die Form

X+A4X=0 ©)

wobei die Unbekannten mit X und mit A4 die 5 X 5-Matrix
bezeichnet wird. Zur Losung dieses Systems homogener linea-
rer Differentialgleichungen wird der Ansatz

X = Bow )

gemacht, wobei die Spaltenmatrix E die Integrationskonstan-
ten enthilt. Setzt man diesen Ansatz in die Gl. (6) ein, so
erhélt man

ABert* - A BeM* =0
oder
GE+A)X=0 ®)

wobei _E_J die Einheitsmatrix der Ordnung 5 x 5 ist. Diese
Gleichung hat dann und nur dann eine nichttriviale Losung
(verschieden von null), falls

det(/l_E_Jré):M_E_—FA[:O 9
ist [6]. Diese Bedingung legt die Eigenwerte A fest. A bedeutet

eine komplexe Zahl und ist ein Skalar. Die Auswertung liefert
die charakteristische Gleichung:

aod® +aidt -+ a248 +asA® + asd +as =0 (10)
Thre Wurzeln sind von der allgemeinen Form

A = oi* +j€l)i* i=1..5 (1 1)

Damit werden die Variablen nach Gl. (7) zu

x(t%) = by e - eI — pi e %" cos(wi* t* + s

x(1%) (® »i) (12)

i=1.5

wenn die Integrationskonstanten b; durch die Konstanten h;
und ¢: ersetzt werden. In GL (11) und (12) stellen oi* und
w:* die Dimpfung bzw. die charakteristische Schwingungs-
kreisfrequenz in bezogener Form dar.

Eine Instabilitit tritt dann auf, wenn eine der Wurzeln A;
einen positiven Realteil oi* enthilt. Diese Aussage bedeutet
fiir das Stabilititsgesetz in der Zustandsraumdarstellung, dass

alle Eigenwerte der Matrix 4 bei einem stabilen System in der
linken Halbebene liegen mussen.

Die numerische Auswertung des Gleichungssystems ergab
fiinf Wurzeln. Eine ist dabei reell, die vier anderen bestehen
aus zwei Paaren konjugiert komplexen Grossen. Diese stellen
ein schwingungsfihiges System dar. Dabei bedeutet, wie er-
wihnt, der Realteil die Ddmpfung und der Imaginérteil cine
charakteristische Schwingungskreisfrequenz.

In Tab. V sind die berechneten Eigenwerte bei fiinf C-Wer-
ten in bezogener Form angegeben. Aus dieser Zusammenstel-
lung der Eigenwerte bzw. Pole geht hervor, dass der 1. Pol,
d.h. 14, reell ist. Die zugehorige Komponente des transienten
Vorgangs wird mit der Exponentialfunktion /1 eo1* t* abklingen,
wobei g1* < 0 ist. Der 2. und der 3. Pol, d.h. 12 und 73, sind
konjugiert komplexe Pole. In der komplexen Zahlenebene lie-
gen sie weit links von der imagindren Achse. Die diesen Polen
zugehorige Komponente des transienten Vorgangs stellt eine
abklingende Schwingung hseo2* t* cos(wa* 1* 1 p2) dar, wobei
ao* < 0 ist. Der 4. und der 5. Pol, d. h. 14 und 1s, sind ebenfalls
konjugiert komplexe Pole. Sie sind dominante Pole, da sie am
weitesten rechts auf der komplexen Zahlenebene liegen. Sie
bestimmen im wesentlichen das transiente Verhalten des
Systems. Der Realteil dieser Pole bei C =25, 40 und 100 ist
jeweils positiv. Diese Pole erzeugen eine anfachende Schwin-
gung von der Art hseos* t*cos(wa™ t*4- pa), wobei ¢4* >0 ist.
Ein instabiles Verhalten der Asynchronmaschine ist bei den
erwihnten C-Werten zu erwarten. Bei C = 16 und 159 wird
o4* negativ. Die Drehschwingungen werden positiv geddmpft.
In diesen beiden Fillen ist ein Ubergang zum stationédren Be-
triecb nach Abklingen der Drehschwingungen zu erwarten.
Diese Feststellungen stimmen mit den experimentellen Ergeb-
nissen des Abschnittes 2 tiberein.

Da das Gleichungssystem mit den bezogenen Grossen auf-
gestellt wurde, miissen die berechneten Eigenwerte (Tab. V)
mit wo = 314 s-1 multipliziert werden, um in den normalen
Zeitbereich zu gelangen. In Tab. VI sind die wirklichen Gros-
sen der Diampfungen, Kreisfrequenzen, Schwingungsfrequen-
zen und der dominanten Eigenwerte zusammengestellt. Daraus
erkennt man, dass die Didmpfung, die sich aus dem 4. bzw.
5. Eigenwert ergibt, die kleinste ist.

Die erste Schwingungsfrequenz fi ist gleich Null. Der
1. Eigenwert bewirkt eine positive Ddmpfung ohne Schwin-
gung. Die dem 2. und 3. Eigenwert entsprechende Schwin-
gungsfrequenz ist nahezu gleich der Netzfrequenz. Sie existiert

Aus Systemgleichungsmatrix berechnete Eigenwerte Tabelle V
C 7 2o, A3 Aq, As Bemerkungen
16 —4,611 - 102 —1,427 —3,093- 1073 Stabiler Betrieb
430,971 +36,811 - 102
25 —3,686 - 102 —2,19 +2,008 - 103 1. kritischer Rv-Wert; Maschine pendelt stindig
+j0,9766 +j5,466 - 10-2
40 —2,784 - 102 —3,399 +3,509 - 10-3 Intensivere Pendelung
+3j0,9831 +3j4,226 - 102
100 —1,323 - 102 —8,334 +8,807 - 104 Betrieb instabil, aber Tendenz zur Rickkehr in
+3j0,9925 +3j2,55- 1072 stabilen Betrieb erkennbar
159 —8,706 - 103 —13,17 —6,636- 10+ Stabiler Betrieb
+30,9952 +31,985-10-2
374 (A 192) Bull. ASE/UCS 69(1978)8, 29 avril



Aus der Systemgleichungsmatrix gewonnene Dimpfungen, Schwingungsfrequenzen und dominante Eigenwerte Tabelle VI
C oi(s™1) Zustand wi(s™1) fi(Hz) Bemerkungen Dominante
1=, i=1.5 i=1..5 Eigenwerte
16 o1 = —14,478 Dimpfung w1 =0 fi =0 —0,971
02,3 = —448 Dimpfung w23 ~= 314 f2,3 ~ 50 Netzfrequenz +j21,387
01,5 = —0,971 Diampfung wa,5 = 21,387 fa5 =34 Einschwingfrequenz
25 o1 = —11,574 Dampfung w1 =0 fi =0 +0,63
02,3 = —638 Diampfung w23 ~ 314 Jf2,3 ~ 50 Netzfrequenz +3j17,16
61,5 = +0,63 Anfachung w45 = 17,16 fa,5 = 2,73 Pendelfrequenz
40 o1 = —874 Dimpfung o1 =0 fi =0 +1,1
gz,3 = — 1067 Déampfung we2,3 ~ 314 f2,3 =~ 50 Netzfrequenz +313,27
04,5 = +1,1 Anfachung wa,5 = 13,27 Jfa,5 =2,1 Pendelfrequenz
100 o1 = —4,15 Déampfung o1 =0 fi =0 -+0,277
2,3 = —2617 Déampfung w23 ~ 314 Sa,8 ~ 50 Netzfrequenz +j8,007
1,5 = +0,277 Anfachung wa,5 = 8,007 fa,5 = 1,27 Pendelfrequenz
159 g = —2,73 Diampfung o1 =0 fi =0 —0,21
o235 = —4135 Déampfung 2,3 ~ 314 fa,3 =~ 50 Netzfrequenz -+j6,233
6s,5 = —0,21 Diampfung w4,5 = 6,233 fa,5 = 0,99 Einschwingfrequenz

als Folge des Austausches freier magnetischer Energie zwischen
den magnetischen Feldern der einzelnen Stator- und Rotor-
stromkreisen [1; 7]. Die zweite Eigenfrequenz, die sich aus
dem 4. bzw. 5. Eigenwert auswerten ldsst, ist etwa 15...50mal
kleiner als die erste Eigenfrequenz. Diese Eigenfrequenz ergibt
sich auf Grund des Energieaustausches [7] zwischen dem
Speicher der magnetischen Energie (Luftspalt) und dem Spei-
cher der kinetischen Energie (Drehmasse). Sie kann beim Pen-
delbetrieb als Pendelfrequenz bezeichnet werden, da die Dreh-
masse der Maschine mit dieser Frequenz pendelt.

5. Vergleich der Eigenwerte der drei Methoden

Zum Vergleich sind die Eigenwerte aus den Stromoszillo-
grammen (Tab. II), den digitalen Simulationen (Tab. I'V) und
der Systemgleichungsmatrix (Tab.VI) gemeinsam in Fig. 5

l<.uu (s_])

— Systemgleichungsmatrix

~=—==Simulation

10

------- Messung

-10

eingetragen, wobei nur die Eigenwerte mit positivem Imaginér-
teil verwendet werden. Die Figur zeigt prinzipiell und quanti-
tativ befriedigende Ubereinstimmung zwischen dem Modell
und der Wirklichkeit.

Im Bereich von C = 16 bis C = 100 weist allerdings die
Eigenwertberechnung im Vergleich zur Messung schwichere
positive Ddmpfung auf. Die Ursache fiir das schwingungs-
anfilligere Verhalten der Asynchronmaschine im Falle der
Berechnung aus der Systemgleichungsmatrix kann auf die
Linearisierung des Gleichungssystems, auf die Nichtberiick-
sichtigung des Dampfungsmoments elektromagnetischen Ur-
sprungs, auf die Nichtberiicksichtigung der Nichtlinearitdten
in den Maschineneigenschaften und auf die Nichtberiicksich-
tigung vor allem von Dampfung o1 zuriickgefiihrt werden.
Bei der digitalen Simulation werden die Systemgleichungen
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Fig. 5 Eigenwerte der Asynchronméschine
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Fig. 6 Eigenwertverliufe bei Variation des Schlupfes mit C als Parameter

a...g Eigenwertverlauf bei verschiedenen C-Werten,
aber bei s = 0
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nicht linearisiert. Die Schlupfinderungen werden wihrend der
Drehschwingungen stets beriicksichtigt. Allein aus diesem
Grund sind die Simulationsergebnisse schon wirklichkeits-
naher.

In der Praxis ist der Bereich C = 16...32 interessant, da
diese C-Werte wirklich auftreten konnen. In diesem Bereich
liegen die Berechnungs- und Simulationsergebnisse bei der
Stabilitidtsprognose auf der sicheren Seite.

6. Eigenwerte bei Variation des Schlupfes

Bis dahin wurden die Eigenwerte nur beim Leerlaufschlupf
so bestimmt und gelten also streng genommen nur fiir die Leer-
laufdrehzahl. In Wirklichkeit schwankt der Schlupf wihrend

werden, warum sich die Asynchronmaschine nicht unendlich
aufschaukelt, sondern sich die Pendelung zuerst exponentiell
anfacht und dann stationdr bleibt. Je intensiver die Pendel-
schwingung wird, desto stirker wird die Maschine geddampft.
Aus Fig. 6 ldsst sich weiter folgern, dass sich die Asynchron-
maschine im gut belasteten Zustand (Schlupf = 19, oder mehr)
trotz dem vorgeschalteten Reihenwiderstand stabil verhalten
wird. Dies ist an den Ortskurven bei C = 16 und 40 ersichtlich.
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der Drehschwingungen dauernd in beiden Richtungen um den
Leerlaufschlupf herum. Dies ldsst vermuten, dass sich die
Eigenwerte auch entlang einer Ortskurve hin und her bewegen.
Um diese Ortskurve zu erhalten, wurden die Eigenwerte bei
einem bestimmten C-Wert fiir mehrere Schliipfe berechnet. In
Fig. 6 sind die Ortskurven der dominanten FEigenwerte fiir
5 C-Werte aufgezeichnet. Auch hier wurden, wie in Fig. 5,
nur die Eigenwerte mit positivem Imaginirteil beriicksichtigt.
Aus der Darstellung ist ersichtlich, dass bei grosserem posi-
tivem wie auch bei gréosserem negativem Schlupf die Maschine
die Tendenz zeigt, stabil zu werden, dies auch mit dem vorge-
schalteten Reihenwiderstand, der beim Leerlaufschlupf selbst-
erregte Drehschwingungen hervorruft. Damit kann erklirt
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Robert Andrews Millikan 1868-1953

Von den vielen Elementarteilchen, die man heute kennt, kommt dem Elektron als
Tréager der negativen Elementarladung besondere Bedeutung zu. Millikan gelang es, diese
Ladung zu bestimmen. Fir diese Leistung und fiir die photoelektrische Bestimmung des
Planckschen Wirkungsquants erhielt er im Jahre 1923 den Nobelpreis.

Robert Andrews Millikan war der Sohn eines Pfarrers schottischer Abstammung.
Er kam am 22. Mdrz 1868 in Morrison (Illinois) zur Welt. Er besuchte das College zu
Oberlin und studierte zunichst Griechisch. Als Zwanzigjdhriger musste er fiir einen er-
krankten Lehrer einspringen und Physikunterricht erteilen. Dies machte ihm derart
Spass, dass er sich entschloss, an der Columbia Universitdt in New York Physik zu stu-
dieren. 1893 wurde er Master, 2 Jahre spéter erhielt er den Doktorgrad. Er erginzte dann
sein Wissen durch Studien an den Universititen Berlin und Gottingen und erhielt 1896
eine Assistentenstelle an der Universitidt Chicago.

1902 heiratete er. Den Eheleuten wurden drei Sohne geschenkt, die alle Hochschul-
karrieren machten. Millikan verfasste mehrere Lehrbucher tiber Mechanik, Molekular-
physik, Wérme, Schall und Licht sowie Uber Elektrizitdt. 1906 begann er mit Versuchen
zur Bestimmung der Elementarladung, die sich tiber mehr als 6 Jahre hinzogen. Er beob-
achtete die Sinkgeschwindigkeit feinster Oltropfchen, denen Ionen angelagert worden
waren, in einem dem Schwerefeld entgegenwirkenden elektrischen Feld. Die festgestellten
Ladungen ergaben stets ein Vielfaches einer kleinsten Ladung, und diese ermittelte er zu
e = 1,6 - 10-19 Coulomb.

1910 ernannte ihn die Universitdt Chicago zum ordentlichen Professor. Sein Interesse
galt von da ab den von Einstein und Planck entwickelten neuen Theorien. Ferner er-
forschte er im Spektrum der elektromagnetischen Wellen den Bereich zwischen den Ront-
genstrahlen und dem Uliravioletten. 1921 folgte er einem Ruf ans California Institute of
Technology, wo er u.a. von Ballonen und Tauchgeriten aus Intensitidtsmessungen der
Hohenstrahlung machte. Er vermutete, diese Strahlung komme von Stellen.im Universum,
wo Materie neu entstehe. Tief religios, wie er war, sah er solche Vorginge als Beweis
dafiir an, dass der Schopfer noch am Werke sei.

Den USA diente er lange Zeit als Mitglied des Wissenschaftsrates, der einerseits fiir die Koordination der wissenschaftlichen Aktivitédten
der verschiedenen Regierungsstellen, anderseits fiir die Erfiillung des vom nationalen Forschungsrat aufgestellten Programms zu sorgen
hatte. Kurz nach dem Weltkrieg wurde Millikan emeritiert, blieb aber als Vizeprisident des Kuratoriums des Norman Bridge Laboratoriums
der Forschung verbunden.

Nach mehrmonatiger Krankheit verschied Millikan, zwei Monate nach dem Tode seiner Frau, am 19. Dezember 1953 in Pasadena.
Mit seinem Tode verlor die Wissenschaft einen dusserst arbeitsamen, exakten und ausdauernden Forscher. Millikan begniigte sich nie mit
einzelnen Messungen, sondern wiederholte seine Versuche immer mehrmals, wodurch er zu genauen Resultaten gelangte. H. Wiiger
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