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Eigenwertuntersuchungen an einer Drehstrom-Asynchronmaschine
bei selbsterregten Drehschwingungen
Von B.B. Palit

621.313 33;
Die Eigenwerte einer Asynchronmaschine werden hei selbsterregten Drehschwingungen untersucht, die durch Vergrösserung des

Statorkreiswiderstandes verursacht werden. Die Auswertung der Eigenwerte erfolgt aus den gemessenen Stromoszillogrammen, aus den digital
simulierten Stromverläufen und aus der linearisierten Systemgleichungsmatrix.

Les valeurs intrinsèques d'une machine asynchrone sont étudiées dans le cas de vibrations de rotation, dues à Vaugmentation de la résistance
du circuit statorique. L'interprétation de ces valeurs a lieu d'après les oscillogrammes de courant mesurés, les circuits de courant simulés
numériquement et la matrice linéarisée de l'équation du système.

1. Einleitung
Die Einführung von ohmschen Widerständen in einen

bestehenden elektrischen Kreis erhöht normalerweise die Dämpfung

des Stromkreises. Dadurch schwingen elektrische
Ausgleichsvorgänge rascher auf einen neuen stationären Zustand
ein. In Drehstrom-Asynchronmaschinen entstehen aber beim
Zuschalten von Widerständen bestimmter Grösse in den
Statorkreis selbsterregte Pendelungen [1 ; 2]1).

In dieser Arbeit soll das Verhalten einer Asynchronmaschine
bezüglich selbsterregter Drehschwingungen bei sukzessiv
zunehmenden Reihenwiderständen zuerst experimentell untersucht

werden. Dabei soll der Grund der selbsterregten
Drehschwingungen bei den Eigenwerten der Asynchronmaschine
gesucht werden. Diese werden einerseits aus den Stromoszillogrammen

ermittelt. Bei der digitalen Simulation sind die Eigenwerte

aus den vom Computer gedruckten zeitlichen
Stromverläufen auszuwerten. Zuletzt sollen die Eigenwerte aus der
linearisierten Systemgleichungsmatrix numerisch berechnet
werden. Alle diese Eigenwertuntersuchungen werden im
Leerlaufbetrieb der Asynchronmaschine vorgenommen und die
Ergebnisse untereinander verglichen. Zur weiteren Aufklärung
über die Stabilität werden die Eigenwerte auch bei verschiedenem

Schlupf rechnerisch untersucht.

1) Siehe Literatur am Schluss des Aufsatzes.
2) Diese Untersuchungen wurden am Institut für Elektrische Maschinen
der ETHZ im Rahmen einer Diplomarbeit durchgeführt.

' Netz
3 Ph.,500V,50Hz Asynchronmaschine

Fig. 1 Versuchsschaltung
K.O. Kathodenstrahloszillograph
S.O. Schleifenoszillograph
u,i,ui Momentanwert der Spannung,

des Stromes und der Leistung
Rv Vorschaltwiderstand

Schilddaten der untersuchten Asynchronmaschine Tabelle I

Nennleistung Pn 205 PS

Nennspannung yTt/i 500 V
Nennstatorstrom /in 215 A
Frequenz / 50 Hz
Anzahl Phasen m 3

Nenndrehzahl Un 2940 U/min
Rotorspannung UîO 420 V
Rotornennstrom En 225 A
Statorschaltung Stern
Rotorschaltung Stern

2. Experimentelle Untersuchungen
Die experimentellen Untersuchungen2) beschränken sich

auf den Leerlaufbetrieb einer ungekuppelten Schleifringanker-
Asynchronmaschine, deren Nenndaten in Tab. I angegeben sind.

2.1 Versuchsdurchführung

Zur Durchführung der Versuche wurden die dreiphasigen
Reihenwiderstände dem Stator so vorgeschaltet, dass sie durch
einen dreipoligen Schalter überbrückt werden konnten (Fig. 1).
Die Asynchronmaschine wurde bei überbrücktem Rv
angefahren und der Überbrückungsschalter erst nach Erreichen der
stationären Leerlaufdrehzahl geöffnet. Um das Schwingungsverhalten

festzustellen, wurde der Vorwiderstand Rv stufenweise

erhöht und jeder neue Widerstand Rv jeweils auf den
stationären Leerlaufbetrieb zugeschaltet. Für die Auswertung
erschien es zweckmässig, als Parameter an Stelle von Rv den
auf den Statorstrangwiderstand Ri bezogenen Widerstand
C RvlR\ zu verwenden.

In Fig. 2 sind die Oszillogramme des Statorstrangstromes
zusammengestellt. Im Bereich C 0...31 treten Drehschwingungen

auf, die mit der Zeit abklingen. Wird der Reihenwiderstand

auf einen kritischen Wert erhöht (C 32), schwingt die
Drehzahl des Rotors ständig, obwohl die Pendelintensität mit
der Zeit etwas abnimmt. Die Drehschwingungen werden beim
Steigern des Reihenwiderstandes sogar angefacht (C 58).
Erhöht man den Widerstand noch weiter (C 80), so verlieren
die Pendelungen ihre Intensität. Nach Überschreiten eines
zweiten kritischen Wertes (C 223) hört der Rotor auf, ständig
zu pendeln.

An dieser Stelle muss bemerkt werden, dass nicht alle
Asynchronmaschinen auf selbsterregte Pendelungen gleich empfindlich

sind. Untersuchungen an verschieden grossen Asynchronmaschinen

zeigen, dass die Tendenz zur Pendelung im
allgemeinen mit abnehmender Nennleistung abnimmt.
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Eigenwerte aus den Oszillogrammen des Statorstromes

»(0
u{t+T)

9 CO

(s-1)

16 1,66 0,507 22,4

32 1,02 0,0179 15,7

58 0,83 -0,182 10,8

80 0,88 -0,133 7,3

159 «1 «0 5,42

223 1,08 0,0723 4,55

278 1,22 0,196 3,83

f(Hz)
a Eigenwerte
(s-') a ± jeufs"1)

3,56 -1,81 -1,81 ± j 22,4

2,50 -0,0447 -0,0447 ± j 15,7

1,72 +0,313 +0,313 ± j 10,8

1,16 +0,154 +0,154 ± j 7,3

0,86 «0 ± j5,42
0,72 -0,0523 -0,0523 ± j4,55
0,61 -0,119 -0,119 ± j3,83

2.2 Bestimmung der Eigenwerte

Aus den Oszillogrammen kann die Einschwingfrequenz im

Falle vorübergehender Pendelung und die Pendelfrequenz im

Falle dauerhafter Pendelung bestimmt werden. Nimmt man

an, dass die Asynchronmaschine ein schwingungsfähiges

System im wesentlichen von 2. Ordnung ist, so wird ihr

transientes Verhalten von zwei konjugiert komplexen Polen

(Eigenwerten) bestimmt, deren Realteil die Dämpfung er und

deren Imaginärteil die Eigenkreisfrequenz co des Systems

darstellt. Ist die Eigenkreisfrequenz co der Schwingung bekannt

und lassen sich die Funktionswerte u{t) und u(t + T) im
zeitlichen Abstand einer Periode T graphisch auswerten, so kann

die Dämpfung a wie folgt berechnet werden [3] :

(1)a — 3co/2 n

wobei .9 In u(t)/u(t + T) (2)

"

j/3 Ih '
0

0

0

— co Td
MmP
— SCO Mm

coLo MmP CO ALm

Ri T Lop — CO Mm MmP
SCO Mm Ri + Lap soo La

MmP — soo La R> - i

Daten der Asynchronmaschine Tabelle III

Bezeichnung Symbol Numerischer
Wert

Widerstand eines Statorstranges Ri 0,0306 n
Widerstand eines Rotorstranges Ri 0,0188 n
Selbstinduktivität der Spule D Ld 0,0182 H
Selbstinduktivität der Spule d La 0,0133 H
Drehfeld-Gegeninduktivität M m 0,0151 H
Polpaarzahl po 1

Polarträgheitsmoment
der Drehmasse J 2,29 Nmss

Reibungsmoment im Leerlauf Treib 11,4 Nm
Leerlaufschlupf Sil 0,0365 %

als logarithmisches Dekrement bezeichnet wird.

Aus den gemessenen Stromoszillogrammen der Fig. 2

erfolgt in Tab. II die Auswertung der Eigenkreisfrequenz co, der

Schwingungsfrequenz/und der Dämpfung er; u(t) stellt jeweils

die Amplitude der ersten Stromschwingung nach dem

Zuschalten von Rv dar. Der Realteil des Eigenwertes ist bei

C 58 und 80 eindeutig positiv: die Maschine regt sich selbst

zu Pendelungen an. Ab einer bestimmten Pendelamplitude

bleiben die Schwingungen stationär. Die Grenzfälle treten

dagegen etwa bei C 32 und 159 auf. Bei diesen C-Werten

pendelt die Asynchronmaschine mit schwach gedämpfter

Intensität.

3. Digitale Simulation

Für die digitale Simulation der Asynchronmaschine beim

Betrieb über Reihenwiderstände wurde ein Modell der

Asynchronmaschine benutzt, das aus pseudo-stationären Stator- und

Rotorspulen besteht [4]. Bei diesem Modell braucht man zur

Aufrechterhaltung des Maschinenbetriebs nur eine einzige

Statorspule mit einer Gleichspannung der Höhe j/3 Ui zu speisen,

in Fig. 3 die D-Spule. Das Gleichungssystem der

Modellmaschine besteht aus den Spannungsgleichungen für die vier

Spulen D, Q, d, q und einer Bewegungsgleichung.

3.1 Gleichungssystem

Spannungsgleichungen mit p d/dt

Bewegungsgleichung :

Po Mm (/Diet — iQi'a)
J ds

: 1 mw jpo a t i reib (4)

Die Bedeutung der Symbole ist aus Tab. III ersichtlich.

Im vorliegenden Fall (Leerlauf) wird das mechanische

Drehmoment an der Welle

Tmw 0 (5)

Das Reibungsmoment Treib wird konstant und gleich dem

Reibungsmoment bei der Leerlaufdrehzahl angenommen.

3.2 Maschinendaten

Die Maschinendaten, die aus verschiedenen Messungen

gewonnen wurden, sind in Tab. III zusammengestellt.

3.3 Verlauf des Statorstrangstromes

Gemäss dem Computerprogramm erhält man aus den

nichtlinearen Systemgleichungen (3) und (4) die zeitlichen

Verläufe der Modellströme in und /q. Damit lässt sich nach einer

Transformationsbeziehung [4] die Hüllkurve des zeitlichen

Stromverlaufs eines Statorstranges berechnen. Ein solcher

Verlauf des Statorstrangstromes bei C 80 für die Dauer von

drei Stromschwingungen nach dem Zuschalten des

Widerstandes ist in Fig. 4 zu sehen. Vergleicht man diesen mit dem

Stromoszillogramm der Fig. 2, so ist eine gute qualitative

Übereinstimmung zwischen Messung und Simulation zu

erkennen.

iD
iq
ia

i<i

(3)
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Bestimmung der Eigenwerte aus den simulierten Statorstromverläufen

c u(t)
u(t+T)

» CO

(s-1) /
(Hz)

a
(s-1)

Eigenwerte
a ± jco(s-1)

16 1,41 0,345 20,9 3,33 -1,15 -1,15 ± j 20,9
58 0,64 -0,445 10,3 1,64 + 0,728 +0,728 ± j 10,3

159 1,37 0,314 5,93 0,944 -0,296 -0,296 ± j5,93

3.4 Bestimmung der Eigenwerte

Die digitale Simulation wurde bei drei C-Werten ausgeführt.
Aus dem jeweiligen zeitlichen Verlauf des simulierten
Statorstrangstromes wurde, gleich wie in Abschnitt 2.2, zuerst die
Eigenkreisfrequenz a> ermittelt und daraus, gemäss Gl. (1) und
(2), die zugehörige Dämpfung a berechnet. Die Auswertung
der Eigenwerte ist in Tab. IV enthalten. Vergleicht man diese

Eigenwerte mit jenen von Tab. II, so ist im allgemeinen eine
qualitative Übereinstimmung festzustellen. Die quantitativen
Unterschiede sind klein bei den Eigenfrequenzen, jedoch gross
bei den Dämpfungen. Bis auf grossen C-Wert dämpft die reale
Maschine stärker als die Modellmaschine wegen der
Dämpfungseigenschaften elektromagnetischen Ursprungs, die bei der
Simulation nicht berücksichtigt wurden.

4. Eigenwertberechnung aus der Systemgleichungsmatrix
Eine dritte Methode der Eigenwertberechnung geht von den

Systemgleichungen der Modellmaschine (Gl. 3, 4) aus. Um die
für die Eigenwertberechnung geeignete Systemgleichungs¬

matrix zu erhalten, muss zuerst die Stabilitätsuntersuchung bei
kleinen Abweichungen vorgenommen werden. Dazu sucht man
zunächst die stationäre Lösung für einen beliebigen Schlupf,
entwickelt dann die Variablen an diesem Punkt, linearisiert
die Gleichungen und ermittelt schliesslich mit einem elektronischen

Digitalrechner die Wurzeln der charakteristischen
Gleichung der linearisierten Systemmatrix numerisch. Man
bezeichnet die Wurzeln dieser Gleichung auch als Eigenwerte
der Matrix.

Zur Berechnung der Eigenwerte der Asynchronmaschine
werden bezogene, dimensionslose Grössen eingeführt, die mit
einem Stern gekennzeichnet sind. Die Gleichungen werden
nicht mit den bezogenen Strömen, sondern mit bezogenen
Flussverkettungen ausgedrückt [5], Unter Vernachlässigung
der Produkte der Abweichungen erhält man aus dem ursprünglichen

Ausgangsgleichungssystem das Gleichungssystem der
Abweichungen. Beschränkt man sich auf die Betrachtung sehr
kleiner Abweichungen der Drehzahl von der stationären Leer-

Fig. 3 Modellmaschine

D, Q pseudo-stationäre Statorspulen
d, q pseudo-stationäre Rotorspulen
hD, HQ bzw. ;'D, i'q Momentanwert der Spannungen bzw.

Ströme der Spulen D und Q
ua, »q bzw. ia, iq Momentanwert der Spannungen bzw.

Ströme der Spulen d und q
co elektrische Winkelgeschwindigkeit des Drehfeldes
r Schlupf des Rotors
Ui Netzspannung pro Phase

C=80

Querachse

Längsachse

Fig. 2 Schleifenoszillogramme des Statorstromes
i Momentanwert des Statorstrangstromes c miiii;i; + !i;!; + öh + M + i+ h: + ; iiMil IM +Hü:Mh ; :

I
: I

:

C Reihenwiderstand pro Phase bezogen auf den
Statorstrangwiderstand Fig. 4 Digital simulierter zeitlicher Statorstromverlauf
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laufdrehzahl (so + As ss s0), so lassen sich die erwähnten

Gleichungen linearisieren. Das linearisierte Gleichungssystem hat

dann die Form

X+AX=0 (6)

wobei die Unbekannten mit X und mit A die 5 X 5-Matrix
bezeichnet wird. Zur Lösung dieses Systems homogener linearer

Differentialgleichungen wird der Ansatz

X Be"* (7)

gemacht, wobei die Spaltenmatrix ß die Integrationskonstanten

enthält. Setzt man diesen Ansatz in die Gl. (6) ein, so

erhält man

xße^t* l iße'-t* 0

oder

(Aß -A)X-Q (8)

wobei ß die Einheitsmatrix der Ordnung 5 x 5 ist. Diese

Gleichung hat dann und nur dann eine nichttriviale Lösung

(verschieden von null), falls

det (Aß + A) — j Aß -f- A | 0 (9)

ist [6]. Diese Bedingung legt die Eigenwerte A fest. A bedeutet

eine komplexe Zahl und ist ein Skalar. Die Auswertung liefert

die charakteristische Gleichung :

floA5 + öiA4 + Û2À3 + G3Â3 + u4A + <75 0 (10)

Ihre Wurzeln sind von der allgemeinen Form

Ai <7i* + j®i* i 1...5 (11)

Damit werden die Variablen nach Gl. (7) zu

,Y(/*) bi& eJMi*'* Aie01*'* • cos(coi* t* + tpi)

i 1...5

wenn die Integrationskonstanten bi durch die Konstanten In

und (pi ersetzt werden. In Gl. (11) und (12) stellen ai* und

an* die Dämpfung bzw. die charakteristische Schwingungskreisfrequenz

in bezogener Form dar.

Eine Instabilität tritt dann auf, wenn eine der Wurzeln Ai

einen positiven Realteil en* enthält. Diese Aussage bedeutet

für das Stabilitätsgesetz in der Zustandsraumdarstellung, dass

alle Eigenwerte der Matrix A bei einem stabilen System in der

linken Halbebene liegen müssen.

Die numerische Auswertung des Gleichungssystems ergab

fünf Wurzeln. Eine ist dabei reell, die vier anderen bestehen

aus zwei Paaren konjugiert komplexen Grössen. Diese stellen

ein schwingungsfähiges System dar. Dabei bedeutet, wie

erwähnt, der Realteil die Dämpfung und der Imaginärteil eine

charakteristische Schwingungskreisfrequenz.
In Tab. V sind die berechneten Eigenwerte bei fünf ("-Werten

in bezogener Form angegeben. Aus dieser Zusammenstellung

der Eigenwerte bzw. Pole geht hervor, dass der 1. Pol,

d.h. Ai, reell ist. Die zugehörige Komponente des transienten

Vorgangs wird mit der Exponentialfunktion In ea+l* abklingen,

wobei <7i* < 0 ist. Der 2. und der 3. Pol, d.h. Aa und A3, sind

konjugiert komplexe Pole. In der komplexen Zahlenebene

liegen sie weit links von der imaginären Achse. Die diesen Polen

zugehörige Komponente des transienten Vorgangs stellt eine

abklingende Schwingung feea2*t* cos((02* t* • <+) dar, wobei

na* < 0 ist. Der 4. und der 5. Pol, d.h. A4 und A5, sind ebenfalls

konjugiert komplexe Pole. Sie sind dominante Pole, da sie am

weitesten rechts auf der komplexen Zahlenebene liegen. Sie

bestimmen im wesentlichen das transiente Verhalten des

Systems. Der Realteil dieser Pole bei C 25, 40 und 100 ist

jeweils positiv. Diese Pole erzeugen eine anfachende Schwingung

von der Art Aie"»* cos (cai* t*- (+1), wobei er4*>0 ist.

Ein instabiles Verhalten der Asynchronmaschine ist bei den

erwähnten C-Werten zu erwarten. Bei C 16 und 159 wird
cr4* negativ. Die Drehschwingungen werden positiv gedämpft.

In diesen beiden Fällen ist ein Übergang zum stationären
Betrieb nach Abklingen der Drehschwingungen zu erwarten.

Diese Feststellungen stimmen mit den experimentellen Ergebnissen

des Abschnittes 2 überein.

Da das Gleichungssystem mit den bezogenen Grössen

aufgestellt wurde, müssen die berechneten Eigenwerte (Tab. V)
mit coo 314 s-1 multipliziert werden, um in den normalen

Zeitbereich zu gelangen. In Tab. VI sind die wirklichen Grössen

der Dämpfungen, Kreisfrequenzen, Schwingungsfrequenzen

und der dominanten Eigenwerte zusammengestellt. Daraus

erkennt man, dass die Dämpfung, die sich aus dem 4. bzw.

5. Eigenwert ergibt, die kleinste ist.

Die erste Schwingungsfrequenz f\ ist gleich Null. Der
1. Eigenwert bewirkt eine positive Dämpfung ohne Schwingung.

Die dem 2. und 3. Eigenwert entsprechende
Schwingungsfrequenz ist nahezu gleich der Netzfrequenz. Sie existiert

Aus Systemgleichungsmatrix berechnete Eigenwerte

c V +, -*3 (-4 4.5 Bemerkungen

16 -4,611 • 10-2 -1,427
±j0,971

-3,093 • IO-3
zt j 6,811 • 10-'2

Stabiler Betrieb

25 -3,686 • 10-2 -2,19
±j 0,9766

+2,008 • IO-3

±j 5,466 • 10"2
1. kritischer TL-Wert; Maschine pendelt ständig

40 -2,784- 10-2 -3,399
±j0,9831

+ 3,509 • IO-3

±j4,226 • 10"2
Intensivere Pendelung

100 — 1,323 • 10-2 -8,334
±j 0,9925

+ 8,807 • IO-4
±j2,55 - 10-2

Betrieb instabil, aber Tendenz zur Rückkehr in
stabilen Betrieb erkennbar

159 -8,706- IO-3 -13,17
±j 0,9952

-6,636- IO-4

±j 1,985 - 10-2
Stabiler Betrieb

374 (A 192) Bull. ASE/UCS 69(1978)8, 29 avril



Aus der Systemgleichungsmatrix gewonnene Dämpfungen, Schwingungsfrequenzen und dominante Eigenwerte

c OiCs"1)
i 1...5

Zustand <Ui(s_1)
i 1...5

/i(Hz)
x 1...5

Bemerkungen Dominante
Eigenwerte

16 ei —14,478
(72,3 - —448

(74,5 —0,971

Dämpfung
Dämpfung
Dämpfung

(oi =0
(O2,3 r:< 314

(04,5 21,387

fi =0
A,3 754 50

A 5 3,4
Netzfrequenz
Einschwingfrequenz

-0,971
±j21,387

25 Gi -11,574
(72,3 —688

<74,5 +0,63

Dämpfung
Dämpfung
Anfachung

(oi =0
(02,3 754 314

(04,5 17,16

/i =0
/a,3 754 50

As 2,73
Netzfrequenz
Pendelfrequenz

+ 0,63

±jl7,16

40 ai -8,74
(72,3 —1067

(74,5 +1,1

Dämpfung
Dämpfung
Anfachung

(oi =0
(02,3 754 314

(04,5 13,27

A =o
A,3 «4 50

As 2,1
Netzfrequenz
Pendelfrequenz

+ 1,1

±j 13,27

100 Gl -4,15
(72,3 -2617
<74,5 — +0,277

Dämpfung
Dämpfung
Anfachung

(Oi =0
(02,3 74 314

(04,5 8,007

A =0
As 74 50

As 1,27
Netzfrequenz
Pendelfrequenz

+0,277
±j 8,007

159 Gl -2,73
ff2>3 -4135
(74,5 —0,21

Dämpfung
Dämpfung
Dämpfung

(oi =0
(02,3 754 314

(04,5 — 6,233

A =0
A 3 754 50

As 0,99
Netzfrequenz
Einschwingfrequenz

-0,21
+j 6,233

als Folge des Austausches freier magnetischer Energie zwischen

den magnetischen Feldern der einzelnen Stator- und
Rotorstromkreisen [1 ; 7]. Die zweite Eigenfrequenz, die sich aus
dem 4. bzw. 5. Eigenwert auswerten lässt, ist etwa 15...50mal

kleiner als die erste Eigenfrequenz. Diese Eigenfrequenz ergibt
sich auf Grund des Energieaustausches [7] zwischen dem

Speicher der magnetischen Energie (Luftspalt) und dem Speicher

der kinetischen Energie (Drehmasse). Sie kann beim
Pendelbetrieb als Pendelfrequenz bezeichnet werden, da die
Drehmasse der Maschine mit dieser Frequenz pendelt.

5. Vergleich der Eigenwerte der drei Methoden

Zum Vergleich sind die Eigenwerte aus den Stromoszillo-

grammen (Tab. II), den digitalen Simulationen (Tab. IV) und
der Systemgleichungsmatrix (Tab. VI) gemeinsam in Fig. 5

eingetragen, wobei nur die Eigenwerte mit positivem Imaginärteil

verwendet werden. Die Figur zeigt prinzipiell und quantitativ

befriedigende Übereinstimmung zwischen dem Modell
und der Wirklichkeit.

Im Bereich von C 16 bis C 100 weist allerdings die

Eigenwertberechnung im Vergleich zur Messung schwächere

positive Dämpfung auf. Die Ursache für das schwingungsanfälligere

Verhalten der Asynchronmaschine im Falle der

Berechnung aus der Systemgleichungsmatrix kann auf die

Linearisierung des Gleichungssystems, auf die Nichtberücksichtigung

des Dämpfungsmoments elektromagnetischen
Ursprungs, auf die Nichtberücksichtigung der Nichtlinearitäten
in den Maschineneigenschaften und auf die Nichtberücksichtigung

vor allem von Dämpfung oi zurückgeführt werden.
Bei der digitalen Simulation werden die Systemgleichungen

Fig. 5 Eigenwerte der Asynchronmaschine
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co Imaginärteil des Eigenwertes, Eigenkreisfrequenz

30

(s1)

25

20

15

10

5-1
£=250 ;<»#<

9^

-10 0 (si)

Fig. 6 Eigenwertverläufe bei Variation des Sehlupfes mit C als Parameter

a...g Eigenwertverlauf bei verschiedenen C-Werten,
aber bei i 0
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nicht linearisiert. Die Schlupfänderungen werden während der
Drehschwingungen stets berücksichtigt. Allein aus diesem
Grund sind die Simulationsergebnisse schon wirklichkeitsnaher.

In der Praxis ist der Bereich C 16...32 interessant, da
diese C-Werte wirklich auftreten können. In diesem Bereich
liegen die Berechnungs- und Simulationsergebnisse bei der
Stabilitätsprognose auf der sicheren Seite.

6. Eigenwerte bei Variation des Schlupfes
Bis dahin wurden die Eigenwerte nur beim Leerlaufschlupf

.vu bestimmt und gelten also streng genommen nur für die
Leerlaufdrehzahl. In Wirklichkeit schwankt der Schlupf während
der Drehschwingungen dauernd in beiden Richtungen um den

Leerlaufschlupf herum. Dies lässt vermuten, dass sich die
Eigenwerte auch entlang einer Ortskurve hin und her bewegen.
Um diese Ortskurve zu erhalten, wurden die Eigenwerte bei
einem bestimmten C-Wert für mehrere Schlüpfe berechnet. In
Fig. 6 sind die Ortskurven der dominanten Eigenwerte für
5 C-Werte aufgezeichnet. Auch hier wurden, wie in Fig. 5,

nur die Eigenwerte mit positivem Imaginärteil berücksichtigt.
Aus der Darstellung ist ersichtlich, dass bei grösserem
positivem wie auch bei grösserem negativem Schlupf die Maschine
die Tendenz zeigt, stabil zu werden, dies auch mit dem
vorgeschalteten Reihenwiderstand, der beim Leerlaufschlupf
selbsterregte Drehschwingungen hervorruft. Damit kann erklärt

werden, warum sich die Asynchronmaschine nicht unendlich
aufschaukelt, sondern sich die Pendelung zuerst exponentiell
anfacht und dann stationär bleibt. Je intensiver die
Pendelschwingung wird, desto stärker wird die Maschine gedämpft.
Aus Fig. 6 lässt sich weiter folgern, dass sich die Asynchronmaschine

im gut belasteten Zustand (Schlupf 1 % oder mehr)
trotz dem vorgeschalteten Reihenwiderstand stabil verhalten
wird. Dies ist an den Ortskurven bei C 16 und 40 ersichtlich.
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Robert Andrews Millikan 1868-1953

Von den vielen Elementarteilchen, die man heute kennt, kommt dem Elektron als
Träger der negativen Elementarladung besondere Bedeutung zu. Millikan gelang es, diese
Ladung zu bestimmen. Für diese Leistung und für die photoelektrische Bestimmung des
Planckschen Wirkungsquants erhielt er im Jahre 1923 den Nobelpreis.

Robert Andrews Millikan war der Sohn eines Pfarrers schottischer Abstammung.
Er kam am 22. März 1868 in Morrison (Illinois) zur Welt. Er besuchte das College zu
Oberlin und studierte zunächst Griechisch. Als Zwanzigjähriger musste er für einen
erkrankten Lehrer einspringen und Physik Unterricht erteilen. Dies machte ihm derart
Spass, dass er sich entschloss, an der Columbia Universität in New York Physik zu
studieren. 1893 wurde er Master, 2 Jahre später erhielt er den Doktorgrad. Er ergänzte dann
sein Wissen durch Studien an den Universitäten Berlin und Göttingen und erhielt 1896
eine Assistentenstelle an der Universität Chicago.

1902 heiratete er. Den Eheleuten wurden drei Söhne geschenkt, die alle Hochschulkarrieren

machten. Millikan verfasste mehrere Lehrbücher über Mechanik, Molekularphysik,

Wärme, Schall und Licht sowie über Elektrizität. 1906 begann er mit Versuchen
zur Bestimmung der Elementarladung, die sich über mehr als 6 Jahre hinzogen. Er
beobachtete die Sinkgeschwindigkeit feinster Öltröpfchen, denen Ionen angelagert worden
waren, in einem dem Schwerefeld entgegenwirkenden elektrischen Feld. Die festgestellten
Ladungen ergaben stets ein Vielfaches einer kleinsten Ladung, und diese ermittelte er zu
e 1,6 • 10~19 Coulomb.

1910 ernannte ihn die Universität Chicago zum ordentlichen Professor. Sein Interesse
galt von da ab den von Einstein und Planck entwickelten neuen Theorien. Ferner
erforschte er im Spektrum der elektromagnetischen Wellen den Bereich zwischen den
Röntgenstrahlen und dem Ultravioletten. 1921 folgte er einem Ruf ans California Institute of
Technology, wo er u.a. von Ballonen und Tauchgeräten aus Intensitätsmessungen der

Battenberg-Verlag München Höhenstrahlung machte. Er vermutete, diese Strahlung komme von Stellen.im Universum,
wo Materie neu entstehe. Tief religiös, wie er war, sah er solche Vorgänge als Beweis
dafür an, dass der Schöpfer noch am Werke sei.

Den USA diente er lange Zeit als Mitglied des Wissenschaftsrates, der einerseits für die Koordination der wissenschaftlichen Aktivitäten
der verschiedenen Regierungsstellen, anderseits für die Erfüllung des vom nationalen Forschungsrat aufgestellten Programms zu sorgen
hatte. Kurz nach dem Weltkrieg wurde Millikan emeritiert, blieb aber als Vizepräsident des Kuratoriums des Norman Bridge Laboratoriums
der Forschung verbunden.

Nach mehrmonatiger Krankheit verschied Millikan, zwei Monate nach dem Tode seiner Frau, am 19. Dezember 1953 in Pasadena.

Mit seinem Tode verlor die Wissenschaft einen äusserst arbeitsamen, exakten und ausdauernden Forscher. Millikan begnügte sich nie mit
einzelnen Messungen, sondern wiederholte seine Versuche immer mehrmals, wodurch er zu genauen Resultaten gelangte. H. Wüger
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