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Raumladungsfelder in Koordinatentransformation
Von H. Prinz und H. Singer

In der Feldberechnung wird fast immer von der Annahme
ausgegangen, dass das zu untersuchende Feldsystem
raumladungsfrei sei, so dass von der Laplaceschen Potentialgleichung

ausgegangen werden kann. Unter dieser Voraussetzung
lassen sich jedoch nur Felder von Elektroden untersuchen, die
über ihre gesamte Kontur hinweg vorentladungsfrei sind und
deren Anfangsspannung demzufolge noch nicht überschritten
worden ist. Diese Annahme ist in der Praxis oftmals nicht
erfüllt, vor allem wenn es sich darum handelt, den Einfluss
einer ladungsabsprühenden Elektrode auf den Potential- und
Feldstärkeverlauf kennenzulernen, um daraus dann
erforderlichenfalls die Durch- oder Überschlagspannung der
vorgegebenen Elektrodenanordnung berechnen zu können. Ein
solches Vorgehen würde demzufolge erlauben, die
Durchschlagspannung einer Stabfunkenstrecke zu bestimmen, ohne,
wie bisher, das Experiment mit dem dazu notwendigen
Aufwand in Anspruch nehmen zu müssen.

1. Rechengang

Ausgangspunkt für die Berechnung solcher raumladungs-
beschwerter Feldsysteme bildet die Poissonsche Potentialgleichung,

die sich als

A<2>p _ g*"1' «3'
£

darstellt mit 0p als dem Porno/;-Potential, mit s als der
Dielektrizitätskonstanten und mit q als der Raumladungsdichte
über die drei Koordinatenrichtungen u1, u2 und iß. Die Schwierigkeit,

diese Gleichung für den allgemeinen dreidimensionalen
Fall zu lösen, ist von zweierlei Natur: Zum einen weiss man
über die wahre Raumladungsverteilung von Feldsystemen
bisher nur sehr wenig, weil es erfahrungsgemäss äusserst
problematisch ist, diese Verteilung zu messen, ohne sie durch den

Messvorgang zu ändern, und zum anderen ergeben sich im
Falle eines analytischen Rechenganges mathematische
Probleme, wenn von numerischen Lösungen abgesehen wird. Für
die folgenden Betrachtungen möge deshalb von dem einfachsten

Fall einer gleichmässig verteilten Raumladung über den

gesamten Feldraum ausgegangen werden.
Für die Lösung empfiehlt sich ein Rechengang nach Moon/

Spencer [1 ]1), der davon ausgeht, dass der allgemeine Ansatz
für das Laplace-Potential 0u der für das vorgegebene
Feldsystem aus einer vorausgegangenen Koordinatentransforma-

B Siehe Literatur am Schluss des Aufsatzes.

Fig. 1 Ellipsenkabel mit den Begrenzungsflächen iji 0 und rju 1

537.212;

tion bereits bekannt sein muss, gleichermassen für das Poisson-
Potential 0p in der Form

0p 0l + 0i (m1) + 02 (u2)

ansetzbar ist, wobei die beiden monoabhängigen Ergänzungsfunktionen

0i und 02 so bestimmt werden müssen, dass die
Poissonsche Gleichung für die aufzufindende Partikulärlösung
des vorgegebenen Feldsystems erfüllt ist. Dabei darf nicht
übersehen werden, dass jeweils zwei Ergänzungsfunktionen
erforderlich sind, wenn das Feldproblem, das sich sonst in
transformierten Koordinaten ohne Raumladung als eindimensionales

Problem darstellt, zu einem zweidimensionalen wird,
sobald im Feldraum Raumladungen vorhanden sind.

Die aufgefundene Partikulärlösung des Poisson-Potentials
muss dann den folgenden vier Randbedingungen genügen:
Zum ersten und zweiten den beiden Konturbedingungen, dass

längs der beiden Elektrodenoberflächen das Potential U bzw. 0

sein muss, zum dritten im Sonderfall q 0 der Laplace-Lösung
und schliesslich zum vierten der Poissonschen Differentialgleichung,

die der Ausgangspunkt der Berechnung war.
Zum besseren Verständnis dieses Rechenvorganges sollen

drei konkrete Feldprobleme vorgestellt werden, und zwar zwei
translatorische Systeme in Form des Ellipsenkabels und der
Hyperbelschneide und ein rotatorisches System in Form einer
Hyperboloidspitze.

2. Das Ellipsenkabel
Nach Fig. 1 sei ein Ellipsenkabel als Sonderfall eines

geerdeten Bandes der Breite 2a (//1 0) innerhalb eines
elliptischen Zylinders (//n 1) vorgegeben, dem die Halbachsen

an und ßu zugeordnet seien.

Mit den beiden ellipsenzylindrischen Koordinaten (//, if/)
folgt aus dem Laplace-Ansatz die Poissonsche Differentialgleichung

der Form

A0p - g3<pp
+

82 0F) - A
a2(cosh2// — cos2^) l dp2 8i//2 / e '

die durch den Lösungsansatz

0p 0p + 0i {rj) + 02(ys)

erfüllt sein soll. Eingesetzt ergeben sich hieraus die beiden
monoabhängigen Ergänzungsfunktionen zu

0i (i/) cosh 2/7

02(ip) - -~-cos2y/,

was leicht nachprüfbar ist. Unter Berücksichtigung des bereits
vorher ermittelten Lösungsansatzes für das Laplace-Potential
ist das Poisson-Potential somit darstellbar als

'
00

0p (Hncosh n/7 + Bnsinh n/7) cos ni// —

&T (cosh cos + C + Di/ + Eip

mit den Reihenkoeffizienten An und Bn und den Integrationskonstanten

C, D und E. Da im Raumladungsanteil nur Glieder
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Fig. 2 Potentialverteilung in einem Ellipsenkabel entlang der x-Achse
zwischen den Flächen rji 0 (x/a 1) und rjn 1 (x/a 1,54)
für verschiedene Grössen einer gleichmässigen Raumladungsverteilung

(Parameter v)

YS^ir^pIäce^Verreilungl x/a

Fig. 3 Feldverlauf in einem Ellipsenkabel entlang der x-Achse
zwischen den Flächen i/i 0 (,v/o 1) und // : 1

(x/a 1,54) für verschiedene Grössen einer gleichmässigen
Raumladungsbelegung (Parameter)

mit n 2 vorkommen, können auch im Summenansatz von
<Pl nur Glieder mit n 2 auftreten, womit sich das Poisson-

Potential einfacher zu

0p (As cosh 2ij + Bs sin 2y) cos 2i// —

ga2
~8i~ (cosh 2?/ + cos 2y) + C + Dr/ + Ey

ergibt. Aus den beiden Grenzbedingungen

<Pp 0 für 1/ t/1=0
0p U für ?/ //ii,

die unabhängig von y gelten, sowie unter Beachtung eines

funktionsgerechten Koeffizientenvergleiches folgt

A2

Bi

~8T
ga2

8fi

C A2

D
U

'Zu
E 0,

1 — cosh 2//II
sinh 2//ii

ga2 cosh 2/jn — 1

8e tin

so dass die vollständige Lösung

0P= U
>1

ilIi
ga<-

4e

2 sinh// sinh()/n — //)
COSh 7/11

cos2((/

+ sinh2;/ — sinh2 ;/n
^ii

Für eine numerische Auswertung des Poisson-Potentials

empfiehlt sich eine Darstellung in normierter Form als

0p/U (p-p + v <pe

mit tp-L /////ii

als normiertem Laplace-Potential und

sinh 2;/n(cosh 2// — 1) — sinh 2;/(cosh 2;/n — 1)
<Pe

wobei v

cos 2y

ga2/e

8 sinh 2//H

1 — cosh 2// '/
87/n

(1 — cosh 2//n),

U

als dimensionslose Grösse eingeht. Aus Fig. 2 mit 0p/U
f(x/a) längs der grossen Ellipsenhalbachse ist erkennbar, dass

sich mit wachsender positiver Raumladung das

Potentialmaximum immer weiter in den Feldraum hineinschiebt; bei

negativer Raumladung ist es das Potentialminimum.
Aus der Potentialverteilung folgt über die Gradientenformel

des ellipsenzylindrischen Koordinatensystems die Feldstärkeverteilung,

die sich normiert durch die Beziehung

Ep

wird, die in einer getrennten Kontrollrechnung den vorher
erwähnten vier Grenzbedingungen genügt. Der erste Term

berücksichtigt den Laplace-Anteil ohne Raumladungen, der

zweite den Raumladungsanteil.

U/a

mit pl

und ee —

1

pl + v ee

1

7/ii sinh ;/

" sinh 2;/ • sinh 2;/n — cosh 2;/ (cosh 2;/n — 1)

sinh 7/ 4 sinh 2//ii

sinh 2;/ 1 — cosh 2t/h 1

4 8//H J
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und der dimensionslosen Grösse v darstellen lässt. In Fig. 3

ist der daraus berechnete Feldstärkeverlauf längs x/a mit v als
dimensionslosem Parameter aufgetragen. Dabei ist bemerkenswert,

dass sich alle Feldstärkekurven in einem Bereich von
v + 10 bis v — 10 in einem einzigen Punkt schneiden,
was besagt, dass die Feldstärke in diesem Punkt gleich gross
ist, unabhängig von der Grösse der in den Feldraum
eingebrachten Raumladung.

3. Die Hyperbelschneide
Im zweiten Beispiel eines translatorischen Feldsystems sei

eine Hyperbelschneide On) gegen eine geerdete Ebene ((vi
n/2) vorgegeben. Für die vollständige Lösung der
Potentialverteilung wird nunmehr

0p 0l + 0i(>/) + 02 (ff)

an, so dass nach Einsetzen des bereits bekannten Laplace-
Potentials

| A-2 P-2 (cos 9) + B-2 Qo (cosi9)J • P2 (cosh/7)

(cosh2 ;/ f cos2 ff) + C In tan ^ P>

wird mit P2 und 02 als Legendre-Fxinktionzn 1. und 2. Art.
Durch Einsetzen der Grenzbedingungen

ff 9l 0p U
ff ffn n/2 0p 0

und einem Koeffizientenvergleich wird

0P= U n/2 — <v

n/2 — (vu
oa-

jcosh h] |^(1 + cos 2(vn) — (1 + cos 2(f)j +

Vu (1 + cos 2(v) + n/2 (cos 2yju - cos 2(v) — y/ (1 + cos 2(vii)

A0p
1 / d*0p 80p

a2 (sinh2 /j + sin2 ff) \ Sz/2
co ^ 8>i

820p
8ff3

n 80p \
cotS^Fj

02(ff) - QO"

6e
(cos2 .9 — 4 In sin ff)

bestimmen lassen. Der weitere Rechengang hat ergeben, dass

es mit diesen beiden Funktionen zwar möglich ist, die ersten
beiden Grenzbedingungen zu erfüllen, nicht aber die vierte, da
in dem Reihenansatz der Laplace-Lösung die beiden ln-Terme
nicht vorkommen. Deshalb wurde versucht, im weiteren
Rechengang auf diese beiden Terme zu verzichten und mit
gekürzten Ergänzungsfunktionen

0i'Ol) ~

02 (ff) ~

QU"

6e

QU2

6e

cosh2 )/

cos2 ff

weiter zu rechnen. Obwohl nach dem Einsetzen in die entsprechende

Differentialgleichung für jede gekürzte Ergänzungsfunktion

ein Restanteil der Form 4qu2/6e verblieben ist, hat
sich in ihrer Summenbildung der Rest 0 ergeben, da der
Restanteil einmal positiv und einmal negativ war.

Als Gesamtlösung bietet sich dann wiederum der Ansatz

7i/2 - y/n

wobei der erste Term wiederum den Laplace-Anteil und der
zweite Term den Raumladungsanteil darstellen. Über die
Gradientenformel lässt sich hieraus wiederum die Feldstärkeverteilung

finden.

4. Die Hyperboloidspitze
Nunmehr soll als Beispiel eines rotatorischen Feldsystems

eine Hyperboloidspitze (ffi 30°) gegen eine geerdete Ebene
(i9n n/2) untersucht werden (Fig. 4). Die Poissonsche
Differentialgleichung lautet in diesem Fall

4 ou2

T ~6e

Bo

C

D

2 • cos2 ffi QU-

02 (cos ffi) 6e

U Qü"
6e

cos2 ffi

In tan ffi/2
1 QU2

y ~6fî~

und somit die vollständige Lösung

In tan ff/20P= U
In tan ffi/2

QU2

~6e ([- P2 (cos ff) 02 (cos ff) j

woraus sich die beiden monoabhängigen Ergänzungsfunktionen

zu
061%

0i (n) ~ - (cosh2 7 — 4 In sinh if)

P2 (cosh //) + cos2 ffi Uln ^
In tan ffi/2

2 cos3 ffi
02 (COS ffi)

- — (cosh21/ + cos2 i9)J

x/a

Fig. 4 Anordnung Rotationshyperboloid (fli 30°) gegen Ebene
(flu 90»)
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<Pf/ U 9>L + V • <Pg

In tan 9/2mit çh In tan 9i/2 '

<Pe [- ~Pz (cos 9) - COS2 Si

• P2 (cosh >/)

+ -j— (cosh2 // + cos2 $)j

Qi (cos 9) 1
_

02 (cos Si) J

1 r 0 In tan 9/2
COS2 9l -, 7 n~J,TT6 In tan Si/2

sowie v
ga2/e

U

woraus sich längs der Potentialachse (1/ 0) ein Potentialverlauf

nach Fig. 5 errechnen lässt. Auch in diesem Falle zeigt
sich der Effekt des Hineinschiebens des Potentialmaximums
bzw. Potentialminimums in den Feldraum mit wachsender

Raumladungsdichte.
Für den dazugehörigen normierten Feldstärkeverlauf wird

ebenso

Et?

Fig. S Potentialverlauf auf der Rotationsachse der Anordnung
Rotationshyperboloid (,9r 30°) gegen Ebene (5n 90°)
für verschiedene Grössen einer gleichmässigen Raumiadungs-
verteilung (Parameter v)

mit dem Laplace-Anteil als dem ersten Term und dem

Raumladungsanteil als dem zweiten Term, wie auch im Falle der

beiden translatorischen Feldsysteme.
In normierter Darstellung wird

U/a

mit el

e-L + v- ee

1

ee

sin2 9 In tan 9i/2 '

2 cos 9 P2(cos5) — Pi(cosfl)
sin2 9

cos2i9i cos 9 Ö2(cos.9t — ßi (cos 5)
3 ßa(cos5i)

1 cos2 9i 1

6 sin2 9 In tan 9i/2 3

sin23

cos 9

sowie v oa1/;: U wie vorher, mit den daraus errechenbaren

Werten nach Fig. 6. Auch im rotatorischen Beispiel zeigt sich

das Schneiden der einzelnen Feldstärkekurven in einem Punkt.

Fig. 6 Feldverlauf auf der Rotationsachse der Anordnung
Rotationshyperboloid (3i 30°) gegen Ebene (5ii 90°)
für verschiedene Grössen einer gleichmässigen Raumladungsverteilung

(Parameter v)

5. Ausblick
Obwohl in den vorgestellten drei Beispielen von einer

konstanten Raumladungsdichte ausgegangen wurde, so hat sich

doch erwiesen, dass die mathematischen Methoden einer
Koordinatentransformation auch bei Vorhandensein von Raumladung

einen interessanten Einblick in die Potential- und
Feldstärkeverteilung vermitteln. Es wäre deshalb wünschenswert,
noch andere Feldsysteme in dieser Form zu untersuchen, vor
allem bei räumlich sich ändernder Raumladungsdichte.

Besonders interessant wäre in dieser Hinsicht die

Hyperboloidspitze, die im Rahmen der Les-Renardières-Gruppe
eingehender experimentell untersucht worden ist [2], Sofern sich

dabei keine geschlossenen Lösungen ergeben sollten, könnte

an eine numerische Berechnung gedacht werden. In diesem

Falle würden die abgeleiteten Beziehungen eine gute Hilfe sein,

die dann zu erstellenden Programme zu überprüfen.
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