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Raumladungsfelder in Koordinatentransformation

Von H. Prinz und H. Singer

In der Feldberechnung wird fast immer von der Annahme
ausgegangen, dass das zu untersuchende Feldsystem raum-
ladungsfrei sei, so dass von der Laplaceschen Potentialglei-
chung ausgegangen werden kann. Unter dieser Voraussetzung
lassen sich jedoch nur Felder von Elektroden untersuchen, die
tiber ihre gesamte Kontur hinweg vorentladungsfrei sind und
deren Anfangsspannung demzufolge noch nicht iiberschritten
worden ist. Diese Annahme ist in der Praxis oftmals nicht
erfiillt, vor allem wenn es sich darum handelt, den Einfluss
einer ladungsabsprithenden Elektrode auf den Potential- und
Feldstiarkeverlauf kennenzulernen, um daraus dann erforder-
lichenfalls die Durch- oder Uberschlagspannung der vorge-
gebenen Elektrodenanordnung berechnen zu konnen. Ein
solches Vorgehen wiirde demzufolge erlauben, die Durch-
schlagspannung einer Stabfunkenstrecke zu bestimmen, ohne,
wie bisher, das Experiment mit dem dazu notwendigen Auf-
wand in Anspruch nehmen zu miissen.

1. Rechengang
Ausgangspunkt fiir die Berechnung solcher raumladungs-
beschwerter Feldsysteme bildet die Poissonsche Potentialglei-
chung, die sich als
o(ul, u2, ud)
&

ADp = —

darstellt mit @p als dem Poisson-Potential, mit ¢ als der Di-
elektrizitdtskonstanten und mit ¢ als der Raumladungsdichte
tiber die drei Koordinatenrichtungen «!, #2 und 3. Die Schwie-
rigkeit, diese Gleichung fiir den allgemeinen dreidimensionalen
Fall zu 16sen, ist von zweierlei Natur: Zum einen weiss man
iiber die wahre Raumladungsverteilung von Feldsystemen
bisher nur sehr wenig, weil es erfahrungsgemaiss dusserst pro-
blematisch ist, diese Verteilung zu messen, ohne sie durch den
Messvorgang zu dndern, und zum anderen ergeben sich im
Falle eines analytischen Rechenganges mathematische Pro-
bleme, wenn von numerischen Losungen abgesehen wird. Fiir
die folgenden Betrachtungen moge deshalb von dem einfach-
sten Fall einer gleichméssig verteilten Raumladung iiber den
gesamten Feldraum ausgegangen werden.

Fiir die Losung empfiehlt sich ein Rechengang nach Moon/
Spencer [1]1), der davon ausgeht, dass der allgemeine Ansatz
fiir das Laplace-Potential @1, der fiir das vorgegebene Feld-
system aus einer vorausgegangenen Koordinatentransforma-

1) Siehe Literatur am;Schluss des Aufsatzes.

[

Fig. 1 Ellipsenkabel mit den Begrenzungsflichen 71 = 0 und 711 = 1
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537.212;
tion bereits bekannt sein muss, gleichermassen fiir das Poisson-
Potential @p in der Form

®Op = D1, + D1(ut) + P2 (u?)

ansetzbar ist, wobei die beiden monoabhingigen Erginzungs-
funktionen @1 und @2 so bestimmt werden miissen, dass die
Poissonsche Gleichung fiir die aufzufindende Partikuldrlosung
des vorgegebenen Feldsystems erfiillt ist. Dabei darf nicht
iibersehen werden, dass jeweils zwei Ergidnzungsfunktionen
erforderlich sind, wenn das Feldproblem, das sich sonst in
transformierten Koordinaten ohne Raumladung als eindimen-
sionales Problem darstellt, zu einem zweidimensionalen wird,
sobald im Feldraum Raumladungen vorhanden sind.

Die aufgefundene Partikuldrlosung des Poisson-Potentials
muss dann den folgenden vier Randbedingungen geniigen:
Zum ersten und zweiten den beiden Konturbedingungen, dass
langs der beiden Elektrodenoberflichen das Potential U bzw. 0
sein muss, zum dritten im Sonderfall o = 0 der Laplace-Lsung
und schliesslich zum vierten der Poissonschen Differential-
gleichung, die der Ausgangspunkt der Berechnung war.

Zum besseren Verstdndnis dieses Rechenvorganges sollen
drei konkrete Feldprobleme vorgestellt werden, und zwar zwei
translatorische Systeme in Form des Ellipsenkabels und der
Hyperbelschneide und ein rotatorisches System in Form einer
Hyperboloidspitze. ¢

2. Das Ellipsenkabel

Nach Fig. 1 sei ein Ellipsenkabel als Sonderfall eines ge-
erdeten Bandes der Breite 2a (71 = 0) innerhalb eines ellip-
tischen Zylinders (711 = 1) vorgegeben, dem die Halbachsen
arr und fir zugeordnet seien.

Mit den beiden ellipsenzylindrischen Koordinaten (7, v)
folgt aus dem Laplace-Ansatz die Poissonsche Differential-
gleichung der Form

Adp — 1 (82¢P

02 ¢P) _ e
a?(cosh2y — cos?y) \ on? o

dy?
die durch den Lésungsansatz
Dp = D1, + D1(n) + D2(y)

erfiillt sein soll. Eingesetzt ergeben sich hieraus die beiden
monoabhingigen Erginzungsfunktionen zu

2

D1(n) = — %costh
oa?

Pa(y) = — —5,~cos2y,

was leicht nachpriif bar ist. Unter Beriicksichtigung des bereits
vorher ermittelten Losungsansatzes fiir das Laplace-Potential
ist das Poisson-Potential somit darstellbar als

I
[ee]

Dy =Z (Ancosh ny + Businh ny) - cos ny —

n=0

2
—%(cosh2n+cos2w)+C+Dn +Ey

mit den Reihenkoeffizienten 4n und By und den Integrations-
konstanten C, D und E. Da im Raumladungsanteil nur Glieder
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Fig. 2 Potentialverteilung in einem Ellipsenkabel entlang der x-Achse
zwischen den Flichen 71 = 0 (x/a = 1) und 711 = 1 (x/a = 1,54)
fiir verschiedene Grossen einer gleichmassigen Raumladungs-
verteilung (Parameter v)

mit n = 2 vorkommen, konnen auch im Summenansatz von
@1, nur Glieder mit n = 2 auftreten, womit sich das Poisson-
Potential einfacher zu

@p = (A2 cosh 2y + Be sin 2y) - cos 2y —

2
— %(eosh 25 + cos 2y) + C + Dy + Ey

ergibt. Aus den beiden Grenzbedingungen
Pp =0 fir p=m=20
dp = U fir n = 1,

die unabhiingig von w gelten, sowie unter Beachtung eines
funktionsgerechten Koeffizientenvergleiches folgt

o0a?

A2 = B

By — 0a® 1— cosh 2x11
8¢ sinh 2#11

C = As

p - U | ea coshZqu—1
17381 8¢ 7hes

E =0,

so dass die vollstindige Losung

2 1 . Q] _
p—y 1 _ 0a sinhy - sinh (711 — #) soRE -t
it 4e cosh 11
-+ sinh2y — T ginh2 71x
/hsi

wird, die in einer getrennten Kontrollrechnung den vorher
erwidhnten vier Grenzbedingungen geniigt. Der erste Term
beriicksichtigt den Laplace-Anteil ohne Raumladungen, der
zweite den Raumladungsanteil.
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Fig. 3 Feldverlauf in einem Ellipsenkabel entlang der x-Achse
zwischen den Fliachen 1 = 0 (x/a = 1) und x1i1 = 1
(x/a = 1,54) fiir verschiedene Grossen einer gleichmissigen
Raumladungsbelegung (Parameter)

Fiir eine numerische Auswertung des Poisson-Potentials
empfiehlt sich eine Darstellung in normierter Form als
Pp/U = gL+ v e
mit @1 = #/y
als normiertem Laplace-Potential und

sinh 27711 (cosh 257 — 1) — sinh 25 (cosh 2y — 1)

Po =

8 sinh 2711
-cos 2y + 1—sminly, . W (1 — cosh 27711),
8 8y11
2
wobei v = QaU/ ¢

als dimensionslose Grosse eingeht. Aus Fig. 2 mit @p/U =
f(x/a) lings der grossen Ellipsenhalbachse ist erkennbar, dass
sich mit wachsender positiver Raumladung das Potential-
maximum immer weiter in den Feldraum hineinschiebt; bei
negativer Raumladung ist es das Potentialminimum.

Aus der Potentialverteilung folgt iiber die Gradientenformel
des ellipsenzylindrischen Koordinatensystems die Feldstérke-
verteilung, die sich normiert durch die Beziehung

Ep .
Ul ~ e, Fv-e
. 1
mit gr. = — ————=—-
n1 sinh 7
und ¢, = —
1 [iinh 21 - sinh 2511 — cosh 25 (cosh 2511 — 1)
sinh 7 4 sinh 2511
_ sinh2p  1-— cosh 2x1r ]
4 811
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und der dimensionslosen Grosse v darstellen ldsst. In Fig. 3
ist der daraus berechnete Feldstirkeverlauf lings x/a mit v als
dimensionslosem Parameter aufgetragen. Dabei ist bemerkens-
wert, dass sich alle Feldstirkekurven in einem Bereich von
v = + 10 bis v = — 10 in einem einzigen Punkt schneiden,
was besagt, dass die Feldstirke in diesem Punkt gleich gross
ist, unabhingig von der Grosse der in den Feldraum einge-
brachten Raumladung.

3. Die Hyperbelschneide

Im zweiten Beispiel eines translatorischen Feldsystems sei
eine Hyperbelschneide (y11) gegen eine geerdete Ebene (w1 =
m/2) vorgegeben. Fir die vollstindige Losung der Potential-
verteilung wird nunmehr

Dp = O, + D1 (i) + D' (H)
an, so dass nach Einsetzen des bereits bekannten Laplace-

Potentials

Dp = [Az P2 (cos3) + Bz Q2 (cos 9)] - Py (coshy) —

2
— _%a; (cosh2y +¢cos2§) + C - In tan% + D

wird mit P und Q: als Legendre-Funktionen 1. und 2. Art.
Durch Einsetzen der Grenzbedingungen

9 =Y bp = U
19:91[=1T/2 @P:()

und einem Koeffizientenvergleich wird

_y M2-wv | ed® [ [ sin2y ]
Pp=U 5B — o + 3z cosh 277 | (1 + cos 2w11) s (I +cos2y)| -+
| yn (1 +cos 2y) + m/2 (cos 2w1r — cos 2y) — w (1 + cos 2wrr)
TC/Z — YIiI
wobei der erste Term wiederum den Laplace-Anteil und der Ay — 4 pa®
zweite Term den Raumladungsanteil darstellen. Uber die T3 6e
Gradientenformel ldsst sich hieraus wiederum die Feldstirke- 2-cos? 9 0a?
verteilung finden. By = Q2 (cos 1) 6
5
U+ % - cos? 91
4. Die Hyperboloidspitze b == Intan $1/2
Nunmehr soll als Beispiel eines rotatorischen Feldsystems 1 oa?
eine Hyperboloidspitze (9; = 30%) gegen eine geerdete Ebene 2 — 3 6

($11 = m/2) untersucht werden (Fig. 4). Die Poissonsche Diffe-
rentialgleichung lautet in diesem Fall

1 02dp 0Dp
Adp = a2(sinh2? 7 +sin? 9) ( on? +eothy on +
62<15P 0Pp o Q
+ g toot8 ) = 2,

woraus sich die beiden monoabhingigen Erginzungsfunk-
tionen zu

ea® :
D) = — s (cosh?  — 4 1n sinh 7)

oa? ;
Do (P) = — K(cos2 $ — 41nsin 9)

bestimmen lassen. Der weitere Rechengang hat ergeben, dass
es mit diesen beiden Funktionen zwar moglich ist, die ersten
beiden Grenzbedingungen zu erfiillen, nicht aber die vierte, da
in dem Reihenansatz der Laplace-Losung die beiden In-Terme
nicht vorkommen. Deshalb wurde versucht, im weiteren
Rechengang auf diese beiden Terme zu verzichten und mit
gekiirzten Ergédnzungsfunktionen

2

D1 () = — %coshzn
i oa?

Do (19) = ’E cos? §

weiter zu rechnen. Obwohl nach dem Einsetzen in die entspre-
chende Differentialgleichung fiir jede gekiirzte Ergidnzungs-
funktion ein Restanteil der Form 4¢a?/6¢ verblieben ist, hat
sich in ihrer Summenbildung der Rest 0 ergeben, da der Rest-
anteil einmal positiv und einmal negativ war.

Als GesamtlGsung bietet sich dann wiederum der Ansatz
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und somit die vollstdndige Losung

i = G- In tan 9/2
In tan 91/2
- "Qggi {[~ —‘317 P2 (cos 9 + szc(ghcs;éi) - Q2 (cos&)] .
- P2 (cosh #) -+ cos? 9y - %—:;;1991//%2 + :17 — (cosh? i 4 cos? -9)}
?Z/a
F2.5

—— X/Q

Fig. 4 Anordnung Rotationshyperboloid (91 = 30°) gegen Ebene
(11 = 909)
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Fig. 5 Potentialverlauf auf der Rotationsachse der Anordnung
Rotationshyperboloid (31 = 309) gegen Ebene (311 = 909)
fiir verschiedene Grossen einer gleichmissigen Raumladungs-
verteilung (Parameter v)

mit dem Laplace-Anteil als dem ersten Term und dem Raum-
ladungsanteil als dem zweiten Term, wie auch im Falle der
beiden translatorischen Feldsysteme.

In normierter Darstellung wird

Dp/U = gr.+v "

In tan 9/2

mit ¢L =P an 82

ga/e
U/a

Parameter vy =

Feldverlauf auf der Rotationsachse der Anordnung
Rotationshyperboloid (31 = 30°) gegen Ebene (311 = 90°)
fiir verschiedene Grossen einer gleichmiissigen Raumladungs-
verteilung (Parameter v)

Fig. 6

370 (A 188)

Q2 (cos®) ] )

-2 J cose o
Vo = [ 5 Ps (cos§) + 5 KOs S 05 (cos d1)

In tan §/2

1
. v 2 "Tntan 912
P2 (coshn) + ¢ [COS ey foy 1/2

+ —; — (cosh? i - cos® 9)]

oa’/e
U s

sowie v =

woraus sich ldngs der Potentialachse (7 = 0) ein Potential-
verlauf nach Fig. 5 errechnen ldsst. Auch in diesem Falle zeigt
sich der Effekt des Hineinschiebens des Potentialmaximums
bzw. Potentialminimums in den Feldraum mit wachsender
Raumladungsdichte.

Fiir den dazugehorigen normierten Feldstirkeverlauf wird
ebenso

Ep .
U—/d = éeL + V€
mit er, = — I
L sin% 3+ In tan 9¢/2 °
_ 2 cos# - P2(cosd) — Pi(cos§)
=7 sin29
2 cos?Y;  cosd- Qz(cosh — Qi(cosd)
3 Q2(cosIr) sin2 &
2
4 cos? 91 1 cosd

6 sin2$Intandr/2 3

sowie v = pa?/eU wie vorher, mit den daraus errechenbaren
Werten nach Fig. 6. Auch im rotatorischen Beispiel zeigt sich
das Schneiden der einzelnen Feldstdrkekurven in einem Punkt.

5. Ausblick

Obwohl in den vorgestellten drei Beispielen von einer kon-
stanten Raumladungsdichte ausgegangen wurde, so hat sich
doch erwiesen, dass die mathematischen Methoden einer Ko-
ordinatentransformation auch bei Vorhandensein von Raum-
ladung einen interessanten Einblick in die Potential- und Feld-
stirkeverteilung vermitteln. Es wire deshalb wiinschenswert,
noch andere Feldsysteme in dieser Form zu untersuchen, vor
allem bei rdumlich sich d&ndernder Raumladungsdichte.

Besonders interessant wire in dieser Hinsicht die Hyper-
boloidspitze, die im Rahmen der Les-Renardieres-Gruppe ein-
gehender experimentell untersucht worden ist [2]. Sofern sich
dabei keine geschlossenen Losungen ergeben sollten, konnte
an eine numerische Berechnung gedacht werden. In diesem
Falle wiirden die abgeleiteten Bezichungen eine gute Hilfe sein,
die dann zu erstellenden Programme zu iiberpriifen.
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