Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des

Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de l'Association suisse des électriciens, de l'Association des entreprises

électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer

Elektrizitätsunternehmen

Band: 68 (1977)

Heft: 12

Artikel: Hochspannungsprüfungen von SF6-Anlagen Vor-Ort mit schwingenden

Schaltstossspannungen

Autor: Feser, K.

DOI: https://doi.org/10.5169/seals-915037

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

BULLETIN

des Schweizerischen Elektrotechnischen Vereins de l'Association Suisse des Electriciens

des Verbandes Schweizerischer Elektrizitätswerke de l'Union des Centrales Suisses d'Electricité

Elektrotechnik—Electrotechnique

Hochspannungsprüfungen von SF₆-Anlagen Vor-Ort mit schwingenden Schaltstoßspannungen

Von K. Feser

21.317.333.82

Nach einem Vergleich der verschiedenen Prüfspannungen, die bei SF_6 -isolierten Anlagen bei der Vor-Ort-Prüfung diskutiert werden, wird eine Prüfanlage für die Erzeugung von schwingenden Schaltstoßspannungen näher beschrieben. Diese ist aus kleinen Einzelbauteilen zusammengesetzt, womit hohe Flexibilität, geringe Einzelgewichte und kleines Bauvolumen erreicht werden. Entscheidend für die Wahl einer schwingenden Schaltstoßspannung als Prüfspannung ist die physikalische Eignung dieser Spannungsform, um die Vor-Ort auftretenden Fehler (Montagefehler, Staub usw.) erkennbar werden zu lassen.

Après avoir comparé les différentes tensions d'essai en discussion pour des installations blindées isolées au SF_6 lors de l'essai sur place, on décrit une installation d'essai pour surtensions de manœuvre oscillantes. Celle-ci est composée d'un système modulaire d'éléments, permettant d'obtenir une grande flexibilité, des poids minimum et un volume réduit. Les caractéristiques physiques de la tension de manœuvre oscillante déterminent le choix de cette forme de tension en tant que tension d'essai pour détecter d'éventuels défauts sur place (défauts de montage, poussière, etc.).

1. Einleitung

Mit steigender Anzahl von SF₆-Anlagen, vor allem bei hohen Spannungen, wird der Notwendigkeit der Prüfung von SF₆-Anlagen nach der Montage am Aufstellungsort immer grössere Bedeutung beigemessen. Die bisherige Prüfpraxis ist nicht einheitlich. Es gibt Hersteller und Betreiber von SF₆-Anlagen, die eine Prüfung Vor-Ort bis heute nicht für notwendig erachten und deshalb ihre Anlage ohne Prüfung nach der Montage in Betrieb genommen haben. Andere Hersteller oder Betreiber von SF₆-Anlagen haben eine Prüfung mit Gleichspannung [1]¹), Wechselspannung [2] oder Blitzstoßspannungen [17] ausgeführt, wobei die Wahl der Spannung vor allem von den vorhandenen Prüfeinrichtungen diktiert wurde.

In letzter Zeit haben sich in verschiedenen Ländern Arbeitskreise gebildet, die die Prüfungsmöglichkeiten am Aufstellungsort diskutieren [4]. Sowohl auf der Herstellerseite als auch auf der Betreiberseite scheint heute eine Tendenz vorhanden, die Prüfung an Ort und Stelle aus der bisherigen Erfahrung als notwendig zu erachten. Im folgenden wird eine mögliche Lösung, die Vor-Ort-Prüfung mit schwingenden Schaltstoßspannungen, näher beschrieben. Bei der Vor-Ort-Prüfung einer SF₆-Rohrleitung für 420 kV wurde diese Prüfmethode bereits praktisch erprobt [15].

1) Siehe Literatur am Schluss des Aufsatzes.

2. Sinn und Zweck der Vor-Ort-Prüfung

Die Prüfung am Aufstellungsort soll die Werksprüfung mit Wechselspannung 50 Hz und Blitzstoßspannungen 1,2/50 als Stück- und Typenprüfspannungen nicht ersetzen. Diese Prüfungen sind notwendig, um die Konstruktion, Dimensionierung bzw. die Materialien zu prüfen. Die Vor-Ort-Prüfung wird für notwendig erachtet, da die Anlagen in Einzelteilen geliefert werden, die an Ort und Stelle zusammengebaut werden. Im wesentlichen sollen mit dieser Prüfung Montagefehler (z.B. leichte Verschiebungen auf Grund der Toleranzen) oder Transportschäden (z.B. Beschädigungen von Elektroden) aufgedeckt werden. Besonders wichtig ist ferner die Überprüfung auf Verunreinigungen während der Montage (Staubteilchen, metallische Teilchen, liegengebliebene Werkzeuge), da die Festigkeit mit zunehmender Verunreinigung abnimmt [3]. Auch ein Reinigungseffekt durch Anlegen der Spannung unterhalb der Durchschlagspannung erscheint wünschenswert [15].

3. Art und Höhe der Prüfspannungen Vor-Ort

Die heute für die Prüfung Vor-Ort diskutierten Prüfspannungen sind [4; 8]:

- Gleichspannung
- niederfrequente Wechselspannung (0,05...0,5 Hz)
- Wechselspannung 50 Hz bzw. 60 Hz
- höher frequente Wechselspannung (1...10 kHz)
- schwingende Schaltstoßspannung ($T_{\rm s} \ge 100~\mu {\rm s}$)
- Blitzstoßspannung 1,2/50

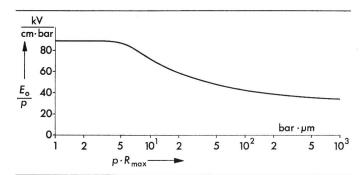


Fig. 1 Abhängigkeit der zulässigen theoretischen Feldstärke von der Oberflächenrauheit [3]

Als Fehlerindikation scheidet bei der Vor-Ort-Prüfung die Teilentladungsmessung weitgehend aus. Bei allen Spannungsarten wird heute nur eine Indikation über den Durchschlag für möglich erachtet, d.h., dass von dieser Seite alle Spannungsarten als gleichwertig zu betrachten sind.

Um die Grösse der Anlagen abschätzen zu können, wurde für die Vor-Ort-Prüfung angenommen, dass die Prüfspannung jeweils 80% der im Werk vorgeschriebenen Prüfspannungen betrage [4]. Damit ergeben sich Vor-Ort die Prüfspannungen gemäss Tab. I.

Bei kleinen Betriebsspannungen (etwa bis Reihe 245 kV) ist eine Prüfung mit Wechselspannung 50 Hz bzw. 60 Hz vom Preis, vom Gewicht und von den Abmessungen der Prüfanlage sowie von der Anschlussleistung her gesehen, durchführbar. In diesem Spannungs- und Leistungsbereich kann z.B. ein magnetischer Spannungswandler, der direkt an die SF₆-Anlage angeflanscht wird, eingesetzt werden [16]. Bei höheren Betriebsspannungen wird eine Wechselspannungsanlage für 50 Hz bzw. 60 Hz in ihren Abmessungen und im Gewicht zu gross, weswegen man sich andere Prüfspannungen überlegt hat, die Vor-Ort leichter erzeugbar sind und die gleiche Aussagekraft für die Prüfung haben sollen. Diese Aussagekraft

muss für die Gleichspannung und die Blitzstoßspannung 1,2/50 bezweifelt werden, während über die niederfrequente und höherfrequente Wechselspannung zuwenig Erfahrungen vorliegen. Von allen vorgeschlagenen Prüfspannungsformen besitzt die schwingende Schaltstoßspannung, neben der Wechselspannung, die höchste Aussagekraft für die Vor-Ort-Prüfung. Deshalb wird im folgenden die Möglichkeit der Vor-Ort-Prüfung von SF₆-Anlagen mit schwingenden Schaltstoßspannungen näher untersucht.

4. Physikalische und technische Begründung für die Vor-Ort-Prüfung mit schwingenden Schaltstoßspannungen

Die Blitzstoßspannung 1,2/50 bestimmt die Dimensionierung von SF₆-gekapselten Anlagen, weil die Prüfspannung bei dieser Spannungsart am höchsten ist und die theoretische Durchschlagsfeldstärke in quasihomogenen Feldern, wie sie in SF₆-isolierten Anlagen vorkommen, unabhängig von der Spannungsform ist [8]. Dies bedeutet, dass die Durchschlagspannung für alle Spannungsformen theoretisch gleich ist. Infolge des unterschiedlichen Einflusses von Feldinhomogenitäten und von Staubteilchen auf die Spannungsfestigkeit bei verschiedenen Spannungsformen werden in der Literatur für verschiedene Spannungsformen jedoch abweichende Durchschlagswerte angegeben.

Fig. 1 zeigt die Abhängigkeit der zulässigen theoretischen Feldstärke von der Oberflächenrauhigkeit [3]. Mit zunehmender Oberflächenrauhigkeit sinkt die zulässige maximale Feldstärke, wobei diese Kurve für alle Spannungsformen gilt. Mit der Oberflächenrauhigkeit kann gleichzeitig eine gewisse Grösse von leitfähigen Staubteilchen erfasst werden. Lässt man z. B. eine Oberflächenrauhigkeit von $R_{\rm max} < 150~\mu$ zu [15], so kann man die maximal zulässige Feldstärke in Abhängigkeit vom Druck ermitteln. In Fig. 2 ist neben der theoretischen Feldstärke für eine Oberflächenrauhigkeit $R \approx 0$ die Dimensionierungskurve für eine zulässige praktische Feldstärke bei

Amplitude der verschiedenen Prüfspannungen Vor-Ort

Tabelle I

Art der Prüfspannung	Netzspannung					
	123 kV	245 kV	420 kV	525 kV		
Gleichspannung	121 kV	240 kV	412 kV	515 kV		
Wechselspannung 50 Hz (eff.)	184 kV	316 kV	456 kV	544 kV		
Schaltstoßspannung 250/2500 bzw. schwingende Schaltstoßspannung	352 kV	608 kV	840 kV	940 kV		
Blitzstoßspannung 1,2/50	440 kV	760 kV	1040 kV	1240 kV		

Tabelle II

Verhältnis der Prüfspannungen (Scheitelwerte)		Netzspannung					
-		123 kV 245 kV		420 kV	525 kV		
	$U_{1,2/50}$ U_{50} Hz	1,69	1,70	1,62	1,62		
Schaltstoßspannung 50-Hz-Wechselspannung	U_{ss} U_{50} Hz	1,36	1,36	1,31	1,23		
Blitzstoßspannung U Schaltstoßspannung	$rac{U_{1,2/50}}{U_{ m SS}}$	1,25	1,25	1,24	1,32		

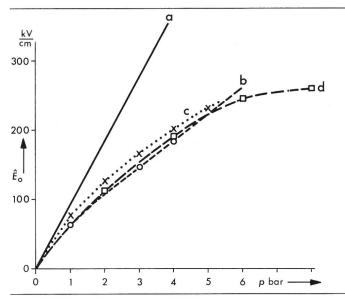


Fig. 2 Zulässige Feldstärken in SF_6 -Anlagen in Abhängigkeit vom Druck

- a maximal zulässige theoretische Feldstärke (Oberflächenrauheit R = 0)
- b maximal zulässige praktische Feldstärke ($R \le 150 \mu$)
- c Messergebnisse an konzentrischen Leitern mit Wechselspannung [1]
- d Messergebnisse mit Wechselspannung an sehr grossen Elektrodenflächen [13]

einer angenommenen Oberflächenrauhigkeit $R \le 150 \,\mu$ dargestellt und mit Messungen bei Wechselspannungen verglichen. In der Praxis stellt Kurve b die Dimensionierungsfeldstärke für die Blitzstoßspannung dar.

In Tab. II ist das Verhältnis der verschiedenen Prüfspannungen für verschiedene Netzspannungen aufgetragen. Man erkennt z.B., dass das Verhältnis der Blitzstoßspannung zum Scheitelwert der Wechselspannung bei 525 kV etwa 1,62 beträgt.

In Tab. III sind aus Messergebnissen verschiedener Autoren die Verhältnisse der Durchschlagspannungen der verschiedenen Spannungsarten zusammengestellt. Ist das Verhältnis der Durchschlagspannungen in Tab. III kleiner als das entsprechende Verhältnis der Prüfspannungen in Tab. II, so ist die im Zähler stehende Spannungsart für die Anordnung die kritischere Beanspruchung bei der Prüfung.

Ein Vergleich der beiden Tabellen zeigt, dass die negative Blitzstoßspannung die kritischste Prüfspannung darstellt, wobei zu beachten ist, dass die Messergebnisse in der Regel an «sauberen» Anordnungen gemessen wurden. Die Schaltstossspannung ist ebenfalls kritischer als die Wechselspannung. Bemerkenswert ist noch die Tatsache, dass die Durchschlagspannung mit Schaltstoßspannungen bei einigen Messungen mit derjenigen bei Wechselspannungsbeanspruchung übereinstimmt. Dies deutet darauf hin, dass mit der Schaltstoßspannung bereits der Einfluss von Verunreinigungen erfasst wird, da auch bei Labormessungen mit gewissen Verunreinigungen zu rechnen ist.

Damit bietet eine Schaltstoßspannungsprüfung Vor-Ort aus vier Gründen Vorteile:

- Es ist die tatsächliche, im Betrieb auftretende Überspannung, gegenüber der die Dimensionierung nachzuweisen ist.
- Es ist eine kritische Beanspruchungsart (Tab. III) für Montagefehler.
- Ein Einfluss von Staubteilchen auf die Durchschlagspannung tritt bei dieser Spannungsform auf [15].
- Ein Reinigungseffekt durch die Anwendung von mehreren Stössen bei 50% der Prüfspannung wird für möglich erachtet [15].

5. Prüfanlage mit schwingenden Schaltstoßspannungen

Für die Erzeugung von schwingenden Schaltstoßspannungen bietet sich der normale Marx-Generator an, wobei die Seriewiderstände durch Induktivitäten ersetzt werden. Fig. 3 zeigt das Ersatzschaltbild eines n-stufigen schwingenden Schaltstoßspannung hat gegenüber der genormten Schaltstoßspannung 250/2500 den Vorteil, dass der Ausnutzungsgrad des Generators grösser als 1 wird, weshalb der Generator für die gleiche Prüfspannung mit weniger Stufen und damit kleiner und billiger gebaut werden kann.

Die Prüflingskapazität beträgt etwa 55 pF/m Ausdehnung einer Schaltanlage, so dass man mit einer Belastungskapazität von etwa 1...4 nF bei SF₆-isolierten Schaltanlagen und von etwa 20 nF bei SF₆-isolierten Rohrleitungen rechnen kann. Die Abhängigkeit der Stirnzeit T_8 (Definition wie bei Schaltstossspannungen [5]) von der Belastungskapazität und der Induktivität kann sehr einfach mit Hilfe der Formel

$$T_{
m s} pprox \pi \sqrt{L \cdot rac{C_{
m b} \cdot C_{
m s}}{C_{
m b} + C_{
m s}}}$$

berechnet werden. In Fig. 4 ist dieser Zusammenhang graphisch dargestellt und mit Messwerten verglichen. In der Praxis der Prüftechnik von SF_6 -Anlagen sollte eine Stirnzeit

Literaturvergleich der Durchschlagswerte von negativen Blitzstoßspannungen ($U_{1,2/50}$), negativen Schaltstoßspannungen (U_{50}) und 50-Hz-Wechselspannungen (U_{50}) bei verschiedenen Anordnungen

Tabelle III

Literaturstelle	[1]	[4; 8]	[4; 8]	[8]	[9]	[10]	[10]	[11]	[11]	[12]	[16]
Anordnung	Zylinder- feld	Platten- feld	Platten- feld mit Stützer		Kugel- platte	Kugel- feld	Zylinder- feld	Zylinder- feld	Kugel- feld	Zylinder- feld	Zylinder- feld mit Stützer
Druck p bar	3,5	2,5	2,5	_	2	5	5	2,53	2,53	2	2
$U_{1,2/50}/U_{50}$	1,27	1,16	1,04	1,3	1,25	1,23	1,43	1,4	1,05	1,01,2	1,21
$U_{ m SS}/U_{ m 50}$	1,02	1,01,1	1,08	_	-	1,3	1,27	1,05	1,05	_	1,08
$U_{1,2/50}/U_{ m ss}$	1,25	1,051,16	0,965	_	_	0,945	1,13	1,33	2,0	_	1,08

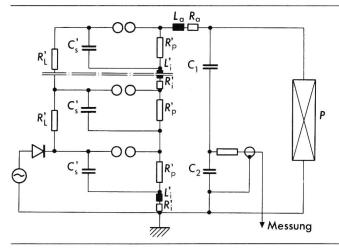


Fig. 3 n-stufiges Ersatzschaltbild für schwingenden Schaltstossgenerator

Cs' Stosskapazität pro Stufe

R_p' Parallelwiderstand pro Stufe

R_L' Ladewiderstand pro Stufe

L_i innere Induktivität pro Stufe

R_i' Gleichstromwiderstand der inneren Induktivität

La äussere Induktivität

Ra Gleichstromwiderstand der äusseren Induktivität

C1, C2 Teilerkapazität

P Prüfling

 $T_{\rm s}$ von über 100 µs angestrebt werden [4]. Dies bedeutet bei einer Grundbelastungskapazität von etwa 1500 pF (Teiler und minimale Prüflingskapazität) eine minimale Induktivität von ca. 0,7 H. Eine Stirnzeit von $T_{\rm s} > 100$ µs wird empfohlen [5] und scheint notwendig, um den Staubeinfluss auf die Durchschlagspannung zu erhalten.

Die Gesamtinduktivität wird aus Gründen der Spannungsfestigkeit aufgeteilt. Ein Teil der Induktivität wird in den Generator eingebaut, der Rest befindet sich ausserhalb des Generators. Damit ein Stossgenerator mit inneren Induktivitäten bei natürlichen Überspannungen durchzündet, sind entweder Zündkondensatoren [6] notwendig, die parallel zu den inneren Induktivitäten eingebaut sind, oder die zweite innere Serieinduktivität wird kurzgeschlossen (Fig. 3). Damit werden die natürlichen Überspannungen vom Durchzünden der ersten Stufe auf die zweite Funkenstrecke übertragen, und der schwingende Schaltstossgenerator hat den gleichen Triggerbereich wie ein mit inneren Widerständen bestückter Marxscher Stossspannungsgenerator. Durch die inneren Induktivitäten können die äusseren Induktivitäten für eine kleinere Spannung ausgelegt werden, was praktische Vorteile (geringere Gesamtabmessungen der Prüfanlage) hat.

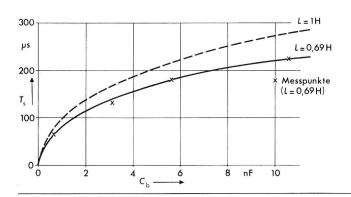


Fig. 4 Abhängigkeit der Stirnzeit $T_{\rm S}$ von der Belastungskapazität $C_{\rm b}$ Parameter: Induktivität L; $C_{\rm S}=33~{\rm nF}$

Für die Kosten der Prüfanlage ist der Ausnutzungsgrad des Generators mitentscheidend. Dieser errechnet sich aus der Näherungsbeziehung (R_p vernachlässigt, nur äussere Induktivitäten)

$$\eta \approx \frac{C_{\rm s}}{C_{\rm s} + C_{\rm b}} \left(1 + {\rm e}^{-\frac{\rm R}{2\rm L} \cdot T_{\rm s}} \right)$$

und ist in Fig. 5 in Abhängigkeit von der Belastungskapazität dargestellt. Er wird im wesentlichen durch die Grösse der Stosskapazität $C_{\rm S}$ und durch die Dämpfung R/2L beeinflusst. $C_{\rm S}$ wird aus preislichen Gründen möglichst klein gehalten. Im Belastungsbereich von 1...4 nF ergibt sich z. B. mit einer Stosskapazität von 33 nF ein Spannungsverlust von 20 % auf Grund der kleinen Stosskapazität $C_{\rm S}$. Für die Dämpfung ist vor allem der Gleichstromwiderstand der Induktivität massgebend, wobei aus Kostengründen und wegen dem Gewicht nur Luftinduktivitäten in Betracht gezogen wurden. Für eine Induktivität von 1 H ergibt sich bei einer Spannungsfestigkeit von 1000 kV ein Widerstand von etwa 2000 Ω . Damit kann im Belastungsbereich 1 nF $\leq C_{\rm D} \leq$ 4 nF mit einem Ausnutzungsgrad von über $160\,\%$ gerechnet werden.

Die Aufteilung der Gesamtinduktivität in innere und äussere Induktivitäten bewirkt eine Abweichung der Messergebnisse bei kleinen Belastungskapazitäten von dem mit der einfachen Näherungsformel errechneten Ausnutzungsgrad. Die inneren Induktivitäten führen über den Ladekreis zu einer Gegenspannung ähnlich wie bei Schaltstoßspannungen die hohen inneren Seriewiderstände [7].

Bei grösseren Belastungskapazitäten $C_{\rm b} > 10~\rm nF$ ergibt sich ebenfalls eine grössere Abweichung zwischen Messung und Näherungsrechnung, da bei der Näherungsrechnung der Einfluss der Entladung über den Parallelwiderstand nicht berücksichtigt wurde. Um bei grossen Belastungskapazitäten $C_{\rm b}$ einen guten Ausnutzungsgrad zu erreichen, wird man die Induktivität verkleinern; bei sehr grossen Belastungskapazitäten (z. B. bei langen SF₆-Rohrleitungen) wird man auch die Stosskapazität $C_{\rm s}$ erhöhen.

6. Einige Konstruktionsmerkmale

Für die Prüfung Vor-Ort ist die Grösse und das Gewicht einer Prüfanlage, neben den Kosten, ein wichtiger Parameter. Der schwingende Schaltstossgenerator wurde im Baukastensystem mit einer Stufenspannung von 100 kV aufgebaut. Jede Stufe kann einzeln zugeschaltet werden, wobei als schwerstes Bauelement ein Kondensator mit 0,4 μ F etwa 15 kp wiegt. Dadurch ist es möglich, nur die wirklich notwendige Anzahl

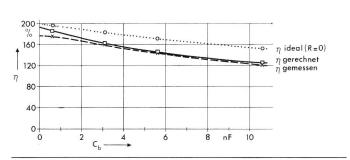


Fig. 5 Ausnutzungsgrad η in Abhängigkeit von der Belastungskapazität $C_{\rm b}$ $C_{\rm S}=33~{\rm nF},~R=R_{\rm i}+R_{\rm a}=2,6~{\rm k}\Omega,~L=0,69~{\rm H}$

Fig. 6 Schwingende Schaltstossanlage

Stufen zu verschicken und Vor-Ort aufzustellen. Für das Aufstellen einer 6stufigen Anlage benötigt ein Mann etwa 5 h.

Ebenso wichtig wie geringe Einzelgewichte ist der Raumbedarf der Prüfanlage. Durch die Aufteilung der Induktivität in innere und äussere Induktivitäten ist der Raumbedarf selbst bei der Erzeugung von Spannungen um 1000 kV (525-kV-Material) minimal. In Fig. 6 ist eine Prüfanlage für eine Schaltstoßspannung von 1000 kV dargestellt. Der 3teilige Spannungsteiler steht etwa 2 m vom 6stufigen Stoßspannungsgenerator entfernt. Da nur am Spannungsteilerkopf die volle Schaltstoßspannung von 1000 kV auftritt, kann der Abstand Generator-geerdete Teile selbst bei positiven Schaltstoßspannungen bis auf 1,5 m reduziert werden.

Um die Flexibilität der Stossanlage zu erhöhen, wurden die Ladewiderstände und die Parallelwiderstände so gewählt, dass durch das Ersetzen der Induktivitäten durch Seriewiderstände die genormte Schaltstoßspannung 250/2500 erzeugt werden kann. Durch Zuschalten eines weiteren Parallelwiderstandes und der Parallelfunkenstrecke sowie Ersetzen der Serieinduktivitäten kann der Generator auch auf Blitzstoßspannungen umgestellt werden.

Ein wesentliches Merkmal ist die Schaltfunkenstrecke, die als Mehrfachfunkenstrecke ausgeführt ist. Die Mehrfachfunkenstrecke in der ersten Stufe wird durch einen Zündimpuls von ca. 25 kV längsgetriggert. Die übrigen Mehrfachfunkenstrecken zünden nacheinander mit natürlichen Überspannungen, die beim Durchzünden der vorhergehenden Funkenstrekken entstehen. Für die Prüfung Vor-Ort ist es ein grosser Vorteil, dass infolge des grossen Triggerbereiches von über 60% für diese speziell angesteuerten Mehrfachfunkenstrecken weder eine Abstandsverstellung noch eine Druckvariation notwendig ist. Um den Stossgenerator im gesamten Ladespannungsbereich von 20 kV bis 100 kV auslösen zu können, kann man unter 60% der maximalen Ladespannung einen Teil der Funkenstrecke kurzschliessen.

Die Funkenstrecke hat eine homogene ohmsche Spannungssteuerung für Gleichspannung und eine inhomogene kapazitive Spannungssteuerung für die Überspannungen, wobei die Überspannungen jeweils auf eine Teilfunkenstrecke konzentriert werden. Bricht diese erste Teilfunkenstrecke zusammen, werden mit Hilfe von Querwiderständen zusätzlich Überspannungen in jeder Funkenstrecke für die folgenden Teilfunkenstrek-

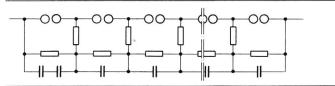


Fig. 7 Prinzipschaltbild der Mehrfachfunkenstrecke

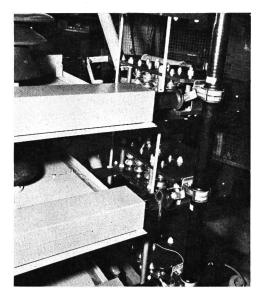


Fig. 8 Ansicht der im Generator eingebauten Mehrfachfunken-

ken erzeugt. Um die Streuung der Mehrfachfunkenstrecke herabzusetzen und den Triggerbereich weiter zu vergrössern, wird jede Funkenstrecke über eine Hilfsfunkenstrecke, die bei einer kleinen Überspannung zusammenbricht, angesteuert. Fig. 7 zeigt das Prinzipschaltbild, Fig. 8 eine Ansicht der ausgeführten Mehrfachfunkenstrecke, eingebaut im Generator. Gegenüber den bisher bekannten Mehrfachfunkenstrecken [14] hat diese den Vorteil, mit natürlichen Überspannungen durchzuzünden, so dass Triggergeneratoren in jeder Stufe vermieden werden können, ebenso wie die Nichtlinearitäten der bekannten Mehrfachfunkenstrecken [7]. Die Nachteile jeder Mehrfachfunkenstrecke, stärkere Kühlung des Lichtbogens und damit Abreissen des Lichtbogens bei kleinen Strömen, grösserer Lichtbogenspannungsabfall und stärkere Erosion der Teilfunkenstrecken, konnten bei der vorliegenden Anwendung

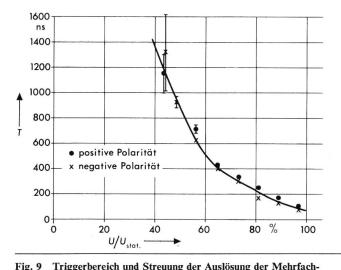


Fig. 9 Triggerbereich und Streuung der Auslösung der Mehrfachfunkenstrecke bei beiden Polaritäten (6stufiger Generator) in Abhängigkeit der Arbeitsspannung

Ustat statische Ansprechspannung

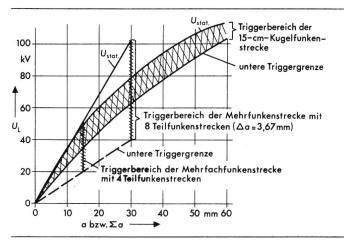


Fig. 10 Vergleich des Triggerbereiches einer Einfachfunkenstrecke (Ladespannung $U_{\rm L}$) und der Mehrfachfunkenstrecke für einen 6stufigen Generator

infolge der geringen Leistung der Prüfanlage und der reduzierten Anzahl Teilfunkenstrecken praktisch ausgeschaltet werden.

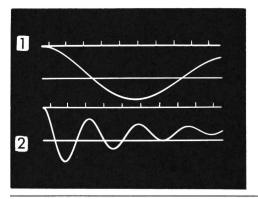

Fig. 9 zeigt den Triggerbereich der Mehrfachfunkenstrecke und dessen Streuung. Bei beiden Polaritäten ergibt sich ein Bereich von über 60%, so dass ein Einstellen des Generators unproblematisch wird. Die Streuung der Triggerung ist in einem Bereich von etwa 50 % kleiner als \pm 50 ns.

Fig. 10 zeigt den Triggerbereich eines 6stufigen Generators mit Kugelfunkenstrecken als Schaltfunkenstrecken im Vergleich zum Triggerbereich des Generators mit der Mehrfachfunkenstrecke. Man erkennt den wesentlich grösseren Triggerbereich der Mehrfachfunkenstrecken. Durch einmaliges Kurzschliessen von Teilfunkenstrecken ist es möglich, den gesamten Arbeitsbereich zu erfassen.

Fig. 11 zeigt die Impulsform, die mit dieser Prüfanlage an einer Belastung von 3,1 nF mit einer Induktivität von 690 mH erreicht wurde. Wirkungsgrad und Impulsform stimmen mit den gerechneten Werten überein (Fig. 4 und Fig. 5).

Adresse des Autors

Dr.-Ing. Kurt Feser, Emil Haefely & Cie. AG, 4000 Basel 28.

Spannungsoszillogramm einer schwingenden Schaltstossanlage

 $C_b = 3.1 \text{ nF}, L = 0.69 \text{ mH}, C_s = 33 \text{ nF},$ $R=2,6 \text{ k}\Omega$

Strahl 1: 25 µs/Einheit, Strahl 2:100 µs/Einheit

Literatur

- [1] P. Högg, W. Schmidt et H. Strasser: Conception de l'appareillage blindé, isolée au SF₆ pour atteindre une haute sureté de service. Rapport CIGRE Nr. 23–10, 1972.
- [2] T.F. Garrity, R. Matulic and G. Rhodes: Installation and field testing of 138 kV SF₆ gas insulated station and transmission line. Trans. IEEE PAS 94(1975)5, p. 1589...1598.
- [3] A. Pedersen: The effect of surface roughness on breakdown in SF₆. Trans.
- [5] A. Federsen: The effect of surface foughness on breakdown in SF₆. Itals. IEEE PAS 94(1975)5, p. 1749...1754.
 [4] W. Boeck, D. Kind und K.-H. Schneider: Hochspannungsprüfungen von SF₆-Anlagen vor Ort. ETZ-A 94(1973)7, S. 406...412.
- [5] Techniques des essais à haute tension. Publications de la CEI No. 60-I/60-2,
- [6] K. Feser: Erweiterung des Auslösebereiches von vielstufigen Stossgeneratoren für die Erzeugung von Schaltstoßspannungen. ETZ-A 94(1973)3, S. 171...174.
- K. Feser: Probleme bei der Erzeugung hoher Schaltstoßspannungen im Prüffeld. Bull. SEV/VSE 65(1974)7, S. 496...508.
- [8] H.W. Graybill, J.C. Cronin and E. J. Field: Testing of gas insulated substations and transmissions systems. Trans. IEEE PAS 93(1974)1, p. 404...413.
- J. Vontobel: Anwendung von Schwefelhexaftuorid (SF₆) im Schaltanlagenbau für Hoch- und Höchstspannungen. Bull. SEV 62(1971)14, S. 676...682.
- [10] S. Menju a.o.: Dielectric breakdown of high pressure SF6 in sphere and coaxial
- cylinder gaps. Trans. IEEE PAS 93(1974)5, p. 1706...1712.
 [11] A. Rein, A. Arnesen and T. Ulriksen: Breakdown in SF₆ with different voltage waveforms. Internationales Symposium Hochspannungstechnik, Zürich, 1975, Bd. 2, S. 370...374.
- [12] H. Kuwahara a.o.: Effect of solid impurities on breakdown in compressed SF₆ gas. Trans. IEEE PAS 93(1974)5, p. 1546...1555.
- [13] T. Nitta, N. Yamada and Y. Fujiwara: Area effect of electrical breakdown in compressed SF₆. Trans. IEEE PAS 93(1974)2, p. 623...629.
 [14] M. J. Bishop und R. Feinberg: Grundsätzliche Verbesserung des Hochspannungs-Stossgenerators. Anwendung des Polytrigatrons als Schaltgerät. E und M. 62(1921) 2.6.62 (2). M 88(1971)2, S. 62...67.
- [15] G.P. Baer, A. Diessner and G.F. Luxa: 420 kV SF₆-insulated tubular bus for the Wehr pumped-storage plant. Trans. IEEE PAS 95(1976)2, p. 469...477.
- [16] J. Moeller: Metal-clad test transformer for SF₆-insulated switchgear. Internationales Symposium Hochspannungstechnik, Zürich, 1975. Bd. 1, S. 161...
- [17] F. Brändlin, K. Feser und H. Sutter: Eine fahrbare Stossanlage für die Prüfung von gekapselten SF₆-isolierten Schaltanlagen. Bull. SEV 64(1973)3, S. 113...119.