Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des

Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de l'Association suisse des électriciens, de l'Association des entreprises

électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein; Verband Schweizerischer

Elektrizitätsunternehmen

Band: 68 (1977)

Heft: 10

Artikel: Physikalische Eigenschaften von Supraleitern für technische

Anwendungen

Autor: Olsen, J. L.

DOI: https://doi.org/10.5169/seals-915026

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 03.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

BULLETIN

des Schweizerischen Elektrotechnischen Vereins de l'Association Suisse des Electriciens

des Verbandes Schweizerischer Elektrizitätswerke de l'Union des Centrales Suisses d'Electricité

Elektrotechnik—Electrotechnique

Physikalische Eigenschaften von Supraleitern für technische Anwendungen

Von J. L. Olsen

537.312.62

Für die erfolgreiche technische Anwendung eines Supraleiters sind eine hohe Sprungtemperatur, ein hohes kritisches Magnetfeld, eine grosse Stromtragfähigkeit und kleine Wechselstromverluste notwendig. Die physikalischen Probleme einer solchen Spezifikation werden kurz erläutert.

Pour qu'un supraconducteur soit utilisable dans la technique, il doit avoir une température critique élevée, un champ magnétique critique élevé, une grande capacité de transport de courant et de petites pertes en courant alternatif. Les problèmes physiques d'une telle spécification sont expliqués brièvement.

1. Einleitung

Die Supraleitung wurde 1911 von Kamerlingh-Onnes im Laufe seiner Untersuchungen über die elektrische Leitfähigkeit der Metalle bei sehr tiefen Temperaturen entdeckt, als er das vollständige Verschwinden des elektrischen Widerstandes von Quecksilber unterhalb einer Temperatur von 4,2 K beobachtete. Die Bedeutung dieses einzigartigen physikalischen Phänomens für die Elektrotechnik wurde sofort verstanden, und die Physiker bemühen sich seit 65 Jahren, supraleitende Materialien herzustellen, deren physikalische Eigenschaften den Ansprüchen der Elektroingenieure genügen. Für eine gute und ausführliche Beschreibung der Supraleitung siehe z.B. [1]¹).

Es ist einfach, die Parameter und wichtigsten Kriterien für die technische Anwendung eines Supraleiters aufzuzählen: Die Supraleitung erscheint erst unterhalb einer für jede Substanz charakteristischen Temperatur, der Übergangstemperatur, Sprungtemperatur oder «kritischen Temperatur» (T_c) . Sie wird durch ein Magnetfeld, das kritische Feld, zerstört. Die Dichte des in einem bestimmten Magnetfeld verlustlos fliessenden Stromes (J_c) ist begrenzt. Auch in Feldern kleiner als das kritische und mit Stromdichten kleiner als J_c entstehen resistive Verluste bei zeitlich variierenden Feldern und Strömen.

Für die erfolgreiche technische Anwendung soll ein supraleitendes Material eine möglichst hohe Übergangstemperatur und ein hohes kritisches Feld besitzen, grosse Stromdichten zulassen und kleine Ohmsche Verluste bei Wechselfeld und Wechselstrom aufweisen.

1) Siehe Literatur am Schluss des Aufsatzes.

2. Die kritische Temperatur T_c

Heute sind 27 metallische Elemente bekannt, die in ihrer gewöhnlichen Tiefdruckphase unterhalb einer kritischen Temperatur $T_{\rm c}$ supraleitend werden. Weitere 10 Elemente werden unter Druck supraleitend. Diese sind in Tab. I aufgeführt.

Nicht nur Elemente, sondern auch viele Legierungen und intermetallische Verbindungen sind supraleitend. Die neueste Aufstellung [2] solcher Substanzen enthält die Übergangstemperaturen von mehr als 2000 verschiedenen supraleitenden Materialien. Die Supraleitung ist also ein weit verbreitetes Phänomen.

Die höchste bekannte Sprungtemperatur eines Elementes ist diejenige von Niob mit $T_{\rm c}=9,2~{\rm K}$. Für die technische Anwendung ist die Höhe von $T_{\rm c}$ massgebend, und es ist deshalb erfreulich, dass unter den Legierungen und Verbindungen viele Beispiele mit wesentlich höheren Werten für $T_{\rm c}$ existieren als diejenigen der reinen Metalle. Zurzeit liegt der Rekord bei einer Niob-Zinn-Germanium-Verbindung mit $T_{\rm c}=23,6~{\rm K}$ [3]. Tab. II enthält eine Liste weiterer Supraleiter mit hohen Übergangstemperaturen.

Um Hinweise zu erhalten, welche anderen Verbindungen und Legierungen bei hohen Temperaturen supraleitend sein können, müsste man eigentlich theoretische Untersuchungen anstellen. Es ist auch selbstverständlich eine Aufgabe einer Supraleitungstheorie, über T_c -Werte für Metalle, deren elektronische Eigenschaften bekannt sind, Voraussagen zu machen. Die heute allgemein akzeptierte Theorie der Supraleitung wurde 1957 von *Bardeen, Cooper* und *Schrieffer* [4] (BCS) vor-

Be 0.026										В	С
Mg										Al 1.18	Si
Sc	Ti 0.4	V 5.4	Cr	Mn	Fe	Со	Ni	Cu	Zn 0.85	Ga 1.08	Ge
Y	Zr 0.61	Nb 9.25	Mo 0.92	Tc 7.8	Ru 0.49	Rh	Pd	Ag	Cd 0.52	In 3.41	Sn 3.72
La (α) 4.88	Hf 0.13	Ta 4.47	W 0.015	Re 1.70	Os 0.66	Ir 0.112	Pt	Au	Hg (α) 4.15	T1 2.38	Pb 7.20
Ac		Ce	Pr	Nd		.u .1					
			Pa 1.4	U	L	.w					

geschlagen. Nach dieser Theorie führt eine Wechselwirkung zwischen den Leitungselektronen eines Metalls und den Gitterschwingungen zu einer Bildung von Elektronenpaaren, deren Energie tiefer liegt als diejenige der normalen ungepaarten Elektronen. Dieser Prozess ist für die Änderungen im Verhalten der Elektronen, die gesamthaft als Supraleitung bezeichnet werden, verantwortlich. Es ist die Stärke der Elektronen-Gitter-Wechselwirkung, die die Höhe von $T_{\rm c}$ bestimmt.

Die BCS-Theorie ist 20 Jahre alt und gibt für die meisten mit der Supraleitung verbundenen Phänomene ausgezeichnete und genaue Voraussagen. Trotzdem ist es erst in den letzten Jahren möglich geworden, mit einiger Sicherheit die Sprungtemperaturen vorauszusagen, aber auch dies nur für sehr einfache Metalle.

Es ist möglich, einige stichhaltige Bemerkungen zu machen. Für ein hohes $T_{\rm c}$ muss die Zahl der Elektronenzustände, die für eine Wechselwirkung zwischen Elektronen und Phononen zugänglich sind, möglichst gross sein. Dies wird durch eine grosse Zustandsdichte der Elektronen an der Fermi-Grenze erreicht. Gleichzeitig scheint für ein hohes $T_{\rm c}$ eine gewisse «Weichheit» des Kristallgitters förderlich zu sein. Obwohl die für einen Supraleiter mit hoher Sprungtemperatur günstigen Eigenschaften wenigstens teilweise bekannt sind, geht die Suche nach höheren $T_{\rm c}$ nur langsam vorwärts.

Eine obere Grenze für $T_{\rm c}$ in Substanzen mit sonst gewöhnlichen metallischen Eigenschaften wird dadurch gegeben, dass die für die Supraleitung förderlichen elastischen Eigenschaften des Gitters auch zu einer Instabilität des Gitters selbst führen. Es scheint, dass für die meisten zurzeit bekannten Kristallsysteme $T_{\rm c}=30~{\rm K}$ als eine obere Grenze des Möglichen zu betrachten ist. Versucht man Substanzen herzustellen, für die noch höhere Sprungtemperaturen zu erwarten wären, findet man fast immer, dass die gewünschte Phase nicht stabil ist.

Ein interessanter Fall scheint die metallische Hochdruckphase des Wasserstoffes zu sein. Wasserstoff wird unter einem Druck von ca. 1,6 Mbar metallisch [5]. Aufgrund der gleichen BCS-Theorie, die für die anderen metallischen Elemente Sprungtemperaturen unterhalb 10 K voraussagt, erwartet man für metallischen Wasserstoff eine Sprungtemperatur von ca. 250 K. Wäre es möglich, diese Phase zu stabilisieren und bei Atmosphärendruck zu erhalten, dann stünde eine elektrotechnisch äusserst nützliche Substanz zur Verfügung.

Eine Möglichkeit, durch andere Wechselwirkungen als jene zwischen Elektronen und Phononen in den Metallen Supraleitung zu erzeugen und damit zu höheren Sprungtemperaturen zu kommen, wurde vor ca. 15 Jahren mit grossem Optimismus von *W. A. Little* [6] vorgeschlagen. Er nahm einen Mechanismus an, wonach Oszillationen in langen kettenförmigen organischen Molekülen zu einer für die Hochtemperatursupraleitung günstigen Wechselwirkung führen sollten, womit man Supraleitung oberhalb 100 K zu finden hoffte. Keine Substanzen der vorgeschlagenen Art wurden bis jetzt supraleitend.

Der Autor ist der Auffassung, dass der Realist nicht allzuviel Hoffnung auf Sprungtemperaturen oberhalb 30 K setzen soll. Sogar für dieses T_c muss man wohl noch einige Jahren warten.

3. Das thermodynamische kritische Feld $H_{ extsf{c}}$

In den meisten reinen elementaren supraleitenden Metallen wird die Supraleitung unterhalb $T_{\rm c}$ durch ein bestimmtes kritisches Magnetfeld $H_{\rm c}$ zerstört. In Feldern kleiner als $H_{\rm c}$ ist nicht nur der spezifische Widerstand gleich null, auch die relative magnetische Permeabilität ist null. Die Supraleiter sind also perfekte Diamagnete. Der Übergang supraleitend zu normalleitend geschieht ganz scharf und reversibel.

Supraleitende Legierungen und Verbindungen mit hoher Sprungtemperatur T_c

Tabelle II

Stoff	<i>T</i> _c (K)
Nb₃Ge	23,2
$Nb_3 Al_{0.8} Ge_{0.2}$	20,7
Nb ₃ Al	18,4
Nb ₃ Sn	18,0
V_3 Ga	14,5
MoRe	11,1
NbZr	10,8

Der Wert von H_c kann durch ein einfaches Gesetz mit guter Genauigkeit wiedergegeben werden:

$$H_{\rm c} = H_0 [1 - (T/T_{\rm c})^2]$$

wo H_0 das kritische Feld bei T = 0 ist.

Die kritischen Felder für einige Supraleiter werden in Fig. 1 gezeigt. Für solche Metalle ist der Übergang normal-/supraleitend ein scharfer Übergang zwischen zwei Phasen. Es ist deshalb möglich, die Thermodynamik zu verwenden, um Zusammenhänge mit anderen Eigenschaften des Materials zu gewinnen. Eine für die Abschätzung der möglichen Werte von H_0 wichtige Aussage ist

$$H_0^2 = \gamma \varrho T_e^2 / 2\mu_0$$

wo ϱ die Dichte des Metalls und γT die spezifische Wärme der Elektronen im normalen Zustand sind. γ ist proportional der Zustandsdichte der Elektronen an der *Fermi*-Fläche.

Aufgrund der in Abschnitt 2 erwähnten Abhängigkeit der kritischen Temperatur von γ existiert ein interessanter empirischer Zusammenhang zwischen T_c und dem thermodynamischen kritischen Feld H_c . Diese zuerst von Lewis [7] gezeigte Relation ist in Fig. 2 dargestellt. Diese Darstellung erlaubt eine Abschätzung der zu erwartenden thermodynamischen kritischen Felder als Funktion der Sprungtemperaturen. Sie zeigt, dass es auch für Substanzen mit T_c in der Gegend von 20 K kaum zu erwarten ist, thermodynamische kritische Felder grösser als 1 T zu finden. Solche Werte sind zu klein, um bei der Verwendung von Supraleitern statt von Normalleitern in der Technik wesentliche Vorteile zu erbringen.

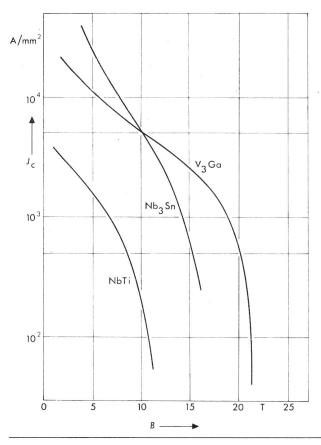


Fig. 1 Temperaturabhängigkeit der kritischen Felder von reinen Metallen

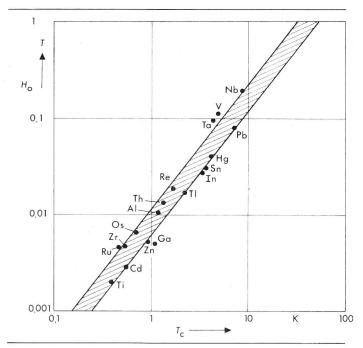


Fig. 2 Kritisches Feld H_0 bei T=0 als Funktion der Sprungtemperatur

4. Supraleiter zweiter Art

Schon 1930 haben de Haas und Voogd [8] gefunden, dass in gewissen Legierungen in viel höheren Magnetfeldern als den eigentlich zu erwartenden thermodynamischen kritischen Feldern der elektrische Widerstand gleich null war. Ein solcher Effekt ist weit verbreitet. Obwohl reine elementare Supraleiter meistens einen scharfen Übergang supra-/normalleitend bei $H_{\rm c}$ zeigen, findet man bei Legierungen von einer bestimmten minimalen Fremdatomkonzentration an ein komplexes Verhalten. Verglichen mit dem reinen Metall behalten sie nur bis zu einem unteren kritischen Feld $H_{\rm c1} < H_{\rm c}$ die magnetische Eigenschaft des reinen Supraleiters. Oberhalb $H_{\rm c1}$ sind sie nicht länger vollständig diamagnetisch. Das Magnetfeld dringt langsam ein, bis die Supraleitung bei einem oberen kritischen Feld $H_{\rm c2} > H_{\rm c}$ ganz verschwindet. Den Zustand zwischen $H_{\rm c1}$ und $H_{\rm c2}$ nennt man den gemischten Zustand.

Die Struktur des gemischten Zustandes ist interessant. Obwohl das magnetische Feld den Supraleiter durchdringt, geschieht dies nicht homogen. Das Feld wird in normalleitende «Schläuche», Flusslinien genannt, konzentriert. Jede Flusslinie trägt ein «Quantum» von magnetischem Fluss. Dieses Quantum von Fluss Φ_0 ist durch die Relation

$$\Phi_0 = h/2e = 2 \cdot 10^{-15} \text{ Wb}$$

wo h die Plancksche Konstante und e die Elektronenladung sind, gegeben. In einem zentralen Kern der Flusslinie ist das Material normalleitend und ausserhalb dieses Kerns ist es supraleitend.

Zwischen den Flusslinien wirken abstossende Kräfte, und die Flusslinien ordnen sich in ein reguläres, meist hexagonales Gitter. Bilder dieses Flussliniengitters wurden von *Essmann* und *Träuble* [9] aufgenommen. Sie liessen sehr kleine Eisenpartikel auf der Oberfläche des Supraleiters ablagern. Diese Ablagerung ist dort konzentriert, wo das Magnetfeld am stärksten ist. Eine elektronenmikroskopische Aufnahme des Eisenniederschlages zeigt das Flussliniengitter wie in Fig. 3. Darin zeigen die dunklen Stellen, wo das Magnetfeld am stärksten ist.

Misst man den elektrischen Widerstand im gemischten Zustand, findet man, dass er stromabhängig ist. Bei kleinen Strömen bleibt $\varrho=0$ bis in die Nähe von $H_{\rm c2}$, während bei grösseren Strömen der Widerstand schon bei kleineren Magnetfeldern in Erscheinung tritt.

Für eine technische Anwendung ist es zweifellos wichtig, dass $H_{\rm c2}$ möglichst hoch ist.

5. Die Höhe des oberen kritischen Feldes H_{c2}

Eine Untersuchung über die Grösse von $H_{\rm c2}$ für verschiedene Legierungen eines bestimmten Grundmetalls zeigt einen einfachen Zusammenhang zwischen dem thermodynamischen kritischen Feld $H_{\rm c}$ und $H_{\rm c2}$. Es ist

$$H_{e2} = \sqrt{2} \left(\kappa_0 + \kappa_s \right) H_e$$

wo κ_0 eine für das Grundmetall charakteristische Grösse ist und

$$\kappa_{\rm s} = C \gamma \varrho_0.$$

Hier sind C eine Konstante, γT die elektronische spezifische Wärme und ϱ_0 der spezifische elektrische Widerstand der Legierung im normalleitenden Zustand bei tiefen Temperaturen. Es ist klar, dass man aus einem bestimmten Metall einen Supraleiter mit hohem H_{c2} machen kann, indem man möglichst viele stark streuende Fremdatome zulegiert, um den elektrischen Widerstand zu erhöhen. Ein Beispiel der Variation von H_c , H_{c1} und H_{c2} als Funktion der Zulegierung in Indium zeigt Fig. 4. In Tab. III sind die Werte von H_{c2} von einigen Supraleitern mit hohen T_c aufgeführt. Aus dieser Tabelle sieht man, dass bei gewissen intermetallischen Legierungen sehr hohe H_{c2} auftreten. Eine genauere Untersuchung solcher Substanzen zeigt, dass die grossen Werte nur teilweise durch grosse Streuwahrscheinlichkeiten zu erklären sind und dass dort hohe κ_0 wesentlich zu H_{c2} beitragen.

Die Frage, ob H_{c2} beliebig erhöht werden kann, wurde zunächst von *Clogston* (10) 1962 beantwortet. Er wies darauf hin, dass im gemischten Zustand das Magnetfeld auch in den supraleitenden Bereich eindringt. Nun bestehen die Elektronen-

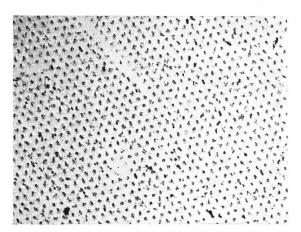


Fig. 3 Dreieckiges Flussgitter auf der Oberfläche eines Supraleiters zweiter Art in einem senkrechten Magnetfeld

Die schwarzen Punkte sind Anhäufungen kleiner Kobalt-Partikel. Wenn man entlang den dichtbesetzten Gittergeraden schaut, sind einige Versetzungen des Flussliniengitters zu sehen. Vergrösserung $6000\times$, $B=0.036~\mathrm{T}$

(Bild von Dr. B. Obst, Institut für experimentelle Kernphysik, Kernforschungszentrum Karlsruhe, freundlicherweise zur Verfügung gestellt)

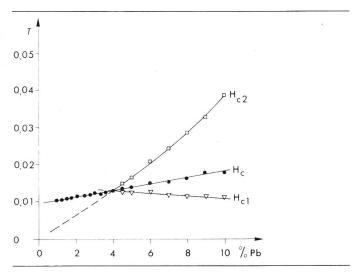


Fig. 4 Kritische Felder von InPb-Legierungen

Kritische Felder einiger Hochfeldsupraleiter

Tabelle III

Stoff	T _c (K)	H _e (T) bei 0 K	H _{c2} (T) bei 0 K	
Nb₃Sn	18	0.03	22–35	
MoRe	11.1	0.4	1.5-2.5	
NbZr	10.8	0.05	3–12	

paare, die den supraleitenden Zustand bilden, aus Elektronen, deren magnetische Momente antiparallel stehen. In einem Magnetfeld gibt es zwischen den zwei antiparallelen «spins» einen Energieunterschied proportional zur Feldstärke. Wird dieser Energieunterschied von gleicher Grösse wie die Bildungsenergie der Elektronenpaare, dann kann erwartet werden, dass die Supraleitung zerstört wird. Aus dieser Überlegung lässt sich eine obere Grenze des kritischen Feldes $H_{\rm e2}$ berechnen. Bei $T\!=\!0$ ist dies

$$H_{c2} \leq 1.84 \cdot T_c$$
 (in T und K)

Nach dieser in vielen Fällen gut bestätigten Regel sind kritische Felder grösser als ca. 37 T für Supraleiter, deren Übergangstemperaturen bei 20 K liegen, kaum zu erwarten. 37 T ist ein Magnetfeld, womit mancher Fortschritt der Elektrotechnik zu erreichen wäre.

Die Möglichkeit, Materialien mit noch höheren kritischen Feldern herzustellen, wurde 1973 durch die Entdeckung von ternären Molybdän-Sulphiden, die bis zu 50 T supraleitend bleiben, gezeigt [11]. In solchen Substanzen existiert, zusätzlich zur Streuung der Elektronen an gewöhnlichen Verunreinigungen, auch eine Streuung an magnetischen Verunreinigungen. Theoretische Überlegungen haben gezeigt, dass in diesem Fall die von *Clogston* vorausgesagte obere Grenze des kritischen Feldes noch überschritten werden kann. Auch hier scheint es, als ob eine oberste Grenze bestünde, umgekehrt proportional zur kürzestmöglichen freien Weglänge der Elektronen in einer solchen Substanz. Es ist zu erwarten, dass diese Grenze in der Gegend von 100 T liegt.

Der Ingenieur, der derart starke Magnetfelder erzeugen möchte, sei daran erinnert, dass die auf eine Magnetspule wirkenden Kräfte in diesen Feldern sehr gross werden. Bei 100 T werden die Wicklungen eines Solenoides von Kräften nach aussen gepresst, die einem Druck von 40000 bar entsprechen.

6. Die kritischen Ströme

Ein Supraleiter im gemischten Zustand wird, wie erwähnt, von einem Flussliniengitter parallel zum Magnetfeld durchbohrt. Im Zentrum dieser Flusslinien befindet sich ein Kern aus Metall im Normalzustand. Ausserhalb dieses Flusskernes ist das Material supraleitend. Es ist verlockend anzunehmen, dass ein angelegter elektrischer Strom einen Weg rund um die Flusskerne finden wird und somit widerstandslos fliessen kann.

Diese Annahme ist nur teilweise richtig. Bekanntlich besteht zwischen Strom und Magnetfeld eine Wechselwirkung, die sich in einer zum Strom und Feld senkrechten Kraft auswirkt. Im Supraleiter äussert sich dies in einer Tendenz, das Flussgitter seitwärts zu verschieben. Lässt sich das Flussgitter bewegen, so wird im Supraleiter eine Spannung induziert, die der Anzahl der pro Zeiteinheit durch den Supraleiter bewegten Flusslinien proportional ist. Diese Spannung lässt sich von einer gewöhnlichen Spannung, die von einem elektrischen Widerstand herrührt, nicht unterscheiden. Der Supraleiter im gemischten Zustand scheint dann je nachdem, ob und wie schnell das Flussgitter sich bewegt, entweder widerstandslos zu sein oder normal zu leiten, mit einem strom- und feldabhängigen spezifischen Widerstand $\varrho(\vec{H}, \vec{J})$ zwischen Null und dem normalen Werf

Die zwischen Feld und Strom wirkende Kraft \overrightarrow{F} pro Volumeneinheit ist bekanntlich $\overrightarrow{F} = \overrightarrow{J} \times \overrightarrow{B}$, wo \overrightarrow{J} die Stromdichte und B die magnetische Induktion ist. Falls die Bewegung der Flusslinien irgendwie durch Hindernisse erschwert wird, ist zu erwarten, dass das Gitter bei kleinen Transportströmen un-

Fig. 5 Strom-Spannungs-Charakteristik für zwei verschiedene Nb_{0.5} Ta_{0.5}-Proben bei 3 K in einem Feld von 0.2 T Die gestrichelte Kurve zeigt den Spannungsverlauf einer idealen Probe

beweglich bleibt und erst bei genügend grossen Werten von $\overrightarrow{F} = \overrightarrow{J} \times \overrightarrow{B}$ in Bewegung gerät. Man darf deshalb voraussagen, dass bei einem angelegten konstanten transversalen Magnetfeld die über eine Probe beobachtete Spannung gleich null bleibt bis zu einer bestimmten kritischen Stromdichte J_c . Dann wird die Probe resistiv, und ihr Widerstand steigt linear mit der zusätzlichen Stromstärke an. Solche Beobachtungen sind in Fig. 5 wiedergegeben [12].

Für eine technische Anwendung des supraleitenden Drahtes muss der effektive Widerstand sehr klein oder gleich null sein. Es ist deshalb von grösster Wichtigkeit, Materialien mit hohem $J_{\rm c}$ herzustellen. Aus den vorangehenden Bemerkungen geht hervor, dass es zu diesem Zweck notwendig ist, möglichst viele und starke Hindernisse für die Bewegung der Flusslinien im Supraleiter einzubauen. In der allgemein üblichen angelsächsischen Terminologie der Supraleitung werden solche Hindernisse «Pinning Centres» genannt.

Als Pinning-Zentren kommen lokale Variationen der Zusammensetzung des Supraleiters, Korngrenzen zwischen den Kristallen, starke Anhäufungen von Dislokationen, Löcher und Partikel von Fremdmaterial in Frage. Die in der Herstellungstechnik verwendeten Verfahren zielen meistens darauf hin, durch passende Wärmebehandlung und mechanische Verformung ein möglichst feinkristallines Gefüge mit grosser Dislokationsdichte herzustellen. Soweit wie möglich werden auch Konzentrationsgradienten der verschiedenen Komponenten der Legierung erzeugt. Selbstverständlich ist der kritische Strom nun sowohl temperatur- als auch feldabhängig. Einige typische Kurven sind in Fig. 6 wiedergegeben.

Die in Fig. 6 gezeigten Stromstärken sind sehr gross, und es ist klar, dass eine plötzliche Zerstörung der Supraleitung in einem strombelasteten Leiter zu einer raschen, eventuell destruktiven Erwärmung des Leiters führen kann. Um dies zu vermeiden, werden die im normalen Zustand recht hochohmigen technisch verwendeten Supraleiter meistens «stabilisiert». Der Supraleiter wird in eine Kupfer-Matrix eingebettet, so dass im Falle einer Zerstörung der Supraleitung der Strom wenigstens zeitweise ohne Gefahr vom normalen Kupfer getragen werden kann.

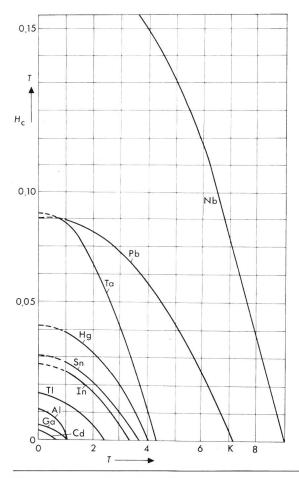


Fig. 6 Typische kritische Stromdichten J_c als Funktion des angelegten Magnetfeldes B

Es hat sich gezeigt, dass die Wahrscheinlichkeit einer plötzlichen lokalen Erwärmung im Supraleiter selbst durch eine Aufteilung des supraleitenden Leiterquerschnittes stark reduziert werden kann. Es werden deshalb heute meistens Multifilament-Supraleiter verwendet, worin Tausende von supraleitenden Filamenten mit Durchmessern von einigen um im normalleitenden Kupfer oder der Aluminium-Matrix eingebettet sind.

7. Wechselstromverluste

Bei Gleichstrom und in einem konstanten Magnetfeld ist es möglich, sehr grosse Stromdichten in Anwesenheit starker transversaler Magnetfelder verlustlos zu transportieren. Leider ist dies nur so lange der Fall, als sowohl Magnetfeld als auch Stromdichte konstant gehalten werden. Ändert sich eines von beiden, dann treten Verluste auf, die sehr schnell für die technische Anwendung untragbar werden. Die Gründe solcher Verluste sind a) eine nicht reversible feldabhängige Bewegung der Flusslinien und b) Wirbelströme in der normalleitenden Matrix um die supraleitenden Filamente.

Untersuchungen über Möglichkeiten, solche Verluste zu minimalisieren, werden zurzeit intensiv betrieben. Die zunächst als erfolgversprechend erscheinenden Methoden sind: eine stärkere Reduktion der Dimensionen der supraleitenden Filamente, eine Erhöhung der elektrischen Widerstände der Matrix sowie eine Verdrillung oder Verflechtung der einzelnen Filamente. Es ist wahrscheinlich, dass eine konsequente Weiterverfolgung solcher Arbeiten zu wirklich nützlichen Wechselstromsupraleitern führen wird.

8. Schlussbemerkungen

Für eine technische Anwendung der Supraleitung werden Supraleiter mit möglichst hohen Werten von T_c, H_c, H_{c2}, J_c und mit kleinen Wechselstromverlusten benötigt. Die bisherige Grundlagenforschung hat die Entwicklungsrichtungen gezeigt, die verfolgt werden müssen, um bessere technische Supraleiter herzustellen. An der Weiterentwicklung der technischen Supraleiter wird auch in der Schweiz intensiv gearbeitet.

Literatur

- [1] W. Buckel: Supraleitung, Grundlagen und Anwendung. Weinheim, Physik-Verlag, 1972.
 [2] B. W. Roberts: Survey of superconductive materials and critical evalua-
- tion of selected properties. Journal of Physical and Chemical Reference Data 5(1976)3, p. 581...821.
- [3] L. R. Testardi, J. H. Wernick and W. A. Royer: Superconductivity with onset above 23°K in Nb-Ge sputtered films. Solid State Communications 15(1974)1, p. 1...4.
- [4] J. Bardeen, L. N. Cooper and J. R. Schrieffer: Theory of superconductivity. Physical Review 108(1957)5, p. 1175...1204.
 [5] F. V. Grigor'ev a. o.: Experimental determination of the compressibility of hydrogen at densities 0,5-2 g/cm³. Metallization of hydrogen. JETP Letters 16(1972)5, p. 201...204.
 [6] W. A. Little, Possibility of conthesizing an approximation.
- [6] W. A. Little: Possibility of synthesizing an organic superconductor. Physical Review 101(1956)6A, p. 1416...1424.
- [7] H. W. Lewis: Superconductivity and electronic specific heat. Physical Review 101(1956)3, p. 939.
- [8] W. J. de Haas and J. Voogd: The influence of magnetic fields on superconductors. Communications from the Physical Laboratory of the University of Leiden -(1930)208b, p. 7...20.
- U. Essmann and H. Träuble: The direct observation of individual flux lines in type II superconductors. Physical Letters 24A(1967)10, lines in t p. 526...527.
- [10] A. M. Clogston: Upper limit for the critical field in hard superconduc-
- tors. Physical Review Letters 9(1962)6, p. 266...267.

 [11] O. Fischer a. o.: Measurements of critical fields up to 500 kG in the ternary molybdenum sulphides. Journal of Physics C: Solid State Physics 7(1974)-, p. L 450...L 453.
- [12] Y. B. Kim, C. F. Hempstead and A. R. Strnad: Flux-flow resistance in type-II superconductors. Physical Review 139(1965)4A, p. 1162...1172.

Adresse des Autors

Prof. Dr. J. L. Olsen, Laboratorium für Festkörperphysik, ETHZ Hönggerberg,

Anhang: Kurzzeichen und Ordnungszahl chemischer Elemente

Ac	89	Actinium	Nd	60	Neodym
Ag	47	Silber	Ni	28	Nickel
Al	13	Aluminium	Os	76	Osmium
As	33	Arsen	P	15	Phosphor
Au	79	Gold	Pa	91	Protaktinium
Ba	56	Barium	Pb	82	Blei
Be	4	Beryllium	Pd	46	Palladium
Bi	83	Wismut	Pr	59	Praseodym
Cd	48	Cadmium	Pt	78	Platin
Ce	58	Cer	Re	75	Rhenium
Co	27	Kobalt	Rh	45	Rhodium
Cr	24	Chrom	Ru	44	Ruthenium
Cs	55	Caesium	Sb	51	Antimon
Cu	36	Kupfer	Sc	21	Scandium
Fe	26	Eisen	Se	34	Selen
Ga	31	Gallium	Si	14	Silizium
Ge	32	Germanium	Sn	50	Zinn
Hf	72	Hafnium	Ta	73	Tantal
Hg	80	Quecksilber	Tc	99	Technicium
In	49	Indium	Th	90	Thorium
Ir	77	Iridium	Ti	22	Titan
La	57	Lanthan	T1	81	Thallium
Lu	71	Lutetium	U	92	Uran
Lw	103	Lawrencium	V	23	Vanadium
Mg	12	Magnesium	W	74	Wolfram
Mn	25	Mangan	Y	39	Yttrium
Mo	42	Molybdän	Zn	30	Zink
Nb	41	Niobium	$\mathbf{Z}\mathbf{r}$	40	Zirkonium