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Condensateurs Circulaires sur Microruban 1)

Par J. R.Mosig

621.372.821

La capacité d'un disque microruban est calculée sur la base d'une approximation statique qui assimile le mode fondamental se propageant
dans la structure à un mode TEM. Le problème est formulé avec les techniques de la fonction de Green, qui est obtenue par un processus itératif
conduisant à une série infinie de charges-images. L'équation intégrale résultante est calculée par la méthode des moments, et des résultats asymp-
totiques pour le comportement du champ électrique au bord du disque sont employés pour obtenir une représentation précise de la densité de

charge. Les techniques numériques associées sont décrites en détail. Enfin des résultats pratiques sont présentés et comparés avec ceux existant
dans la littérature.

Die Kapazität einer Microstrip-Scheibe wird mit einer statischen Approximation berechnet, in welcher die entstehende Hauptwelle als eine
TEM-Welle betrachtet wird. Das Problem wird mit Hilfe der Greenschen Funktion formuliert, was durch Iteration zu einer unendlichen Reihe
von Bildladungen führt. Die Integralgleichung wird mit der Momente-Methode berechnet, und asymptotische Ergebnisse über den Verlauf des
elektrischen Feldes am Rand der Scheibe ergeben eine genaue Darstellung der Ladungsdichte. Die betreffenden numerischen Verfahren sind im
Detail beschrieben. Schliesslich werden praktische Ergebnisse dargelegt und mit den bisher veröffentlichten verglichen.

1. Introduction
L'apparition de la technologie des circuits imprimés dans

le domaine des hyperfréquences (MIC Microwave Integrated
Circuit) a fait de la ligne microruban un moyen de transmission

privilégié en ce qui concerne les faibles distances et interconnexions

entre éléments. Par conséquent, un grand effort a été

fourni durant ces dernières années dans la recherche de structures

microruban simulant le comportement des composants
classiques utilisés en basse fréquence. Parmi elles, le disque
circulaire offre de nombreuses possibilités et a déjà trouvé des

applications comme élément capacitif, comme résonateur et
même comme antenne.

Cet article étudie la capacité d'un disque microruban dans

l'hypothèse du mode dominant TEM en utilisant la méthode
décrite dans l'article précédent [l]2). L'exactitude des résultats
présentés permet l'emploi de ce type de structure comme
condensateur intégré dans des filtres microruban et des circuits de

polarisation ou de découplage pour éléments actifs.

2. Description du problème

La structure considérée est présentée à la fig. 1. Un disque
conducteur d'épaisseur supposée nulle est placé dans un plan
parallèle et à une distance d du plan de masse. L'espace entre
les deux plans est rempli d'un milieu diélectrique, homogène
et sans pertes, de permittivité e cucr. De plus, une différence

Pour faire le travail décrit dans cet article, l'auteur a reçu une
bourse de la Commission Fédérale de Bourses pour Etudiants Etrangers
ainsi qu'une aide financière de la Fondation Hasler (projet n° 16).

2) Voir la bibliographie à la fin de l'article.

Fig. 1 Géométrie du problème

Q, (p, z coordonnées cylindriques
R rayon du disque
d épaisseur du substrat

de potentiel Vest appliquée entre le disque et le plan de masse.
La symétrie de révolution de la structure suggère l'utilisation
de coordonnées cylindriques z, q, <p et le problème (indépendant
de tp) peut être résolu dans le plan z — q.

Pour faciliter le calcul, cette structure est remplacée par
celle de la fig. 2, où deux disques parallèles sont séparés par
une plaque de diélectrique d'épaisseur 2d. Cette nouvelle structure

est équivalente à la première du point de vue
électrostatique mais bénéficie d'une plus grande symétrie. Il faut
toutefois remarquer que la capacité obtenue ainsi vaut la
moitié de la capacité du problème réel (fig.l).

3. Analyse numérique
Le problème de la fig. 2 est compris dans une certaine classe

de problèmes électrostatiques étudiés dans [1]. On peut donc
appliquer la méthode de l'équation intégrale qui s'écrit ici

<Z>(r) J Qs (7) G (7, 7) dy 7, reD. D, (1)

Dl + D2

—v

où £?s(r') représente la densité superficielle de charge inconnue

sur les disques, <t> (r) le potentiel de ces disques et G(r, r1) la
fonction de Green du problème. L'intégration porte sur la
surface Di + LL des deux disques.

Or, en profitant de la symétrie, on peut réduire le domaine

d'intégration à un seul disque, ai étant un vecteur unitaire, on
a en effet

QS(n') -es(r2')
avec ri e'+daz n' £

(2)
&(ri) — V l rf q' — d az rfeDz
et l'équation intégrale (1) devient ainsi

V== I n'^ ~ G</' es(ri') d,y' r' n' £ Dl
(3)

Di rf e Di

Une fois cette équation résolue et la densité de charge
déterminée, la capacité du problème réel est donnée par

C =-7-f qb(7) ds (4)

Di

4. Calcul de la fonction de Green

La fonction de Green utilisée à l'équation (1) a été définie
dans [1 ]. Elle peut être identifiée au potentiel dû à une charge
unitaire dans une région où l'on a conservé les inhomogénéités
diélectriques du problème initial mais où l'on a supprimé les
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Fig. 2 Le problème équivalent

Di conducteur réel
D2 conducteur image
0 potentiel sur les conducteurs
so, s permittivités des milieux
—^ —X

ri, r-î vecteurs de position
R, ci, z, Q voir fig. 1

A (e0

—AB-

-B(e)

—BC-

C (£0)

q= +1

i" 1

q= +1

Fig. 3 Problèmes associés pour le calcul des fonctions de Green

A, B, C milieux diélectriques
AB, BC surfaces de séparation
g charge ponctuelle

ri r% vecteurs de position des charges

r point de calcul du potentiel

surfaces métalliques, Les conditions limites liées à ces dernières

sont restituées en y supposant une densité de charge appropriée,

calculée par l'équation (1).
Deux cas particuliers doivent être résolus avec la charge

ponctuelle unitaire placée sur chacun des deux interfaces air-
diélectrique (fig. 3). Les potentiels en r dûs à cette charge placée

en ri' ou rz représentent respectivement les fonctions de Green
—^ ^ ^

G(r, n') et G(r, rz). Le calcul de ces potentiels est compliqué
car il faut satisfaire aux conditions limites pour les champs
*——>L et D aux deux interfaces air-diélectrique. Il peut être effectué

par l'emploi itératif de la méthode des charges images, souvent
utilisée pour des configurations de ce type [2; 3],

On considère trois zones dans le problème (fig. 3): deux

remplies d'air (A et C) et une de diélectrique (B). Le potentiel
dans chaque zone est calculé comme solution d'un problème
associé homogène, où tout l'espace est rempli du diélectrique

propre de la zone, mais où la charge unitaire est remplacée par
une suite de charges images dont les valeurs et les positions
sont imposées par les conditions limites aux surfaces de séparation

air-diélectrique.
On suppose d'abord que les potentiels dans les zones A et B

peuvent être trouvés comme solutions des problèmes associés

montrés dans la fig. 4. On a donc

't'A :
qoA

4neo \ r — ri\
0B <70B

4jt£o£r \r — ri'\

Or, le problème réel impose les conditions suivantes :

J Da • dj + J Db ds q 1

SA SE

(La — Lb) X az 0

(Da — Db) ' (iz =0
Ces conditions ne sont vérifiées que si

gOA :
1 "fir

qoB

(Lb — Le) x öz 0

(Db — De) ' a-L 0
(8)

Malheureusement un tel système n'existe pas et les conditions

(8) ne peuvent être vérifiées que si l'on modifie le
problème associé pour la zone B.

La figure 5 montre les trois problèmes associés dont celui
de la zone B modifié par l'adjonction d'une charge r/on'. Les

potentiels sont maintenant

<2>a
<70A

47Ko \r — ri\
<Pc :

qoc

B
qoB

- + -

47T£o \r — ri\
qoB

(9)

4it£o£r I /— ri' I 4rt£o£r I r — n' — 4daz

et les conditions (8) sont vérifiées avec

£r — 1 2
qob

£r + 1
• qoB qoe '

£r "h 1
• qoB (10)

(5)

Par contre, les conditions (6) ne sont plus satisfaites et de

nouvelles charges-images sont nécessaires dans les problèmes
associés aux zones A et B, ces nouvelles charges empêchant
de satisfaire (8). Le processus d'adjonction de charges-images
se poursuit ainsi et on aboutit à trois suites infinies de charges
images avec les propriétés (fig. 5) :

e= C
e= en£r

(6)

(7)

Il faut, d'autre part, trouver un problème associé pour la

zone C, tel que les conditions limites à la surface de séparation
BC soient vérifiées :

_AB -

—BC

l\\N Zone où le potentiel est valable

Fig. 4 Résolution par la méthode des images

goA, goB charges images
Sa, Sb surfaces hémisphériques

AB, BC, ri, r voir flg. 3
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Valeurs initiales avec k (er — 1 )/(er + 1)

qoA 1 —k, qoB 1 +k, qoB' (1 +k)k, qoc \—k2 (11)

- Loi de récurrence :

tfjx k2 • qj-i, x, j > 0, X A, B, B', C

- Position:

nx' e'+(l-4j)- d-a„ j>0, X A, B'

fjx' p' + (1 + 4j) • d az, j > 0, X B, C

La fonction de Green est alors donnée par:

G (r, n')

1 qja
47160

j= entier (12)

(13)

r A
j=o | r— rjA

1 / 00 00 ^ \1 / V [_ ffjB \
606r 1 2-> I ~l" /1 ^ ~*i I

\j=o I '— rjB I j=o |r —r jb'I /471606,

1

4tI£o 2"
<7jC

j=o | r — rjc

reB

r e C
(14)

Toutefois, seule une de ces trois expressions est nécessaire,
étant donné que, d'après l'équation (3), la fonction de Green
ne doit être calculée que sur la surface de séparation AB. Il
suffit donc de considérer la zone A ou la zone B la surface AB
appartenant aux deux zones. Choisissant la zone A où

r q + d az, on trouve

G {r, /-C)
1 <7JA

47160 2rj=o I (e — q') + 4jcfaz |

(15)

Le calcul de G (r, rz) est identique et on trouve finalement

pour la fonction totale de Green

G (r, r')
1

47160 .•
2
j=0

qja
I (e — e') + 4jcfaz

lie
(16)

I (e — e') + (4j + 2) daz |

_

qu'on écrit d'une façon abrégée

Q, Q' e Di

G (r, r')
1

47160
g (G q') (17)

5. Solution de l'équation intégrale

L'équation intégrale (3) est résolue par la méthode des

moments, souvent employée pour ce type de problèmes [2; 4],
On ne donne ici qu'un bref aperçu de l'application particulière
de la méthode, la théorie générale pouvant être trouvée dans

des ouvrages spécialisés [5].
On commence par postuler pour l'inconnue qs un développement

du type

eo2 aifj (e')
j=l

(18)

où la dépendance de Qs avec la seule coordonnée g' est mise en
évidence. Les aj sont des coefficients sans dimensions à

déterminer et les N fonctions fj indépendantes et sans dimension

appartiennent à un ensemble complet dit «de base». Avec ce

développement et l'équation (17), l'équation (3) devient

4ti£OK

Qo

N r2 ai J § (G S'

'
Di

f(£?')dV (19)

9 OA

•9ib
I

i 9ob

9 1C

90C

9ia

*92

*9qb'

*9ib'

£=En £= £„

Fig. 5 Suites complètes d'images pour les trois zones

çja, qsB, ?jn', ?jc charges images

r point de calcul du potentiel
z, q coordonnées cylindriques

On définit ensuite un produit interne de fonctions, noté

< fi, fa >, par

< fi, fa > =/ft fa ds (20)

Di

L'équation est alors résolue en employant un nouvel ensemble

de N fonctions W, (q) appelées fonctions de test. En faisant le

produit interne de (19) avec chaque fonction Wi on
transforme l'équation intégrale en un système de N équations
linéaires :

47160 K
eo

y*Wi(e)dy
Di (21)

A (G) fj (&') g (e, Q') dr d.s', i 1, 2...N

Di Di

qui peut être résolu par des techniques classiques.

6. Choix des fonctions de base et de test
Au point de vue pratique, ce choix doit être guidé par les

considérations suivantes :

- L'ensemble de base doit être capable de fournir une
bonne représentation de la fonction inconnue ps avec un
nombre restreint de fonctions fj.

- Les fonctions fj et Wi doivent être assez simples pour
permettre un calcul facile des termes de l'équation (21).

- La matrice obtenue par l'équation (21) doit être bien
adaptée à une inversion numérique. C'est le cas si les ensembles

de base et de test sont proches de l'orthogonalité du point de

vue du produit interne considéré [5].

Compte tenu de ces remarques, on a choisi

Wi 8 (p - pi), pi —Y R "e (22)

où S est la fonction de Dirac. Ce choix simplifie sensiblement

l'équation (21) qui devient

N
.') g (pi, g') ds', i 1, 2...N (23)

4ti£OE

po

N r-
-- 2 a> /f' (e')
j=l J

Di
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Une simplification ultérieure est possible si l'on introduit
les variables normalisées

y q/R, y' q'IR

et si l'on adopte comme potentiel de référence

eoR
V

4rreo

Le système normalisé s'écrit alors

N

l=2Ci'ai' i l, 2...N

ou
2it 1

eu JJfj (y) g (y, y') y' dy' dip'

o o

En faisant usage de (4) et de (25) la capacité devient

4iteoliceo f f (q) dj

(24)

(25)

(26)

(27)

(28)

Di

et après normalisation

CN
ß

8ti2êo
N f/ fi

j=l J
(y) y dy (29)

Quant aux fonctions de base, le choix s'est porté sur des

fonctions triangulaires, à l'exception de fx qui tient compte de

la conduite asymptotique de gs sur le bord du disque [6]:

lim Qs (y) lim (1 — y)~ß, ß ~ sin-1 6r 1

y->l

fx (y)

2 71 2fir ' 2

On prend donc, avec yo 1/(N— 1),

[y — (N — 2) yo] (1 — y)~ß pour (N — 2)yo < y < 1

(30)

0 pour y < (N — 2)yo et y > 1

(31)

Les expressions analytiques des autres fonctions fi peuvent
être trouvées d'après la fig. 6.

7. Détails du calcul

Les intégrales à évaluer numériquement sont données par
les formules (27), (29). Les expressions (27) sont des intégrales

—

doubles avec g (rn, g') dépendant de g' et de tp par la relation

I

Qi — q' I Vqi2 + e'2 — 2 q'qi cos<p (32)

Fig. 6 Ensemble de fonctions de base

y coordonnée normalisée
yo 1/(N — 1)
fj fonctions de base

Fig. 7 Densité de charge sur un disque isolé

y rayon normalisé
k2Qs/qo densité de charge normalisée

Par ailleurs, elles présentent toujours un point singulier

pour q' o; et, lorsque j N, une ligne singulière pour
l?l =R-

Une méthode numérique particulière a dû être mise au

point pour ce type d'intégration basée dans une quadrature
bidimensionnelle de Gauss-Tchebycheff [7], Par contre, les

intégrales (29) peuvent être résolues analytiquement à l'exception

du cas j N où une quadrature standard de Tchebycheff
a été employée.

Une part importante du calcul devant être consacrée à

l'évaluation de la fonction de Green, on a porté une attention
toute particulière à l'étude de l'erreur introduite en tronquant

—> —y —> —>

la série de g (g, g'). Si on appelle gn (g, g') la série tronquée du
nième terme, on trouve que l'erreur augmente avec er et le

rapport
\

g — g' \/d, gn pouvant même devenir négatif. En
fait, pour n > 25 seulement, l'erreur relative moyenne entre
g et gn reste au-dessous de 1 %.

Cependant, cette limite d'erreur peut être atteinte avec
seulement n 5, ce qui épargne un temps de calcul considérable,

si on emploie comme fonction de Green approchée

gn* o') gn (g, g)' + g (o, g') -
> (e, e') I I

pI e—e l R
(33)

Cette fonction est tabulée au début du programme comme
une fonction de ß

|

g — g' |, 0 < ß < R, pour 500 valeurs de

y«, plus concentrées aux environs de ß 0 où la variation de

gn* est plus rapide. Ces valeurs sont alors emmagasinées et la
fonction de Green calculée chaque fois par interpolation non
linéaire.

Finalement, l'inversion matricielle est faite avec un
algorithme standard de Gauss-Jordan [7],

8. Résultats
Pour vérifier l'exactitude des techniques numériques on a

résolu d'abord un cas théorique dont la solution est connue:
le disque isolé dans le vide [8]. Dans ce cas on a simplement

g (e, Q')
1

(34)
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Fig. 8 Capacité d'un disque conducteur isolé

N nombre de fonctions de base
Cn capacité normalisée par rapport au rayon

Fig. 9 Résultats pour le disque sur microruban

// (Capacité calculée) / (Capacité du condensateur plan du
même rayon)

d épaisseur du substrat
R rayon du disque

et on trouve théoriquement avec le potentiel de référence (25)

1

eo
Cn 8eo 70.74 pF/m (35)

Les résultats obtenus avec cette méthode sont présentés
dans les figures 7 et 8. On remarque que la valeur de la capacité
obtenue pour N 3 a déjà une précision supérieure à 1%,
tandis qu'une extrapolation de Aitken basée sur les valeurs

N 3, 4, 5 donne une erreur de 0,3 %. On peut donc s'attendre

à trouver des résultats très précis dans le problème réel

avec des valeurs faibles de N et une extrapolation finale. Des
valeurs extrapolées à partir des cas N 3, 4, 5 pour le quotient

// Cn/Cp, où Cp est la capacité normalisée d'un
condensateur plan, Cp snR/d, sont données dans la fig. 9, pour
deux valeurs de la permittivité sr 9,6 et er 1,0.

L'exactitude de ces résultats est mise en évidence en les

comparant avec ceux obtenus par Itoh et Mittra [9] par une
autre méthode, plus complexe, basée sur l'analyse dans le

domaine spectral.

9. Conclusions

Une méthode de calcul numérique a été présentée pour
l'étude du disque en microruban. Basée sur la notion de fonction

de Green, elle a l'avantage d'être simple du point de vue
mathématique et relativement générale dans ses applications.

La précision ne dépend en elfet pas des valeurs des paramètres
£r et d/R.

La densité de charge est obtenue sous une forme analytique
très utile pour des applications ultérieures. Quant à la capacité,
sa valeur converge très rapidement avec N ce qui permet
d'obtenir des résultats exacts avec seulement 15 s de calcul
sur ordinateur CDC Cyber pour chaque paire de valeurs s

et d/R.
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