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Condensateurs Circulaires sur Microruban')
Par J.R. Mosig

621.372.821

La capacité d’un disque microruban est calculée sur la base d’une approximation statique qui assimile le mode fondamental se propageant

dans la structure a un mode TEM. Le probléme est formulé avec les techniques de la fonction de Green, qui est obtenue par un processus itératif

conduisant & une série infinie de charges-images. L’équation intégrale résultante est calculée par la méthode des moments, et des résultats asymp-

totiques pour le comportement du champ électrique au bord du disque sont employés pour obtenir une représentation précise de la densité de

charge. Les techniques numériques associées sont décrites en détail. Enfin des résultats pratiques sont présentés et comparés avec ceux existant
dans la littérature.

Die Kaparzitit einer Microstrip-Scheibe wird mit einer statischen Approximation berechnet, in welcher die entstehende Hauptwelle als eine
TEM-Welle betrachtet wird. Das Problem wird mit Hilfe der Greenschen Funktion formuliert, was durch Iteration zu einer unendlichen Reihe
von Bildladungen fiihrt. Die Integralgleichung wird mit der Momente-Methode berechner, und asymptotische Ergebnisse iiber den Verlauf des
elektrischen Feldes am Rand der Scheibe ergeben eine genaue Darstellung der Ladungsdichte. Die betreffenden numerischen Verfahren sind im

Detail beschrieben. Schliesslich werden praktische Ergebnisse dargelegt und mit den bisher verdffentlichten verglichen.

1. Introduction

L’apparition de la technologie des circuits imprimés dans
le domaine des hyperfréquences (MIC = Microwave Integrated
Circuit) a fait de la ligne microruban un moyen de transmission
privilégié en ce qui concerne les faibles distances et intercon-
nexions entre éléments. Par conséquent, un grand effort a été
fourni durant ces derniéres années dans la recherche de struc-
tures microruban simulant le comportement des composants
classiques utilisés en basse fréquence. Parmi elles, le disque
circulaire offre de nombreuses possibilités et a déja trouvé des
applications comme élément capacitif, comme résonateur et
méme comme antenne.

Cet article étudie la capacité d’'un disque microruban dans
I’hypothése du mode dominant TEM en utilisant la méthode
décrite dans larticle précédent [1]2). L’exactitude des résultats
présentés permet I’emploi de ce type de structure comme con-
densateur intégré dans des filtres microruban et des circuits de
polarisation ou de découplage pour éléments actifs.

2. Description du probléme

La structure considérée est présentée a la fig. 1. Un disque
conducteur d’épaisseur supposée nulle est placé dans un plan
parallele et a une distance d du plan de masse. L’espace entre
les deux plans est rempli d’un milieu diélectrique, homogéne
et sans pertes, de permittivité ¢ = goer. De plus, une différence

1) Pour faire le travail décrit dans cet article, I’auteur a regu une
bourse de la Commission Fédérale de Bourses pour Etudiants Etrangers
ainsi qu’une aide financiére de la Fondation Hasler (projet n® 16).

2) Voir la bibliographie a la fin de I’article.

Fig. 1 Géométrie du probleme

0, 9, z coordonnées cylindriques
R rayon du disque
d épaisseur du substrat
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de potentiel V est appliquée entre le disque et le plan de masse.
La symétrie de révolution de la structure suggére ’utilisation
de coordonnées cylindriques z, g, ¢ et le probléme (indépendant
de ) peut étre résolu dans le plan z —p.

Pour faciliter le calcul, cette structure est remplacée par
celle de la fig. 2, ou deux disques paralléles sont séparés par
une plaque de diélectrique d’épaisseur 2d. Cette nouvelle struc-
ture est équivalente a la premiére du point de vue électro-
statique mais bénéficie d’une plus grande symétrie. Il faut
toutefois remarquer que la capacité obtenue ainsi vaut la
moitié de la capacité du probléme réel (fig.1).

3. Analyse numérique

Le probléme de la fig. 2 est compris dans une certaine classe
de problémes électrostatiques étudiés dans [1]. On peut donc
appliquer la méthode de I’équation intégrale qui s’écrit ici

o() = [ () GO;r)ds' 77 < Dyt D M
D;+D2

ol gs (7’) représente la densité superficielle de charge inconnue
sur les disques, <D(7) le potentiel de ces disques et G(Z r_7) la
fonction de Green du probléme. L’intégration porte sur la
surface D; + D> des deux disques.

Or, en profitant de la symétrie, on peut réduire le domaine
d’intégration a un seul disque. Zz étant un vecteur unitaire, on
a en effet

os(r1") = —ps(r2’) r'=¢ +da, ri'eD;

o S avec { 5 3 S 2)
D(ri) = —D(r) =V ro' =o' —da; ro' €Dy
et ’équation intégrale (1) devient ainsi
V= [{6G,n) — GG, r)) e(n) ds' it e Dy &
D1 rz’ € Dz

Une fois cette équation résolue et la densité de charge déter-
minée, la capacité du probléme réel est donnée par

c=- [ os) ds @
Dy

4. Calcul de la fonction de Green

La fonction de Green utilisée a ’équation (1) a été définie
dans [1]. Elle peut étre identifiée au potentiel dii a une charge
unitaire dans une région ou I’on a conservé les inhomogénéités
diélectriques du probléme initial mais ou ’on a supprimé les
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Fig. 2 Le probléme équivalent

D conducteur réel

D2 conducteur image

[ potentiel sur les conducteurs
&0, & permittivités des milieux

~>/ ——>,
r1’, ro’ vecteurs de position
R, d, z, o voir fig. 1

surfaces métalliques, Les conditions limites liées a ces derniéres
sont restituées en y supposant une densité de charge appro-
priée, calculée par 1’équation (1).

Deux cas particuliers doivent étre résolus avec la charge
ponctuelle unitaire placée sur chacun des deux interfaces air-
diélectrique (fig. 3). Les potentiels en 7dﬁs a cette charge placée
en 71’ ou 72’ représentent respectivement les fonctions de Green
G(?, ?1’) et G(r—,) 72’). Le calcul de ces potentiels est compliqué
car il faut satisfaire aux conditions limites pour les champs
E‘ et D aux deux interfaces air-diélectrique. Il peut étre effectué
par ’emploi itératif de la méthode des charges images, souvent
utilisée pour des configurations de ce type [2; 3].

On considére trois zones dans le probléme (fig. 3): deux
remplies d’air (A et C) et une de diélectrique (B). Le potentiel
dans chaque zone est calculé comme solution d’un probléme
associé homogeéne, ou tout I’espace est rempli du diélectrique
propre de la zone, mais ou la charge unitaire est remplacée par
une suite de charges images dont les valeurs et les positions
sont imposées par les conditions limites aux surfaces de sépara-
tion air-diélectrique.

On suppose d’abord que les potentiels dans les zones A et B
peuvent étre trouvés comme solutions des probleémes associé€s
montrés dans la fig. 4. On a donc

P— ] ®)

T . N bp— L -~
4nsosr|r—r1’\

— —
41t8() | == }’1'

Or, le probléme réel impose les conditions suivantes:

fBA‘€9+fBB‘d—;=q:1
Sa SB

- — — 6
(EA_EB)X(ZZZO ()
— — —
(Da—Ds)-a; =0
Ces conditions ne sont vérifiées que si
- 2 o 281‘
qoA — 1‘—+ & qoB = 1 + & (7)

1l faut, d’autre part, trouver un probléme associé pour la
zone C, tel que les conditions limites a la surface de séparation
BC soient vérifiées:
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Fig. 3 Problémes associés pour le calcul des fonctions de Green

A, B, C milieux diélectriques
AB, BC surfaces de séparation

q charge ponctuelle

- =

ri’, re’ vecteurs de position des charges
.

r point de calcul du potentiel

(EB—EC)Xzz:O
(Dep—Dc¢)-az =0

} @®)

Malheureusement un tel systéme n’existe pas et les condi-
tions (8) ne peuvent étre vérifiées que si I’'on modifie le pro-
bléme associé pour la zone B.

La figure 5 montre les trois problémes associés dont celui
de la zone B modifié par ’adjonction d’une charge gor’. Les
potentiels sont maintenant

Dy = —J—J‘—]iL:;T do = f"f —
Aeo | r—r1’ dreo|r —r1'
, ©)
qoB qoB
dp = U + [ — -
4meoer . r—ry 4meoer ‘ r—r1' —4da, l
et les conditions (8) sont vérifiées avec
y_ Er— 1 . _ 2
qop = 1 qgoB qoc = —| qoB (10)

Par contre, les conditions (6) ne sont plus satisfaites et de
nouvelles charges-images sont nécessaires dans les problemes
associés aux zones A et B, ces nouvelles charges empéchant
de satisfaire (8). Le processus d’adjonction de charges-images
se poursuit ainsi et on aboutit a trois suites infinies de charges
images avec les propriétés (fig. 5):

Zone ou le potentiel est valable

Fig. 4 Résolution par la méthode des images

qoa, qos charges images
Sa, S surfaces hémisphériques

N
AB, BC, r1/, r voir fig. 3

(A178) 397



Valeurs initiales avec k = (er—1)/(er + 1)

goa=1—k, gos =14k, qoz' =1 +k)k, goc =1—k% (11)

— Loi de récurrence:

gix=k%"gj_1,x, j>0, X=A,B,B,C j=entier (12)
— Position:
nx' =0 +(1—4j)-d-as j>0, X=A,B \
rix' = ¢ +(1+4j)-d- s j>0, X=B,C j
La fonction de Green est alors donnée par:
1 S __an reA

4me
Oj 0 r~—rJA

nging 1 - CIJB - qiB’ =
G ()=
(r,r1") P (zo r—r,B +,Zo|r—r113 reB
LIRS gic 76 C
40 S0 |7 —Fier (14)

Toutefois, seule une de ces trois expressions est nécessaire,
étant donné que, d’aprés 1’équation (3), la fonction de Green
ne doit étre calculée que sur la surface de séparation AB. 1l

suffit donc de considérer la zone A ou la zone B la surface AB
appartenant aux deux zones. Choisissant la zone A ou
r=op + daz, on trouve

qgiA

G ()=
)+ 4jday|

1 oo
4mso z ole—¢ 4

Le calcul de G (r, rz’) est identique et on trouve finalement
pour la fonction totale de Green

1 Z qia
G (r r) z [
4meo > 7 Y
|(e o') +4jda, (16)
T = } A
(6 — @) + (4] +2) da|
qu’on écrit d’'une fagon abrégée
— = 1 — —>’
G(r,r)=mg(e,e) 17

5. Solution de I’équation intégrale

L’équation intégrale (3) est résolue par la méthode des
moments, souvent employée pour ce type de problemes [2; 4].
On ne donne ici qu’un bref apergu de ’application particuliére
de la méthode, la théorie générale pouvant étre trouvée dans
des ouvrages spécialisés [5]. '

On commence par postuler pour I'inconnue gs un dévelop-
pement du type

N
0s = 0o > ofj (¢) (18)

i=1
ou la dépendance de gs avec la seule coordonnée o’ est mise en
évidence. Les «; sont des coefficients sans dimensions a déter-
miner et les N fonctions f; indépendantes et sans dimension
appartiennent a un ensemble complet dit «de base». Avec ce
développement et ’équation (17), I’équation (3) devient

4meoV
T «
Qo0 52:1 !
Dy

g (e, ¢) £ (o) ds’ (19)
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Fig. 5 Suites complétes d’images pour les trois zones
gia, giB, giB8’, gjc charges images

5
r  point de calcul du potentiel

z, 0 coordonnées cylindriques

On définit ensuite un produit interne de fonctions, noté
< fy, fo >, par

<fifo>— [fifads (20)
Dy

L’équation est alors résolue en employant un nouvel ensemble

de N fonctions W; (5 appelées fonctions de test. En faisant le

produit interne de (19) avec chaque fonction Wi on trans-

forme I’équation intégrale en un systétme de N équations

linéaires:

ﬂ@io"i [Wi@ds—
1)
N - — -
=2 g f f Wi(o) fi (@) g (0, @) dsds’, i=1,2..N
=1
! D) D1

qui peut étre résolu par des techniques classiques.

6. Choix des fonctions de base et de test

Au point de vue pratique, ce choix doit étre guidé par les
considérations suivantes:

— L’ensemble de base doit étre capable de fournir une
bonne représentation de la fonction inconnue gs avec un
nombre restreint de fonctions fj.

— Les fonctions fj et Wi doivent étre assez simples pour
permettre un calcul facile des termes de I’équation (21).

— La matrice obtenue par I’équation (21) doit étre bien
adaptée a une inversion numérique. C’est le cas si les ensembles
de base et de test sont proches de ’orthogonalité du point de
vue du produit interne considéré [5].

Compte tenu de ces remarques, on a choisi

1

Wi=38(—e), a=y_—1 Ra (22)

ou & est la fonction de Dirac. Ce choix simplifie sensiblement
I’équation (21) qui devient
i=1,2.N

(23)

N
dneoV i Sl WY
=2 a [ fie) g ey @) ds,

00
Dy
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Une simplification ultérieure est possible si I’on introduit
les variables normalisées

- - - -
?=¢0/R, ¥ =¢'/R (24)
et si ’'on adopte comme potentiel de référence

_ _0oR

" 4meo (25)

Le systéme normalisé s’écrit alors

N
1=> ey, i=12.N (26)
i=1
ou
2n 1
o —T ! ! &
= [ [ e07)y d' do @
00

En faisant usage de (4) et de (25) la capacité devient

c=2 Z " f £ (o) ds (28)
j=1
Dy
et aprés normalisation
1
c N

Cx =g =8n%02 a | fi() 7 dy 29

i=1
0
Quant aux fonctions de base, le choix s’est porté sur des
fonctions triangulaires, a I’exception de fx qui tient compte de
la conduite asymptotique de os sur le bord du disque [6]:
er—1

1" 1
lim gs (y) =1lim (1 — y)7B, [)’_— sml
y—>1 : y—>1 2er +2

(30)

On prend donc, avec yo = 1/(N— 1),

I[V (N—2) o] (1 —y)™B pour (N—2)yo <y <1
0 pour y <(N—2)ypety>1
31

Les expressions analytiques des autres fonctions fi; peuvent
étre trouvées d’aprés la fig. 6.

fx () =

7. Détails du calcul

Les intégrales a évaluer numériquement sont données par
les formules (27), (29) Les expressions (27) sont des intégrales
doubles avec g (91, 0') dépendant de o’ et de ¢ par la relation

o1 = Ve +0'2—2 ¢'0i cosg (32)
4
11, |, o f
\
\
2 T
70 27 (N-1) 70

Fig. 6 Ensemble de fonctions de base

y coordonnée normalisée
yo=1/(N—1)
f; fonctions de base
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Fig. 7 Densité de charge sur un disque isolé

b rayon normalisé
n2ps/0o densité de charge normalisée

Par allleurs elles présentent toujours un point singulier
pour 9 = gl et, lorsque j = N, une ligne singuliére pour
o] =

Une methode numérique particuliere a dii étre mise au
point pour ce type d’intégration basée dans une quadrature
bidimensionnelle de Gauss-Tchebycheff [7]. Par contre, les
intégrales (29) peuvent étre résolues analytiquement a I’excep-
tion du cas j = N ou une quadrature standard de Tchebycheff
a été employée.

Une part importante du calcul devant étre consacrée a
I’évaluation de la fonction de Green, on a porté une attention
toute particuliére a I’étude de I’erreur introduite en tronquant
la série de g (Z, E). Si on appelle gn (Z, Z;') la série tronquée du
ni¢me terme, on trouve que l'erreur augmente avec & et le
rapport ! 3— _é’ ‘/d, gn pouvant méme devenir négatif. En
fait, pour n > 25 seulement, I’erreur relative moyenne entre
g et gy, reste au-dessous de 19,.

Cependant, cette limite d’erreur peut étre atteinte avec
seulement n = 5, ce qui épargne un temps de calcul considé-
rable, si on emploie comme fonction de Green approchée

(33)

- = - > - > - >
gn* (0, ¢) = gn (e, @) +|g(e, ') —gn (0, 4
Cette fonction est tabulee au début du programme comme
une fonction de u = e —o0 [ 0 < << R, pour 500 valeurs de
I, plus concentrées aux environs de # = 0 ou la variation de
gn* est plus rapide. Ces valeurs sont alors emmagasinées et la
fonction de Green calculée chaque fois par interpolation non
linéaire.
Finalement, I’inversion matricielle est faite avec un algo-
rithme standard de Gauss-Jordan [7].

8. Résultats

Pour vérifier 'exactitude des techniques numériques on a
résolu d’abord un cas théorique dont la solution est connue:
le disque isol¢ dans le vide [8]. Dans ce cas on a simplement
gle,d)==—=7 34

le—¢
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Fig. 8 Capacité d’un disque conducteur isolé

N nombre de fonctions de base
Cx capacité normalisée par rapport au rayon

et on trouve théoriquement avec le potentiel de référence (25)

e _ 1 cy—86=70.74 pF/m

00 n2 l/l - y2 (35)

Les résultats obtenus avec cette méthode sont présentés
dans les figures 7 et 8. On remarque que la valeur de la capacité
obtenue pour N = 3 a déja une précision supérieure a 19,
tandis qu’une extrapolation de Aitken basée sur les valeurs
N = 3, 4, 5 donne une erreur de 0,3 %. On peut donc s’atten-
dre a trouver des résultats trés précis dans le probléme réel
avec des valeurs faibles de N et une extrapolation finale. Des
valeurs extrapolées a partir des cas N = 3, 4, 5 pour le quo-
tient 7 = Cn/Cp, ou Cp est la capacité normalisée d’'un con-
densateur plan, Cp =enR/d, sont données dans la fig. 9, pour
deux valeurs de la permittivité &r = 9,6 et & = 1,0.

L’exactitude de ces résultats est mise en €vidence en les
comparant avec ceux obtenus par Itoh et Mittra [9] par une
autre méthode, plus complexe, basée sur I’analyse dans le
domaine spectral.

9. Conclusions

Une méthode de calcul numérique a été présentée pour
I’étude du disque en microruban. Basée sur la notion de fonc-
tion de Green, elle a I’'avantage d’étre simple du point de vue
mathématique et relativement générale dans ses applications.

Fig. 9 Résultats pour le disque sur microruban

1 (Capacité calculée) / (Capacité du condensateur plan du
méme rayon)

d épaisseur du substrat

R rayon du disque

La précision ne dépend en effet pas des valeurs des paramétres
er et d/R.

La densité de charge est obtenue sous une forme analytique
trés utile pour des applications ultérieures. Quant a la capacité,
sa valeur converge trés rapidement avec N ce qui permet
d’obtenir des résultats exacts avec seulement 15s de calcul
sur ordinateur CDC Cyber pour chaque paire de valeurs ¢
et d/R.
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