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Lignes Microruban et Fonctions de Green ')
Par J.R.Mosig et M. C. Decréton

621.372.821

Aprés une bréve présentation des caractéristiques de la ligne microruban le probléme de I'analyse théorique d’une telle ligne est abordé.
Le caractére inhomogéne et ouvert de la structure rend son analyse exacte beaucoup plus complexe que celle du guide d’ondes classique. Des
simplifications sont souvent introduites, dont la plus importante est I'approximation TEM consistant a négliger le caractére hybride du mode
Jfondamental. Les principales méthodes de calcul basées sur cette approximation sont décrites et la plus intéressante, celle de la fonction de Green,
est développée en détail. Enfin, des résultats de calcul sont présentés pour la ligne microruban infinie.

Nach einer kurzen Darstellung der Eigenschaften der Microstrip-Leitung wird das Problem der theoretischen Analyse einer solchen Leitung
betrachtet. Die Eigenart der inhomogenen und offenen Struktur hat zur Folge, dass deren genaue Analyse viel schwieriger ist als diejenige des
klassischen Wellenleiters. Die wichtigste der oft notwendigen Vereinfachungen ist die TEM-Hypothese, nach welcher man den hybriden Cha-
rakter der Hauptwelle vernachliissigt. Die wesentlichen, auf dieser Hypothese basierenden Berechnungsmethoden werden beschrieben und die
interessanteste (diejenige der Greenschen Funktion) detailliert entwickelt. Es folgen Rechenergebnisse fiir die unendliche Microstrip-Leitung.

1. Introduction

Les premiers appareils employés en hyperfréquences
(300 MHz a 300 GHz) étaient caractérisés par un poids et un
volume considérables. Guides d’ondes, brides de raccorde-
ment, supports faisaient penser a I’équipement d’un plombier.
C’est avec l'introduction au début des années cinquante de la
ligne a ruban (stripline) (fig. 1) et, une dizaine d’années plus
tard, de la ligne a microruban (microstrip) (fig. 2), qu’une
nouvelle génération d’appareils a vu le jour. Les circuits peu-
vent dorénavant étre rassemblés sur des petites plaquettes de
matériau diélectrique. Outre la réduction de poids et d’encom-
brement que cela représente, cette nouvelle conception permet
I'utilisation des techniques de réalisation trés pratiques des
circuits imprimés et plus récemment des circuits intégrés.

Les lignes microruban sont aujourd’hui abondamment
utilisées pour toutes les applications en basse puissance et 1a
ou la transmission se fait uniquement sur de trés courtes dis-
tances (connexions entre éléments). Par exemple, I'implanta-
tion d’éléments semiconducteurs (diodes PIN, Schottky, Varac-
tors, etc.) est nettement plus simple sur une ligne microruban
que dans un guide d’ondes ou une ligne coaxiale. La limitation
aux courtes distances de transmission est due aux pertes géné-
ralement supérieures pour une ligne microruban a celles d’un
guide d’ondes ou d’une ligne coaxiale, le rayonnement et les
pertes diélectriques s’ajoutant ici aux habituelles pertes dans
les conducteurs.

Si la ligne microruban offre de grands avantages du point
de vue pratique, il n’en va pas de méme pour son analyse théo-
rique, qui est beaucoup plus complexe que celle du guide mé-
tallique fermé. La structure est en effet ouverte (pas de fron-
tiere fermée aux conditions limites simples) et inhomogéne
(Ponde se propage simultanément dans le diélectrique et dans
I’air). De ce fait, les modes de propagation ne sont plus pure-
ment transverses électromagnétiques (TEM), ni méme trans-
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verses ¢€lectriques (TE) ou magnétiques (TM), mais hybrides.
Les six composantes du champ sont non nulles en toute géné-
ralité. Il se fait pourtant que le mode dominant pour ce type
de structure a une fréquence de coupure nulle comme le mode
TEM sur une ligne homogeéne, et a, en fréquence, un comporte-
ment similaire a celui-ci. On parle donc de mode quasi TEM.
La ligne peut alors, en premiére approximation, étre étudiée
comme une ligne simple a deux conducteurs et seul son com-
portement statique est envisagé.

La premiere partie de cet article présente les méthodes
utilisées pour I’analyse de la ligne a microruban uniforme en
s’appuyant sur cette approximation statique. Ensuite, on
mettra en €vidence les limitations d’un tel calcul tant au point
de vue du comportement en fréquence, que des pertes.

Les méthodes développées dans le cadre de cet article, en
particulier celle de la fonction de Green, sont appliquées a
I’étude de la propagation sur une ligne microruban uniforme
mais peuvent étre facilement étendues a ’étude de structures
plus complexes permettant p.ex. de déterminer ’effet de dis-
continuités sur une ligne microruban.

2. Méthodes de calcul

Dans le cas d’une ligne a ruban ou d’une ligne microruban
homogéne (¢r = 1), il est possible de faire une étude analytique
exacte en faisant appel aux transformations conformes. On
suppose alors un conducteur central infiniment mince. Pour
la ligne & ruban, p.ex., on trouve pour I'impédance caracté-
ristique [1]12):

29976 K (k')

1) Ce travail a pu étre fait avec I'aide financiére de la Fondation Hasler
(projet n° 16).
2) Voir la bibliographie a la fin de 1’article.
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Fig. 1 Ligne a ruban

w largeur du ruban
h épaisseur du substrat
&r permittivité du substrat
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Fig. 2 Ligne microruban

w, h et er (voir fig. 1)
D potentiel sur les conducteurs
(x, y,z) axes de coordonnées
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Fig. 3 Probléme général de Dirichlet

S surface des conducteurs

&1 permittivité de chaque région

e

r coordonnées d’un point dans I’espace

R, et S, rayon et surface a l'infini

ou k = 1/cosh (rw/2 h), k' = /1 — k2 et K est Iintégrale
elliptique compléte de 17¢ espéce.

Ces mémes techniques ont pu étre appliquées au cas in-
homogéne, mais d’une maniére approchée [2; 3]. Une bonne
précision n’est toutefois obtenue que pour des rubans larges
(rapport w/h > 1) et une permittivité relative importante
(er > 5) [14].

Une méthode de résolution trés différente a été tentée par
un certain nombre d’auteurs, p.ex. [4; 5; 6]. Elle consiste a
fermer arbitrairement le domaine par une frontiére placée a
une distance suffisamment grande du ruban. On suppose un
potentiel nul sur ce contour et la résolution de ’équation de
Laplace dans ce domaine fermé peut se faire par des méthodes
classiques comme les différences finies [5] ou les éléments
finis [6]. Bien que cette méthode donne des renseignements
intéressants sur la distribution du champ aux alentours du
ruban, elle ne peut prétendre résoudre ’ensemble du probléme
puisqu’une perturbation importante a été introduite dans son
énoncé. Il faudrait faire tendre le contour vers I’infini pour
retrouver le probléme original. Ceci diminuerait évidemment
la précision des méthodes numériques qui sont essentiellement
adaptées a des structures fermées.

Yamashita et Mittra [7; 8] ont utilisé une résolution varia-
tionnelle du probléme en partant de I’expression de la capacité
distribuée [1]. La résolution se fait alors dans le plan complexe
aprés avoir remplacé I’expression de départ par sa transformée
de Fourier. Cette méthode est trés générale et permet de tenir
compte des substrats stratifiés a plusieurs diélectriques. Par
contre, elle est sensiblement plus longue du point de vue du
traitement analytique.

La méthode certainement la plus intéressante dans la plu-
part des configurations est celle de la fonction de Green [9; 10].
Elle permet de calculer non seulement la capacité distribuée et
I'impédance caractéristique, mais aussi la distribution de
charge sur le ruban et le potentiel dans tout I’espace. A cause
de son grand intérét pratique et des possibilités d’extension
qu’elle présente, seule cette derniére méthode sera explicitée ici.
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Fig. 4 Probléme associé pour le calcul de G*

-
Si, & et r (voir fig.3)
@ potentiel sur les conducteurs

-
g charge placée en r

3. Méthode de la fonction de Green

Le probléme de la ligne microruban est un cas particulier
du probléme de Dirichlet présenté a la fig. 3, ou un milieu
diélectrique inhomogéne D est borné par la surface a 'infini
S, €t par un certain nombre de surfaces fermées (conduc-
teurs) Si, i = 1, 2...n, dont le potentiel est spécifié. Ce pro-
bléme peut étre résolu de deux fagons différentes:

1. Soit résoudre 1’équation de Laplace dans le domaine D,
C’est-a-dire trouver la solution de

V2O () =0 reD @)
avec les conditions aux limites

@ () =f1(r)
D(r) =0

oy .
rieSii= 1,2..n

-
r eSe

3)

2. Soit substituer aux conducteurs des densités superficielles
de charge équivalentes, qui sont calculées de maniére a satis-
faire aux conditions limites (3), et résoudre dans tout I’espace
I’équation de Poisson

VED ()= —o(Me(r) rekEB )
avec la condition limite
&M =0 reSs (5)

les densités de charge a considérer étant les densités gs; (7) sur
chaque surface Si.

Le premier cas est résolu par ’introduction d’une fonction
de Green, G*, solution de

VEG* (i) = —-86G—r)e( rreD (6)
avec les conditions
G*#r)=0 reS,i=1,2.0 )

Cela revient a trouver la solution d’un probléme associé
illustré a la fig. 4, ou toutes les conditions limites sont homo-
génes mais ou une charge ponctuelle unitaire est ajoutée en

T
r=r',
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La fonction de Green étant connue, le potentiel du probléme
réel peut étre obtenu & partir des équations (2), (3), (6) et (7)
apreés quelques développements mathématiques [12]. Le résul-
tat est

(D(r)—a(r)ffl )
ZSI

reD
S’EZSi (8)

dG* (r r’) ds’

n étant la normale extérieure aux surfaces Si. La densité de
charge sur les conducteurs peut étre obtenue par

a‘p(’) re S 4=y 2, ol ©)

osi (N = —s() T
Pour le deuxiéme cas la fonction de Green G, est définie
d’une maniére identique:

V2G ()= =6 (r — e () (10)

mais aucune condition aux limites n’est requise car le domaine
d’intégration de 1’équation (4) est tout ’espace. On peut donc
choisir la solution la plus simple de (10), appelée solution fon-
damentale.

Le probléme associé dans ce cas est montré a la fig. 5, ou
tous les conducteurs ont disparu et ol une charge ponctuelle a
été introduite en r= 7’

Faisant usage des équations (4), (5), (9) et (10), le potentiel
peut étre obtenu par

r e E3
VIEZSi

ou toutefois la fonction gs: (7’) est inconnue.

Cette difficulté est surmontée si on applique I’équation (11)
aux points ol I’on connait le potentiel. On parvient ainsi au
systéme d’équations intégrales

o ()= [0 () G () ds
Xs:

an

rieSi
r'eZSi

qui permet le calcul de la densité superficielle par inversion
numeérique du systéme.

£6) = [ 0 G G () ds
¥ Ss

(12)

o
e
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Fig. 5 Probléme associé pour le calcul de G
Explication des symboles: voir fig. 3
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Fig. 6 Configuration équivalente d’une ligne microruban
Explication des symboles: voir fig.2

conducteur

Bien qu’au point de vue analytique cette deuxiéme méthode
soit plus compliquée, elle a deux avantages trés importants:

— Le calcul de G est beaucoup plus simple que celui de G*.
— La méthode donne directement la charge sur les conduc-
teurs.

En effet, les problémes liés aux lignes a microruban ont des
géométries compliquées qui rendent treés laborieux le calcul
de G*. De plus, la grandeur recherchée est souvent la capacité
de la ligne, qui est liée directement 3 la distribution de la charge
sur les conducteurs. La méthode des équations intégrales est
donc la plus intéressante a utiliser. Elle est, par ailleurs, trés
bien adaptée a un calcul numérique sur ordinateur, faisant
usage des techniques éprouvées comme la méthode variation-
nelle [11] et la méthode des moments [12].

4. Application a la ligne microruban

La ligne microruban peut étre mise sous la forme d’une
structure du type de celle étudiée dans la section précédente en
¢éliminant le plan de masse et en le remplagant par 'image du
ruban conducteur par rapport 4 ce plan. La configuration
résultante (fig. 6) est équivalente au point de vue électrosta-
tique, sa capacité étant la moitié de la capacité réelle de la
ligne puisque formée de deux condensateurs égaux connectés
en série. Le plan de symétrie est toujours au potentiel zéro.

En admettant que le mode de propagation est quasi-TEM,
les paramétres les plus importants d’une ligne & microruban
sont I'impédance caractéristique Z. et la vitesse de phase vpn
qui peuvent étre calculées par les expressions de la théorie
classique des lignes de transmission:

§ 1

Lo= F 5 Uph = VTT'T (13)

ou L' (H/m) et C' (F/m) sont I'inductance et la capacité de la
ligne par unité de longueur. L’inductance L’ peut étre éliminée
en considérant le probléme obtenu quand on remplace ¢ par
&o a la fig. 6. Pour ce probléme homogéne on a

Lo 1
ZO:V-—,—; Uph = € = ——— (14)
Co & VLo'Co
Mais L' = Lo’ parce que l'inductance est un parameétre
indépendant de la permittivité des milieux. Avec les équations
(13) et (14) on trouve donc les relations:

L o ap—n Cg’ a5s)

4 . -
T eycice
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Il reste a préciser les expressions (10) et (12). Compte tenu
de la symétrie de translation, la fonction de Green peut étre
calculée comme solution d’un probléme bidimensionnel:

V20Gr (rm, r1') = —6 (rz — ra')fe (ro) (16)

ou l’indice 7 indique une coordonnée transverse dans le plan
X, Y.

Quant au systéeme d’équations (12) il se résume a une
simple équation & une dimension:

w/2
V= f {GT (;T, ;;1') — Gt (;')r, ;Tz')} os (x") dx’ a7
-w/2
avec ;:1‘ = X Zx - th
ro’ = x'ax 4+ h ;y

- —
rre’ = x'ax — hay
Pour le calcul de Cy/, la fonction de Green est simplement
celle de I’espace vide en deux dimensions et on trouve

1 (x — x")2 + 4h2
v In o wE (18)

Gr (”T, VT1 ) — Gr (I’T, rTz Myi=

Il est a remarquer que bien que chaque fonction de Green
soit singuliére a 'infini, leur différence tend vers zéro.

Quant a la capacité C’, la présence du diélectrique com-
plique le calcul de G, car il faut assurer la continuité des champs
sur les surfaces de séparation entre ’air et le diélectrique.
Chaque fonction de Green est alors donnée par une série in-
finie d’images et on trouve I’expression:

oy fme g

= =E g g
Gt (rr, rr1’) — Gt (ro, rre’) =

47eo (x — x')2
1=22 & iy ((x—x)2 + (4n + 2)2h2)" (19)
20-1In
dreo ; 7 (G — x)2 + (4nh)2)
_ E—¢&0
avec 1 =-_ o (20)

dont un développement détaillé est donné en [9] et [13].

100

1 i3 1

0,01 0,1 1 10 w/h

Fig. 7 Impédance caractéristique d’une ligne microruban
h = 0,8 mm épaisseur du substrat

er = 2,06 permittivité du substrat
largeur du ruban
Ze impédance caractéristique
) Méthode des fonctions de Green
— Selon Yamashita et Mittra [7]
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Voh P(]O‘}cm/s)
10,0
9,5 —\
90
851
= i i i i i ) ‘ i (GHz)
2 4 6 8 f
Fig. 8 Dispersion en fréquence d’une ligne microruban [15]
f fréquence
Uph vitesse de phase
e = 11,7 permittivité du substrat

=0, 543 mm largeur du ruban
h = 1,016 mm épaisseur du substrat

Des valeurs de Co' et de C’, et par conséquent de Z¢ et vpn,
ont été calculées pour un substrat couramment utilisé, le
Teflon, (& = 2,06), avec A = 0,8 mm et pour quelques valeurs
de w. L’équation intégrale a été résolue par la méthode des
moments [12], et les résultats obtenus sont comparés a la
fig. 7 avec ceux donnés par Yamashita et Mittra [7] pour I’im-
pédance caractéristique. On peut remarquer la bonne corrres-
pondance entre les deux techniques.

La méthode de la fonction de Green utilisée ici pour le
ruban infini a le grand avantage de pouvoir étre étendue a des
structures plus complexes a 3 dimensions comme les disconti-
nuités sous forme de saut en largeur ou d’encoches.

5. Limitations de la méthode

11 est important a ce stade de remarquer les limites de cette
étude. La ligne microruban a été considérée du point de vue
statique uniquement (mode dominant de propagation supposé
TEM). Or des résultats expérimentaux ont montré que le mode
fondamental dans une ligne microruban est 1égérement disper-
sif, c’est-a-dire que la vitesse de phase n’est pas constante avec
la fréquence [15]. Cette dispersion n’est toutefois importante
que pour des fréquences élevées. La fig. 8 donne un exemple
de l'allure de la vitesse de phase en fonction de la fréquence.
On voit clairement que, pour ce cas précis, la dispersion n’est
sensible que pour des fréquences supérieures a environ 2 a
3 GHz. Il faut remarquer qu’a des fréquences élevées, d’autres
modes de la ligne peuvent se propager, le microruban n’étant
alors plus utilisable pour transmettre des informations.

Une autre limitation provient de I’effet des pertes. Les lignes
microruban présentent une atténuation due aux pertes dans les
conducteurs, dans le diélectrique et par rayonnement [16; 17].
Aucune perte n’est considérée ici. Les matériaux conducteurs
et diélectriques sont supposés idéaux et I’étude statique ne
peut tenir compte du rayonnement. Néanmoins, pour des fré-
quences pas trop élevées correspondant a la zone utilisable ou
seul le mode dominant se propage, les structures microruban
couramment utilisées donnent des affaiblissements négligeables
sur les distances correspondant aux connexions entre éléments.
Pour un substrat d’alumine, p.ex., on trouve des atténuations
inférieures a 0.04 dB/cm jusqu’a une fréquence de 3 GHz
(wh=0,5 Z. =70Q, h =0,05cm) [17].

Bull. ASE/UCS 68(1977)8, 16 avril
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Hans Christian Oersted 17771851

Hans Christian Oersted wurde am 14. August 1777 in Rudkoebing auf der ddnischen
Insel Langeland geboren. Sein Vater betrieb eine Apotheke, hatte aber einen schweren
Existenzkampf. Mit 11 Jahren musste Christian in der Apotheke helfen und bekam dabei
Freude an chemischen Arbeiten. Daneben bildete er sich selber weiter. Mit gespartem Geld
reiste er 1794 nach Kopenhagen, bestand dort das Abitur und trat im Herbst in die Uni-
versitidt ein. Im Jahr darauf gewann er einen Preis, der ihm erlaubte, eine Reise nach
Deutschland zu machen, wo er Fichte, Schelling und Schlegel kennenlernte und ein pas-
sionierter Anhénger Kants wurde.

Nach Kopenhagen zuriickgekehrt, schloss er 1799 seine Studien mit dem Doktor-
examen ab. Fir kurze Zeit iibernahm er die Leitung einer Apotheke und hielt daneben
Vorlesungen. Dank eines Stipendiums konnte er 1801 nochmals eine grosse Reise unter-
nehmen. In Deutschland zéhlte er eine Zeitlang zum Kreis der Romantiker und befreun-
dete sich — zu seinem Nachteil — mit Johann Ritter. Weitergereist, horte er von der Volta-
schen Erfindung, die ihn sehr interessierte.

Eine Veroffentlichung tiber die Chladnischen Klangfiguren bewirkte 1806 seine Er-
nennung zum Assistent-Professor fiir Physik. Kurz danach nahm er sich vor, zu ermitteln,
ob Elektrizitdt eine Wirkung auf Magnete ausiibe. Er wusste, dass Elektrizitdt in einem
diinnen Draht Wiarme und in einem noch diinnern Licht erzeugt. Ferner war ihm bekannt,
dass Eisenstiicke durch den Blitz magnetisiert werden.

1817 wurde Oersted, ein hervorragender Lehrer, ordentlicher Professor an der Uni-
versitdit Kopenhagen. Bei einer Vorfuhrung des Versuches von Fourcroy, bei dem ein
feiner Platindraht durch den Strom einer Voltaschen SAule zum Gliithen gebracht wird,
stellte er auf dem Experimentiertisch einen Kompass auf, um einen allfilligen Einfluss des
Stromes festzustellen. Beim Einschalten sah er eine geringe Bewegung der Magnetnadel.
Nach der Vorlesung wiederholte er den Versuch mit grosserer Sorgfalt. Am 21. Juli 1820,
als er seiner Sache sicher war, sandte er einen lateinisch abgefassten Bericht iiber seine
Versuche an Physiker und wissenschaftliche Gesellschaften. Die epochemachende Ent-
deckung des Elektromagnetismus — er nannte ihn den elektrischen Konflikt — stiess tiberall
auf grosstes Interesse. Oersted wurde mit Ehrungen tiberhiuft.

Um 1825 gelang es ihm, durch Behandlung von Tonerde mit Chlor und alsdann auf dem Umweg iiber Aluminium-Amalgam, ein kleines
Klimpchen Aluminium darzustellen. Zu jener Zeit beschiftigte er sich mit Plinen fiir eine technische Hochschule. Diese nahmen 1829
Gestalt an, und er wurde Direktor der neuen Hochschule. Auf wissenschaftlichem Gebiet sind noch seine Arbeiten {iber Kompressibilitit
von Gasen und Flissigkeiten sowie diejenigen tiber den Diamagnetismus zu erwidhnen.

Im November 1850 wurde Oersted nochmals gefeiert und erhielt als Nationalspende ein Schloss. Bevor er aber seinen Ruhesitz beziehen
konnte, starb er am 9. Mirz 1851 in Kopenhagen. Er war stets literarisch interessiert gewesen, und im Alter hatte er sich wieder der Philo-
sophie zugewandt. Ein unvollendet gebliebenes Werk beschreibt die Beziechungen zwischen Gott, Schonheit und Wissenschaft.  H. Wiiger
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