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Lignes Microruban et Fonctions de Green 1)

Par J.R.Mosig et M.C.Decréton

621.372.821

Après une brève présentation des caractéristiques de la ligne microruban le problème de l'analyse théorique d'une telle ligne est abordé.
Le caractère inhomogène et ouvert de la structure rend son analyse exacte beaucoup plus complexe que celle du guide d'ondes classique. Des
simplifications sont souvent introduites, dont la plus importante est l'approximation TEM consistant à négliger le caractère hybride du mode
fondamental. Les principales méthodes de calcul basées sur cette approximation sont décrites et la plus intéressante, celle de la fonction de Green,
est développée en détail. Enfin, des résultats de calcul sont présentés pour la ligne microruban infinie.

Nach einer kurzen Darstellung der Eigenschaften der Microstrip-Leitung wird das Problem der theoretischen Analyse einer solchen Leitung
betrachtet. Die Eigenart der inhomogenen und offenen Struktur hat zur Folge, dass deren genaue Analyse viel schwieriger ist als diejenige des

klassischen Wellenleiters. Die wichtigste der oft notwendigen Vereinfachungen ist die TEM-Hypothese, nach welcher man den hybriden
Charakter der Hauptwelle vernachlässigt. Die wesentlichen, auf dieser Hypothese basierenden Berechnungsmethoden werden beschrieben und die
interessanteste (diejenige der Greenschen Funktion) detailliert entwickelt. Es folgen Rechenergebnisse für die unendliche Microstrip-Leitung.

1. Introduction
Les premiers appareils employés en hyperfréquences

(300 MHz à 300 GHz) étaient caractérisés par un poids et un
volume considérables. Guides d'ondes, brides de raccordement,

supports faisaient penser à l'équipement d'un plombier.
C'est avec l'introduction au début des années cinquante de la

ligne à ruban (stripline) (fig. 1) et, une dizaine d'années plus
tard, de la ligne à microruban (microstrip) (fig. 2), qu'une
nouvelle génération d'appareils a vu le jour. Les circuits peuvent

dorénavant être rassemblés sur des petites plaquettes de

matériau diélectrique. Outre la réduction de poids et d'encombrement

que cela représente, cette nouvelle conception permet
l'utilisation des techniques de réalisation très pratiques des

circuits imprimés et plus récemment des circuits intégrés.
Les lignes microruban sont aujourd'hui abondamment

utilisées pour toutes les applications en basse puissance et là
où la transmission se fait uniquement sur de très courtes
distances (connexions entre éléments). Par exemple, l'implantation

d'éléments semiconducteurs (diodes PIN, Schottky, Varac-

tors, etc.) est nettement plus simple sur une ligne microruban

que dans un guide d'ondes ou une ligne coaxiale. La limitation
aux courtes distances de transmission est due aux pertes
généralement supérieures pour une ligne microruban à celles d'un
guide d'ondes ou d'une ligne coaxiale, le rayonnement et les

pertes diélectriques s'ajoutant ici aux habituelles pertes dans

les conducteurs.
Si la ligne microruban offre de grands avantages du point

de vue pratique, il n'en va pas de même pour son analyse
théorique, qui est beaucoup plus complexe que celle du guide
métallique fermé. La structure est en effet ouverte (pas de frontière

fermée aux conditions limites simples) et inhomogène
(l'onde se propage simultanément dans le diélectrique et dans

l'air). De ce fait, les modes de propagation ne sont plus purement

transverses électromagnétiques (TEM), ni même trans¬

verses électriques (TE) ou magnétiques (TM), mais hybrides.
Les six composantes du champ sont non nulles en toute
généralité. Il se fait pourtant que le mode dominant pour ce type
de structure a une fréquence de coupure nulle comme le mode
TEM sur une ligne homogène, et a, en fréquence, un comportement

similaire à celui-ci. On parle donc de mode quasi TEM.
La ligne peut alors, en première approximation, être étudiée

comme une ligne simple à deux conducteurs et seul son
comportement statique est envisagé.

La première partie de cet article présente les méthodes
utilisées pour l'analyse de la ligne à microruban uniforme en

s'appuyant sur cette approximation statique. Ensuite, on
mettra en évidence les limitations d'un tel calcul tant au point
de vue du comportement en fréquence, que des pertes.

Les méthodes développées dans le cadre de cet article, en

particulier celle de la fonction de Green, sont appliquées à

l'étude de la propagation sur une ligne microruban uniforme
mais peuvent être facilement étendues à l'étude de structures
plus complexes permettant p. ex. de déterminer l'effet de
discontinuités sur une ligne microruban.

2. Méthodes de calcul

Dans le cas d'une ligne à ruban ou d'une ligne microruban
homogène (er 1), il est possible de faire une étude analytique
exacte en faisant appel aux transformations conformes. On

suppose alors un conducteur central infiniment mince. Pour
la ligne à ruban, p. ex., on trouve pour l'impédance caractéristique

[l]2):

Zc
29.976 k K(k')

[/fir K(k) (1)

1) Ce travail a pu être fait avec l'aide financière de la Fondation Hasler
(projet n° 16).

2) Voir la bibliographie à la fin de l'article.

conducteur

;ne à ruban

largeur du ruban
épaisseur du substrat
permittivité du substrat

conducteur

conducteur

Fig. 2 Ligne microruban

w, h et eT (voir fig. 1)

0 potentiel sur les conducteurs
(x, y, z) axes de coordonnées
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Fig. 3 Problème général de Dirichlet

Si surface des conducteurs
ei permittivité de chaque région

r coordonnées d'un point dans l'espace
Ra, et 5*00 rayon et surface à l'infini

où k I/cosh (nco/2 h), k' |/l ~ k2 et K est l'intégrale
elliptique complète de lre espèce.

Ces mêmes techniques ont pu être appliquées au cas

inhomogène, mais d'une manière approchée [2; 3]. Une bonne

précision n'est toutefois obtenue que pour des rubans larges

(rapport w/h > 1) et une permittivité relative importante
(er > 5) [14].

Une méthode de résolution très différente a été tentée par
un certain nombre d'auteurs, p.ex. [4; 5; 6]. Elle consiste à

fermer arbitrairement le domaine par une frontière placée à

une distance suffisamment grande du ruban. On suppose un
potentiel nul sur ce contour et la résolution de l'équation de

Laplace dans ce domaine fermé peut se faire par des méthodes

classiques comme les différences finies [5] ou les éléments

finis [6]. Bien que cette méthode donne des renseignements
intéressants sur la distribution du champ aux alentours du
ruban, elle ne peut prétendre résoudre l'ensemble du problème
puisqu'une perturbation importante a été introduite dans son
énoncé. Il faudrait faire tendre le contour vers l'infini pour
retrouver le problème original. Ceci diminuerait évidemment
la précision des méthodes numériques qui sont essentiellement

adaptées à des structures fermées.

Yamashita et Mittra (7 ; 8] ont utilisé une résolution varia-
tionnelle du problème en partant de l'expression de la capacité
distribuée [1], La résolution se fait alors dans le plan complexe
après avoir remplacé l'expression de départ par sa transformée
de Fourier. Cette méthode est très générale et permet de tenir
compte des substrats stratifiés à plusieurs diélectriques. Par

contre, elle est sensiblement plus longue du point de vue du
traitement analytique.

La méthode certainement la plus intéressante dans la
plupart des configurations est celle de la fonction de Green [9; 10].

Elle permet de calculer non seulement la capacité distribuée et

l'impédance caractéristique, mais aussi la distribution de

charge sur le ruban et le potentiel dans tout l'espace. A cause
de son grand intérêt pratique et des possibilités d'extension

qu'elle présente, seule cette dernière méthode sera explicitée ici.

Fig. 4 Problème associé pour le calcul de G*

Su si et r (voir fig. 3)
<P potentiel sur les conducteurs

-A
q charge placée en r

3. Méthode de la fonction de Green

Le problème de la ligne microruban est un cas particulier
du problème de Dirichlet présenté à la fig. 3, où un milieu
diélectrique inhomogène D est borné par la surface à l'infini
Soo, et par un certain nombre de surfaces fermées (conducteurs)

Si, i 1, 2...n, dont le potentiel est spécifié. Ce
problème peut être résolu de deux façons différentes :

1. Soit résoudre l'équation de Laplace dans le domaine D,
c'est-à-dire trouver la solution de

V2<ï> (r) 0 7e D (2)

avec les conditions aux limites

0 (ri) fi (n) n e Si, i 1, 2...n ^0 (r) 0 r e Sa,

2. Soit substituer aux conducteurs des densités superficielles
de charge équivalentes, qui sont calculées de manière à satisfaire

aux conditions limites (3), et résoudre dans tout l'espace

l'équation de Poisson

V2 0 (r) — — q (r)!i: (r) r e E3 (4)

avec la condition limite

0 (r) -- 0 7 e (5)

les densités de charge à considérer étant les densités «si (r) sur
chaque surface Si.

Le premier cas est résolu par l'introduction d'une fonction
de Green, G*, solution de

V2 G* (r, r') — <5 (r — r')/s (r) r, r'e D (6)

avec les conditions

G* (r, 7') 0 7e Si, i 1, 2...n (7)

Cela revient à trouver la solution d'un problème associé

illustré à la fig. 4, où toutes les conditions limites sont homogènes

mais ou une charge ponctuelle unitaire est ajoutée en
—> —>

r r'.
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La fonction de Green étant connue, le potentiel du problème
réel peut être obtenu à partir des équations (2), (3), (6) et (7)

après quelques développements mathématiques [12]. Le résultat

est

0 (h £ (r)f fi (7')

2 Si

8G* (r, r')
8n

ds'
D

esi (r) -e (r)
a<P(r)

dn r e 5i, i 1, 2, ...n

V 2 G (r, r') —ô(r — r')/e (r) (10)

0 (r) J gsi (r') • G (r, r') ds' r e E3

E Si >" e y Si

fi (ri) Qsi (r') G (r, r') ds' n e 5)

2 Si r'eY>Si

Fig. 5 Problème associé pour le calcul de G

Explication des symboles: voir fig.3

conducteur

(8)

n étant la normale extérieure aux surfaces Si. La densité de

charge sur les conducteurs peut être obtenue par

conducteur

(9)

Pour le deuxième cas la fonction de Green G, est définie
d'une manière identique:

mais aucune condition aux limites n'est requise car le domaine

d'intégration de l'équation (4) est tout l'espace. On peut donc
choisir la solution la plus simple de (10), appelée solution
fondamentale.

Le problème associé dans ce cas est montré à la fig. 5, où
tous les conducteurs ont disparu et où une charge ponctuelle a

—>

été introduite en r r'.
Faisant usage des équations (4), (5), (9) et (10), le potentiel

peut être obtenu par

(11)

où toutefois la fonction gm (r') est inconnue.
Cette difficulté est surmontée si on applique l'équation (11)

aux points où l'on connaît le potentiel. On parvient ainsi au
système d'équations intégrales

(12)

qui permet le calcul de la densité superficielle par inversion
numérique du système.

Fig. 6 Configuration équivalente d'une ligne microruban

Explication des symboles: voir fig.2

Bien qu'au point de vue analytique cette deuxième méthode
soit plus compliquée, elle a deux avantages très importants:

- Le calcul de G est beaucoup plus simple que celui de G*.

- La méthode donne directement la charge sur les conducteurs.

En effet, les problèmes liés aux lignes à microruban ont des

géométries compliquées qui rendent très laborieux le calcul
de G*. De plus, la grandeur recherchée est souvent la capacité
de la ligne, qui est liée directement à la distribution de la charge

sur les conducteurs. La méthode des équations intégrales est

donc la plus intéressante à utiliser. Elle est, par ailleurs, très

bien adaptée à un calcul numérique sur ordinateur, faisant

usage des techniques éprouvées comme la méthode variation-
nelle [11] et la méthode des moments [12].

4. Application à la ligne microruban

La ligne microruban peut être mise sous la forme d'une
structure du type de celle étudiée dans la section précédente en
éliminant le plan de masse et en le remplaçant par l'image du
ruban conducteur par rapport à ce plan. La configuration
résultante (fig. 6) est équivalente au point de vue électrostatique,

sa capacité étant la moitié de la capacité réelle de la
ligne puisque formée de deux condensateurs égaux connectés

en série. Le plan de symétrie est toujours au potentiel zéro.

En admettant que le mode de propagation est quasi-TEM,
les paramètres les plus importants d'une ligne à microruban
sont l'impédance caractéristique Zc et la vitesse de phase t'ph

qui peuvent être calculées par les expressions de la théorie
classique des lignes de transmission :

Zc fph :
i

iuc (13)

où L' (H/m) et C" (F/m) sont l'inductance et la capacité de la

ligne par unité de longueur. L'inductance L' peut être éliminée

en considérant le problème obtenu quand on remplace s par
eo à la fig. 6. Pour ce problème homogène on a

1JhLI Co'z„ V-'t ; fph ;
i

VuCo'
(14)

Mais L' Lo parce que l'inductance est un paramètre
indépendant de la permittivité des milieux. Avec les équations
(13) et (14) on trouve donc les relations:

Zc —jl=-
c VC'Co

tfph CiCo

C (15)
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II reste à préciser les expressions (10) et (12). Compte tenu
de la symétrie de translation, la fonction de Green peut être
calculée comme solution d'un problème bidimensionnel :

V2tGt (ry, ry') — <5 (ry — ry')/e (ry) (16)

où l'indice T indique une coordonnée transverse dans le plan
-A y.

Quant au système d'équations (12) il se résume à une
simple équation à une dimension :

w/2

C=y 'Gt (fT, rTi') — Gt (rT, rT2')) ps (x') dx-' (17)

-w/2

-> -> ->
avec t'y x ax + h ay

ryy x' «x + h ay

ryd x' flx — h fly

Pour le calcul de Cd, la fonction de Green est simplement
celle de l'espace vide en deux dimensions et on trouve

—> —> 1 (x —
Gt (ry, ru') — Gt (ry, ryd) 'n

4/i2

(x - x')2

Il est à remarquer que bien que chaque fonction de Green
soit singulière à l'infini, leur différence tend vers zéro.

Quant à la capacité C', la présence du diélectrique
complique le calcul de G, car il faut assurer la continuité des champs
sur les surfaces de séparation entre l'air et le diélectrique.
Chaque fonction de Green est alors donnée par une série
infinie d'images et on trouve l'expression :

- - - - I-» \(x — x')2 +4A2)1+V1
Gt (ry, m - Gt (ry, ry2 ln

(x_x~y +

{(x — x')2 + (An + 2)2/r2}71 (19)
+ -SM>2n'lln {(x — x')2 + (Anh)2

avec ;/
- co

£0
(20)

dont un développement détaillé est donné en [9] et [13].

200

îoo-

Fig. 7 Impédance caractéristique d'une ligne microruban
h 0,8 mm épaisseur du substrat
Ei 2,06 permittivité du substrat
w largeur du ruban
Zc impédance caractéristique
O Méthode des fonctions de Green

Selon Yamashila et Mittra [7]

rph

10,0

9,5

9,0

8.5

(lO'cm/s

(GHz)

(18)

Fig. 8 Dispersion en fréquence d'une ligne microruban [15]

/ fréquence
Dph vitesse de phase

er=ll,7 permittivité du substrat
w 0,543 mm largeur du ruban
h — 1,016 mm épaisseur du substrat

Des valeurs de Co' et de C', et par conséquent de Zc et rpn,
ont été calculées pour un substrat couramment utilisé, le

Teflon, (fir 2,06), avec h — 0,8 mm et pour quelques valeurs
de w. L'équation intégrale a été résolue par la méthode des

moments [12], et les résultats obtenus sont comparés à la

fig. 7 avec ceux donnés par Yamashita et Mittra [7] pour
l'impédance caractéristique. On peut remarquer la bonne corrres-
pondance entre les deux techniques.

La méthode de la fonction de Green utilisée ici pour le

ruban infini a le grand avantage de pouvoir être étendue à des

structures plus complexes à 3 dimensions comme les discontinuités

sous forme de saut en largeur ou d'encoches.

5. Limitations de la méthode

Il est important à ce stade de remarquer les limites de cette
étude. La ligne microruban a été considérée du point de vue

statique uniquement (mode dominant de propagation supposé

TEM). Or des résultats expérimentaux ont montré que le mode

fondamental dans une ligne microruban est légèrement disper-
sif, c'est-à-dire que la vitesse de phase n'est pas constante avec

la fréquence [15]. Cette dispersion n'est toutefois importante
que pour des fréquences élevées. La fig. 8 donne un exemple
de l'allure de la vitesse de phase en fonction de la fréquence.
On voit clairement que, pour ce cas précis, la dispersion n'est
sensible que pour des fréquences supérieures à environ 2 à

3 GHz. Il faut remarquer qu'à des fréquences élevées, d'autres
modes de la ligne peuvent se propager, le microruban n'étant
alors plus utilisable pour transmettre des informations.

Une autre limitation provient de l'effet des pertes. Les lignes
microruban présentent une atténuation due aux pertes dans les

conducteurs, dans le diélectrique et par rayonnement [16; 17],

Aucune perte n'est considérée ici. Les matériaux conducteurs
et diélectriques sont supposés idéaux et l'étude statique ne

peut tenir compte du rayonnement. Néanmoins, pour des

fréquences pas trop élevées correspondant à la zone utilisable où
seul le mode dominant se propage, les structures microruban
couramment utilisées donnent des affaiblissements négligeables

sur les distances correspondant aux connexions entre éléments.

Pour un substrat d'alumine, p. ex., on trouve des atténuations
inférieures à 0.04 dB/cm jusqu'à une fréquence de 3 GHz
(w/h 0,5, Zc 70 H, h 0,05 cm) [17].
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Hans Christian Oersted 1777-1851

Hans Christian Oersted wurde am 14. August 1777 in Rudkoebing auf der dänischen
Insel Langeland geboren. Sein Vater betrieb eine Apotheke, hatte aber einen schweren
Existenzkampf. Mit 11 Jahren musste Christian in der Apotheke helfen und bekam dabei
Freude an chemischen Arbeiten. Daneben bildete er sich selber weiter. Mit gespartem Geld
reiste er 1794 nach Kopenhagen, bestand dort das Abitur und trat im Herbst in die
Universität ein. Im Jahr darauf gewann er einen Preis, der ihm erlaubte, eine Reise nach
Deutschland zu machen, wo er Fichte, Schelling und Schlegel kennenlernte und ein
passionierter Anhänger Kants wurde.

Nach Kopenhagen zurückgekehrt, schloss er 1799 seine Studien mit dem Doktorexamen

ab. Für kurze Zeit übernahm er die Leitung einer Apotheke und hielt daneben
Vorlesungen. Dank eines Stipendiums konnte er 1801 nochmals eine grosse Reise
unternehmen. In Deutschland zählte er eine Zeitlang zum Kreis der Romantiker und befreundete

sich - zu seinem Nachteil - mit Johann Ritter. Weitergereist, hörte er von der Voltaschen

Erfindung, die ihn sehr interessierte.
Eine Veröffentlichung über die Chladnischen Klangfiguren bewirkte 1806 seine

Ernennung zum Assistent-Professor für Physik. Kurz danach nahm er sich vor, zu ermitteln,
ob Elektrizität eine Wirkung auf Magnete ausübe. Er wusste, dass Elektrizität in einem
dünnen Draht Wärme und in einem noch dünnern Licht erzeugt. Ferner war ihm bekannt,
dass Eisenstücke durch den Blitz magnetisiert werden.

1817 wurde Oersted, ein hervorragender Lehrer, ordentlicher Professor an der
Universität Kopenhagen. Bei einer Vorführung des Versuches von Fourcroy, bei dem ein
feiner Platindraht durch den Strom einer Voltaschen Säule zum Glühen gebracht wird,
stellte er auf dem Experimentiertisch einen Kompass auf, um einen allfälligen Einfluss des
Stromes festzustellen. Beim Einschalten sah er eine geringe Bewegung der Magnetnadel.
Nach der Vorlesung wiederholte er den Versuch mit grösserer Sorgfalt. Am 21. Juli 1820,
als er seiner Sache sicher war, sandte er einen lateinisch abgefassten Bericht über seine
Versuche an Physiker und wissenschaftliche Gesellschaften. Die epochemachende Ent- ys' a Isc e A tei uns er THZ

deckung des Elektromagnetismus - er nannte ihn den elektrischen Konflikt - stiess überall
auf grösstes Interesse. Oersted wurde mit Ehrungen überhäuft.

Um 1825 gelang es ihm, durch Behandlung von Tonerde mit Chlor und alsdann auf dem Umweg über Aluminium-Amalgam, ein kleines
Klümpchen Aluminium darzustellen. Zu jener Zeit beschäftigte er sich mit Plänen für eine technische Hochschule. Diese nahmen 1829
Gestalt an, und er wurde Direktor der neuen Hochschule. Auf wissenschaftlichem Gebiet sind noch seine Arbeiten über Kompressibilität
von Gasen und Flüssigkeiten sowie diejenigen über den Diamagnetismus zu erwähnen.

Im November 1850 wurde Oersted nochmals gefeiert und erhielt als Nationalspende ein Schloss. Bevor er aber seinen Ruhesitz beziehen
konnte, starb er am 9. März 1851 in Kopenhagen. Er war stets literarisch interessiert gewesen, und im Alter hatte er sich wieder der
Philosophie zugewandt. Ein unvollendet gebliebenes Werk beschreibt die Beziehungen zwischen Gott, Schönheit und Wissenschaft. H. Wüger
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