Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitatsunternehmen = Bulletin de
I'Association suisse des électriciens, de I'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitatsunternehmen

Band: 68 (1977)

Heft: 6

Artikel: Der Aufbau von numerischer Steuerungen mittels Mikroprozessor und
Programmbibliothek

Autor: Mduller, A.

DOI: https://doi.org/10.5169/seals-915012

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 27.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-915012
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Der Aufbau von numerischen Steuerungen
mittels Mikroprozessor und Programmbibliothek

Von A. Miiller

681.513.2 : 519.685.7

Numerische Positioniersteuerungen konnen mit Hilfe handelsiiblicher Mikroprozessoren sehr einfach realisiert werden, wenn eine Programm-
bibliothek zur Verfiigung steht. Nach einer Ubersicht iiber das Problem werden die Grundlagen abgeleitet, auf denen eine solche Bibliothek

aufgebaut werden kann.

Les commandes numériques de positionnement sont réalisables trés simplement au moyen de microprocesseurs courants, a condition de disposer
d’une bibliothéque de programmes. Aprés un apercu général de ce probleme, I’auteur décrit les bases sur lesquelles une telle bibliothéque peut étre

établie.

1. Einfithrung

Eine Positioniersteuerung mit Mikroprozessor hat allgemein
den in Fig. 1 dargestellten Aufbau. Dieser klare und iibersicht-
liche Aufbau ergibt folgende Eigenschaften:

— Der Mikroprozessor umfasst hauptsidchlich standardisierbare,
auswechselbare Baugruppen. Nur die Interface-Baugruppen sind
problembezogen aufgebaut.

— Eine Erweiterung der Steuerung oder Anpassung an neue
Probleme ist im Rahmen der Platzreserve im Kartenrack ohne wei-
teres moglich.

— Nach Aufstellung des Pflichtenheftes kann gleichzeitig mit der
Konstruktion der Hardware und dem Erstellen der Software (des
Programmes) begonnen werden. Die Durchlaufzeit wird dadurch
verringert, und die Steuerung ist schneller einsatzbereit.

— Die Verwendung von standardisierter Hardware und von Pro-
grammen aus einer Bibliothek (standardisierte Software) erleichtern
Inbetriebnahme und Service. Auch das Ersatzteilproblem ist ein-
facher zu 16sen.

Wie sieht die Software einer Steuerung aus, deren Program-
mierung mit Hilfe einer Programmbibliothek erfolgt? Fig. 2
zeigt das Flussdiagramm (Ablaufschema) einer einfachen
numerischen Positioniersteuerung. Rechtecke stellen auszufiih-
rende Operationen dar; Rhomben markieren Entscheidungen,
die auf Grund des Resultates der vorangegangenen Operatio-
nen vom Mikroprozessor getroffen werden.

Alle Operationen, zu deren Ausfiihrung mehr als einige
wenige Befehle bendtigt werden, sollen der Bibliothek entnom-
men werden konnen. Die Rechtecke im Flussdiagramm stellen
also, mit der erwédhnten Einschridnkung, Bibliotheksprogramme
dar.

Bedienungs-
panel un
Programm -
eingabe
| Programm Eingangs- i
] ROM Interface '
I | | J ——— Erweiterbar auf
l MPU <« Bus—>
I I l I ———mehrere Achsen
‘ Daten Ausgangs- l
|_ RAM Interface _]
: / —_— —— T
Mikroprozessor
Antrieb

Fig. 1 Aufbau einer Positioniersteuerung mit Mikroprozessor

MPU Microprocessor Unit
RAM Random Access Memory
ROM Read Only Memory

294 (A 137)

Die Rhomben stehen fiir Entscheidungen. An diesen Stellen
kann das Programm auf zwei verschiedene Arten weitergehen,
je nachdem eine Bedingung erfiillt ist oder nicht. Es konnen
dabei nur solche Bedingungen verwendet werden, deren Erfiil-
lung durch ein Zeichen (Flag-Bit) im Zustandsregister (Condi-
tion Code Register) des Mikroprozessors signalisiert wird.
Die Bibliotheksprogramme miissen also diese Flag-Bits setzen.

Das Hauptprogramm der Steuerung hat die Aufgabe, die
richtigen Unterprogramme aufzurufen und die richtigen Ent-
scheidungen zu bewirken. Es besteht nur aus Testoperationen
und Aufrufen von Bibliotheksprogrammen. Diese werden
durch den Befehl JSR (Jump to Subroutine) aufgerufen. Am
Ende jedes Unterprogrammes bewirkt der Befehl RTS (Return
from Subroutine) den Riicksprung ins Hauptprogramm.

Der hier dargelegte Aufbau des Programmes aus Unter-
programmen hat folgende wichtige Vorteile:

— Das Hauptprogramm wird sehr iibersichtlich und leicht
lesbar, da es genau dem Flussdiagramm entspricht.
— Programminderungen sind auf einfache Art moglich.

2. Eigenschaften des Mikroprozessors

Die zurzeit erhdltlichen Mikroprozessoren weisen unter-
schiedlichen Aufbau auf. Dies hat Riickwirkungen auf die
Programmierung. Die folgende Beschreibung bezieht sich auf
den Mikroprozessor Motorola M6800. Sie soll das Verstiindnis
der anschliessend gegebenen Programmbeispiele erleichtern.

Das Mikroprozessorsystem hat den in Fig. 3 dargestellten
einfachen und iibersichtlichen Aufbau. Wichtig ist dabei, dass
alle Bausteine an den gleichen Bus angeschlossen sind und dass
die Schnittstellen mit der Umwelt (Peripherie-Schnittstellen)
vom Prozessor genau gleich wie Speicherstellen behandelt
werden. Durch den Bus ist gewéhrleistet, dass ein System ohne
grossen Aufwand jederzeit ausgebaut werden kann. Die Be-
handlung der Schnittstellen als Speicherstellen ergibt eine ein-
fache Programmierung, da keine speziellen Befehle fiir Ein-
und Ausgabeoperationen notig sind. Zudem ist auf diese Art
eine fast beliebig grosse Anzahl von Schnittstellen moglich.

Der Mikroprozessor selbst weist ebenfalls einen sehr tiber-
sichtlichen Aufbau auf (Fig. 4). Die beiden 8-bit-Register A
und B sind Rechenregister (Akkumulatoren) mit fast identi-
schen Eigenschaften. In ihnen konnen alle logischen und alle
arithmetischen Operationen ausgefiihrt werden. Viele Opera-
tionen konnen aber auch direkt in einer Speicherstelle ausge-
fiihrt werden. Dies ist beispielsweise fiir Ein- und Ausgabe-
operationen (E/A-Operationen) oft sehr vorteilhaft. Da die
Schnittstellen wie Speicherstellen behandelt werden, konnen
viele Operationen direkt im Interface ausgefiihrt werden. Dies

Bull. ASE/UCS 68(1977)6, 19 mars

Einschalten
der Steverung

I Einschultprogrumm'

Signal "Auto "abfragen
(Betriebsartenumschalter)

Lampe Programmende
ausschalten

¥

ll. Koordinate vorbereitell
|
)
Koordinate an Antrieb
ausgeben

}

Warten bis fertigpositio-
niert

|

Warten bis Bearbeitung
beendet

letzte Koordinate

Lampe Programm-| |Né&chste Koordinate vor-
ende einschalten bereiten

L Y

Fig. 2 Aufbau des Hauptprogrammes einer Steuerung

vereinfacht die Programmierung und verbessert die Lesbarkeit
der Programme.

Das Indexregister X (16 bit) dient als Speicher fiir die Basis-
adresse bei indexierter Adressierung von Datenspeicherstellen.
Diese Adressierungsart ist speziell geeignet, wenn das gleiche
Programm mit verschiedenen Daten ablaufen soll. Die Daten
werden dann blockweise gespeichert und vor dem Start des
Programmes die Anfangsadresse des Datenblockes ins Index-
register gesetzt. Im Programm sind die Adressen der zu ver”
arbeitenden Daten relativ zu dieser Anfangsadresse angegeben.
Beispielsweise wird also der Wert in der Anfangsadresse ver-
kniipft mit dem Wert in Anfangsadresse plus 1 und das Resul-
tat abgespeichert in Anfangsadresse plus 2. Ist das Programm
abgelaufen, so kann das Indexregister auf die Anfangsadresse
des nidchsten Datenblockes gesetzt werden, und das gleiche,
unverdnderte Programm verarbeitet den nidchsten Datenblock

Das Stackpointer-Register S ermdglicht die Speicherung
von Zwischenresultaten in einem als «Stack» bezeichneten Teil
des Datenspeichers, ohne dass im Programm feste Adressen
fir diese Speicherstellen vorgesehen werden miissen. Dazu wird
im Einschaltprogramm das Stackpointer-Register auf die
hochste Adresse des fiir den Stack reservierten Teiles des RAM
gesetzt. Der Befehl Push (PSH) bewirkt dann, dass der Inhalt

Bull. SEV/VSE 68(1977)6, 19. Mirz

Takt -
erzeugung

MPU

Programm-|

ROM

Arbeits-
RAM

'] E/A-Ein-

heit

E/A-Ein-
heit

Daten-Bus —— —
Control - Bus —— —

Adressen-Bus — —

Aufbau eines Mikroprozessor-Systems M 6800
E/A Eingabe/Ausgabe

MPU Microprocessor Unit

RAM Random Access Memory

ROM Read Only Memory

=
Ly
w

eines Akkumulators abgespeichert wird in der durch den Inhalt
des Stackpointer-Registers gegebene Adresse und anschliessend
der Registerinhalt um 1 verringert wird. Das S-Register enthilt
also stets die Adresse der obersten freien Speicherstelle des
Stack. Durch den Befehl Pull (PUL) wird die gegenteilige
Operation ausgelost. Das S-Register wird zuerst um 1 erhoht
und dann sein Inhalt als Adresse ausgegeben. Der Inhalt der
adressierten Speicherstelle wird in einen der beiden Akkumu-
latoren eingeschrieben.

Zusitzlich dient der Stack noch als Speicher fiir die Riick-
sprungadressen bei Unterprogrammen und als Speicher fiir
alle MPU-Register beim Signal «Interrupt»,

Im Zustandsregister CCR (Condition Code Register) sind
alle Flag-Bits vereinigt, die einen bestimmten Zustand des
Rechners und bestimmte Eigenschaften des Resultates der

~N
o

Akkumulator A

"B

HH
(o]

-

6
Indexregister X

Stackpointer-Register S

PC Programm- Z&ahler PC

CCR Zustandsregister CCR

he I8

Adressen-Bus Daten-Bus

15

Controll-Bus

Fig. 4 Schema der Microprozessor Unit (MPU)

(A 138) 295

letzten ausgefiihrten Operation signalisieren. Folgende Zu-
stinde werden signalisiert:

C-Bit (Carry) Die letzte Operation, betrachtet als Operation
mit positiven Binirzahlen, hat einen Ubertrag

ergeben.
Das Resultat der letzten Operation war null

Das Resultat der letzten Operation, betrachtet
als Operation von Bindrzahlen in Zweier-
komplement-Darstellung, war negativ.

Z-Bit (Zero)
N-Bit (Negative)

V-Bit (Overflow) Die letzte Operation, betrachtet als Operation

mit Bindrzahlen in Zweierkomplementdar-
stellung, hat einen Ubertrag ergeben.

3. Grundlegende Anforderungen an eine
Programmbibliothek

Numerische Positioniersteuerungen arbeiten normalerweise
mit mindestens 6dekadigen vorzeichenbehafteten Zahlen. Die
Programme sollen also fiir 6dekadige Werte geschrieben sein,
aber auf einfache Art auf hohere Dekadenzahlen erweitert
werden konnen.

Die Bibliothek soll Programme enthalten fiir Dateneingabe,
Datenausgabe, Datenverschiebungen, einfache arithmetische
Operationen sowie Vergleichsoperationen. Durch die Pro-
gramme miissen auch die Flag-Bits im Zustandsregister gesetzt
werden, damit bedingte Programmverzweigungen im Haupt-
programm moglich sind.

Fiir komplexe numerische Verarbeitungen, die einfacher in
Bindrdarstellung erfolgen, miissen die notigen Umrechnungs-
programme von BCD (Binary Coded Decimal) in Bindr und
umgekehrt vorhanden sein.

Eine einfache Bibliothek fiir Steuerungen mit Schrittmotor-
Antrieben konnte beispielsweise folgende Programme umfas-
sen:

Ausgabeprogramme :

— Ausgabe einer Schrittzahl zu einem Schrittmotor-Antrieb

— Ausgabe einer Zahl zu einer Kontroll-Anzeige

— Ausgabe von Steuersignalen an Ausgangsrelais und Kontroll-
lampen

Eingabeprogramme :

— Eingabe eines Wertes von einem Dekadenschalter

— Eingabe von einem Lochstreifenleser

— Eingabe von Steuerbefehlen vom Bedienungspanel und vom
Eingangsrelais

Verarbeitungsprogramme:

— Laden des Rechenwerkes aus dem Speicher

— Abspeichern des Rechenwerk-Inhaltes im Speicher
— Addition zweier Dezimalzahlen

— Vergleich zweier Dezimalzahlen

— Komplementieren
— Inkrementieren

— Dekrementieren
— Normieren

einer Dezimalzahl

— Umrechnung BCD in Bindr und umgekehrt
— Multiplikation und Division in Binidr

4. Zahlendarstellung und einige Festlegungen

Fiir die Darstellung mehrdekadiger Dezimalzahlen in einem
8-bit-Rechner wird normalerweise eine der beiden folgenden
Moglichkeiten bentitzt: Entweder belegt jede Ziffer einen
Speicherplatz; in diesem Falle wird die Ziffer meistens durch
ihren ASCII-Code (American Standard Code for Information
Interchange) dargestellt. Oder aber ein Speicherplatz wird durch
zwei Ziffern im BCD-Code belegt.

296 (A 139)

Die erste Moglichkeit erleichtert das Einlesen von Daten
und ihre Anzeige auf alphanumerischen Anzeigen. Als Nach-
teil ist der gegeniiber der zweiten Moglichkeit verdoppelte
Bedarf an Speicherplatz zu erwihnen.

In numerischen Steuerungen sind haufig grossere Informa-
tionsmengen abzuspeichern. Es wird deshalb hier der zweiten
Moglichkeit der Vorzug gegeben, obwohl fiir die Eingabe und
die Ausgabe von Daten eventuell eine Umcodierung ASCII —
BCD oder umgekehrt notig werden kann.

Die Ablage der Zahlen im Speicher erfolgt vorteilhafter-
weise in einer Reihenfolge, die auf einfache Art eine Eingabe
der Werte in die aufeinanderfolgenden Speicherstellen ermog-
licht. Da normalerweise zuerst das Vorzeichen eingegeben
wird, wird fiir dieses die Speicherstelle mit der niedrigsten
Adresse gewihlt. Es folgen die hochstwertigen Dekaden, und
die niedrigste Dekade schliesslich steht in der Speicherstelle
mit der hochsten Adresse. Fig. 5 zeigt diese Darstellungsform,
wobei als Beispiel eine 6dekadige Zahl gewidhlt wurde. Zu
beachten ist, dass im Speicher die fiihrenden Nullen gespeichert
werden miissen. Der Wert +35 ist also als 4000035 abzu-
speichern. Fiir die Speicherung 8dekadiger Zahlen wird eine
Speicherstelle mehr benétigt, also 5 Speicherstellen pro Zahl.

Negative Zahlen werden entweder durch Betrag und Vor-
zeichen festgehalten oder in Zehnerkomplement-Darstellung
(Fig. 6).

[Yorzeichen | 10° 10%] 10° 102 | 10" 10° |

TR

A

v v ——2
N N+1 N+2 N+3 Adresse

Fig. 5 Darstellung einer 6dekadigen Zahl mit Vorzeichen

afoooooo0o] 0 0o [7, 3|6 5]+7365
blittigrnfo, o] 7, 3]6 5]-7365
cfimnn] e 9 T2 6]3 5]-7365

Fig. 6 Darstellung negativer Zahlen

a Positive Zahl
b Negative Zahl als Betrag und Vorzeichen dargestellt
¢ Negative Zahl als Zehner-Komplement dargestellt

Die arithmetischen Operationen mit den auf diese Art dar-
gestellten 6dekadigen Zahlen miissen in 4 Teiloperationen (je
Speicherplatz eine Operation) zerlegt werden. Zuerst werden
in 3 Teiloperationen die Ziffern des Resultates berechnet und
anschliessend als 4. Teiloperation das Vorzeichen. Diese Teil-
operationen werden vorteilhafterweise im Akkumulator A
durchgefiihrt, da in diesem der Befehl DAA (Decimal Adjust
Accu A) fiir die BCD-Korrektur bei Additionen gilt.

Es muss nun noch festgelegt werden, wie die Operanden an
die Unterprogramme iibergeben werden. Dabei konnen ent-
weder die Operanden selbst oder deren Adressen {ibergeben
werden. Fiir die Ubergabe der Adressen bietet sich das Index-
register an. Soll der Operand selbst {ibergeben werden, so miis-
sen 4 Speicherstellen festgelegt werden, in denen die Ubergabe
erfolgt. Diese 4 Speicherstellen haben die Rolle eines Akku-
mulators; sie werden deshalb als Pseudo-Akkumulator PA
bezeichnet.

Es bestehen also folgende Moglichkeiten zur Ubergabe von
Werten an die Unterprogramme:

Bull. ASE/UCS 68(1977)6, 19 mars

a) Die Adresse des Wertes steht im Indexregister

b) Der Wert selbst steht im Pseudo-Akkumulator

¢) Sind zwei Werte zu ilibergeben, so steht der eine im
Pseudo-Akkumulator und die Adresse des anderen im Index-
register. Das Resultat der Verkniipfung der beiden Werte steht
im Pseudo-Akkumulator.

Als Pseudo-Akkumulator konnen entweder 4 feste Adres-
sen, beispielsweise 0000 bis 0003 bestimmt werden, oder es
konnen 4 Stellen des Stack verwendet werden. Die Verwendung
des Stack ergibt den Vorteil, dass die Unterprogramme auto-
matisch re-entrant werden: Wird ein Unterprogramm durch
einen Interrupt unterbrochen, so ist es im allgemeinen nicht
moglich, das gleiche Unterprogramm auch im Interrupt-
Serviceprogramm zu verwenden. Werden ndamlich feste Spei-
cherstellen fiir die Speicherung von Zwischenresultaten be-
niitzt, so werden diese dann im Interrupt-Serviceprogramm
tiberschrieben und eine Riickkehr (Re-entrance) ins unter-
brochene Programm ist nicht mehr moglich. Ein Programm,
das re-entrant sein soll, darf zur Speicherung von Zwischen-
resultaten nur die Register des MPU und den Stack verwenden.

Allerdings ergibt die Verwendung des Stack als PA etwas
uniibersichtlichere Unterprogramme. Da zudem durch eine
spezielle Auslegung des Interrupt-Serviceprogrammes (Ab-
speicherung des PA im Stack durch das Serviceprogramm) auch
bei einem PA mit festen Adressen die gleichen Eigenschaften
erzeugt werden konnen, wurden im vorliegenden Beispiel die
Speicherstellen mit den Adressen 0000 bis 0003 als Pseudo-
Akkumulator verwendet.

5. Beispiele fiir Bibliotheksprogramme
5.1 Allgemeiner Aufbau

Die Bibliotheksprogramme bestehen im allgemeinen aus
4 Teilen

1. Verarbeitung eines oder mehrerer Zahlenwerte

2. Verarbeitung des Vorzeichens

3. Setzen der Flag-Bits im Zustandsregister

4. Riicksprungbefehl

Teil 3 verlidngert die Unterprogramme wesentlich. Es kann
deshalb vorteilhaft sein, fiir die gleiche Operation zwei Unter-
programme zu besitzen, namlich mit und ohne Teil 3. Ein Ver-
gleich der beiden ersten Programmbeispiele zeigt, welcher Auf-
wand zum Setzen der Flag-Bits notig ist.

5.2 Beispiel:
Datentransfer vom Speicher zum PA, ohne Flag-Bits

Die Adresse des Vorzeichens der auszulesenden Speicher-
stellen steht im Indexregister.

LDAA 3, X

STAA 03
LDAA 2, X

STAA 02
LDAA 1, X

STAA 01
LDAA 0, X

STAA 00
RTS

(Load Accu A)
Transfer der niedrigsten Dekaden (Store Accu A)

Transfer der mittleren Dekaden
Transfer der hochsten Dekaden

Transfer des Vorzeichens
Riicksprungbefehl

Dieses Programm belegt 17 Worte im Programmspeicher
und hat bei 1 MHz Taktfrequenz eine Laufzeit von 41 ps.

Bull. SEV/VSE 68(1977)6, 19. Mirz

5.3 Beispiel:
Datentransfer vom Speicher zum PA, mit Flag-Bits

Die Basisadresse der auszulesenden Speicherstellen steht im
Indexregister. Die Inhalte der Akkumulatoren A und B werden
durch dieses Programm verédndert.

CLRB B nullen (Clear B)

LDAA 3, X

STAA 03 Transfer der niedrigsten Dekaden

BEQ *-+3 nédchsten Befehl {iberspringen, falls Zahl 0 war
(Branch if equal to zero)

INCB B inkrementieren

LDAA 2, X

STAA 02 Transfer der mittleren Dekaden

BEQ *+3 nichsten Befehl tiberspringen, falls Zahl 0 war

INCB B inkrementieren

LDAA 1, X

STAA 01 Transfer niedrigste Dekaden

BEQ *+3 nichsten Befehl liberspringen, falls Zahl 0 war

INCB B inkrementieren

LDAA 0, X

STAA 00 Transfer Vorzeichen

BEQ *--4 nichsten Befehl {iberspringen, falls Vorzeichen +

ORAB 4£$ 80 Bit 7 in B setzen (Logisches «Oder» des Accu B mit
hexadezimaler Zahl 00000000)

TSTB setzt Flags N und Z im Zustandsregister (Test B)

RTS Riicksprungbefehl

Der Akkumulator B dient hier um festzustellen, ob die
transferierte Zahl O oder negativ ist. Am Anfang wird B null ge-
setzt. Nur wenn die transferierte Zahl 0 ist, werden alle 3 Befehle
INCB iibersprungen und B bleibt auf null. Ist das Vorzeichen
der transferierten Zahl negativ, so wird das Bit 7 von B gesetzt
Der Befehl TSTB priift den Inhalt von B, ob er null oder nega-
tiv (Bit 7 = 1) ist und setzt das Zustandsregister entsprechend.
Dieses Programm belegt 32 Worte im Programmspeicher und
hat eine Laufzeit von 69 pus.

5.4 Beispiel fiir ein Eingabe-Unterprogramm:
Einlesen eines Zeichens von einem Lochstreifenleser

Der Streifenleser steht im Ruhezustand auf dem noch nicht
gelesenen Zeichen. Gleichzeitig mit dem Ablesen wird ein
Impuls von ca. 2 ms Dauer ausgegeben, der den Leser um ein
Zeichen weiterschaltet. 8 ms nach dem Ablesen eines Zeichens
kann das nédchste Zeichen abgelesen werden.

Es wird vorausgesetzt, dass die Einlesezeit nicht kritisch ist,
so dass die Zeitintervalle mit einem Software-Timer erzeugt
werden konnen. Das Unterprogramm WAIT2 erzeugt ein
Intervall von 2 ms, WAIT6 ein solches von 6 ms.

Die Leserdaten werden iiber einen Peripheriebaustein mit
der Adresse LEDATA eingelesen. Die Ausgabe des Weiter-
schaltimpulses erfolgt iiber Bit 3 eines Peripheriebausteines mit
der Adresse LECTRL. Am Ende des Programmes steht das
gelesene Zeichen in A und das Flag-Bit C ist O bei gerader
Paritdt bzw. 1 bei ungerader Paritit des Zeichens. Ungelochte
Stellen und tiberlochte Stellen (alle 8 Spuren gelocht) werden
uberlesen. Die Inhalte von B und X werden durch das Pro-
gramm verédndert.

(A 140) 297

LEZCHV LDAA LEDATA Gelesenes Zeichen in A

PSHA Gelesenes Zeichen im Stack
speichern

LDAB LECTRL

ORAB 4§ 08 Bit 3 1 setzen

STAB LECTRL Beginn Weiterschaltimpuls

JSR WAIT2 Timer 2 ms (Jump to subroutine)

LDAB LECTRL

ANDB #8§ F7 Bit 3 = 0 setzen

STAB LECTRL Ende Weiterschaltimpuls

JSR WAITé6 Timer 6 ms

PULA Gelesenes Zeichen wieder in A

CMPA #$ FF Alle Spuren gelocht? (Compare)

BEQ LEZCHV falls ja, zuriick zum Anfang, neues
Zeichen lesen

CMPA 8§ 00 ungelocht?

BEQ LEZCHV falls ja, zuriick zum Anfang, neues
Zeichen lesen

PSHA Gelesenes Zeichen im Stack
speichern

LDX #3§ 0008 Loop counter fir Paritdts-
bestimmung

CLRB B nullen

RORA Bit 0 von B geht in C

ADCB #§ 00 C zu B addieren

DEX Loop counter abzihlen

BNE *—4 zuriick zu RORA, solange X nicht 0

RORB Bit 0 von B geht in C

PULA gelesenes Zeichen wieder in A

RTS Riicksprungbefehl

Zur Bestimmung der Paritit des Zeichens in A werden die
8 Bit dieses Zeichens nacheinander in C geschoben und zu B
addiert. Bit 0 von B sagt, ob die Anzahl der 1 von A gerade
oder ungerade ist. Dieses Bit 0 wird in C eingeschoben.

6. Das Hauptprogramm

Wie erwéhnt, besteht das Hauptprogramm prinzipiell aus
Aufrufen von Unterprogrammen und aus Entscheidungen. In
Unterprogrammen sollen keine Entscheidungen vorkommen,
die den Ablauf der Steuerung beeinflussen.

Auch das Hauptprogramm kann oft aus Teilprogrammen
zusammengesetzt werden. Ahnlich wie bei Unterprogrammen
ist jedem dieser Teilprogramme eine bestimmte Funktion der
Steuerung zugeordnet, Ob eine Funktion durch ein Teilpro-
gramm oder durch ein Unterprogramm realisiert wird, hingt
hauptsiachlich von zwei Faktoren ab, einerseits ob der Pro-
grammteil Entscheidungen enthilt, die den Funktionsablauf
beeinflussen, anderseits ob der gleiche Programmteil bei einem
einmaligen Funktionsablauf mehrmals benétigt wird.
Mehrmaliges Auftreten des gleichen Programmteiles spricht
fiir einen Ablauf als Unterprogramm, wiahrend das Auftreten
von den Ablauf beeinflussenden Entscheidungen einen Aufbau
als Teilprogramm vorteilhaft erscheinen ldsst.

7. Zusammenfassung

Nach einem kurzen Uberblick iiber den Aufbau von nume-
rischen Steuerungen mit Mikroprozessoren wurden einige
Uberlegungen zum Aufbau einer Programmbibliothek fiir
solche Steuerungen angestellt. Auf einfachen Nenner gebracht
lautet das Resultat:

Das Programm aufteilen in moglichst viele Unterpro-
gramme, von denen jedes eine bestimmte Funktion der Steue-
rung erzeugt. Diese Programme konnen mit Threr Funktion
benannt werden. Dadurch wird die Programmdokumentation
lesbar, da der Aufruf eines Unterprogrammes gleichbedeutend
wird mit dem AuslGsen einer bestimmten Funktion. Die Ver-
wendung von Bibliotheksprogrammen reduziert die Program-
mierungskosten ganz wesentlich.

Adresse des Autors
Dr. sc.techn. Arno Miiller, Omni Ray AG, Oberwiesenstrasse 4, 8304 Wallisellen.

298 (A 141)

Bull. ASE/UCS 68(1977)6, 19 mars

	Der Aufbau von numerischer Steuerungen mittels Mikroprozessor und Programmbibliothek

