
Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des
Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de
l'Association suisse des électriciens, de l'Association des entreprises
électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer
Elektrizitätsunternehmen

Band: 68 (1977)

Heft: 6

Artikel: Der Aufbau von numerischer Steuerungen mittels Mikroprozessor und
Programmbibliothek

Autor: Müller, A.

DOI: https://doi.org/10.5169/seals-915012

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 27.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-915012
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Der Aufbau von numerischen Steuerungen
mittels Mikroprozessor und Programmbibliothek
Von A. Müller

681.513.2 : 519.685.7

Numerische Positioniersteuerungen können mit Hilfe handelsüblicher Mikroprozessoren sehr einfach realisiert werden, wenn eine Programmbibliothek

zur Verfügung steht. Nach einer Übersicht über das Problem werden die Grundlagen abgeleitet, auf denen eine solche Bibliothek
aufgebaut werden kann.

Les commandes numériques de positionnement sont réalisables très simplement au moyen de microprocesseurs courants, à condition de disposer
d'une bibliothèque de programmes. Après un aperçu général de ce problème, l'auteur décrit les bases sur lesquelles une telle bibliothèque peut être
établie.

1. Einführung
Eine Positioniersteuerung mit Mikroprozessor hat allgemein

den in Fig. I dargestellten Aufbau. Dieser klare und übersichtliche

Aufbau ergibt folgende Eigenschaften :

- Der Mikroprozessor umfasst hauptsächlich standardisierbare,
auswechselbare Baugruppen. Nur die Interface-Baugruppen sind
problembezogen aufgebaut.

- Eine Erweiterung der Steuerung oder Anpassung an neue
Probleme ist im Rahmen der Platzreserve im Kartenrack ohne
weiteres möglich.

- Nach Aufstellung des Pflichtenheftes kann gleichzeitig mit der
Konstruktion der Hardware und dem Erstellen der Software (des
Programmes) begonnen werden. Die Durchlaufzeit wird dadurch
verringert, und die Steuerung ist schneller einsatzbereit.

- Die Verwendung von standardisierter Hardware und von
Programmen aus einer Bibliothek (standardisierte Software) erleichtern
Inbetriebnahme und Service. Auch das Ersatzteilproblem ist
einfacher zu lösen.

Wie sieht die Software einer Steuerung aus, deren Programmierung

mit Hilfe einer Programmbibliothek erfolgt? Fig. 2

zeigt das Flussdiagramm (Ablaufschema) einer einfachen
numerischen Positioniersteuerung. Rechtecke stellen auszuführende

Operationen dar; Rhomben markieren Entscheidungen,
die auf Grund des Resultates der vorangegangenen Operationen

vom Mikroprozessor getroffen werden.
Alle Operationen, zu deren Ausführung mehr als einige

wenige Befehle benötigt werden, sollen der Bibliothek entnommen

werden können. Die Rechtecke im Flussdiagramm stellen
also, mit der erwähnten Einschränkung, Bibliotheksprogramme
dar.

Fig. 1 Aufbau einer Positioniersteuerung mit Mikroprozessor
MPU Microprocessor Unit
RAM Random Access Memory
ROM Read Only Memory

Die Rhomben stehen für Entscheidungen. An diesen Stellen
kann das Programm auf zwei verschiedene Arten weitergehen,
je nachdem eine Bedingung erfüllt ist oder nicht. Es können
dabei nur solche Bedingungen verwendet werden, deren Erfüllung

durch ein Zeichen (Flag-Bit) im Zustandsregister (Condition

Code Register) des Mikroprozessors signalisiert wird.
Die Bibliotheksprogramme müssen also diese Flag-Bits setzen.

Das Hauptprogramm der Steuerung hat die Aufgabe, die

richtigen Unterprogramme aufzurufen und die richtigen
Entscheidungen zu bewirken. Es besteht nur aus Testoperationen
und Aufrufen von Bibliotheksprogrammen. Diese werden
durch den Befehl JSR (Jump to Subroutine) aufgerufen. Am
Ende jedes Unterprogrammes bewirkt der Befehl RTS (Return
from Subroutine) den Rücksprung ins Hauptprogramm.

Der hier dargelegte Aufbau des Programmes aus

Unterprogrammen hat folgende wichtige Vorteile:

- Das Hauptprogramm wird sehr übersichtlich und leicht
lesbar, da es genau dem Flussdiagramm entspricht.

- Programmänderungen sind auf einfache Art möglich.

2. Eigenschaften des Mikroprozessors
Die zurzeit erhältlichen Mikroprozessoren weisen

unterschiedlichen Aufbau auf. Dies hat Rückwirkungen auf die

Programmierung. Die folgende Beschreibung bezieht sich auf
den Mikroprozessor Motorola M6800. Sie soll das Verständnis
der anschliessend gegebenen Programmbeispiele erleichtern.

Das Mikroprozessorsystem hat den in Fig. 3 dargestellten
einfachen und übersichtlichen Aufbau. Wichtig ist dabei, dass

alle Bausteine an den gleichen Bus angeschlossen sind und dass

die Schnittstellen mit der Umwelt (Peripherie-Schnittstellen)
vom Prozessor genau gleich wie Speicherstellen behandelt
werden. Durch den Bus ist gewährleistet, dass ein System ohne

grossen Aufwand jederzeit ausgebaut werden kann. Die
Behandlung der Schnittstellen als Speicherstellen ergibt eine
einfache Programmierung, da keine speziellen Befehle für Ein-
und Ausgabeoperationen nötig sind. Zudem ist auf diese Art
eine fast beliebig grosse Anzahl von Schnittstellen möglich.

Der Mikroprozessor selbst weist ebenfalls einen sehr
übersichtlichen Aufbau auf (Fig. 4). Die beiden 8-bit-Register A
und B sind Rechenregister (Akkumulatoren) mit fast identischen

Eigenschaften. In ihnen können alle logischen und alle
arithmetischen Operationen ausgeführt werden. Viele Operationen

können aber auch direkt in einer Speicherstelle ausgeführt

werden. Dies ist beispielsweise für Ein- und
Ausgabeoperationen (E/A-Operationen) oft sehr vorteilhaft. Da die
Schnittstellen wie Speicherstellen behandelt werden, können
viele Operationen direkt im Interface ausgeführt werden. Dies

294 (A 137) Bull. ASE/UCS 68(1977)6, 19 mars

Einschalten
der Steuerung

I

Einschaltprogramm

Signal "Auto"abfragen
(Betriebsartenumschalter)

Lampe Programmende
ausschalten

T
1.Koordinate vorbereiten

Lampe Programmende

einschalten
Nächste Koordinate
vorbereiten

I

MPU Takt -
erzeugung

i i

i i i

i i i

Programm-
ROM

Arbeits-
RAM

E/A-Einheit

E/A-Ein -
heit

D O
CO CO

c —
a; (U

o
O
a c

0
"O U
<

I I

i I

Takt

Fig. 2 Aufbau des Hauptprogrammes einer Steuerung

vereinfacht die Programmierung und verbessert die Lesbarkeit
der Programme.

Das Indexregister X (16 bit) dient als Speicher für die
Basisadresse bei indexierter Adressierung von Datenspeicherstellen.
Diese Adressierungsart ist speziell geeignet, wenn das gleiche

Programm mit verschiedenen Daten ablaufen soll. Die Daten
werden dann blockweise gespeichert und vor dem Start des

Programmes die Anfangsadresse des Datenblockes ins
Indexregister gesetzt. Im Programm sind die Adressen der zu ver"
arbeitenden Daten relativ zu dieser Anfangsadresse angegeben.

Beispielsweise wird also der Wert in der Anfangsadresse
verknüpft mit dem Wert in Anfangsadresse plus 1 und das Resultat

abgespeichert in Anfangsadresse plus 2. Ist das Programm
abgelaufen, so kann das Indexregister auf die Anfangsadresse
des nächsten Datenblockes gesetzt werden, und das gleiche,
unveränderte Programm verarbeitet den nächsten Datenblock

Das Stackpointer-Register S ermöglicht die Speicherung
von Zwischenresultaten in einem als «Stack» bezeichneten Teil
des Datenspeichers, ohne dass im Programm feste Adressen
für diese Speicherstellen vorgesehen werden müssen. Dazu wird
im Einschaltprogramm das Stackpointer-Register auf die
höchste Adresse des für den Stack reservierten Teiles des RAM
gesetzt. Der Befehl Push (PSH) bewirkt dann, dass der Inhalt

Fig. 3 Aufbau eines Mikroprozessor-Systems M 6800

E/A Eingabe/Ausgabe
MPU Microprocessor Unit
RAM Random Access Memory
ROM Read Only Memory

eines Akkumulators abgespeichert wird in der durch den Inhalt
des Stackpointer-Registers gegebene Adresse und anschliessend
der Registerinhalt um 1 verringert wird. Das S-Register enthält
also stets die Adresse der obersten freien Speicherstelle des

Stack. Durch den Befehl Pull (PUL) wird die gegenteilige

Operation ausgelöst. Das S-Register wird zuerst um 1 erhöht
und dann sein Inhalt als Adresse ausgegeben. Der Inhalt der
adressierten Speicherstelle wird in einen der beiden Akkumulatoren

eingeschrieben.
Zusätzlich dient der Stack noch als Speicher für die

Rücksprungadressen bei Unterprogrammen und als Speicher für
alle MPU-Register beim Signal «Interrupt».

Im Zustandsregister CCR (Condition Code Register) sind

alle Flag-Bits vereinigt, die einen bestimmten Zustand des

Rechners und bestimmte Eigenschaften des Resultates der

Indexregister X

Stackpointer-Register S

Programm-Zähler PC

Zustandsregister CCR

TÏ6 |i J~5

Adressen-Bus Daten-Bus Controll-Bus

Fig. 4 Schéma der Microprozessor Unit (MPU)

Bull. SEV/VSE 68(1977)6, 19. März (A 138) 295

letzten ausgeführten Operation signalisieren. Folgende
Zustände werden signalisiert :

C-Bit (Carry) Die letzte Operation, betrachtet als Operation
mit positiven Binärzahlen, hat einen Übertrag
ergeben.

Z-Bit (Zero) Das Resultat der letzten Operation war null
N-Bit (Negative) Das Resultat der letzten Operation, betrachtet

als Operation von Binärzahlen in
Zweierkomplement-Darstellung, war negativ.

V-Bit (Overflow) Die letzte Operation, betrachtet als Operation
mit Binärzahlen in Zweierkomplementdarstellung,

hat einen Übertrag ergeben.

3. Grundlegende Anforderungen an eine
Programmbibliothek

Numerische Positioniersteuerungen arbeiten normalerweise
mit mindestens ödekadigen vorzeichenbehafteten Zahlen. Die
Programme sollen also für 6dekadige Werte geschrieben sein,
aber auf einfache Art auf höhere Dekadenzahlen erweitert
werden können.

Die Bibliothek soll Programme enthalten für Dateneingabe,
Datenausgabe, Datenverschiebungen, einfache arithmetische
Operationen sowie Vergleichsoperationen. Durch die

Programme müssen auch die Flag-Bits im Zustandsregister gesetzt
werden, damit bedingte Programmverzweigungen im Haupt-
programm möglich sind.

Für komplexe numerische Verarbeitungen, die einfacher in
Binärdarstellung erfolgen, müssen die nötigen Umrechnungsprogramme

von BCD (Binary Coded Decimal) in Binär und
umgekehrt vorhanden sein.

Eine einfache Bibliothek für Steuerungen mit Schrittmotor-
Antrieben könnte beispielsweise folgende Programme umfassen:

Ausgabeprogramme :

- Ausgabe einer Schrittzahl zu einem Schrittmotor-Antrieb
- Ausgabe einer Zahl zu einer Kontroll-Anzeige
- Ausgabe von Steuersignalen an Ausgangsrelais und Kontrolllampen

Eingabeprogramme :

- Eingabe eines Wertes von einem Dekadenschalter
- Eingabe von einem Lochstreifenleser
- Eingabe von Steuerbefehlen vom Bedienungspanel und vom

Eingangsrelais

Verarbeitungsprogramme :

- Laden des Rechenwerkes aus dem Speicher
- Abspeichern des Rechenwerk-Inhaltes im Speicher
- Addition zweier Dezimalzahlen
- Vergleich zweier Dezimalzahlen

- Komplementieren
- Inkrementieren
- Dekrement ieren

- Normieren

- Umrechnung BCD in Binär und umgekehrt
- Multiplikation und Division in Binär

4. Zahlendarstellung und einige Festlegungen
Für die Darstellung mehrdekadiger Dezimalzahlen in einem

8-bit-Rechner wird normalerweise eine der beiden folgenden
Möglichkeiten benützt: Entweder belegt jede Ziffer einen
Speicherplatz; in diesem Falle wird die Ziffer meistens durch
ihren ASCII-Code (American Standard Code for Information
Interchange) dargestellt. Oder aber ein Speicherplatz wird durch
zwei Ziffern im BCD-Code belegt.

Die erste Möglichkeit erleichtert das Einlesen von Daten
und ihre Anzeige auf alphanumerischen Anzeigen. Als Nachteil

ist der gegenüber der zweiten Möglichkeit verdoppelte
Bedarf an Speicherplatz zu erwähnen.

In numerischen Steuerungen sind häufig grössere
Informationsmengen abzuspeichern. Es wird deshalb hier der zweiten

Möglichkeit der Vorzug gegeben, obwohl für die Eingabe und
die Ausgabe von Daten eventuell eine Umcodierung ASCII -
BCD oder umgekehrt nötig werden kann.

Die Ablage der Zahlen im Speicher erfolgt vorteilhafterweise

in einer Reihenfolge, die auf einfache Art eine Eingabe
der Werte in die aufeinanderfolgenden Speicherstellen ermöglicht.

Da normalerweise zuerst das Vorzeichen eingegeben

wird, wird für dieses die Speicherstelle mit der niedrigsten
Adresse gewählt. Es folgen die höchstwertigen Dekaden, und
die niedrigste Dekade schliesslich steht in der Speicherstelle
mit der höchsten Adresse. Fig. 5 zeigt diese Darstellungsform,
wobei als Beispiel eine ödekadige Zahl gewählt wurde. Zu
beachten ist, dass im Speicher die führenden Nullen gespeichert
werden müssen. Der Wert +35 ist also als +000035
abzuspeichern. Für die Speicherung 8dekadiger Zahlen wird eine

Speicherstelle mehr benötigt, also 5 Speicherstellen pro Zahl.
Negative Zahlen werden entweder durch Betrag und

Vorzeichen festgehalten oder in Zehnerkomplement-Darstellung
(Fig. 6).

Vorzeichen 105 194 103 102 000

N N + 1 N + 2 N + 3

Fig. 5 Darstellung einer 6dekadigen Zahl mit Vorzeichen

a |0000,0000| 0.0[7,3l6,5| * 7365

b |l I I 1,1 I ll| 0 0 | 7 3 | 6 5 | - 7365

C |l I I 1,1 I I l| 9 9 | 2 6 | 3 5 | - 7365

Fig. 6 Darstellung negativer Zahlen

a Positive Zahl
b Negative Zahl als Betrag und Vorzeichen dargestellt
c Negative Zahl als Zehner-Komplement dargestellt

Die arithmetischen Operationen mit den auf diese Art
dargestellten 6dekadigen Zahlen müssen in 4 Teiloperationen (je
Speicherplatz eine Operation) zerlegt werden. Zuerst werden
in 3 Teiloperationen die Ziffern des Resultates berechnet und
anschliessend als 4. Teiloperation das Vorzeichen. Diese

Teiloperationen werden vorteilhafterweise im Akkumulator A
durchgeführt, da in diesem der Befehl DAA (Decimal Adjust
Accu A) für die BCD-Korrektur bei Additionen gilt.

Es muss nun noch festgelegt werden, wie die Operanden an
die Unterprogramme übergeben werden. Dabei können
entweder die Operanden selbst oder deren Adressen übergeben
werden. Für die Übergabe der Adressen bietet sich das

Indexregister an. Soll der Operand selbst übergeben werden, so müssen

4 Speicherstellen festgelegt werden, in denen die Übergabe

erfolgt. Diese 4 Speicherstellen haben die Rolle eines

Akkumulators; sie werden deshalb als Pseudo-Akkumulator PA
bezeichnet.

Es bestehen also folgende Möglichkeiten zur Übergabe von
Werten an die Unterprogramme :

einer Dezimalzahl

296 (A139) Bull. ASE/UCS 68(1977)6, 19 mars

a) Die Adresse des Wertes steht im Indexregister
b) Der Wert selbst steht im Pseudo-Akkumulator
c) Sind zwei Werte zu übergeben, so steht der eine im

Pseudo-Akkumulator und die Adresse des anderen im
Indexregister. Das Resultat der Verknüpfung der beiden Werte steht

im Pseudo-Akkumulator.

Als Pseudo-Akkumulator können entweder 4 feste Adressen,

beispielsweise 0000 bis 0003 bestimmt werden, oder es

können 4 Stellen des Stack verwendet werden. Die Verwendung
des Stack ergibt den Vorteil, dass die Unterprogramme
automatisch re-entrant werden: Wird ein Unterprogramm durch
einen Interrupt unterbrochen, so ist es im allgemeinen nicht
möglich, das gleiche Unterprogramm auch im Interrupt-
Serviceprogramm zu verwenden. Werden nämlich feste
Speicherstellen für die Speicherung von Zwischenresultaten
benützt, so werden diese dann im Interrupt-Serviceprogramm
überschrieben und eine Rückkehr (Re-entrance) ins
unterbrochene Programm ist nicht mehr möglich. Ein Programm,
das re-entrant sein soll, darf zur Speicherung von Zwischenresultaten

nur die Register des MPU und den Stack verwenden.

Allerdings ergibt die Verwendung des Stack als PA etwas
unübersichtlichere Unterprogramme. Da zudem durch eine

spezielle Auslegung des Interrupt-Serviceprogrammes
(Abspeicherung des PA im Stack durch das Serviceprogramm) auch

bei einem PA mit festen Adressen die gleichen Eigenschaften

erzeugt werden können, wurden im vorliegenden Beispiel die

Speicherstellen mit den Adressen 0000 bis 0003 als
PseudoAkkumulator verwendet.

5. Beispiele für Bibliotheksprogramme
5.1 Allgemeiner Aufbau

Die Bibliotheksprogramme bestehen im allgemeinen aus
4 Teilen

1. Verarbeitung eines oder mehrerer Zahlenwerte
2. Verarbeitung des Vorzeichens
3. Setzen der Flag-Bits im Zustandsregister
4. Rücksprungbefehl

Teil 3 verlängert die Unterprogramme wesentlich. Es kann
deshalb vorteilhaft sein, für die gleiche Operation zwei

Unterprogramme zu besitzen, nämlich mit und ohne Teil 3. Ein
Vergleich der beiden ersten Programmbeispiele zeigt, welcher
Aufwand zum Setzen der Flag-Bits nötig ist.

5.2 Beispiel:
Datentransfer vom Speicher zum PA, ohne Flag-Bits

Die Adresse des Vorzeichens der auszulesenden Speicherstellen

steht im Indexregister.

5.3 Beispiel:
Datentransfer vom Speicher zum PA, mit Flag-Bits

Die Basisadresse der auszulesenden Speicherstellen steht im
Indexregister. Die Inhalte der Akkumulatoren A und B werden

durch dieses Programm verändert.

LDAA 3, X
STAA 03

LDAA 2, X
STAA 02
LDAA 1, X
STAA 01

LDAA 0, X
STAA 00

RTS

(Load Accu A)
Transfer der niedrigsten Dekaden (Store Accu A)

Transfer der mittleren Dekaden

Transfer der höchsten Dekaden

Transfer des Vorzeichens

Rücksprungbefehl

CLRB
LDAA 3, X
STAA 03

BEQ * + 3

INCB
LDAA 2, X
STAA 02

BEQ * + 3

INCB
LDAA 1, X
STAA 01

BEQ * + 3

INCB
LDAA 0, X
STAA 00

BEQ *+4
ORAB 80

TSTB
RTS

B nullen (Clear B)

Transfer der niedrigsten Dekaden

nächsten Befehl überspringen, falls Zahl 0 war
(Branch if equal to zero)
B inkrementieren

Transfer der mittleren Dekaden

nächsten Befehl überspringen, falls Zahl 0 war
B inkrementieren

Transfer niedrigste Dekaden
nächsten Befehl überspringen, falls Zahl 0 war
B inkrementieren

Transfer Vorzeichen

nächsten Befehl überspringen, falls Vorzeichen +
Bit 7 in B setzen (Logisches «Oder» des Accu B mit
hexadezimaler Zahl 00000000)

setzt Flags N und Z im Zustandsregister (Test B)

Rücksprungbefehl

Der Akkumulator B dient hier um festzustellen, ob die
transferierte Zahl 0 oder negativ ist. Am Anfang wird B null
gesetzt. Nur wenn die transferierte Zahl 0 ist, werden alle 3 Befehle

INCB übersprungen und B bleibt auf null. Ist das Vorzeichen
der transferierten Zahl negativ, so wird das Bit 7 von B gesetzt
Der Befehl TSTB prüft den Inhalt von B, ob er null oder negativ

(Bit 7 1) ist und setzt das Zustandsregister entsprechend.
Dieses Programm belegt 32 Worte im Programmspeicher und
hat eine Laufzeit von 69 ps.

Dieses Programm belegt 17 Worte im Programmspeicher
und hat bei 1 MHz Taktfrequenz eine Laufzeit von 41 ps.

5.4 Beispiel für ein Eingabe-Unterprogramm:
Einlesen eines Zeichens von einem Lochstreifenleser

Der Streifenleser steht im Ruhezustand auf dem noch nicht
gelesenen Zeichen. Gleichzeitig mit dem Ablesen wird ein

Impuls von ca. 2 ms Dauer ausgegeben, der den Leser um ein

Zeichen weiterschaltet. 8 ms nach dem Ablesen eines Zeichens
kann das nächste Zeichen abgelesen werden.

Es wird vorausgesetzt, dass die Einlesezeit nicht kritisch ist,
so dass die Zeitintervalle mit einem Software-Timer erzeugt
werden können. Das Unterprogramm WAIT2 erzeugt ein

Intervall von 2 ms, WAIT6 ein solches von 6 ms.

Die Leserdaten werden über einen Peripheriebaustein mit
der Adresse LEDATA eingelesen. Die Ausgabe des Weiter-
schaltimpulses erfolgt über Bit 3 eines Peripheriebausteines mit
der Adresse LECTRL. Am Ende des Programmes steht das

gelesene Zeichen in A und das Flag-Bit C ist 0 bei gerader
Parität bzw. 1 bei ungerader Parität des Zeichens. Ungelochte
Stellen und überlochte Stellen (alle 8 Spuren gelocht) werden
überlesen. Die Inhalte von B und X werden durch das

Programm verändert.

Bull. SEV/VSE 68(1977)6, 19. März (A 140) 297

LEZCHV LDAALEDATA
PSHA

LDAB LECTRL

ORAB #$ 08

STAB LECTRL
JSR WAIT2
LDAB LECTRL

ANDB #$ F7

STAB LECTRL
JSR WAIT6
PULA
CM PA #$ FF

BEQ LEZCHV

CMPA #$ 00

BEQ LEZCHV

PSHA

LDX#J 0008

CLRB

RORA

ADCB #$00
DEX

BNE *-4
RORB

PULA
RTS

Gelesenes Zeichen in A

Gelesenes Zeichen im Stack
speichern

Bit 3 1 setzen

Beginn Weiterschaltimpuls

Timer 2 ms (Jump to subroutine)

Bit 3=0 setzen

Ende Weiterschaltimpuls

Timer 6 ms

Gelesenes Zeichen wieder in A

Alle Spuren gelocht? (Compare)

falls ja, zurück zum Anfang, neues
Zeichen lesen

ungelocht?

falls ja, zurück zum Anfang, neues
Zeichen lesen

Gelesenes Zeichen im Stack
speichern

Loop counter für
Paritätsbestimmung

B nullen

Bit 0 von B geht in C

C zu B addieren

Loop counter abzählen

zurück zu RORA, solange X nicht 0

Bit 0 von B geht in C

gelesenes Zeichen wieder in A

RückSprungbefehl

Zur Bestimmung der Parität des Zeichens in A werden die
8 Bit dieses Zeichens nacheinander in C geschoben und zu B

addiert. Bit 0 von B sagt, ob die Anzahl der 1 von A gerade
oder ungerade ist. Dieses Bit 0 wird in C eingeschoben.

6. Das Hauptprogramm
Wie erwähnt, besteht das Hauptprogramm prinzipiell aus

Aufrufen von Unterprogrammen und aus Entscheidungen. In
Unterprogrammen sollen keine Entscheidungen vorkommen,
die den Ablauf der Steuerung beeinflussen.

Auch das Hauptprogramm kann oft aus Teilprogrammen
zusammengesetzt werden. Ähnlich wie bei Unterprogrammen
ist jedem dieser Teilprogramme eine bestimmte Funktion der

Steuerung zugeordnet. Ob eine Funktion durch ein Teilprogramm

oder durch ein Unterprogramm realisiert wird, hängt
hauptsächlich von zwei Faktoren ab, einerseits ob der
Programmteil Entscheidungen enthält, die den Funktionsablauf
beeinflussen, anderseits ob der gleiche Programmteil bei einem

einmaligen Funktionsablauf mehrmals benötigt wird.
Mehrmaliges Auftreten des gleichen Programmteiles spricht
für einen Ablauf als Unterprogramm, während das Auftreten
von den Ablauf beeinflussenden Entscheidungen einen Aufbau
als Teilprogramm vorteilhaft erscheinen lässt.

7. Zusammenfassung
Nach einem kurzen Überblick über den Aufbau von

numerischen Steuerungen mit Mikroprozessoren wurden einige
Überlegungen zum Aufbau einer Programmbibliothek für
solche Steuerungen angestellt. Auf einfachen Nenner gebracht
lautet das Resultat:

Das Programm aufteilen in möglichst viele Unterprogramme,

von denen jedes eine bestimmte Funktion der Steuerung

erzeugt. Diese Programme können mit Threr Funktion
benannt werden. Dadurch wird die Programmdokumentation
lesbar, da der Aufruf eines Unterprogrammes gleichbedeutend
wird mit dem Auslösen einer bestimmten Funktion. Die
Verwendung von Bibliotheksprogrammen reduziert die
Programmierungskosten ganz wesentlich.

Adresse des Autors
Dr. sc. techn. Arno Müller, Omni Ray AG, Oberwiesenstrasse 4, 8304 Wallisellen.

298 (A 141) Bull. ASE/UCS 68(1977)6, 19 mars

	Der Aufbau von numerischer Steuerungen mittels Mikroprozessor und Programmbibliothek

