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Hochfrequente Signale und Stérungen
auf gerdusch- und fehlerbehafteten Hochspannungsleitungen

Von F.Eggimann und W.H. Senn

621.396.44:621.391.82
Die Trdgerfrequenziibertragung iiber Hochspannungsleitungen bilder das Riickgrat der Nachrichtenverbindungen vieler Elektrizitditsgesell-
schaften. 1hr Einsatz fiir die Ubertragung von Daten und Fernauslése- oder Schutzsignalen verlangt eine hohe Verfiigharkeit unter allen Um-
stinden. Die genaue Berechnung der Ausbreitung hochfrequenter Wellen auf dem Mehrleitersystem einer Hochspannungsleitung beruht auf der
Theorie der modalen Analyse, d.h. auf der Eigenwertanalyse der komplexen Spannungsiibertragungsmatrix. Damit kénnen Phéinomene wie
modale Ausloschung oder Einfliisse von Erdschliissen auf die Hochfrequenz-Empfangsleistung sowie die storende Koronagerduschleistung exakt
berechnet werden. In dieser Arbeit werden aufgrund einer Vielzahl durchgefiihrter Eigenwertanalysen allgemeingiiltige Zusammenhéinge formuliert
und in graphischer Form dargestellt. Die Darstellungen erlauben in vielen Fillen die Angabe von Néherungsresultaten ohne den Einsatz des
Grossrechners, mindestens aber die Beurteilung, ob eine genaue Berechnung notwendig ist oder nicht.

La transmission par fréquence porteuse le long de lignes a haute tension est indispensable pour de nombreuses entreprises électriques. Son
emploi pour la transmission de données et de signaux de télécommande ou de protection requiert une trés bonne disponibilité en toutes circons-
tances. Le calcul précis de la propagation d’ondes a haute fréquence le long des conducteurs d’une ligne a haute tension est basé sur la théorie
de I'analyse modale, ¢’est-a-dire sur Uanalyse des valeurs intrinséques de la matrice complexe de transmission de tension. Cela permet de calculer
exactement des phénoménes, tels que I’extinction modale ou les influences de défauts a la terre sur la puissance de réception a haute fréquence,
ainsi que la puissance perturbatrice due au bruit de effet de couronne. En se basant sur de nombreuses analyses de valeurs intrinséques, les
auteurs formulent des relations valables d’une fagon générale et les présentent par des graphiques. Dans de nombreux cas, ces représentations
permettent Uindication de résultats approchés, sans avoir recours a un grand calculateur électronique, au moins pour pouvoir juger si un calcul

plus précis est nécessaire ou non.

1. Einleitung

Mehrphasige Hochspannungsleitungen dienen seit langer
Zeit dem Transport elektrischer Energie; Zweidrahtleitungen
werden seit Beginn der Nachrichtentechnik fiir die Ubertra-
gung elektrischer Information bentitzt. Die beiden Ubertra-
gungssysteme, nach wirtschaftlichen Kriterien optimiert fiir
ihren spezifischen Einsatzzweck, haben ganz verschiedene Aus-
bildungsformen angenommen: In der Energietechnik soll
elektrische Leistung mit moglichst geringen Verlusten — Pro-
zente oder Promille — iibertragen werden, wiihrend in der
Nachrichtentechnik hochempfindliche Empfinger noch mit
Empfangsleistungen, die um den Faktor 10%...1010 kleiner als
die Sendeleistungen sind, auskommen koénnen. Dass sich
Hochspannungsleitungen parallel zur Energietransportaufgabe
auch fiir die Ubertragung von Nachrichtensignalen — Sprach-
und Datensignalen — sehr gut eignen, ist eine Erkenntnis, die
erst seit rund 40 Jahren in hohem Mass genutzt wird. Im Vor-
dergrund steht dabei in der Regel die Ubermittlung von Netz-
fihrungsinformation iiber Hochfrequenzkanile. Am Anfang
dieser «Trédgerfrequenztechnik auf Hochspannungsleitungeny,
der sog. TFH-Technik, standen einfache, grundsitzliche Uber-
legungen, deren Richtigkeit durch das «Experimenty, d.h. den
praktischen Erfolg, bestitigt wurden. Vereinzelt erlebte man
jedoch auch Uberraschungen: Signaldimpfungen waren klei-
ner oder grosser als erwartet, bestimmte Ankopplungsvarianten
erwiesen sich besser als andere. Fiir die Erklirung solcher Er-
fahrungen fehlte vorerst das mathematische Werkzeug, spiter
noch lingere Zeit der leistungsfihige Grossrechner.

Wihrend die «Leitungstheorie», in ihrer einfachsten Form
die Beschreibung der elektromagnetischen Vorginge lidngs
einer Zweidrahtleitung, zur grundlegenden Ausbildung jedes
Nachrichtentechnikers gehort, ist das tiefere Verstindnis der
Hochfrequenziibertragung tiber mehrphasige Hochspannungs-
leitungen erst in den letzten 15 Jahren besser bekannt und be;
der Planung der Verbindungen tatsidchlich angewendet worden.
Die exakte, problemabhidngige numerische Auswertung ist
noch jiinger und an den Einsatz leistungsfihiger Digitalrechner
gebunden.

Die Planung der TFH-Nachrichtenwege in Hochstspan-
nungsnetzen stiitzt sich heute in hohem Mass auf die Theorie
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der modalen Analyse. Ihre Grundziige und technischen Kon-
sequenzen sollen in den folgenden Abschnitten dargelegt wer-
den. Sie erlaubt einerseits die exakte numerische Berechnung
der Wellenausbreitungsvorginge in Mehrleitersystemen, liefert
anderseits jedoch auch die Mittel zur Herleitung allgemein-
giiltiger Erkenntnisse, insbesondere tiber das Wesen der mo-
dalen Kompensation oder Ausloschung und tiber den Einfluss
von Leitungsfehlern auf das Empfangssignal. Sie ermdglicht
Angaben iiber optimale Ein- und Auskopplungsvarianten,
iber Geriiuschabstinde und Zusatzdimpfungen bei vereisten
Leitungen und bei Leitungsfehlern, wie tiber den Einfluss von
Leitungstranspositionen und andern Inhomogenititen ldngs
des Ubertragungsweges. Thre Resultate bildeten die Grundlage
fiir die nachrichtentechnische Planung verschiedener wichtiger
Hochstspannungsnetze auf der ganzen Welt, z. B. in der Tiirkei
(400-kV-Leitungen Istanbul-Keban), in Afrika (Cabora Bassa
-+ 535 kV), in Stidamerika (El Chocon 500 kV) und in Kanada
(James Bay 735 kV).

Die in diesem Beitrag vorgestellten Erkenntnisse und Ver-
allgemeinerungen wurden aufgrund von Hunderten von nume-
rischen Eigenwertanalysen gewonnen. Die theoretischen
Grundlagen finden sich in der Arbeit [1]1), spdtere Beitrdge
zur Theorie in [2...5]. Die hier zusammengefasst vorgestellten
Resultate bilden eine direkte Fortsetzung der Arbeiten [6...9];
erste Teilergebnisse sind in [10; 11] publiziert.

2. Grundziige der modalen Analyse
2.1 Allgemeiner Ansatz fiir den eingeschwungenen Zustand

Eine allgemeine, verlustbehaftete, beliebig abgeschlossene
n-phasige Leitung gemiss Fig. 1 stellt ein lineares Ubertra-
gungssystem dar; die im Vektor V™ = [Vx1, Vxz, ... Vxn] Zu-
sammengefassten n Phasenspannungen im Abstand x vom
Nullpunkt der Leitung sind Linearkombinationen der n Pha-
senspannungen Vo™ = [Vo1, Vo, ... Von] am Leitungsanfang:

Vs =[H] Vo (1)

Die quadratische Matrix [H] vom Typ (n, n) enthdlt als
verallgemeinerte Ubertragungsfunktion die Eigenschaften der

1) Siehe Literatur am Schluss des Aufsatzes.
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Fig. 1 n-phasige Leitung als lineares Ubertragungssystem
mit der Spannungsiibertragungsmatrix [H]

Diese verkniipft die beiden Phasenspannungsvektoren ¥ und
Vx am Anfang und Ende der Leitung: Vi =[H]Vo ~

Leitung und der Abschliisse; ihre Elemente Hix sind im all-
gemeinen komplexe Funktionen der Frequenz und von der
Leitungsgeometrie, den elektrischen Eigenschaften der Phasen-
leiter, den Abschlussimpedanzen und der Erdleitfihigkeit ab-
hingig.

[H] beschreibt die lineare Transformation des Eingangs-
spannungsvektors Vo in den Ausgangsspannungsvektor V.
Beispielsweise gilt fiir die i-te Phasenspannung Vyi an der
Stelle x

Vxi=HiuVor + Hiz Vo2 + ... Hin Von 2)

Jede Phasenspannung hingt also in uniibersichtlicher und
spezifischer Weise von allen Phasenspannungen am Eingang
ab; eine «Spannungsverteilung» Vo wird im allgemeinen in eine
verschiedene Spannungsverteilung Vx transformiert. Man kann
nun die Frage stellen: Gibt es einen Eingangsspannungsvektor
Vo derart, dass sich der Ausgangsspannungsvektor Vx nur
um eine multiplikative Konstante x von ¥ unterscheidet?

Yx=1[H] - ¥Yo=krVo (3)

Die Fragestellung ist identisch mit dem Eigenwertproblem
der linearen Algebra: Die n Losungsvektoren Mo dieser
Gleichung sind die n Eigenvektoren oder « Mode» der quadra-
tischen, im allgemeinen komplexen und nichtsymmetrischen
Matrix [H], die multiplikativen Konstanten x sind die n Eigen-
werte von [H]; man erhdlt sie als Losungen der charakteristi-
schen Gleichung n-ten Grades

det ([H] — x [E]) = 0 @

worin [E] die Einheitsmatrix von Typ (n, n) ist.
Fiir den i-ten Eigenvektor oder Mode MoV gilt z.B.

Mx(i) = [H] ‘M{)(i) = Kij A_JO(U (5)

Er ist gekennzeichnet durch die Spannungsverteilung Mo ®
tiber die Phasenleiter sowie durch die ihm zugeordnete kom-
plexe Konstante i, die Betrags- und Phasenénderungen be-
schreibt.

Die Gesamtheit aller Eigenvektoren bildet die Eigenvektor-
Matrix [M]:

[M] = [Mo® Mo® .. Mo®] ©)
[Mx® M@ .. M| = [#] - [M] = [M] - [L] @

[L] ist die Diagonalmatrix der Eigenwerte ki, i = 1...n, der
Leitung. Damit gilt:

[H] = [M]-[L]- [M]* oder [M]'- [H] [M] = [L]
d.h. [M], die modale Matrix, diagonalisiert [H].

8,9
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Eine beliebige Spannungsverteilung Vo kann mit der In-
versen von [M] eindeutig dargestellt werden als Linearkombi-
nation der n Mode:

co = [M]1 Vo (10)

Die Koeflizienten des Vektors co beschreiben die Anteile
der einzelnen Mode am Leitungsanfang. Jeder Mode i wird
entsprechend seinem Eigenwert x; geddmpft in x auftreten:

cxi = Kicoi; 1 = l..n oder ¢x = [L] - co 11, 12)

Die Spannungsverteilung Vx baut sich an der Stelle x glei-
cherweise aus den einzelnen Mode auf:

Vx=[M] ¢ex = [M]-[K]-co= [M]-[L]- [M]'-¥o (13)

was sich auch durch direktes Einsetzen von Gl. (8) in (1) be-
statigt.

2.2 Verkniipfung der Ubertragungsmatrix [H]
mit den Eigenschaften der Leitung

Wenn es gelingt, die Elemente von [H] mit denjenigen
Grossen zu verkntlipfen, die die Leitung beschreiben, darf das
Problem (GI. 3) grundsétzlich als geldst betrachtet werden.
Der Zusammenhang ist Uber das Differentialgleichungssystem
der n-phasigen Leitung zu suchen.

Fir ein System mit n Leitern, deren Abstdnde viel kleiner
als die Wellenldnge sind, gilt fiir die Beziehung zwischen dem
Phasenspannungsvektor } und dem Phasenstromvektor /

L (¥) = —I[z]- [l und 53 (Il = —D1-V (14, 15)
dx — dx = = ’

Darin sind [z] und [y] die quadratischen, symmetrischen
Serie-Impedanz- und Parallel-Admittanz-Belagsmatrizen der
Leitung der Dimension Q/m und S/m. Durch nochmalige Ab-
leitung beider Gleichungen erhilt man die bekannten Differen-
tialgleichungen zweiter Ordnung:

d2

Gz W=D E=1PI¥ (16)
C O=01 11 I=[PE-1 (17
D =Dl I= [P )
mit [P] = [z] ] und [PI* = [] - [] (18, 19)

Thre Losungen sind fiir den einfachen Fall der einseitig
unendlich langen (oder angepassten) Leitung gegeben durch

Vx =exp (—x [P]}) - Vound Ix = exp (— x [P]*%) - Ip
(20, 21)?)

Durch Vergleich von (20) mit (1) erhélt man die gesuchte
Tdentitét:

[H] = exp (—x [P]H)

Gemaiss Gl. (9) diagonalisiert die modale Matrix [M] die
Ubertragungsmatrix [H], damit also auch die Matrix exp
(—x [P]).

Mit Hilfe der absolut konvergenten Potenzreihe?2) lédsst sich
zeigen, dass [M] auch [P] diagonalisiert. Sei [4] die Diagonal-
matrix der Eigenwerte A; von [P], so gilt damit

(22)

2) Die Matrix exp ([X]) ist iiber die Reihenentwicklung definiert:
o0

k! 2!
k=0

Xk X2
eXP([X]):Z X1 = [E] 4 [X] + X] + s
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wobei der Einfachheit halber gesetzt wurde:

yi = otif = Vi 4

Dies bedeutet nun fiir einen beliebigen Spannungsvektor
am Ort x

e-XY1
V= [M]- T C[MTE Y (25)
€ XYn

oder fiir den Spannungsmode i an der gleichen Stelle x
Mx(i) — Mo(i) L eXYi :MOU) - e—xai-jxPi (26)

Ahnlich gilt fiir einen beliebigen Phasenstromvektor

exvi
I. = [N] . “[NT - o 27
€-X¥n

oder fiir den i-ten Strommode
LVX“) — ]_Vo(i) - e-Xvi :i\fu(i) - e Xoi—jxPi (28)

Die Eigenvektoren der Spannung berechnen sich dabei aus
[P], diejenigen des Stromes aus der transponierten Matrix [P]T;
ihre zu entsprechenden Mode gehorenden Dampfungs- und
Phasenbelédge «; und fi, definiert als Wurzeln der Eigenwerte
von [P] oder [P]7F, sind gleich.

Da die Matrix [P], und mit ihr [P]", nicht symmetrisch ist,
sind verschiedene Spannungs- und Strommode im allgemeinen
Fall nicht orthogonal, d.h., die Gesamtleistung l&dsst sich nicht
exakt aus der Addition der modaien Leistungen berechnen;
die numerischen Resultate zeigen aber, dass die Abweichungen
in der Regel gering sind. Die Eigenvektoren konnen dann oft
durch die sog. Clarke-Verteilung (GI. 31) befriedigend ange-
ndhert werden, jedoch sind die numerischen Werte der Eigen-
wertsdifferenzen genau zu berechnen, da sie fir die modale
Ausloschung verantwortlich sind.

2.3 Storgerdusche auf TFH-Verbindungen

Wie jede elektrische Nachrichtenverbindung wird auch die
TFH-Strecke durch Stérgeriusche in ihrer Ubertragungskapa-
zitdt beschrdankt. Die vorherrschenden Storungen haben ihre
Ursache in der Regel im Energielibertragungssystem. Sie lassen
sich grob in zwei Klassen gliedern: transiente Storungen und
Dauergerdusche. Storungen voriibergehender Art riithren z. B.
her von Leistungsschalter- und Trennerbetétigung; sie sind
gekennzeichnet durch ihren Impulscharakter. Die Dauer-
gerduschleistung hingegen wird bestimmt durch die Korona
der unter Spannung stehenden Leitung. Der Zufallsprozess der
Stossionisation der die Leitung umgebenden Luft ist allerdings
nicht streng stationdr: seine Varianz, d.h. seine Leistung,
schwankt mit dem Feldstdrkegradienten an der Leiterober-
fliche, also mit der Netzfrequenz. Die einzelnen Ionisations-
stosse diirfen jedoch als unkorreliert betrachtet werden, womit
in jedem Augenblick gilt, dass diec gesamte Storleistung als
Addition oder Integration der einzelnen Storleistungsanteile
berechnet werden kann. Sie wird im Modell der Ubertragungs-
strecke als Gerduschleistungsbelag mit der Dimension W/m
eingefiihrt; entsprechende Zahlenwerte sind bereits iiber eine
Periode der Netzfrequenz gemittelt. Koronaerscheinungen
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treten an allen Phasen auf; die einzelnen Ionisationsimpulse
liefern Spannungsvektoren mit dem Charakter yxT(f) =
[vs1 (£), O ..., 0] als Beispiel fiir eine Stossionisation auf der
Phase 1 an der Stelle x der Leitung.

Am Empfingereingang am Ende einer Leitung tritt ein
Geridusch auf, das sich aus einer Vielzahl solcher Einzelimpulse,
die lings der ganzen Leitung unkorreliert entstehen, zusam-
mensetzt: Jeder Impuls kann zerlegt werden in seine modalen
Komponenten; diese wandern — geddmpft durch die ihnen
zugehorigen Eigenwerte — in Richtung auf den Empfénger und
addieren sich dort zur totalen Gerduschleistung, die damit,
ebenso wie ihre modale Zusammensetzung, eine Funktion der
Leitungslidnge wird. Die Gerduschleistungen auf den einzelnen
Phasen einer Leitung der Linge / konnen berechnet werden als
Diagonalelemente der Kreuzkovarianz-Matrix [2] der (kon-
jugiert komplexen) Phasenstrome und Phasenspannungen an
der Stelle /:

(2] = E[L "] 29)

Sei [Cq4] die Diagonalmatrix der Koronagerduschleistungs-
verteilung tiber die Leiter am Entstehungsort und po (w) der
Geriuschleistungsbelag innerhalb der betrachteten Bandbreite
in W/m, so gilt

1
(2] = po (@) [ IN1-I21- [N1 [Cal - (IM]- [L]- [M] )7 dx
5 (30)

Da die modalen Gerduschspannungen eines einzelnen Stor-
impulses untereinander korreliert sind, treten auf den einzelnen
Phasen im allgemeinen neben reinen Mode-Leistungen auch
Kreuzleistungen zwischen den Mode-Komponenten auf; auch
fir sie sind modale Kompensations- und Summeneffekte mog-
lich.

Im Abschnitt 3.3 wird das Element X fiir die Aussenphase
einer typischen Horizontalleitung numerisch approximativ
berechnet (Cqai1 = Cazz &~ 1/5, Ca22 &~ 3/5). Es erweist sich,
dass die Storleistung selbst bei 500 kHz erst bei Leitungsldngen
gegen 500 km ihren Grenzwert erreicht; der ddmpfungs-
schwache Mode 1 wirkt auch beziiglich der Storleistung iiber
weite Distanz.

2.4 Numerische Resultate

Aufgrund der bekannten Leitungsgeometrie, der Leiter-
daten und der Bodenleitfdhigkeit in einem gegebenen Fall
konnen die Matrizen [z] und [y] bestimmt werden, worauf die
Eigenwertanalyse von [P] = [z] - [¥] mit Hilfe eines leistungs-
fahigen Digitalrechners fiir eine beliebige Anzahl Leiter mog-
lich ist. Dabei sind der Skineffekt in den Leitern und die
Bodenverluste ebenso zu beriicksichtigen wie eventuelle di-
elektrische Verluste bei Eisbelag (wodurch die sonst rein ima-
gindre Admittanz-Belagsmatrix [y] komplex wird).

Bei der praktischen Berechnung der Eigenwerte und Eigen-
vektoren kommt es jedoch hdufig vor, dass einzelne Parameter,
z.B. die Bodenleitfdhigkeit, nicht genau bekannt sind und daher
innerhalb gewisser Grenzen abgeschitzt werden miissen. An-
dere Parameter sind zeitlichen Schwankungen unterworfen,
z.B. die mittlere Hohe der Phasenleiter iiber Boden (durch die
Temperaturabhingigkeit des Leitungsdurchhangs). Es ist daher
wichtig, den Einfluss dieser Parameterschwankungen auf die
Eigenwerte und Eigenvektoren zu kennen.
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Fig. 2 Déampfungsbelige der 3 Mode einer typischen horizontalen
Hochstspannungsleitung

Eine analytische Darstellung ist dusserst schwierig; hin-
gegen konnen durch systematische Auswertung einer Vielzahl
von Eigenwertanalysen fir alle praktisch auftretenden Para-
meterkombinationen wichtige, allgemeingiiltige Erkenntnisse
erhalten werden.

Durch die Ubertragung immer hoherer Starkstromleistun-
gen liber immer grossere Distanzen gewinnen horizontale Drei-
phasenleitungen zunehmend an Bedeutung. Sie sind meistens
transponiert und stellen daher bei der Behandlung der hoch-
frequenten Signalausbreitung besondere Probleme. Die Real-
und Imaginirteile der komplexen Eigenwertmatrix einer typi-
schen horizontalen Leitung sind in Fig.2 und Fig. 3 dargestellt.

Fir diesen wichtigen Leitungstyp gelangt man zu folgenden
Resultaten :

— Die Eigenvektoren sind praktisch unabhidngig von der Lei-

tungsgeometrie, Bodenleitfihigkeit und Frequenz. Sie weisen nahezu
Clarke-Verteilung auf.

1y 11
INl=[M]~]| 1 01
—1p—11

~1/s 1 1
also M (1) 1 ; M) = of: M® — |1
B 1] T =1 1

— Spannungs- und Stromeigenvektoren sind demnach praktisch
orthogonal; das bedeutet, dass an irgendeinem Punkt der Leitung
die Summe der Phasenleistungen angenéhert gleich der Summe der
Mode-Leistungen ist.

— Der Eigenwert von Mode 1, d.h. des ddmpfungsirmsten
Modes, ist praktisch nur von den Abmessungen, vom Aufbau und
der Leitfdhigkeit der Phasenleiter abhidngig. Er kann daher mit einer
einfachen Néaherungsformel geniigend genau berechnet werden,

— Der Eigenwert von Mode 2 («Gegentakt-Mode») fithrt zu
etwas hdheren Dimpfungen; unter gewissen Umsténden sind Aus-
loschungen von Mode | und Mode 2 zu befiirchten.

— Der Gleichtakt-Mode, d.h. Mode 3, kann infolge seiner grossen
Diampfung praktisch immer vernachldssigt werden; fiir die Signal-
ausbreitung miissen also nur 2 Mode berticksichtigt werden.

(31)

Die konsequente Anwendung dieser Erkenntnisse fithrt zu
vereinfachten Modellen, die einerseits die analytische Behand-
lung der Probleme erleichtern, anderseits den Einfluss von
Parameterschwankungen auf die Signalausbreitung anschau-
lich wiedergeben.
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3. Auswertung, Darstellung und Verallgemeinerung
der Resultate der modalen Analyse fiir die horizontale
Dreiphasenleitung

Im allgemeinen ist man daran interessiert, die Signalleistung
in Form von Mode 1, definiert als derjenige Mode mit dem
kleinsten Dampfungsbelag, zu iibertragen. Dies ist nur bei
homogenen Leitungen mdglich, und zwar nur dann, wenn das
Signal an alle 3 Phasen so angekoppelt wird, dass die einge-
prigten Phasenspannungen genau den Eigenvektor M des
ddmpfungsdrmsten Modes erzeugen. Diese Mode-1-Ankopp-
lung wird aus Kostengriinden #dusserst selten verwendet. Viel-
mehr hat sich in der Praxis fiir die Ubertragung von Sprach-
und Datensignalen die Einphasen-Ankopplung, fiir die Uber-
tragung von Leitungsschutzsignalen die Zweiphasen-Ankopp-
lung durchgesetzt. Im ersten Fall wird das Signal zwischen
einem Phasenleiter und Erde, im zweiten Fall zwischen 2 Pha-
senleitern angekoppelt. Anhand der unter 2.4 angegebenen
Eigenvektoren wird sofort kiar, dass bei diesen praktischen
Ankopplungen das Signal in Form eines Mode-Gemisches aus
3 bzw. 2 Mode angekoppelt wird; eine Ausnahme bildet nur
die Zweiphasen-Ankopplung zwischen den beiden Aussen-
phasen, welche reinen Mode 2 erzeugt.

Der gesamte Ausbreitungsvorgang lidsst sich mathematisch
in folgende Matrizengleichung fassen:

Ue=CT [M]-[L]"[M]-C- Us (32)

Der Kopplungsvektor C beschreibt die Umsetzung der
Sendespannung Us durch die Ankopplungselemente auf die
einzelnen Phasen, seine Transponierte CT die Riickumsetzung
auf die Empfangsspannung U.. Als Folge dieser Paralleliiber-
tragung des Signals iiber mehrere Mode mit unterschiedlichen
Déampfungs- und Phasenbelédgen ergeben sich Kompensations-
und Ausloschungserscheinungen, wie sie in der drahtlosen
Ubertragungstechnik bei Mehrwegausbreitung bekannt sind.

Es erweist sich nun, vor allem bei inhomogenen Leitungen,
als zweckmdssig, die Leitungsdimpfung a1, in zwei Teilddmp-
fungen aufzuspalten : in einen Anteil a1, welcher sich bei idealer
Mode-1-Ausbreitung ergidbe, und eine Zusatzdimpfung a.,
welche die Effekte der « Mehrwegausbreitung» wiedergibt.
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Fig. 3 Phasenbelige der 3 Mode einer typischen horizontalen
Hochstspannungsleitung
fle = ®/c = Phasenbelag der verlustlosen Leitung;

¢ = Lichtgeschwindigkeit
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Zu diesem Zweck wird die Diagonalmatrix [L] folgender-
massen modifiziert (/s sei die Linge der betrachteten Sektion):

[L] = [e7i'ls] = e-1i'ls [e-Avinls] = e-vi-ls [L*] (33)

Auf der Diagonalen der neuen Leitungsmatrix [L*] stehen
demnach die auf den Mode 1 bezogenen komplexen Eigenwert-
Differenzen. Damit wird aus GI. (32)

Ue = evvls- CT- [M]-[L*]- [M]1-C- Us G4

Aus GI. (34) kann die Leitungsddmpfung berechnet werden:
(35)

Sie erscheint als Summe der theoretischen Minimalddmp-
fung a1 und der durch nichtideale Ankopplung verursachten
Zusatzdimpfung aa.. Mit den unter 2.4 begriindeten Verein-
fachungen lisst sich der zweite Term von GI. (35), d.h. die
Zusatzddmpfung a,, folgendermassen darstellen:

ar =In|e-nl|—In|[CT- [M]: [L*¥] [M] C]|

an = —In|co+c1 - edrels | (36)

Aus GI. (36) wird die Gefahr von Kompensationserschei-
nungen infolge der « Mehrwegausbreitung» offensichtlich; sie
ist besonders ausgepriigt fiir co # 0, aber | co| < | ¢1|. Voll-
stindige Signalausloschung, d.h. unendlich grosse Zusatz-
ddmpfung, tritt auf fiir:

[cotcr-erarls| =0 (37)

Als erstes Resultat der modalen Analyse lassen sich fiir den
Fall der homogenen Leitungen aufgrund eines Koeffizienten-
vergleichs in Gl. (37) folgende Aussagen machen:

- Bei Einphasen-Ankopplungen besteht die Gefahr der Signal-
ausloschung, wenn an beiden Leitungsenden an eine Aussenphase
angekoppelt wird.

- Bei der optimalen Einphasen-Ankopplung (beidseitig Mittel-
phase gegen Erde) betrigt die Zusatzdimpfung a. = 3,5 dB; sie ist
unabhingig von Frequenz, Leitungsgeometrie und Bodenleitfahig-
keit.

— Bei Zweiphasen-Ankopplungen besteht keine Gefahr von
Signalausloschung.

— Bei den optimalen Zweiphasen-Ankopplungen (beidseitig
Mittelphase gegen Aussenphase) betrigt die Zusatzdimpfung a. =
0...6 dB, abhéngig von Frequenz, Leitungsgeometrie und Boden-
leitfahigkeit.

Bei homogenen Leitungen kann also durch geschickte Wahl
der Ankopplungsart jedes Risiko von Signalausléschungen ver-
mieden werden. Dies ist bei inhomogenen Leitungen im allge-
meinen nicht moglich. Inhomogenititen, wie Transpositionen
und Leitungsfehler, wirken als Mode-Wandler; sie wandeln
ein ankommendes Mode-Gemisch in eine neue Mode-Vertei-
lung um oder erzeugen urspriinglich nicht vorhandene Mode.

3.1 Einfluss von Leitungstranspositionen

Steht ein reiner Mode am Eingang einer Transposition an,
ist dort der Vektor der Phasenspannungen gleich dem Eigen-
vektor dieses Modes. Am Ausgang der Transposition trifft dies
nicht mehr zu; hingegen kann der Phasenspannungsvektor
auch dort wieder neu als Summe von Eigenvektoren dargestellt
werden. Sind die Spannungs- und Stromeigenvektoren der ein-
zelnen Mode orthogonal, was im vorliegenden Fall geniigend
genau zutrifft, dann treten keine Reflexionen auf; die Trans-
position wirkt als verlustloser Mode-Wandler, der durch die
Transpositionsmatrix [7] beschrieben werden kann. Damit
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Fig. 4 Zusatzdampfung a, als Funktion des Differenziibertragungs-
masses Ag = Aa + jAp von Mode 1 und Mode 2 fiir eine
zweifach transponierte Leitung

Ein- und Auskopplung: Phasen R-S/R-S
o1 spezifischer Erdwiderstand

lasst sich die Dampfung einer transponierten Leitung analog
zum homogenen Fall darstellen; beispielsweise gilt fiir die
zweifachtransponierte, symmetrische Leitung der Totalldnge /

ar, = —In|evl|—In | CT - [M]- [L*]- [T]- [L*]-

Auch die Zusatzddmpfung lédsst sich als Summe von Ex-
ponentialtermen schreiben. Fiir n Sektionen der Linge /s
findet man

n n
ay = —In iz Ci e*/—‘-g'ii = —In ‘z ci C'(Aﬂﬂ'w)}
i=0 i=0 (39)
= —In l z ci e-Ayarls
i=0

Durch Vergleich der Koeffizienten ¢; ist es moglich, das
Risiko von Signalausloschungen abzuschétzen ; eine graphische
Darstellung der Zusatzddmpfung a. als Funktion von Aa und
Ag gibt aber einen wesentlich besseren Uberblick iiber mog-
liche Kompensationserscheinungen und gestattet in tibersicht-
licher Weise die Bestimmung der optimalen Ankopplung fiir
ein bestimmtes Transpositionsschema. Durch die Wahl von
Aa und Ag, d.h. der auf die Sektionsldnge bezogenen Differenz-
dampfung und Phasenverschiebung zwischen den beiden rele-
vanten Mode, als Koordinentenachsen, werden diese Darstel-
lungen unabhingig von Leitungsgeometrie, Leitungslinge,
Bodenleitfahigkeit und Frequenz und sind universell anwend-
bar. Fig. 4 zeigt als typisches Beispiel die Niveaulinien der
Zusatzdampfung a. fir eine zweifachtransponierte Leitung mit
optimaler Ankopplung. Die Ddmpfungspole fiir Aa ~ 14 dB
und Ag = k - 360° sind aus Fig. 4 klar ersichtlich.

Die Bestimmung der Zusatzdimpfung mit Hilfe dieser uni-
versellen graphischen Darstellungen setzt die Kenntnis von
Aa = Ao+ Is und Ap = AB - Is voraus; hier gehen die einem
spezifischen Fall eigenen Parameter wie Geometrie und Lidnge
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Fig. 5 Charakteristische Kurven der Eigenwertdifferenzen

Ay = Ao+ jAS von Mode 1 und 2 im Frequenzbereich von
100...300 kHz fiir verschiedene Bodenleitfihigkeiten

der Leitung, Aufbau und Material der Phasenleiter und Erd-
seile, Bodenleitfihigkeit und Frequenz in die Zusatzdimpfung
ein. Aufgrund von theoretischen Uberlegungen und durch syste-
matische Auswertung einer Vielzahl von Eigenwertanalysen
verschiedenartigster Leitungsgeometrien und Bodenleitfahig-
keiten gelangt man zu folgenden generellen Erkenntnissen iiber
das Verhalten von Ax und Af:

— Das Verhiltnis Af/Ae ist im wesentlichen eine Funktion der
Bodenleitfdhigkeit, in geringem Masse auch der Frequenz, hingegen
praktisch unabhingig von der Leitungsgeometrie.

— Ao ist bei konstanter Bodenleitfdhigkeit tiber einen weiten
Bereich proportional zur Frequenz.

— Das Produkt Ao - Af hingt bei vorgegebener Frequenz und
Bodenleitfdhigkeit stark von der Leitungsgeometrie, d.h. vor allem
vom Verhiltnis d/h ab (d horizontaler Abstand zwischen den Phasen-
leitern; A mittlere elektrische Hohe tiber Boden).

Fig. 5 zeigt die charakteristische Abhdngigkeit von Ax und
Apvon der Frequenz und Bodenleitfihigkeit fiir ein bestimmtes
d/h-Verhiltnis. Solche Kurvenscharen konnen mit Hilfe des
Rechners fiir verschiedene, sinnvoll iiber den praktisch vor-
kommenden Bereich verteilte d/h-Verhiltnisse berechnet wer-
den. Mit Hilfe der bereits gewonnenen Erkenntnisse liber das
Verhalten von Ae und Af kann mit diesen Stiitzwerten die ent-
sprechende Kurvenschar fiir jedes beliebige d/A-Verhiltnis
durch Interpolation gefunden werden.

3.2 Einfluss von Leitungsfehlern

Bei horizontalen Hochspannungsleitungen treten Leitungs-
fehler praktisch immer als einphasige Erdschliisse auf. Der
Einfluss dieser Fehlerart auf dic Signalausbreitung wird be-
riicksichtigt, indem das zur betroffenen Phase gehorende Ele-
ment des Phasenspannungsvektors vxi =0 gesetzt wird. Diese
Methode liefert bei den praktisch vorkommenden, niederohmi-
gen Fehlerimpedanzen hinreichend genaue Resultate.

Der gestorte Phasenspannungsvektor kann am Fehlerort
wieder als Summe von Spannungseigenvektoren dargestellt
werden. Diese Summe wird sich im allgemeinen von derjenigen
des ungestorten Falles unterscheiden. Das bedeutet, dass der
Leitungsfehler dhnlich einer Transposition als Mode-Wandler
wirkt. Da ein Teil der ankommenden Leistung reflektiert wird,
ist diese Mode-Umwandlung allerdings verlustbehaftet.
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Die vom Fehlerort riicklaufende Welle wird am Leitungs-
anfang wiederum teilweise reflektiert; durch die zweimalige
Reflexion werden Stehwellen erzeugt. Die Leitungsdimpfung
zeigt als Funktion der Frequenz ausgeprigte Minima und
Maxima, deren gegenseitiger Abstand durch die Distanz vom
Leitungsanfang zum Fehlerort gegeben ist. Die Beriicksichti-
gung des Stehwelleneffektes wird dadurch erschwert, dass die
Abschlussimpedanz der zur Ankopplung nicht benutzten
Phasen im allgemeinen nicht bekannt ist.

Unter Vernachldssigung des Stehwelleneffektes kann der
Mittelwert zwischen minimal und maximal auftretender Lei-
tungsdampfung bestimmt werden, indem man in Gl. (38) auf
dem fehlerbehafteten Leitungsabschnitt die Leitungsmatrix
[L*] durch eine Fehlermatrix [F] ersetzt; man erhdlt dann
beispielsweise fiir einen Fehler auf dem letzten Abschnitt der
zweifach transponierten Leitung

avy = —In|enl| —In| C*- [M]- [F]- [T]- [L*]-

7T [L*]- (M1 C S

Die Zusatzdampfung ldsst sich damit auch im Fehlerfall
als Summe von Exponentialtermen darstellen (x = Iy//s ist die
relative Fehlerdistanz, Fig. 6):

n
ar = —In I > coi e-A8i |- c1j e-dei f i - e-A8 () -

5 (41)

1 e31 - e-Aelx) [

Da die Matrizenmultiplikation in Gl. (40) nicht kommutativ
ist, hingen die Koeffizienten co; bis ¢3i nicht nur von der ge-
wihlten Ankopplungsart, dem Transpositionsschema, der Lage
des vom Fehler betroffenen Phasenleiters, sondern auch von
der Leitungssektion ab. Ist man nur daran interessiert, unab-
hidngig vom Fehlerort den Maximalwert der Zusatzdimpfung
aar zu kennen, kann man Gl. (41) fir einen bestimmten Pha-
senleiter und Leitungsabschnitt 16sen und den fiir 0 < x < 1
auftretenden Maximalwert als Funktion von A« und Ag gra-
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Fig. 6 Maximale Zusatzdimpfung a.rm einer zweifach transponierten
Leitung im Fehlerfall als Funktion des Differenziibertragungs-
masses Ag = Aa + jAg

Ein- und Auskopplung: Phasen R-S/R-S
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Fig. 7 Zusatzdimpfung aar (linker MaBstab) und durch den Fehler
verursachte Anderung ar der Zusatzdimpfung (rechter Malfistab)
als Funktion des Fehlerortes fiir zwei verschied Frequ

Leitung zweifach transponiert; Ein- und Auskopplung auf den
Phasen R-S/R-S.

phisch darstellen. Damit kann in einer einzigen Figur der
Maximalwert von aar in Funktion von Aa und Ag fiir beliebige
Fehler auf der gesamten Leitungsldnge und fiir alle 3 Phasen
gezeigt werden (Fig. 6). Man sieht anhand der eingezeichneten
Aa/Ap-Kurve, dass die Zusatzdimpfung auch im Fehlerfall
20 dB nicht libersteigt, sofern man sich auf Frequenzen unter
180 kHz beschrédnkt. Soll die Zusatzdidmpfung als Funktion
der Fehlerdistanz dargestellt werden, muss Gl. (41) fiir ein be-
stimmtes Wertepaar (Aa, Ap), d.h. fiir eine vorgegebene Lei-
tungsgeometrie, Bodenleitfdhigkeit und Frequenz, als Funk-
tion von x gelost werden. Fig. 7 zeigt die zugehorige Zusatz-
dampfung fiir eine zweifach transponierte Leitung, dargestellt
fiir jeden Phasenleiter und zwei verschiedene Frequenzen. Der
obere Teil von Fig.7 (f = 200 kHz) zeigt anschaulich weitere
Resultate der modalen Analyse:

- Die Zusatzdampfung ist fir Fehler auf der Mittelphase un-
abhingig von der Fehlerdistanz x

— Die Leitungsddmpfung kann im Fehlerfall geringer sein als
im Normalzustand (ar < 0!)

3.3 Modale Betrachtung des Koronagerdusches

Korona, die plotzliche Stossionisation der einen Phasen-
leiter umgebenden Luft, setzt abrupt ein, sobald die elektrische
Randfeldstirke des Leiters einen kritischen Wert liberschreitet;;
sie ist ausgeprédgter in der positiven Halbperiode. Die Stor-
leistung am Ende einer Leitung wird gemiss Gl. (30) berechnet.
Die spektrale Dichtefunktion po (w) kann der Arbeit [5] ent-
nommen werden; erste Zahlenangaben finden sich bereits in
[8]. Fig. 8 zeigt die totale Koronagerduschleistung P = X11
auf der Aussenphase einer homogenen Leitung sowie ihre
modale Leistungskomponente P(1) als Funktion der Leitungs-
linge, bezogen auf die jeweils entsprechende Leistung einer
unendlich langen Leitung. Aus der Figur geht klar hervor, dass
die Gerduschleistung erst bei Leitungsldngen tiber 200 km
ihren Endwert erreicht und dieser praktisch durch die Mode-
1-Komponente P(1) bestimmt wird.
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Fig. 8 Totale Korona-Geriuschleistung P und ihre modale
Leistungskomponente P (1) auf der Aussenphase einer homogenen
Leitung als Funktion der Leitungslinge / fiirr f = 500 kHz,
bezogen auf den jeweiligen Endwert einer unendlich langen
Leitung

4. Schlussbetrachtungen

Die praktische Anwendung der Mode-Theorie auf Pla-
nungsprobleme in der TFH-Technik verlangt die Existenz
leistungsfahiger Eigenwert-Analyseprogramme fiir komplexe
Matrizen. Mit deren Hilfe ist es moglich, alle wichtigen Auf-
gaben sowohl fiir fehlerfreie wie fiir fehler- und gerduschbehaf-
tete Leitungen exakt zu 16sen. Die numerischen Schwierigkei-
ten, die mit dem Auftreten beinahe gleicher komplexer Eigen-
werte verbunden sind, diirfen dabei nicht unterschétzt werden.

Dariiber hinaus mochte dieser Beitrag jedoch zeigen, dass
man auf dem Weg liber eine Vielzahl einzelner numerischer
Losungen vertieftes Verstdndnis der vorerst uniibersichtlichen
Zusammenhidnge gewinnen kann, wodurch die Detailanalyse
in manchen Féillen mindestens fiir iiberschldgige Berechnungen
zuriickgestellt werden kann.
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