Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des

Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de l'Association suisse des électriciens, de l'Association des entreprises

électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein; Verband Schweizerischer

Elektrizitätsunternehmen

Band: 67 (1976)

Heft: 18

Artikel: Die Zentralsteuerung im Integrierten Fernmeldesystem IFS-1

Autor: Kreis, W.

DOI: https://doi.org/10.5169/seals-915206

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Die Zentralsteuerung im Integrierten Fernmeldesystem IFS-1¹)

Von W. Kreis

681.513.2 : 621.39; 681.325 : 621.39

Die Zentralsteuerung im digitalen IFS-1 steuert die vermittlungstechnischen peripheren Einheiten derart, dass 64 kbit/s Datenkanäle zwischen analogen oder digitalen Teilnehmerendgeräten geschaltet werden. Sie besteht aus einem programmierten Prozessorsystem. Die Steuerabläufe einer Vermittlungsfunktion erfordern eine grössere Anzahl einfache, durch externe Ereignisse bestimmte Teilfunktionen. Gleichzeitig wird eine Vielzahl von Vermittlungsfunktionen verarbeitet. Dadurch ist die Struktur der Steuerprogramme gegeben. Infolge der Zentralisierung der Steuerfunktionen muss das Prozessorsystem eine grosse Verfügbarkeit aufweisen. Eine redundante Konfiguration mit 3 synchronen Prozessoren und verdoppelten Speichern und Ein-/Ausgabe-Einheiten erfüllt die Anforderungen. Die Fehlerbehebung stützt sich auf eine automatische Fehlereingrenzung durch Programme. Das System enthält zudem verschiedene Funktionen zur frühzeitigen Erkennung von Software-Fehlern.

La commande centrale dans le IFS-1 numérique commande les unités périphériques de transmission, de telle sorte que des canaux à 64 kbit/s soient couplés entre terminaux analogiques ou numériques. Elle consiste en un système processeur programmé. La commande d'une fonction de transmission nécessite un grand nombre de fonctions partielles simples, déterminées par des événements externes. Toute une série de fonctions de transmission sont traitées simultanément, ce qui détermine la structure du programme de la commande. Du fait de la centralisation des fonctions de commande, le système processeur doit présenter une grande disponibilité. Une configuration redondante avec 3 processeurs synchrones, ainsi que des mémoires et unités d'entrées/sorties doublées, satisfait aux exigences. La suppression des erreurs est basée sur une localisation automatique de celles-ci par le programme. Le système comprend en outre différentes fonctions pour reconnaître à temps des erreurs du logiciel.

1. Einleitung

Das Integrierte Fernmeldesystem IFS-1 ist das zukünftige Fernmeldesystem für die Telefonie und andere Fernmeldedienste in der Schweiz. Zurzeit wird an dessen Entwicklung gearbeitet. Das System ist in zweierlei Hinsicht als integriert zu bezeichnen:

- Integration von Übertragungs- und Vermittlungstechnik, indem die Information in digital-codierter Form (Puls-Code-Modulation PCM) übertragen und vermittelt wird.
- Integration der Dienste, d. h. z. B. Telefonie- und Datendienste werden in ein und demselben Fernmeldesystem realisiert.

Im folgenden wird der Einsatz des IFS-1 nur als Telefoniesystem betrachtet, da auf absehbare Zeit die Abwicklung des Telefonieverkehrs die überwiegende Anwendung darstellen wird.

2. Das Konzept des IFS-1

Das IFS-1 besteht aus drei grossen Subsystemen (Fig. 1), dem Kreisbetriebszentrum, dem Prozessorbereich und dem vermittlungstechnischen Peripheriebereich.

Das Kreisbetriebszentrum KBZ besteht aus einer Datenverarbeitungsanlage EDV, die dem Betrieb des Fernmeldesystems dient. Im KBZ steuert und überwacht das Bedienungspersonal über Terminale das gesamte System.

Der Prozessorbereich gliedert sich in die Zentralsteuerung ZS und das Zugriffsystem zur vermittlungstechnischen Peripherie. Die ZS besteht aus einem Prozessorsystem, d. h. aus Prozessor, Speicher und Ein-/Ausgabe-Einheiten. Die primäre Aufgabe der ZS ist die Steuerung der Vermittlungsfunktion des IFS-1, des Durchschaltens von Gesprächskanälen zwischen Teilnehmerendgeräten. Die ZS muss dazu die Einheiten der vermittlungstechnischen Peripherie mittels Telegrammen steuern und überwachen. Das Zugriffsystem, gebildet aus mehreren Telegrammeinheiten TE, konzentriert und überwacht die seriellen Steuerkanäle (64 kbit/s) und passt deren Übertragungsgeschwindigkeit an die schnelle parallele Verarbeitungsweise der ZS an.

Der vermittlungstechnische *Peripheriebereich* besteht aus vier Typen von peripheren Einheiten, wovon jede bestimmte Funktionen erfüllt. In einem Vermittlungssystem sind von

jedem Typ eine Vielzahl von Einheiten eingesetzt. Die Durchschalteeinheit DE ist ein Schalter für 64 kbit/s PCM-Kanäle; eine Anzahl von DE bilden das Durchschaltenetzwerk DNW, wo die Gesprächskanäle und die Steuerkanäle für die peripheren Einheiten geschaltet werden. Der Analogkonzentrator AKT ist ein Konzentrator für analoge Teilnehmerleitungen; er setzt die Analogsignale der konzentrierten Leitungen in PCM-Signale um und umgekehrt. Das Terminal T passt analoge Verbindungsleitungen VL mit konventionellen Vermittlungssystemen an die PCM-Kanäle an. Die Signalisierung wird in die PCM-Kanäle und in das Telegrammsystem der Steuerkanäle umgesetzt. Die Wahleinheit WE ist ein Wahlempfänger und -sender, der die Wahlinformation in das Telegrammsystem umsetzt und umgekehrt. Weiter erzeugt die WE Hörtöne wie Summton, Besetztton usw.

Ein System der beschriebenen Art bedient einen Steuerbereich von bis zu 100 000 Teilnehmern. Ein solcher Steuerbereich wird in bis zu 4 Subebenen SEB aufgeteilt, wobei jede SEB eine eigene ZS und periphere Einheiten umfasst, mit Ausnahme der Analogkonzentratoren. Diese sind an die Durchschaltenetzwerke aller SEB angeschlossen und somit SEB-gemeinsam. Dieses Konzept wird mit Mehrebenenkonzept bezeichnet. Grundsätzlich kann jede SEB autonom jeden Verbindungswunsch vermitteln. Die Analogkonzentratoren teilen den Verkehr auf die 4 SEB auf. Im Normalfall wird jeder SEB etwa ein Viertel des Verkehrs zugeleitet. Diese Eigenschaft ist für die ZS von Bedeutung.

Für eine ausführlichere Beschreibung des IFS-1-Konzeptes sei auf [1] ²) verwiesen.

3. Die Funktionen der Zentralsteuerung

3.1 Anrufbehandlung

Unter Anrufbehandlung wird die Ausführung der eigentlichen Grundfunktion des Fernmeldesystems verstanden, nämlich der Steuerung der peripheren Einheiten derart, dass jeder Teilnehmer zu einem beliebigen Zeitpunkt und für eine beliebige Dauer mit jedem anderen Teilnehmer eine Ge-

¹⁾ Vortrag, gehalten anlässlich der 32. STEN am 15. Juni 1976 in Bern.

²⁾ Siehe Literatur am Schluss des Aufsatzes.

sprächsverbindung aufbauen kann. Dazu muss die ZS folgende Funktionen steuern oder ausführen:

- Anruferkennung und Bestätigung durch Wahlaufforderung (Summton)
- Empfang und Interpretation der Wahlinformation, Bestimmen der Abgangsleitung
- Rufen des gerufenen Teilnehmers bzw. des nächsten Vermittlungssystems
- Antworterkennung und Durchschaltung der Gesprächsverbindung im Durchschaltenetzwerk
- Verbindungsschlusserkennung und Freigabe der belegten peripheren Einheiten

3.2 Taxierung

Die Taxierung ist eine Teilfunktion der Anrufbehandlung, die wegen ihrer Wichtigkeit separat aufgeführt ist. Im IFS-1 wird der bisherige teilnehmerindividuelle Taxzähler im Speicher der ZS nachgebildet. Nach dem Zeitimpulsverfahren werden in diesem Zähler Taxeinheiten aufgezählt, in Zeitintervallen entsprechend der Gesprächstaxe.

3.3 Steuerung und Überwachung der peripheren Einheiten

Neben der Steuerung der peripheren Einheiten für die Durchführung der Anrufbehandlung muss die ZS deren Funktionstüchtigkeit überwachen. Bei Fehlern in den peripheren Einheiten veranlasst sie eine Ausserbetriebnahme und soweit möglich eine Ersatzschaltung, auch Rekonfiguration genannt. Die im Durchschaltenetzwerk geschalteten Steuerkanäle und eine Reserve an peripheren Einheiten erlauben eine Umgehung von fehlerhaften Einheiten.

3.4 Speicherung der Teilnehmer- und Netzwerkdaten

Als Hauptmerkmal des programmgesteuerten Fernmeldesystems sind alle Daten, welche die Struktur und den Betriebszustand des Fernmeldenetzes und des Peripheriebereiches der Subebene bestimmen, im Speicher gespeichert und sind folglich auch im Speicher modifizierbar. Die Gesamtheit dieser Daten wird mit *Datenbasis* bezeichnet. Sie umfasst u. a. folgende Merkmale:

- Anschluss-Nr. von Teilnehmer- und Verbindungsleitungen
- Teilnehmer-Nr., -kategorien und -berechtigungen
- Betriebszustände von Teilnehmer- und Verbindungsleitungen
 - Leitwegtabellen, Taxtabellen
- Anschlusstabellen und Betriebszustände des Peripheriebereiches

Die ZS enthält auch die notwendigen Hilfsfunktionen zur Nachführung der Datenbasis, entweder selbständig entsprechend dem momentanen Betriebszustand oder auf Befehl des

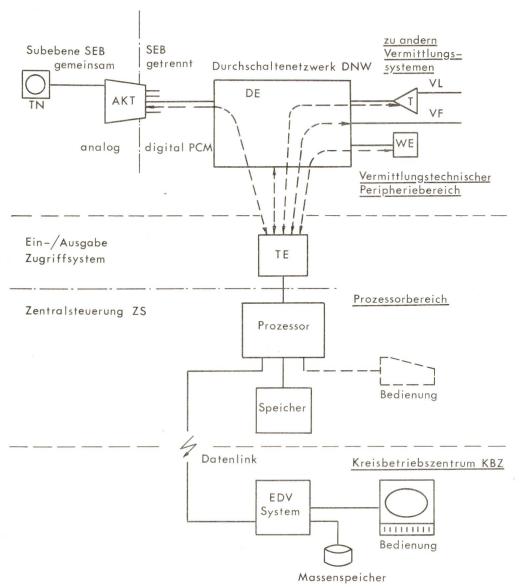


Fig. 1
Blockschema des IFS-1
TN Teilnehmerendgerät
VF PCM Vielfachleitung, 31 Kanäle
(weitere Bezeichnungen im Text)

KBZ. Es ist gerade diese Eigenschaft der gespeicherten Datenbasis, die für den Betrieb des Fernmeldesystems entscheidende Vorteile bringt wie

- freie Zuordnung von Teilnehmer-Nr. und Anschluss-Nr.
- Leitweglenkung
- zentralisierte automatische Taxerfassung
- Verkehrsmessungen
- automatische Fehlereingrenzung
- neue Teilnehmerfazilitäten, wie z. B. Anrufumleitung, Sperrung internationaler Ausgangverbindungen usw.

3.5 Verbindung mit dem Kreisbetriebszentrum

Über die Verbindung mit dem KBZ werden dem Betriebspersonal wichtige Zustandsänderungen mitgeteilt. Das Betriebspersonal kann aber auch mittels Befehlen Zustände abfragen und den Betrieb über Änderungen in der Datenbasis steuern.

Es können automatisch Daten von der ZS an das KBZ übermittelt werden, wo sie in Massenspeichern aufgezeichnet werden, wie z.B. Taxzählerstände, Verkehrsmessresultate u.a.

Für den Unterhalt ist die Verbindung zum KBZ wichtig, weil das Bedienungspersonal die Fehlereingrenzung und Fehlerbehebung überwacht.

4. Die Realisierung der Zentralsteuerung im IFS-1

4.1 Die Vermittlungsfunktion

Im folgenden soll gezeigt werden, wie die Grundaufgaben der ZS, die Anrufbehandlung und die Taxierung, in einem Prozessorsystem gelöst werden. Folgende Leistungsmerkmale beschreiben die Anforderungen an die ZS:

- Anzahl Teilnehmer TN pro Steuerbereich: max. 100 000
- Verkehrsleistung unter Berücksichtigung der Verkehrsaufteilung auf die 4 Subebenen: 14,5 Anrufe pro s in der Hauptverkehrsstunde
- Mittlere Verbindungsdauer 180 s, wovon etwa 10 s für den Verbindungsaufbau und -abbau. Daraus resultieren in der Hauptverkehrsstunde im Mittel 2600 gleichzeitige Verbindungen.

Die Anrufbehandlung, einschliesslich Taxierung, ist in Software SW realisiert und erfordert pro Verbindung die Ausführung von etwa 15 000 Instruktionen. Da die Anrufbehandlung in Realtime mit den externen Vorgängen (Ereignissen) ablaufen muss, ist der zeitliche Ablauf im wesentlichen durch dieselben bestimmt. Solche Ereignisse sind z. B. Anruf (Abheben des Hörers durch Teilnehmer), Eingabe einer Wahlziffer, Antwortsignal eines anderen Vermittlungssystems, Bestätigung einer peripheren Einheit über einen ausgeführten Steuerbefehl (Telegramm) usw. Die Aktionen, die auf solche Ereignisse erfolgen müssen, sind in den meisten Fällen das Aussenden eines Telegrammes an eine periphere Einheit oder das Speichern eines dem Ereignis entsprechenden Anrufzustandes für die Steuerung der weiteren Anrufbehandlung.

Im Laufe einer Anrufbehandlung werden etwa 80 Eingabe- und Ausgabe-Telegramme durch die ZS' verarbeitet und mit den peripheren Einheiten ausgetauscht. Daraus resultiert die Struktur der Anrufbehandlungs-SW: während der Verbindungsdauer werden etwa 60 Einzelprogramme ausgeführt, wobei jedes im Mittel 250 Instruktionen umfasst. Die zeitliche Verteilung der Programmausführungen über die Gesprächsdauer ist unregelmässig, indem der überwiegende Teil während dem Verbindungsaufbau und -abbau erfolgt (Fig. 2).

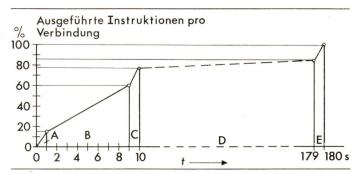


Fig. 2 Histogramm einer Verbindung: Ausgeführte Instruktionen pro Verbindung in Funktion der Zeit t

Verbindungsauf bau

- A Wahlbereitschaft (Summton)
- B Wahlziffernempfang
- C Durchschaltung in Gesprächszustand
- D Taxierung während Gesprächszustand
- E Verbindungsabbau

Die Anrufbehandlung muss in Realtime mit den externen, durch die ZS nicht beeinflussbaren Funktionen ablaufen, dies wegen der Notwendigkeit, keine Information oder Zustandsänderung zu verlieren. Für Telefoniefunktionen sind Antwortzeiten in der Grössenordnung von 100...200 ms zulässig. Da eine Telefoniefunktion oft mehrere Ereignisbehandlungen durch die SW einschliesst, resultiert in der ZS eine zulässige Antwortzeit pro Ereignisbehandlung von etwa 15...20 ms.

Aus dieser Zeitbedingung kann berechnet werden, dass der Prozessor im Mittel nur zu etwa 70 % ausgelastet werden darf, damit bei kurzzeitigen Verkehrsspitzen die vorgegebenen Antwortzeiten nicht überschritten werden.

Unter Berücksichtigung der Programmgrösse von etwa 125 k-Zeilen und der Datenbasis für einen Steuerbereich von 100 000 TN ist eine Speichergrösse von etwa 900 k-Zeilen (1 k-Zeile = 1024 Zeilen) erforderlich. Dies ist ein vergleichsweise sehr grosser, direkt adressierbarer Speicher. Dabei wird angenommen, dass die gesamte Datenbasis im Hauptspeicher gespeichert ist.

4.2 Die Vermittlungssoftware

Die SW besteht aus programmierten Algorithmen, die die Funktionen der ZS festlegen. Daraus geht hervor, dass durch Programmänderungen Funktionsänderungen eingeführt werden können, ohne dass die Anlage (Hardware HW) modifiziert werden muss. Dies ist eine weitere vorteilhafte Eigenschaft programmgesteuerter Vermittlungssysteme.

Die Vermittlungs-SW ist ein grosses Programmsystem von etwa 90 k-Zeilen; deshalb seien die wesentlichen Strukturmerkmale und die damit angestrebten Zielsetzungen kurz beschrieben. Für detailliertere Angaben wird auf [2] verwiesen.

Die Komplexität der Vermittlungs-SW rührt daher, dass alle Funktionen gleichzeitig ablaufen und sich gegenseitig beeinflussen. So sind an den 2600 verschiedenen Anrufbehandlungen, die gleichzeitig in verschiedenen Zuständen sein können, über 200 periphere Einheiten beteiligt. Um die Funktionssicherheit in jedem möglichen Betriebszustand sicherzustellen, ist es unerlässlich, eine klare Strukturierung der SW vorzunehmen:

– Die Vermittlungs-SW weist eine funktionelle Modularität auf, die der Modularität der peripheren (HW-)Einheiten entspricht (wenige verschiedene Typen von peripheren Einheiten mit Subeinheiten, variable Anzahl Einheiten pro Typ). Damit ist eine weitestgehende Unabhängigkeit der Steuerprogramme einzelner peripherer Einheiten erzielt. Eine Fehlerausbreitung kann so verhindert werden. Die Probleme bei der Nachführung der Datenbasis sind beschränkt.

- Identifizierung von SW-Einheiten mit Nummern statt Adressen. Vollständig ausgefüllte Numerierungsräume und damit verbundene Adressenräume garantieren, dass keine «undefinierten» Adressen erzeugt werden können, die zu Programmfehlern führen.
- Wenige normierte Schnittstellen, die auf Normeinhaltung überprüft werden können, erzwingen einen geordneten Informationsaustausch zwischen einzelnen Programmen.

Mit dieser Strukturierung sind folgende Ziele angestrebt worden:

- Aufspaltung der Vermittlungs-SW in überblickbare Funktionsmoduln, mit wenigen kontrollierbaren Querbeziehungen
- Gute Testbarkeit der Funktionsmoduln. Vergleichsweise einfache Integration der verschiedenen Moduln zum Systemprogramm
- Begrenzte Auswirkungen von SW-Fehlern. Rasche Erfassung derselben und damit zusammenhängend leichte Fehlereingrenzung und -elimination
- Beschränkte Auswirkungen bei Änderungen von SW-Funktionen. Dies gilt auch bei einem zukünftigen Einsatz neuer oder verbesserter peripherer (HW-)Einheiten.

4.3 Das Prozessorsystem

Fig. 3 zeigt das Blockschema des Prozessorsystems. Der Zentralprozessor CP führt die in Programmspeicher MEM P gespeicherten Programme aus und verarbeitet dabei die im Datenspeicher MEM D enthaltenen Daten. Die Peripheriegeräte PER werden durch die Kontrolleinheit CU gesteuert, die ihrerseits über die Ein-/Ausgabe-Einheit X direkten Speicherzugriff hat. Die Anpasseinheit AE überträgt im Zeitmultiplex Telegramme zwischen den Telegrammeinheiten TE und dem Datenspeicher, wo sie den Vermittlungsprogrammen zugänglich sind. Auf diese Weise steuern und überwachen sie die an die TE angeschlossenen peripheren Einheiten (Fig. 1).

Es wird darauf verzichtet, die normalen Funktionen des Prozessorsystems im Detail zu beschreiben. Vielmehr sollen zwei besondere Eigenschaften erwähnt werden:

- Programm- und Datenschutzfunktionen. Um eine Zerstörung der Programme und Daten durch Programmfehler zu verhindern, sind Schutzfunktionen in die Speicherzugriffschaltungen eingebaut. Jede Speicherzeile enthält neben der Nutzinformation einige Bit Schutzinformation.

Der Speicher ist in einen Programmspeicher und einen Datenspeicher aufgeteilt. Der Programmspeicher enthält die Programme und nicht veränderbare Daten. Er darf nur gelesen werden (read only). Im Datenspeicher kann gelesen und geschrieben werden.

Überwachungsfunktionen für eine korrekte Programmausführung. Im Prozessor sind verschiedene HW-Funktionen enthalten, die kontinuierlich die Programmausführung überwachen. So müssen die periodisch ausgeführten Real-time-Programme eine Zeitüberwachungsschaltung zurücksetzen. Wenn aus irgendeinem Grund diese Programme nicht mehr ablaufen, veranlasst die Zeitüberwachung einen sog. Re-Start, indem die Programmausführung neu gestartet wird wie beim Erststart der Anlage.

Diese Eigenschaften des Prozessorsystems haben zum Ziel, Manifestationen von Programmfehlern und Fehlern in der Datenbasis zu erkennen, deren Auswirkungen zu begrenzen und eine Betriebsfortsetzung einzuleiten. Mit zunehmen-

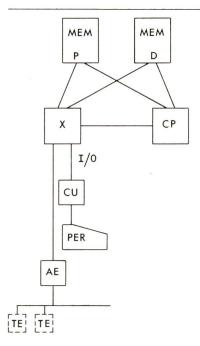


Fig. 3
Blockschema
des Prozessorsystems;
einfache Konfiguration
(Bezeichnungen siehe im Text)

der Betriebsdauer des Vermittlungssystemes kann eine bedeutende Reduktion der verbleibenden Programmfehler angenommen werden, so dass diese sich lediglich in grösseren Zeitabständen (Wochen, Monate) auswirken.

5. Verfügbarkeit der Zentralsteuerung

Wie bereits erläutert, steuert die Zentralsteuerung die peripheren Einheiten. Als Folge dieser zentralisierten Steuerfunktion ist das gesamte Vermittlungssystem nur so lange funktionsfähig, als die Zentralsteuerung einwandfrei funktioniert. Beim IFS-1 kommt erleichternd hinzu, dass beim Ausfall einer Zentralsteuerung, d. h. einer Subebene, die restlichen 3 Subebenen neuen Verkehr übernehmen.

Wegen der beschränkten Zuverlässigkeit der HW-Einheiten und der Programme der Zentralsteuerung sind aufwendige Massnahmen erforderlich, um eine akzeptable Verfügbarkeit des Systems zu erreichen. Im vorhergehenden Abschnitt wurden einige Massnahmen erklärt, mit denen die Auswirkungen der Programmfehler möglichst klein gehalten werden. Nachfolgend sollen die Verfügbarkeitsforderungen an die ZS angegeben und die Massnahmen zur Erreichung derselben unter Berücksichtigung der HW-Fehler aufgezeigt werden.

5.1 Verfügbarkeitsforderungen

Für den Totalausfall einer Subebene wird eine minimale MTBF von 2 Jahren gefordert (MTBF = mean time between failure, mittlere Betriebszeit zwischen Ausfällen). Diese Forderung gilt auch für die ZS, da eine defekte periphere Einheit zum Ausfall einer Gruppe von weniger als 10 000 Teilnehmeranschlüssen führt.

Der scheinbar niedrige MTBF-Wert von 2 Jahren ist zugelassen, weil anderseits eine mittlere Reparaturzeit MTTR von 18 h gefordert wird (MTTR = mean time to repair). Mit dieser Reparaturzeit ist ein Betrieb mit normalen Arbeitszeiten und ohne Pikettdienst möglich, was auf die Betriebskosten einen günstigen Einfluss hat.

5.2 Einfache Konfiguration

Das Prozessorsystem ist so lange funktionsfähig, als alle Funktionseinheiten einwandfrei arbeiten. Sobald eine Einheit ausfällt, kann das Prozessorsystem seine Funktion nicht mehr erfüllen.

Es soll nun abgeschätzt werden, wie gross die MTBF eines solchen Prozessorsystems ist. Dabei werden Werte verwendet, die für das in der IFS-1-Modellanlage eingesetzte Prozessorsystem gelten. Die MTBF einer Funktionseinheit wird berechnet anhand der Anzahl Bauelemente und deren MTBF, unter der vereinfachenden Annahme, dass ein Bauelementausfall einen Totalausfall bewirkt. Ausser den Kernspeichern sind die Bauelemente fast ausschliesslich bipolare integrierte Schaltungen IC, deren MTBF-Werte genügend genau bekannt sind.

Die MTBF-Werte der Funktionseinheiten betragen bei einer Speicherkapazität für 20 000 Teilnehmeranschlüsse für den Zentralprozessor CP 0,8 Jahre, den Speicher P (128 k) 0,25, den Speicher D (160 k) 0,2 und die Ein-/Ausgabe X/AE 0,6 Jahre. Daraus geht hervor, dass das Prozessorsystem in einfacher Konfiguration eine MTBF von lediglich 0,08 Jahren erreicht, gegenüber den geforderten 2 Jahren. Weiter ist deutlich erkennbar, dass der Speicher die unzuverlässigste Funktionseinheit ist und praktisch die Gesamtzuverlässigkeit bestimmt.

5.3 Redundante Konfiguration

Die angegebenen MTBF-Werte basieren auf Totalausfällen von Bauteilen (IC). In der Praxis sind solche Bauteile oft nicht plötzlich defekt, sondern ein Parameter weicht allmählich vom spezifizierten Toleranzbereich ab, vielfach in Abhängigkeit der Temperatur, der Speisespannung usw. Daraus resultieren transiente, sporadische Fehler in unterschiedlichen Zeitabständen. Als Folge davon ist die tatsächliche Fehlerhäufigkeit meist um Faktoren grösser als die theoretisch berechnete. In einem Prozessorsystem wirkt sich ein transienter Fehler im allgemeinen gleich aus wie ein permanenter Fehler, allerdings mit dem Unterschied, dass

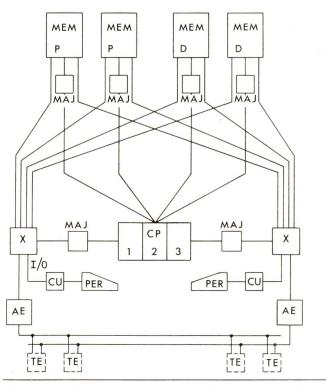


Fig. 4 Blockschema des Prozessorsystems mit redundanter Konfiguration (Bezeichnungen siehe im Text)

eine sofortige Betriebsnormalisierung (Re-Start) erfolgen kann.

Um trotz den unvermeidlichen HW-Fehlern die geforderten MTBF- und MTTR-Werte erreichen zu können, werden redundante Konfigurationen angewendet: jede Funktionseinheit wird durch zusätzliche (redundante) Funktionseinheiten derart ergänzt, dass beim Ausfall einer dieser Einheiten die verbleibenden deren Funktion übernehmen. Wenn eine defekte Einheit repariert wird, bevor eine weitere ausfällt, kann dadurch die Gesamtverfügbarkeit vergrössert werden (Fig. 4).

Bei dem im IFS-1-Modell eingesetzten Prozessorsystem ist das Konzept der redundanten Konfiguration derart ausgelegt, dass die Vermittlungsprogramme durch permanente und transiente Einzelfehler nicht oder möglichst wenig beeinflusst werden sollen, so dass der Vermittlungsbetrieb ungestört aufrechterhalten werden kann.

Der Zentralprozessor CP ist verdreifacht. Drei Prozessoren führen synchron dasselbe Programm aus. Die Ausgänge zu den Speichern MEM und den Ein-/Ausgabe-Einheiten X führen über je eine *Majoritätsschaltung MAJ*. Diese lässt nur diejenige Information passieren, die von mindstens 2 Prozessoren angeboten wird. Im Fehlerfalle zeigt die Majoritätsschaltung den fehlerhaften Prozessor an. Die Synchronisation der Prozessoren basiert ebenfalls auf Majoritätsentscheiden, so dass keine einfach ausgerüsteten Schaltungen vorhanden sind.

Der Programmspeicher MEM P und der Datenspeicher MEM D sind je verdoppelt. Jede Speicherzeile ist mit einem Paritätscode geschützt. Die Prozessoren CP und die Ein-/Ausgabe-Einheiten X steuern immer beide gedoppelten Speicher an, so dass diese jederzeit dieselbe Information enthalten. Bei jedem Zugriff wird der Paritätscode geprüft. Ein Speicherfehler kann somit festgestellt und die Information des funktionierenden Speichers ausgewählt werden.

Die Ein-/Ausgabe-Einheit X und die daran angeschlossene Peripherie CU, PER, AE sind verdoppelt, werden aber unabhängig betrieben. Eine Ausrüstung kann die Funktion der andern vollständig übernehmen.

Die Wiederinbetriebsetzung reparierter Einheiten geschieht wie folgt: Ein ausser Betrieb gesetzter Prozessor wird unter Programmkontrolle durch die andern Prozessoren synchronisiert. Anschliessend durchlaufen alle Prozessoren eine kurze Programmsequenz, die den Zustand der Prozessor-Register gleichsetzt. Hierauf werden die Vermittlungsprogramme fortgesetzt. Die kurze Unterbrechung (ca. 1 ms) derselben hat keinen Einfluss auf den Vermittlungsbetrieb.

Ein Speicher wird wieder in Betrieb genommen, indem jede Speicherzeile unter Programmkontrolle kopiert wird, und zwar mit kleinerer Priorität als die Vermittlungsprogramme, so dass diese nicht beeinflusst werden.

Es soll nun gezeigt werden, wie die angegebene Konfiguration die Verfügbarkeit des Prozessorsystems verbessert. Es wird eine Reparaturzeit MTTR von 18 h angenommen. Sie hat einen grossen Einfluss, da ein Ausfall einer zweiten gleichartigen Einheit während der Reparaturzeit zum Totalausfall des Prozessorsystems führt. Wird wieder eine Speichergrösse von 288 k Zeilen für 20 000 Teilnehmeranschlüsse angenommen, aufgeteilt in 128 k Zeilen Programm- und 160 k Zeilen Datenspeicher, so folgt für den Zentralprozessor CP 52 Jahre, für den Speicher P 15,2 Jahre, für den

Speicher D 9,8 Jahre und die Ein-/Ausgabe X/AE 88 Jahre MTBF, für das ganze System also 5 Jahre MTBF. Die Rechnung ist vereinfacht, indem die zusätzliche Hardware für die Majoritätsschaltung und die verdoppelten Speicheransteuerungen nicht berücksichtigt sind.

Berechnet man nun die Anzahl Teilnehmeranschlüsse, bei der die MTBF 2 Jahre wird, so ergibt dies ca. 40 000 TNA. Mit dem beschriebenen Redundanzkonzept für die Speicher kann somit keine Zentralsteuerung für 100 000 TNA realisiert werden.

Tatsächlich wird für die Einführung des IFS-1 aus verschiedenen Gründen ein neues Prozessorsystem entwikkelt, mit einem andern Konzept der Speicherredundanz. Grundsätzlich können verschiedene Verfahren angewendet werden:

- Bessere Zuverlässigkeit der Speicher, was mit hochintegrierten Halbleiterspeichern erreichbar ist (wesentlich weniger Bauelemente)
- Verbesserung der Speicherzuverlässigkeit durch zusätzliche Redundanz, z. B. in Form von fehlerkorrigierenden Codes
- Unterteilung des Speichers in Speichermoduln, die einzeln und automatisch (d. h. ohne nennenswerte Reparaturzeit) ersatzgeschaltet werden können usw.

5.4 Funktionstestprogramme

Die berechnete Verfügbarkeit der redundanten Konfiguration ist nur so lange gewährleistet, als auch tatsächlich Redundanz vorhanden ist. Diese Voraussetzung ist nur erfüllt, wenn alle Fehler sofort erkannt und innerhalb der angenommenen Reparaturzeit behoben werden. Wie beschrieben, werden alle Fehler, die den Betrieb gefährden, durch HW-Prüfschaltungen erkannt. Diese können aber im allgemeinen nur aktive Funktionen prüfen. Da verschiedene Funktionen oft über längere Zeit nicht benützt werden, muss verhindert werden, dass diese unerkannterweise defekt geworden sind. Deswegen werden periodisch Funktionstestprogramme ausgeführt, die systematisch alle Funktionen aktivieren und prüfen.

6. Betrieb der Zentralsteuerung

Der Betrieb der Zentralsteuerung führt zu einer Reihe weiterer Eigenschaften, die ein Prozessorsystem zur Vermittlungssteuerung auszeichnen im Vergleich mit andern Prozessorsystemen, nämlich unbemannter Betrieb, wenig vorbeugender Unterhalt, einfache Fehlerbehebung sowie eine Lebensdauer von 20...30 Jahren.

Der unbemannte Betrieb bedingt eine gut ausgebaute und betriebssichere Einrichtung zur Fernüberwachung und Fernsteuerung.

Die Forderung nach wenig vorbeugendem Unterhalt kann mit vollelektronischen Ausrüstungen erfüllt werden.

Eine einfache Fehlerbehebung muss sichergestellt werden, damit das Unterhaltspersonal die komplexen Zusammenhänge der Konfiguration und der Steuerprogramme nicht im Detail zu verstehen braucht.

Die Fehlerbehebung geschieht nach dem folgenden Konzept: Fehlereingrenzungsprogramme grenzen den Fehler auf eine Gruppe von einigen wenigen, steckbaren Baugruppen (z. B. Printplatten) ein. Dann wird ein Unterhaltsspezialist zur fehlerhaften Funktionseinheit geschickt, mit dem Auftrag, die vorbestimmten Baugruppen durch funktionstüchtige Reservebaugruppen zu ersetzen. Eine systematische Vorgehensweise, zusammen mit wiederholten programmgesteuerten Funktionstests, führt zur Bestimmung der defekten Baugruppe. Damit ist die Funktionseinheit repariert. Die defekte Baugruppe wird in einem Reparaturzentrum instandgestellt, wo Testgeräte, Messinstrumente und andere Hilfsmittel zur Verfügung stehen.

Die Lebensdauer von 20...30 Jahren erfordert eine entsprechend hohe Fertigungsqualität und eine Sicherstellung der Fertigung und der Ersatzteillieferungen für diesen Zeitraum.

Literatur

- [1] K. E. Wuhrmann: Das integrierte PCM-Fernmeldesystem IFS-1. Techn.
- M. E. Wahrmann: Das integrierte PCM-Fernmeldesystem IFS-1. Techn. Mitt. PTT 51(1973)12, S. 554...578.

 R. L. Dotzer: Software design and implementation for the IFS-1 system. In: Software engineering for telecommunication switching systems. IEE Conference Publication No. 135. London, The Institution of Electrical Engineers, 1976; p. 100...103.

Adresse des Autors

Dipl. Ing. ETHZ W. Kreis, Hasler AG, 3000 Bern.