Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins, des

Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de l'Association suisse des électriciens, de l'Association des entreprises

électriques suisses

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer

Elektrizitätsunternehmen

Band: 67 (1976)

Heft: 16

Artikel: Calcul et représentation des champs électriques aux environs d'une

ligne à haute tension triphasée avec conducteurs en faisceaux

Autor: Chamorel, P. A.

DOI: https://doi.org/10.5169/seals-915196

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Calcul et représentation des champs électriques aux environs d'une ligne à haute tension triphasée avec conducteurs en faisceaux

Par P. A. Chamorel

621.315.027.8 : 537.212

Lors de la conception des lignes et des jeux de barres des postes à très haute tension, il est nécessaire de dimensionner ces installations en fonction des champs électriques élevés. Cet article expose une méthode générale pour calculer et représenter le champ électrique aux environs d'une ligne ou d'un jeu de barres triphasé. Un programme de calcul interactif permet d'effectuer une analyse détaillée et affiche les résultats directement sous forme graphique sur une console de visualisation. Un exemple illustre l'application de la méthode et du programme.

Beim Entwurf der Leitungen und Schienen von Anlagen höchster Spannung ist es notwendig, diese in Funktion der hohen elektrischen Feldstärken zu dimensionieren. In diesem Aufsatz wird eine allgemeine Methode zur Berechnung und Darstellung des elektrischen Feldes in der Nähe einer Drehstromleitung oder einer dreiphasigen Sammelschiene vorgestellt. Ein interaktives Rechenprogramm ermöglicht eine eingehende Analyse; die Resultate werden graphisch direkt auf einem Bildschirmterminal dargestellt. Ein Beispiel veranschaulicht die Anwendungsmöglichkeiten der Methode und des Programms.

1. Définition du problème

Le développement des réseaux électriques de puissance à très haute tension fait apparaître de nouveaux problèmes liés aux champs électriques élevés. Il est essentiel d'en tenir compte dans la conception des installations afin d'éviter ou atténuer certains effets gênants ou dangereux autres que ceux d'un amorçage direct. Les nuisances les plus importantes sont:

- les pertes par effet couronne
- les perturbations radioélectriques
- les bruits audibles
- l'influence directe des champs électriques sur le corps humain engendrant une dégradation physiologique
- l'influence indirecte des champs électriques sur le corps humain et sur les choses engendrant des courants de décharge et de courtcircuit.

La solution généralement envisagée pour atténuer ou éliminer ces nuisances est de concevoir les lignes aériennes et les jeux de barres dans les postes avec des conducteurs en faisceau afin d'augmenter le rayon apparent de ces derniers, et d'installer des écrans électrostatiques.

Lors de l'évaluation des champs électriques aux environs des installations à très haute tension, il est souvent fait usage de courbes expérimentales ou de calculs simplifiés en assimilant

y_i
y_j
2y_i
b_{ij}
x_j
x_j
x_j
y_j

Fig. 1 Conducteurs i et j avec images i' et j'

les faisceaux à des conducteurs simples équivalents, en choisissant des géométries particulières et en négligeant l'effet des conducteurs de garde. Cet exposé décrit une méthode générale concrétisée par un programme d'ordinateur pour calculer les champs maxima aux environs d'une ligne triphasée ou d'un jeu de barres aérien, plus précisément à la surface des conducteurs, dans l'espace et au sol en considérant tous les instants possibles. Les caractéristiques principales de ce programme intitulé CHAMTRI sont les suivantes:

- approche générale du problème par l'algèbre linéaire (calcul matriciel)
- Utilisation de la technique interactive en mode conversationnel au moyen d'un terminal relié à l'ordinateur central
 - représentation graphique automatisée des résultats sur écran

2. Méthodes utilisées

Ce paragraphe a pour but d'exposer sommairement les méthodes générales utilisées par les algorithmes du programme CHAMTRI.

2.1 Calcul des charges linéiques et des potentiels

La méthode générale appliquée est la méthode des images de Kelvin et Kirchhoff (fig. 1). Son avantage par rapport à celle des différences finies est évident du fait qu'elle ne nécessite pas la connaissance des conditions aux limites (potentiels) sur des contours fermés. La méthode des images s'applique donc très bien au calcul des lignes aériennes avec les hypothèses d'un diélectrique homogène (ε constante) et de l'absence d'ionisation ($\varrho=0$ C/m³).

En généralisant la méthode des images à n paires de charges Q_i et Q_i' et en appliquant le théorème de superposition, on a l'expression matricielle:

$$U = KQ \tag{1}$$

avec U vecteur des tensions des conducteurs contre terre [V]

K matrice des coefficients de potentiels linéiques $[F^{-1} \cdot m]$

Q vecteur des charges linéiques [C/m]

Les éléments de la matrice K s'expriment par les relations

$$k_{ii} = \frac{1}{2\pi \,\varepsilon_0} \, \ln \frac{2y_i}{r_i} \tag{2}$$

$$k_{ij} = \frac{1}{2\pi \,\varepsilon_0} \ln \frac{b_{ij}}{a_{ij}} \tag{3}$$

avec

 a_{ij} , b_{ij} , y_i distances selon fig. 1 [m]

 r_i rayon du conducteur i [m]

Les éléments de la matrice K ne dépendent que de la géométrie des conducteurs. Ainsi, connaissant les caractéristiques géométriques des conducteurs et leur tension contre terre, on calcule leur charge linéique

$$Q = CU \tag{4}$$

avec $C = K^{-1}$ matrice des capacités nodales linéiques [F/m]. Inversément, on peut calculer les potentiels d'espace en connaissant les charges des conducteurs et en appliquant la relation (1).

2.2 Calcul du champ électrique

Pour une paire de charges Q_i et Q_i' , on a les expressions suivantes des composantes x et y du champ électrique en un point quelconque j (fig. 2):

$$E_{\rm x} = -\partial U_{\rm j}/\partial_{\rm x} \, [{\rm V/m}] \tag{5}$$

$$E_{y} = -\partial U_{j}/\partial_{y} [V/m]$$
 (6)

Dans le système de coordonnées x et y, ces relations deviennent

$$E_{x} = -\frac{Q_{i}}{2\pi \varepsilon_{0}} \left[\frac{(x_{i} - x_{j})}{(x_{i} - x_{j})^{2} + (y_{i} - y_{j})^{2}} - \frac{(x_{i} - x_{j})}{(x_{i} - x_{j})^{2} + (y_{i} + y_{j})^{2}} \right]$$
(7)

$$E_{y} = -\frac{Q_{i}}{2\pi \varepsilon_{0}} \left[\frac{(y_{i} - y_{j})}{(x_{i} - x_{j})^{2} + (y_{i} - y_{j})^{2}} + \frac{(y_{i} + y_{j})}{(x_{i} - x_{j})^{2} + (y_{i} + y_{j})^{2}} \right]$$
(8)

Pour n paires de charges et en appliquant le théorème de superposition, on a au point j:

$$E_{\mathbf{x}} = \sum_{i=1}^{n} E_{\mathbf{x}i} \tag{9}$$

$$E_{\mathbf{y}} = \sum_{i=1}^{n} E_{\mathbf{y}i} \tag{10}$$

$$E = \sqrt{E_{x}^{2} + E_{y}^{2}} \tag{11}$$

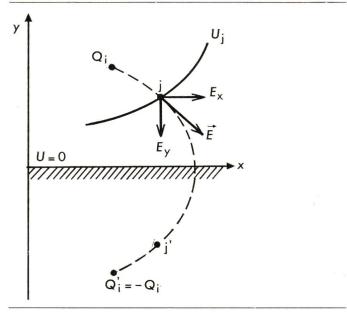


Fig. 2 Champ électrique au point j

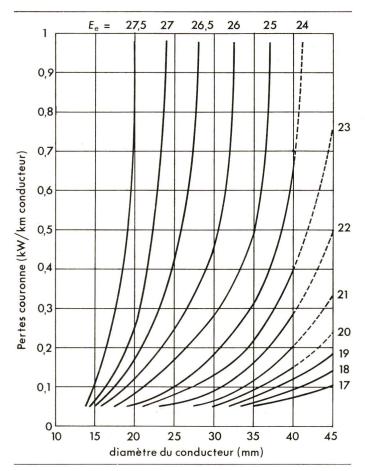


Fig. 3 Pertes par effet couronne par beau temps

2.3 Calcul du champ électrique superficiel équivalent

Pour évaluer les pertes couronnes des lignes avec faisceaux à partir des champs superficiels, G.Quilico [1]¹) propose une méthode en calculant le champ équivalent efficace $E_{\rm e}$ exprimé par la relation .

$$E_{\rm e} = \frac{1}{4\sqrt{2}} (3 E_{\rm max} + E_{\rm min}) \tag{12}$$

où $E_{\rm max}$ est le champ maximum et $E_{\rm min}$ le champ minimum sur le même conducteur aux mêmes potentiels instantanés.

Contrairement aux conducteurs simples, les champs maximum et minimum sur un même conducteur d'un faisceau ont une différence considérable, comme on le verra dans un exemple ultérieur. A partir de courbes types et de la valeur du champ équivalent efficace, il est possible d'évaluer les pertes par effet couronne d'une ligne de longueur donnée en fonction du diamètre des conducteurs (fig. 3). De plus, on peut évaluer les pertes en fonction de la densité de l'air, de l'humidité, d'un facteur correctif tenant compte de la présence d'irrégularités géométriques et d'un facteur correctif tenant compte de la pollution.

3. Description du programme CHAMTRI

Le programme CHAMTRI est écrit en FORTRAN et est exécuté en mode conversationnel à partir d'un terminal graphique DEC – GT 40 relié à l'ordinateur central CDC-CYBER 7326. Il requiert 55000₈ mots de mémoire centrale de 60 bit. Il est structuré sous forme modulaire où chaque sous-pro-

¹⁾ Voir la bibliographie à la fin de l'article.

Tension d'exploitation	765 kV	1050 kV		
Armement	3 faisceaux de 4 cond. en nappe horizontale + 2 cond. de garde	3 faisceaux de 6 cond. en nappe horizontale + 2 cond. de garde		
Conducteurs de phase	4×Al-Ac ∅ 38 mm	6×Al-Ac ∅ 38 mm		
Conducteurs de garde	Al-Ac ∅ 29,4 mm	Al-Ac ∅ 29,4 mm		
Diamètres des faisceaux	65 cm	101 cm		
Distance entre phases	13 m	18 m		
Hauteur au-dessus du sol à mi-portée des conducteurs de phase	16 m	18 m		
Hauteur au-dessus du sol à mi-portée des conducteurs de garde	28 m	31 m		

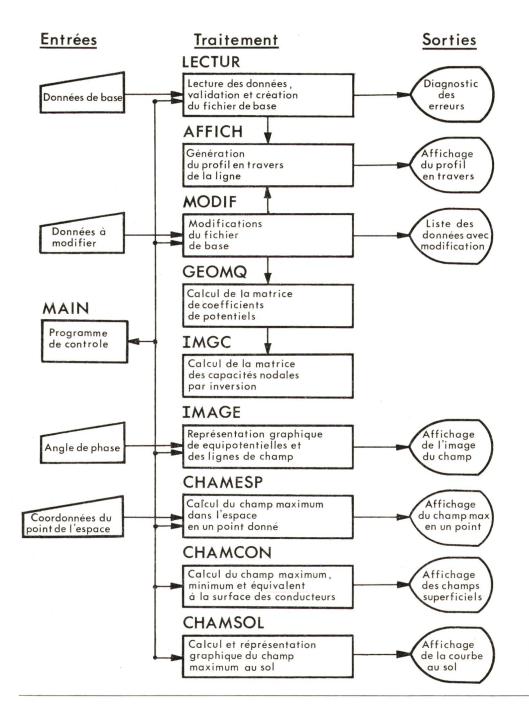


Fig. 4 Organigramme simplifié du programme CHAMTRI

LIGNE 765 KV. S FAISCEAUX DE 4 CONDUCTEURS

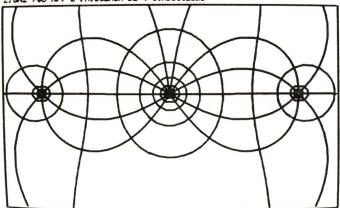


Fig. 5 Ligne 765 kV. Image du champ électrique (phase $R=30^{\circ}$, équipotentielles espacées de 100 kV)

gramme n'effectue qu'une fonction de base afin de bien contrôler l'exécution interactive. Les modules principaux sont représentés dans l'organigramme de la fig. 4.

Après la lecture ou la modification des données de base, soit de la tension nominale et des caractéristiques des conducteurs et des faisceaux, le programme offre quatre options d'analyse, soit:

- la représentation de l'image du champ électrique dans une zone donnée à un instant donné (fig. 5). L'emplacement et la dimension de la zone sont définis au gré de l'utilisateur;
- le calcul et la représentation du champ maximum (module et argument) dans l'espace en un point donné. Le programme affiche les valeurs instantanées des tensions pour lesquelles le champ est maximum;
- le calcul des champs superficiels maximum, minimum et efficace, ainsi que la localisation de ces derniers et le potentiel du conducteur concerné (fig. 6 et 7).
- le calcul et la représentation de la courbe des champs maxima au sol de part et d'autre de la ligne en considérant tous les instants possibles. Cette courbe représente en fait l'enveloppe supérieure de toutes les courbes instantanées (fig. 8 et 9).

4. Application

Les fig. 5 à 9 illustrent un exemple de calcul de champs d'une ligne existante 765 kV et d'une ligne future de 1050 kV, dont les caractéristiques sont résumées dans le tableau I. Ces 2 exemples ont été tirés des rapports 31–02 de la CIGRE 1974 [2] et 31–15 de la CIGRE 1972 [3] afin de pouvoir comparer les résultats obtenus.

L'analyse des résultats suscite les remarques et commentaires suivants:

- les valeurs des champs maxima superficiels et les courbes des champs maxima au sol publiées dans les rapports de la CIGRE sont confirmées à quelques pourcents près.
- Les champs superficiels des lignes 765 kV et 1050 kV sont quasi égaux ce qui démontre l'efficacité des faisceaux de 6 conducteurs. Les maxima sont obtenus sur la phase centrale. Dans les deux cas, les valeurs de crête de 23 kV/cm environ sont nettement inférieures à la valeur critique qui est de 36 kV/cm pour un conducteur de 38 mm à 20 °C et 760 mm Hg. Toutefois, en considérant les coefficients d'état de surface et des conditions météorologiques moins favorables, il y aura lieu d'envisager des pertes par effet couronne.

– Les valeurs des champs maxima au sol de 11 et 17 kV/m donnent une durée admissible de séjour (par 24 heures) respectivement de 3 h et de $1^1/2$ h [4]. Ces champs doivent donc être considérés comme dangereux pour les personnes séjournant aux endroits les plus défavorables, soit dans la zone à mi-portée et légèrement à l'extérieur d'une phase latérale.

5. Conclusion

Le programme CHAMTRI s'avère très efficace pour calculer les valeurs des champs électriques et pour simuler rapidement un grand nombre de cas. Il permet de dimensionner avec précision les faisceaux de conducteurs dans le but de maintenir les champs superficiels en dessous du seuil d'apparition d'effet couronne. De plus, il permet d'évaluer les champs maxima au sol et dans l'espace environnant pour diverses configurations des phases, avec ou sans écran électrostatique.

Le traitement d'une application réelle met en évidence plusieurs problèmes qui mériteraient d'être approfondis, notamment l'évaluation des pertes couronnes annuelles en tenant compte des champs ionisés et en considérant les caractéristiques météorologiques de la région concernée, en particulier

LIGNE 765 KV, 3 FAISCEAUX DE 4 CONDUCTEURS

GRADIENT ELECTRIQUE MAXIMUM	:	23.1	KV/CH
CONDUCTEUR NO	:	5	
ANGLE DU GRADIENT MAXIMUM	:	45.	DEGRES
POTENTIEL	:	625.	KV
GRADIENT MINIMUM DU CONDUCTEUR NO 5	:	10.0	KV/CM
ANGLE DU GRADIENT MINIMUM	:	220.	DEGRES
GRADIENT EQUIVALENT EFFICACE	:	14.0	KV/CM

Fig. 6 Ligne 765 kV. Champ maximum sur les conducteurs

LIGHE 1858 KV. 3 FAISCEAUX DE & CONDUCTEURS

GRADIENT ELECTRIQUE MAXIMUM		22.8	KY/CM
CONDUCTEUR NO		: 7	
ANGLE DU GRADIENT MAXIMUM		. 0.	DEGRES
POTENTIFL		857.	KP .
GRADIENT MINIMUM DU CONDUCTEUR NO	7	: 10.1	KV/CM
ANGLE DU GRADIENT MINIMUM		: 180.	DEGRES
GRADIENT EQUIVALENT EFFICACE		: 13.9	KY/CM

Fig. 7 Ligne 1050 kV. Champ maximum sur les conducteurs

LIGNE 765 KV. 3 FAISCEAUX DE 4 CONDUCTEURS

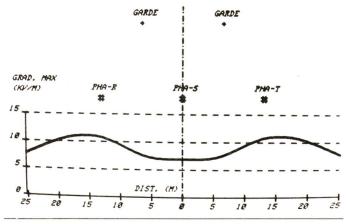


Fig. 8 Ligne 765 kV. Champ maximum au sol

LIGNE 1050 KV. 3 FAISCEAUX DE 6 CONDUCTEURS

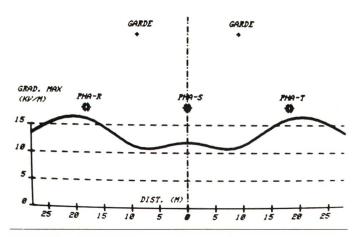


Fig. 9 Ligne 1050 kV. Champ maximum au sol

les précipitations annuelles, ainsi que l'évaluation des courants de décharge et de court-circuit traversant les personnes ou les choses sous l'influence d'un champ électrique en tenant compte de la résistance et de la capacité parallèle de la personne ou de l'objet, et de la déformation locale du champ électrique.

Bibliographie

- [1] G. Quilico: Problème électrique général des lignes aériennes avec conducteurs en faisceaux. Rapport CIGRE No 219, 1950.
- G. Balderston e. a.: Rapport d'activité du «Projet UHV» de l'EPRI (Electric Power Research Institute). Rapport CIGRE No 31-02, 1964.
- [3] L. Paris e. a.: Une étude de la conception des paramètres des lignes de transport au-dessus de 1000 kV. Rapport CIGRE No 31-15, 1962.
 [4] M. Aguet: Techniques de la haute tension. Ecole Polytechnique Fédé-
- rale de Lausanne, Publication No 147. Lausanne, EPFL, 1975.

Adresse de l'auteur

 $P.\ A.\ Chamorel,$ ingénieur, Chaire d'Installations Electriques, EPFL, 16, chemin de Bellerive, 1007 Lausanne.

William Sturgeon 1783-1850

Was wäre die Elektrotechnik ohne den Elektromagneten? Der Engländer Sturgeon baute 1823 den ersten Gleichstrom-Weicheisen-Elektromagneten, den er mit einer Voltaschen Säule speiste. Der Eisenkern war mit Seide umwickelt und trug in grossen Abständen die Drähte aus blankem Kupfer. Zwei Jahre später führte er einen Elektromagneten vor, der das Zwanzigfache seines Eigengewichts trug.

Sturgeon, am 22. Mai 1783 in Whittington (Lancashire) geboren, war der Sohn eines armen Schuhmachers. Hungerleidend musste auch William die Schuhmacherei erlernen. Dann meldete er sich zum Militärdienst bei der königlichen Artillerie. In dieser Zeit erlebte er ein starkes Gewitter, das in ihm das Interesse an der Elektrizität weckte. Er begann darüber zu lesen, studierte nachts Mathematik, las Berichte und fing an zu experimentieren.

1820 quittierte er den Militärdienst und übte wieder den Schuhmacherberuf aus, während seine Frau einen Schuhladen betrieb. Daneben konstruierte er elektrische Apparate. Er zählte zu den Gründern der literarischen Gesellschaft in Woolwich und erhielt dabei Kontakt zu angesehenen Wissenschaftlern, durch deren Fürsprache er als Experimentator an das Militärseminar zu Addiscombe gewählt wurde. Sturgeon schrieb wissenschaftliche Beiträge für Zeitschriften, experimentierte und baute sich selber die nötigen Geräte. Für den Elektromagneten wurde ihm eine Prämie zugesprochen. Zu seinen Erfindungen gehört auch das Galvanometer mit beweglicher Spule.

1830 gründete er die erste englische Fachzeitung für Elektrizität, die «Annals of Electricity, Magnetism and Chemistry», später den «Guardian of Experimental Science», bei dessen Redaktion auch der mit ihm befreundete Joule mitwirkte. Als 1840 in Manchester zu Ehren von Königin Victoria die «Royal Victoria Gallery of Practical Science» gegründet wurde, berief man Sturgeon als deren Leiter. Die Gallery war aber der Zeit weit voraus; das Interesse fehlte, so dass sie geschlossen werden musste. Das gleiche Schicksal erlitt wenig später die von Sturgeon gegründete «Manchester Institution of Natural and Experimental Science». Auch seine Zeitschrift, die «Annals of Philosophical Discovery and monthly Reports of Progress of Practical Science» erwies sich als nicht lebensfähig.

Bibliothek ETHZ

Mit 61 Jahren war Sturgeon ohne Verdienst. Während zweier Jahre hielt er in der Umgebung von Manchester noch wissenschaftliche Vorträge. 1847 zog er sich mit seiner Frau nach Prestwich zurück. Die Gesundheit des stattlichen und gutherzigen Mannes, der so viele interessante Vorträge gehalten und eine ganze Reihe von Erfindungen gemacht hatte, schwand dahin; am 4. Dezember 1850 starb er.

Zahlreiche Schriften zeugen von seinem Schaffen; erwähnt seien 8 Bände über experimentelle Untersuchungen über Elektromagnetismus und Galvanismus (1830), 8 Bände Vorlesungen über Elektrizität, gehalten an der «Royal Victoria Gallery» (1842), Elementar-Vorlesungen H. Wüger über Galvanismus (1843) und schliesslich die wissenschaftlichen Untersuchungen (1850).