Zeitschrift:	Bulletin des Schweizerischen Elektrotechnischen Vereins, des Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de l'Association suisse des électriciens, de l'Association des entreprises électriques suisses
Herausgeber:	Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer Elektrizitätsunternehmen
Band:	67 (1976)
Heft:	8
Artikel:	Das spezifische Grenzlastintegral von Leistungsdioden und Thyristoren
Autor:	Wasserrab, T.
DOI:	https://doi.org/10.5169/seals-915153

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 24.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Das spezifische Grenzlastintegral von Leistungsdioden und Thyristoren

Von Th. Wasserrab

621.382: 621.3.016.3: 621.317.614

Das spezifische Grenzlastintegral bezieht sich auf die Flächeneinheit des aktiven Querschnittes der Halbleiterbauelemente. Demgemäss wird es mittels der Stromdichte definiert, und sein Zahlenwert kann im Bereich der adiabatischen Erwärmung ausschliesslich auf Werkstoff-Kenngrössen zurückgeführt werden. Damit ist gegenüber den jeweils nur ein bestimmtes Bauelement kennzeichnenden Grenzlastintegralen eine universelle Kenngrösse gewonnen worden, deren Abhängigkeit von der Dauer des Stromimpulses abgeleitet und graphisch dargestellt wird. Zwischen den berechneten Zahlenwerten und bekannten Messergebnissen wird gute Übereinstimmung festgestellt.

L'intégral spécifique de la charge limite se rapporte à l'unité d'aire de la section active des composants semi-conducteurs. Elle est par conséquent définie par la densité de courant et, dans le domaine de l'échauffement adiabatique, elle peut être ramenée exclusivement aux grandeurs caractéristiques de la matière première. Ainsi, par rapport aux intégrales de charges limites caractérisant un composant bien déterminé, on est parvenu à une grandeur caractéristique universelle, dont la dépendance de la durée de l'impulsion de courant est déduite et représentée graphiquement. On constate une bonne concordance entre les valeurs numériques calculées et des résultats de mesure connus.

1. Einleitung

G.J. Meyer [1]¹) hat 1907 das sogenannte Schmelzintegral

$$\int_{0}^{s} i^{2} \mathrm{d}t = K_{s} \tag{1.1}$$

als Kenngrösse der Sicherungs-Schmelzleiter eingeführt, wobei *i* die Stromstärke und t_s die Schmelzzeit bezeichnen. K_s ergibt sich bei der Berechnung der adiabatischen Erwärmung, wenn die elektrische Verlustleistung Ri^2 vollständig im Schmelzleiter

gespeichert wird und dort zu einer Temperaturerhöhung $C \frac{d\vartheta}{d\star}$

führt. Da jedoch sowohl der elektrische Widerstand R als auch die Wärmekapazität C von der Temperatur ϑ abhängig sind, muss bei der Integration eine entsprechende Trennung der Variablen vorgenommen werden:

$$\int_{0}^{t_{s}} i^{2}(t) dt = \int_{0}^{\vartheta_{s}} \frac{C(\vartheta)}{R(\vartheta)} d\vartheta = K_{s}$$
(1.2)

welche unmittelbar das Schmelzintegral liefert. Da K_s für einen bestimmten Schmelzleiter einen konstanten Zahlenwert besitzt, ändert sich t_s mit dem zeitlichen Verlauf des Stromes *i*.

R. Rüdenberg hat später [2] das *spezifische Schmelzintegral* k_s auf die Werkstoffeigenschaften des jeweiligen Schmelzleiters zurückgeführt und damit eine neue wichtige Materialkonstante definiert. Die Berechnung erfolgte gemäss (1.2) unter Vernachlässigung der Temperaturabhängigkeit der spezifischen Wärmekapazität c_y

$$\int_{0}^{t_{s}} j^{2} \mathrm{d}t = \int_{0}^{\vartheta_{s}} \frac{c_{v}}{\varrho\left(\vartheta\right)} \, \mathrm{d}\vartheta = k_{s} \tag{1.3}$$

wobei ϱ den spezifischen Widerstand, ϑ_s die Schmelztemperatur und *j* die Stromdichte bedeuten. Da der spezifische Widerstand gemäss

 $\varrho = \varrho_0 \left(1 + \alpha \vartheta \right) \tag{1.4}$

von der Temperatur abhängt (mit Temperaturkoeffizient α), liefert die Integration

$$k_{\rm s} = \frac{c_{\rm v}}{\varrho_0} \int_0^{\vartheta_{\rm s}} \frac{\mathrm{d}\vartheta}{1+\alpha\vartheta} = \frac{c_{\rm v}}{\varrho_0\cdot\alpha} \ln\left(1+\alpha\,\vartheta_{\rm s}\right) \tag{1.5}$$

Setzt man schliesslich einen Heizstrom zeitlich konstanter Stromdichte J voraus, so erhält man für das spezifische Schmelzintegral

$$k_{\rm s} = \int_{0}^{t_{\rm s}} J^2 \,\mathrm{d}t = J^2 \,t_{\rm s} \tag{1.6}$$

¹) Siehe Literatur am Schluss des Aufsatzes.

Es ist offensichtlich, dass dieses Vorgehen auch auf andere Erwärmungsprozesse angewendet werden kann, bei denen sich Eigenschaftswerte in Abhängigkeit von der Temperatur ändern, und es ist daher nur folgerichtig, dass die zulässige Erwärmung von Halbleiterbauelementen durch ein *Grenzlastintegral* bestimmt wird. Durch DIN 41782 (Dioden) und DIN 41787 (Thyristoren) wird dazu folgendes festgelegt: «Im Bereich der Belastungsdauer von 1 bis 10 ms sind bei der höchsten zulässigen Sperrschichttemperatur die höchstzulässigen Werte des Zeitintegrals des Quadrates des Durchlassstromes (fi^2dt) anzugeben, erforderlichenfalls in Form einer Kurve. Wird nur ein Wert angegeben, so ist dieser der niedrigste in dem genannten Bereich.» In den technischen Datenblättern wird daher analog zu (1.1) für das jeweilige Bauelement der Zahlenwert

$$\int_{0}^{t_{\rm p}} i^2 \mathrm{d}t = I^2 t_{\rm p} \tag{1.7}$$

angegeben, wobei t_p die Dauer des Gleichstromimpulses bedeutet. Nach diesem Hinweis auf die Entstehung und die Bedeutung des Grenzlastintegrals soll im folgenden dessen Berechnung durchgeführt werden.

So unentbehrlich das Grenzintegral ist, um Halbleiterbauelemente durch geeignete Massnahmen vor der Zerstörung durch Stoßströme bewahren zu können, sowenig Information liefert es über den physikalischen Ablauf des Zerstörungsvorganges und die massgeblichen Kenngrössen, z. B. die Grenztemperatur. Demgemäss werden auch bisher die I^2t_p -Daten in der Regel experimentell ermittelt. In dieser Situation wäre es zweifellos sehr nützlich, wenn die *individuellen* I^2t_p -Werte der einzelnen Bauelement-Typen auf ein einheitliches *spezifisches Grenzlastintegral* J^2t_p zurückgeführt werden könnten. Diesem Ziel dienen die folgenden Ausführungen.

2. Die örtliche Verteilung der Verlustleistung

Die Durchlasskennlinie von PSN-Dioden (Fig. 1) und Thyristoren beschreibt man in der Regel durch die Näherungsgleichung

$$U = U_{\rm s} + RI \tag{2.1}$$

wobei U die Durchlaßspannung, U_{s} die Schwellenspannung, R den differentiellen Widerstand und I den Strom bezeichnen. Fig. 1a zeigt den Potentialverlauf mit den beiden Junctionspannungen (je $U_{s}/2$) und dem Spannungsabfall an der S-Zone (RI). Daraus folgt sofort die Verlustleistung P = UI, die z. T. an den beiden Junctionen und z. T. im Volumen $V = A \cdot 2d$ der S-Zone anfällt. Diese Beschreibung kann man dadurch verallgemeinern, dass man die Verlustleistung P auf die Querschnittsfläche A bezieht, und in die flächenhaften Verluste der Junction q und die Volumenverluste der S-Zone $p = RI^2/V$ $= RA J^2/2d$ zerlegt (Fig. 1b)

$$\frac{P}{A} = U_{\rm s} \frac{I}{A} + RA \left(\frac{I}{A}\right)^2 = U_{\rm s} \cdot J + RAJ^2 = q + p \cdot 2d$$
(2.2)

In Fig. 2 sind die Verluste für $U_s = 1$ V und RA/2d =5 · 10⁻² Ω cm über der Stromdichte J aufgetragen. Man erkennt, dass bei kleinen Stromdichten (Nennbetrieb) die Junctionverluste und bei grossen Stromdichten (Kurzschlussbetrieb) die Volumenverluste vorherrschen. Damit bietet sich ein getrenntes Vorgehen für die Temperatur-Berechnung bei den beiden Betriebsarten an.

3. Die Berechnung der transienten Wärmewiderstände

Das thermische Verhalten von Halbleiterbauelementen wird mit Hilfe des transienten Wärmewiderstandes rt beschrieben. der nach DIN 41862 als eine auf die Verlustleistung P bezogene Temperaturzunahme $\Delta \vartheta$ definiert ist

Die örtlichen Verluste in einer PSN-Diode a) Potentialverlauf; b) örtliche Verteilung differentieller Widerstand R

- hochdotierte, p-leitende Zone S
- schwachdotierte Mittelzone N hochdotierte, n-leitende Zone
- U_{s} Schwellenspannung
- U Durchlaßspannung
- I Strom
- 2d Basisbreite
 - Volumenverluste in der p
- S-Zone Junctionverluste

In der Regel werden die diesbezüglichen Messwerte für die einzelnen Bauelementtypen bei verschiedenen Kühlbedingungen in einem halblogarithmischen Koordinatensystem graphisch dargestellt. Diese Darstellung liefert nur bei längeren Belastungszeiten gut ablesbare Werte; bei sehr kurzen Zeiten, wie sie hier vorausgesetzt werden, bietet eine doppeltlogarithmische Graphik über den gesamten Bereich eine gleichbleibende Ablesegenauigkeit, weshalb diese Art der Darstellung im folgenden verwendet wird.

Da es sich in jedem Falle um die Betrachtung kurzzeitiger Temperaturänderungen ($t_p < 10^{-2}$ s) handelt, kann die Temperatur ausserhalb der Diode als konstant betrachtet werden (einseitige oder zweiseitige Kühlung sind ohne Einfluss). Demgemäss kann man die Diode halbieren und die in Fig. 1b strichpunktierte Symmetrie-Ebene als adiabatisch betrachten.

3.1 Nennstrombetrieb

An der Stirnfläche eines ebenen Wärmeleiters treten nach Aufschalten eines Gleichstrompulses Junctionverluste UsI auf, und man erhält das von H. Müller [3] berechnete und in Fig. 3 dargestellte normierte Temperaturdiagramm

$$9_{\rm N} = \sqrt{t_{\rm N}} \tag{3.2}$$

Der Entnormierung dienen die Beziehungen

$$t_{\rm N} = \frac{a}{(d/2)^2} \cdot t \tag{3.3}$$

$$\vartheta_{\mathrm{N}} = \frac{\lambda}{q \cdot d/2} \cdot \vartheta$$
 (3.4)

Fig. 2 Diodenverluste P in Abhängigkeit von der Stromdichte J

A Querschnitt

- Us Schwellenspannung
- differentieller Widerstand R
- Volumenverluste in der S-Zone
- 2d Dicke der S-Zone

Fig. 3 Normierte Darstellung der zeitlichen Temperaturerhöhung \mathcal{G}_N einer PSN-Diode im Nennstrom- und Kurzschlußstrombereich I Gleichstrom t_p Pulsdauer

wobei *a* die Temperaturleitfähigkeit, 2*d* die Basisweite und λ die Wärmeleitfähigkeit von Silizium Si bezeichnen. Setzt man (3.3) und (3.4) in (3.2) ein, so erhält man für den zeitlichen Temperaturverlauf im Nennstrombereich

$$\vartheta = q \, \frac{\sqrt{a}}{\lambda} \, \sqrt{t} \tag{3.5}$$

Beachtet man noch, dass bei Nennstrom $q \approx P/A$ gilt, dann folgt für den transienten Wärmewiderstand

$$r_{\rm t} = \frac{\vartheta}{P} = \frac{\sqrt{a}}{\lambda A} \sqrt{t}$$
(3.6)

der durch Berücksichtigung der Querschnittsfläche A verallgemeinert werden kann

$$r_{t} \cdot A = \frac{\sqrt{a}}{\lambda} \sqrt{t}$$
(3.7)

3.2 Kurzschlußstrombetrieb

Nach Fig. 2 genügt es bei sehr grossen Stromdichten nur die Volumenverluste zu betrachten. Die zeitliche Temperaturzunahme wurde auch für diesen Fall von *H. Müller* [3] berechnet und ist ebenfalls in Fig. 3 dargestellt. Nachdem anfangs (solange keine Wärmeableitung erfolgt) die Temperatur direkt proportional zur Zeit ansteigt

$$\vartheta_{\rm N} = t_{\rm N}/2 \tag{3.8}$$

geht sie für $t_N > 4$ in $\vartheta_N = \sqrt{t_N}$ (3.2) über. Führt man mit (3.3) und

$$\vartheta = p \, \frac{d^2}{2\,\lambda} \, \vartheta_{\rm N} \tag{3.9}$$

die Entnormierung durch, so erhält man für $t_{\rm N} = \frac{a \cdot t}{(d/2)^2} < 4$

$$\vartheta = p \; \frac{a}{\lambda} \; t \tag{3.10}$$

und mit $p \cdot 2d = P/A$

$$r_{\rm t} = \frac{9}{P} = \frac{a}{2 \, d\lambda A} \cdot t \tag{3.11}$$

bzw. verallgemeinert

$$r_{\rm t} \cdot A = \frac{r_a}{2d\lambda} t \tag{3.12}$$

Bedenkt man, dass für λ/a auch die spezifische Wärmekapazität c_v eingesetzt werden kann, so folgt mit $p = \frac{P}{V} = \frac{P}{A \cdot 2d}$ aus (3.11) die Gleichung für die adiabatische Erwärmung

$$r_{\rm t} = \frac{t}{c_{\rm v} \cdot V} \tag{3.13}$$

4. Werkstoffdaten

4.1 Die thermischen Kenngrössen von Siliziumkristallen

In den vorstehenden Gleichungen sind einige Kenngrössen enthalten, deren Zahlenwerte bestimmte Temperaturabhängigkeiten aufweisen (vgl. z. B. [4]). Um jedoch die folgende Rechnung nicht unnötig zu komplizieren, werden für den betrachteten Temperaturbereich von 300–700 K lediglich die folgenden Mittelwerte von Si-Einkristallen verwendet werden:

Wärmeleitfähigkeit $\lambda \approx 0.74 \text{ W/K cm}$ (4.1)

Spezifische Wärmekapazität
$$c_v \approx 1.95 \frac{Ws}{K \text{ cm}^3}$$
 (4.2)

Temperaturleitfähigkeit
$$a \approx 0.38 \frac{\text{cm}^2}{\text{s}}$$
 (4.3)

4.2 Der spezifische Widerstand der S-Zone bei hohen Stromdichten

In einer früheren Veröffentlichung [5] war über Messergebnisse berichtet worden, wonach der spezifische Widerstand ϱ der schwach dotierten Zone einer PSN-Diode mit wachsender Stromdichte abnimmt. Weitere Messungen, über die an anderer Stelle berichtet werden soll, ergeben bei sehr hohen Stromdichten ($J > 10^3 \text{ A/cm}^2$) nur noch geringe Änderungen im Bereich von $\varrho \approx 3...6 \cdot 10^{-2} \Omega \text{cm}$. Im Hochstrombereich soll daher in brauchbarer Näherung mit einem Mittelwert von

$$\rho \approx 5 \cdot 10^{-2} \,\Omega \text{cm} \tag{4.4}$$

gerechnet werden. Damit erhält man für den differentiellen Widerstand R von (2.1)

$$R = \varrho \, \frac{2d}{A} \tag{4.5}$$

und mit (4.4) im Hochstrombereich (d in cm)

$$RA = \varrho \cdot 2d \approx 10^{-1} \cdot d \ \Omega \text{cm}^2 \tag{4.6}$$

Aus (4.4) und (4.5) folgt der in Fig. 2 verwendete Zahlenwert $RA/2d = 5 \cdot 10^{-2} \Omega$ cm.

5. Der Stoßstrom-Grenzwert

Nach den eingangs erwähnten Normen ist der Stoßstrom-Grenzwert der Scheitelwert des höchsten zulässigen Durchlaßstromes mit dem Verlauf einer Sinushalbschwingung von 10 ms Dauer. Da dieser Grenzwert vermutlich mit dem Erreichen einer kritischen Temperatur in der Si-Tablette zusammenhängt, wird man entweder die maximale Erwärmung in Abhängigkeit von der Stromdichte vorauszuberechnen veruchen oder diesbezügliche Messungen vornehmen.

Die durch Stoßströme verursachten Temperaturerhöhungen n den schwachdotierten Zonen von Leistungsdioden und hyristoren wurden von *D. Silber* und *M. J. Robertson* [6] xperimentell untersucht. Aus den Kennlinien-Oszillogrammen onnten sie die elektrischen Kenngrössen und aus Infrarot-Messungen der thermischen Strahlung der S-Zone deren Temeratur bestimmen. Fig. 4 zeigt eine Kurvenschar, einer PSN-Diode mit einer Basisbreite $2d = 220 \,\mu\text{m}$, die folgendes erkenten lässt:

1. Sinusförmige Stoßströme von 10 ms Dauer und einer Scheiteltromdichte von $\hat{j} < 1$ kA/cm² bewirken noch keine starke Tempeaturerhöhung, so dass die Kennlinie praktisch reversibel durchlauen wird (quasi-isotherme Kennlinie). Sie kann durch u = 1, 2 + $, 1 \cdot 10^{-3} \cdot j$ beschrieben werden (punktierte Verlängerung). Mit $d = 220 \,\mu\text{m}$ findet man für den spezifischen Widerstand $\varrho =$ $\cdot 10^{-2} \,\Omega\text{cm}$, was eine gute Übereinstimmung mit (4.4) darstellt. 2. Stoßströme mit Scheitelstromdichte $\hat{j} \leq 2,7$ kA/cm² führen zu tarkem Temperaturanstieg, wodurch der Spannungsabfall an der i-Zone erheblich vergrössert wird (die Trägerbeweglichkeit verndert sich mit der Temperatur gemäss T^{-5/2}). Die Kennlinie wird reversibel und hat keulenförmigen Verlauf (nichtisotherme Kenninie).

3. Stoßströme mit Scheitelstromdichten $\hat{j} > 2,7$ kA/cm² haben Temperaturen von $\vartheta \ge 370$ °C zur Folge, bei welchen die Eigeneitung wachsenden Einfluss gewinnt und der Temperaturkoeffizient les spezifischen Widerstandes ϱ negativ wird (Heissleitereffekt: Die ritische Temperatur ist erreicht, wenn die Trägerdichte der Eigeneitung etwa ein Drittel der injizierten Trägerkonzentration beträgt). Dies kann zur Stromeinschnürung (thermischer Pinch-Effekt) und ur Zerstörung des Bauelements führen. Die gemessenen Zerstöungstemperaturen betrugen 380° ± 30 °C für Al/Au kontaktierte Dioden und 450° ± 40 °C für Al/Al kontaktierte Dioden.

Aus den Messergebnissen wird für die folgende Berechnung les Grenzintegrals eine Grenztemperatur von

 $\lambda_{\rm k} \approx 400 \ ^{\rm o}{\rm C} \tag{5.1}$

Is vernünftiger Mittelwert angesehen. Die gemessenen Zertörungstemperaturen von 350–490 °C zeigen deutlich, mit velchen Unsicherheiten die Grenztemperatur vorerst noch behaftet ist und dass dringend weitere Untersuchungen durchjeführt werden sollten.

 Tig. 4
 Diodenspannungen u bei verschiedenen sinusförmigen

 Stoßströmen j. Messungen von D. Silber und M. J. Robertson [6]

6. Das spezifische Grenzlastintegral der Bauelemente

In den Abschnitten 3, 4 und 5 sind die für die Berechnung des Grenzlastintegrals erforderlichen Voruntersuchungen durchgeführt worden. Aus Fig. 3 ist ersichtlich, dass die Temperaturberechnung in verschiedener Weise durchzuführen ist, je nachdem $t_N \ge 4$ bzw. nach (3.3) die Impulsdauer $t_p \ge 0,66$ $(2d)^2$ ist. In jedem Fall wird jedoch zuerst ein rechteckförmiger Gleichstrom-Impuls mit der Stromdichte *J* und der Dauer t_p vorausgesetzt; später werden auch andere Impulsformen betrachtet werden.

6.1 Sehr kurze Impulsdauer $(t_p < 0.66 (2d)^2)$

Für adiabatische Erwärmung erhält man analog zu (1.6) und unter der Vereinfachung $\varrho \neq f(\vartheta)$

$${}^{2}t_{\rm p} = \frac{c_{\rm v} \cdot \vartheta_{\rm K}}{\varrho} \tag{6.1}$$

und mit den Zahlenwerten von (4.2) (4.4) und (5.1)

$$J^2 t_{\rm p} \approx 1.6 \cdot 10^4 \left(\frac{\rm A}{\rm cm^2}\right)^2
m s$$
 (6.2)

Die Berechnung dieses Integrals müsste eigentlich, analog zu (1.3) bzw. (1.5), unter Beachtung der Temperaturabhängigkeit von c_v und ϱ erfolgen. Eine diesbezügliche, genauere Rechnung ergab jedoch einen von (6.2) relativ wenig abweichenden Zahlenwert, so dass der Einfachheit wegen mit temperaturunabhängigen Parametern gerechnet wurde.

6.2 Längere Impulsdauer ($t_p > 0,66 (2d)^2$)

Aus Fig. 3 liest man für diesen Bereich: $\vartheta_{\rm N} = \sqrt{t_{\rm N}}$ ab, woraus man mit den normierten Grössen [3] $\vartheta_{\rm N}$ und $t_{\rm N}$ (3.9), (3.3)

$$\vartheta = \frac{P}{V} \frac{d \sqrt{a}}{\lambda} \sqrt{t}$$
(6.3)

erhält. Mit $\frac{P}{V} \approx \varrho J^2$ und den entsprechenden Werkstoffdaten,

ergibt sich schliesslich (d in cm)

$$J^2 \sqrt{t} = \frac{\lambda \, \vartheta_{\mathrm{K}}}{\sqrt{a} \, \varrho \, d} \approx 9400 \, \mathrm{d}^{-1} \left(\frac{\mathrm{A}}{\mathrm{cm}^2}\right)^2 \mathrm{s}^{\frac{1}{2}} \tag{6.4}$$

Die graphische Darstellung von (6.2) und (6.4) ist in Fig.5 enthalten.

Man erhält bei kurzen Impulszeiten eine von der Geometrie unabhängige Kennlinie $(J^2t = konst)$, während bei längeren Zeiten $J^2t = J^2 \sqrt{t} \cdot \sqrt{t}$ gilt und die Basislänge 2*d* in das Ergebnis eingeht. Man ersieht aus der Figur, dass für längere Pulsdauern $(t_p = 10 \text{ ms})$ das Rechenverfahren für adiabatische Erwärmung nur noch dann zulässig ist, wenn man es mit längeren Basisweiten zu tun hat. Andernfalls muss man bereits im Bereich einiger ms mit der \sqrt{t} -Kennlinie rechnen, so wie das auch J. W. Motto [7], allerdings in unzulässiger Verallgemeinerung des transienten Wärmewiderstandes für den Nennstrom-Betrieb und alle Impulszeiten, gefordert hat.

Bei sehr kurzen Zeiten macht sich die Trägheit der Ladungsträger bemerkbar. Bei Dioden, die aus dem stromlosen Zustand mit einem steilen Strompuls $\left(\frac{dj}{dt} > 10 \frac{A/cm^2}{\mu s}\right)$ beansprucht werden, treten «induktive» Zusatzspannungen auf. Bei Thyri-

Fig. 5 Das spezifische Grenzlastintegral J^2t in Abhängigkeit von der Pulsdauer t_p , für verschiedene Parameter J Stromdichte (zeitlich konstant) 2d Basisweite

storen sind für jeden Typ die zulässigen $\frac{dj}{dt}$ -Zahlen für den Einschaltvorgang dem Datenblatt zu entnehmen. Damit findet man bei sehr kurzen Impulszeiten Kennlinien für $\frac{dJ}{dt} =$ konst, deren Verlauf durch $J^2 t_p = \left(\frac{dJ}{dt}\right)^2 t_p^3$ bestimmt ist. Mit den in Fig. 5 dargestellten Zusammenhängen werden die qualitativen Feststellungen in den Thyristor-Handbüchern [8] [9] quantitativ ergänzt.

Für den praktischen Gebrauch dürfte es nützlich sein, die bei vorgegebener Pulsdauer t_p maximal zulässige Stromdichte J (bei rechteckförmigem Stromverlauf) ablesen zu können. In Fig. 6 ist daher dieser Zusammenhang dargestellt. Die Kennlinien sind unmittelbar aus Fig. 5 gewonnen worden. Bei Leistungsdioden können, von einem Vorstrom ausgehend kurzzeitig sehr hohe Stromdichten aufgeschaltet werden; von stromlosen Zustand ausgehend muss das induktive Verhalter berücksichtigt werden. Bei Thyristoren ist diese Begrenzung des Stromanstiegs noch ausgeprägter und durch zwei Gerader für 10² und 10³ A/cm² · µs angedeutet.

Die bisherige Untersuchung wurde, um allgemeingültige Beziehungen zu gewinnen, auf die Stromdichte abgestellt. Da man sich in der Praxis jedoch für das Grenzlastintegral I^2t_1 bestimmter Bauelemente zu interessieren pflegt, sei hier er wähnt, dass man bei der Umrechnung zum spezifischen Grenz lastintegral J^2t_p das Querschnittsquadrat A^2 benützen mus

$$I^2 t_{\rm p} = J^2 t_{\rm p} \cdot A^2 \tag{6.5}$$

ionungigicen voi	i Shomsenenen i unu orenz	0		incurer millement)	Tabelle
Pulsform	$\int_{0}^{\hat{j}} \frac{1}{t_p/2 - 3t_p/2}$		$\sum_{i=1}^{j} t_{p}$	$ \begin{array}{c} $	$ \begin{array}{c} $
$\frac{\cdot \hat{I}}{I}$	1	$\sqrt{2}$	√3_	$\sqrt{\frac{6}{n+1}}$	$\sqrt{2}$
$\int_{0}^{t_{p}} i^{2} dt$	$I^2 t_p$	$\hat{t}^2 t_{\rm p}/2$	$\hat{t}^2 t_{\rm p}/3$	$i^2 t_p \cdot \frac{n+1}{6}$	$i^2 t_{\rm p}/2$

Abhängigkeit von Stromscheitelwert î und Grenzlastintegral	$\int_{0}^{1_{p}} i^{2}dt \text{ von der Pulsform } (I = \text{linearer Mittelwert})$
	0

Tabelle

		Tab				
Thyristortypen			G	L	N	Dimension
Nennstrom		$I_{ m N}$	42	120	200	A
Querschnittsfläche		A	0,4	1,5	3	cm ²
Nennstromdichte		$J_{ m N}$	100	80	67	A/cm ²
Grenzlastintegral	5 S	$I^2 t_{ m p}$	$2,4 \cdot 10^{4}$	$4 \cdot 10^{4}$	$2,4 \cdot 10^{5}$	A^2s
spez. Grenzlastintegral		$J^2 t_{ m p}$	$1,5 \cdot 10^{4}$	$1,8 \cdot 10^{4}$	$2,7 \cdot 10^{4}$	$(A/cm^2)^2s$

.3 Einfluss der Pulsform

Weil die einfache Beziehung (1.7) nur für den rechteckigen Heichstrompuls gilt, in der Praxis jedoch häufig andere Pulsormen auftreten, sind in Tabelle I einige nützliche Zahlen usammengestellt. Bemerkenswert ist die Feststellung, dass lle dreieckförmigen Pulse mit der gleichen Dauer tp das gleiche $I = \sqrt{3}$ und $\int i^2 dt = i^2 t_p/3$ haben, unabhängig von der zeitchen Lage des Strommaximums.

Übereinstimmung findet man auch zwischen dem Sinuspuls ind dem $3 t_p/2$ -langen Dreieckspuls, worauf bereits 1971 im tromrichter-Handbuch [9] hingewiesen wurde.

. Experimentelle Verifizierung

Die in den vorstehenden Abschnitten berechneten Zahlenverte sollen einigen veröffentlichten Daten gegenübergestellt verden.

'.1 Spezifische Grenzlastintegrale für Thyristoren

Im Siemens-Thyristor-Handbuch [8] und von A. Herlet und 1. Hoffmann [10] sind für einige Thyristoren konkrete Zahlen ngegeben worden, aus denen $J^2 t_p$ berechnet werden kann Tabelle II).

Vergleicht man die Zahlen der letzten Zeile von Tabelle II mit len $J^2 t_p$ -Werten von Fig. 5, so findet man die Gesetzmässigkeit 6.2) hinreichend bestätigt.

'.2 Stoßstrom-Grenzwerte für Thyristoren

W. Gerlach und G. Köhl [11] haben experimentell die Zertörungsstromdichte von AEG-Thyristoren in Abhängigkeit on der Dicke der Basiszonen (2d) ermittelt. Der sinusförmige stromimpuls hatte gemäss DIN 41787 eine Dauer von 10 ms. n Fig. 7 sind die Beobachtungsergebnisse graphisch dargetellt. Sie zeigen, ähnlich wie die Messungen von Silber und Robertson [6], eine erhebliche Schwankungsbreite, deren Urache jedoch bereits oben erwähnt wurde. Gestrichelt ist die us Fig. 6 entnommene, theoretisch zu erwartende Grenztromdichte eingetragen, die nicht nur die Tendenz richtig viedergibt, sondern auch quantitativ eine bemerkenswerte Jbereinstimmung zeigt.

Fig. 7 Scheitelwert der Zerstörungsstromdichte j in Abhängigkeit von der Basisweite 2d. Messwerte von W. Gerlach und G. Köhl [11]. Rechenwerte nach Fig. 6

Literatur

- G. J. Meyer: Theoretisches und Praktisches über Abschmelzsicherungen. ETZ 28(1907)17, S. 430...435 + Nr. 18, S.460.464
 J. W. Gibson: The high-rupturing-capacity cartridge fuse with special reference to short-circuit performance. J. IEE, Part II: Power Engineering 88(1941)1, p. 2...40.
- H. Müller: Berechnung des transienten thermischen Verhaltens von Halbleiterventilen im Bereich kurzer Zeiten. Dissertation der Technischen Hochschule Aachen, 1972. [3]
- P. Wyssmann: Thermische Effekte in elektrischen Kontakten zwischen identischen Halbleitern. Physik der Kondensierten Materie 14(1972)4, P. Wyssmann: [4] S. 275...306.
- T. Wasserrab und K. Hünninghaus: Transientes Verhalten [5] von psnwandte Physik 30(1970)4, S.264...269.
- D. Silber and M. J. Robertson: Thermal effects on the forward charac-[6] teristics of silicon p-i-n-diodes at high pulse currents. Solid-State Electronics 16(1973)12, p. 1337...1346.
- J. W. Motto: A new quantity to describe power semiconductor subcycle current ratings. Trans. IEEE IGA 7(1971)4, p. 510...517.
- A. Holfmann und K. Stocker: Thyristor-Handbuch. Bauelement der Leistungselektronik. Berlin/E [8] Iandbuch. Der Thyristor als Berlin/Erlangen, Siemens-Schuckertwerke AG, 1965.
- [9] Silizium-Stromrichter Handbuch. Baden, Brown Boveri & Cie., 1971.
- [10] A. Herlet und A. Hoffmann: Flächengrösse und Strombelastbarkeit von Thyristoren. Siemens Z. 39(1965)3, S. 180...184.
- [11] W. Gerlach und G. Köhl: Thyristoren für hohe Spannungen. Festkör-perprobleme 9(1969), S. 356...372.

Adresse des Autors

Prof. Dr. techn. Th. Wasserrab, Rheinisch-Westfälische Technische Hochschule, Jägerstrasse, D-51 Aachen.