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In diesem Zusammenhang sei der Industrie der Wunsch
der Elektrizititswerke nach immer besseren, weniger sto-
rungsanfalligen und billigeren Betriebsmitteln ans Herz ge-
legt.

Abschliessend darf festgestellt werden, dass sich die Zu-
sammenarbeit der Elektrizitdtswerke voll bewihrt hat. Heute
herrscht die absolute Uberzeugung, die beste Gewihr fiir
eine sichere und preiswerte Versorgung der Schweiz mit
elektrischer Energie bestehe in der bisherigen Weiterarbeit in
eigener Verantwortung und im direkten Gesprich zwischen
den einzelnen Werken.

Adresse des Autors

Dr. E. Triimpy, Direktionspriisident der Aare-Tessin AG fiir Elektrizitit,
Bahnhofquai 12, 4600 Olten.

Enfin, on peut constater pour terminer que la collabora-
tion entre les entreprises d’électricité a parfaitement joué.
Une certitude absolue apparait aujourd’hui, a savoir que le
meilleur moyen d’assurer un approvisionnement de la Suisse
en énergie électrique de fagon sir et a un prix intéressant
réside dans la poursuite du travail accompli jusqu’ici dans un
esprit de responsabilité propre et dans un contact direct entre
les diverses entreprises.

Adresse de Pauteur

E. Triimpy, président de la direction de I’Aar et Tessin S.A. d’Electricité,
Bahnhofquai 12, 4600 Olten.

Betriebsoptimierung in der elektrischen Energieversorgung

Von H. Edelmann

Die Arbeit gibt die klassischen Grundlagen fiir die Betriebs-
optimierung im Bereich der elektrischen Energieversorgung. Es
werden zur Herleitung nur elementare Gundlagen der Differen-
tialrechnung und der Variationsrechnung bendtigt. Neben dem
rein thermischen Verbundbetrieb wird auch der hydrothermische
Verbundbetrieb mit Speicherwasserkraftwerken betrachtet.

1. Einleitung

Elektrizitatsversorgungsunternehmen sind Einrichtungen,
die zum Ziele haben, elektrische Energie zu erzeugen und zu
verkaufen. Wie jedes Unternehmen muss es darauf abzielen,
bei Erfiillung der vertragsmissigen Verpflichtungen einen mog-
lichst grossen Gewinn zu erwirtschaften. Diesem Gewinn sind
freilich Grenzen gesetzt: Rohstoffe fiir Energiequellen sind
nicht beliebig billig. Die verkaufte Energie kann auch nicht
beliebig teuer verkauft werden. Wiahrend sich die Preise der
Rohstoffe fiir Energiequellen im allgemeinen nach Angebot
und Nachfrage regeln, herrscht auf der Abnehmerseite kein
freier Markt. Hier wacht eine gewisse staatliche Kontrolle
dariiber, dass der Abnehmer einen gerechten Tarif erhdlt. Im
ganzen gesehen wird also jedes Versorgungsunternehmen dar-
auf achten miissen, die vom Abnehmer geforderte Energie
moglichst billig zu erzeugen. Fiir den Ingenieur im EVU-
Bereich ergibt sich hierdurch eine Optimierungsaufgabe, die er
durch mathematische Hilfsmittel und den Einsatz von Rech-
nern zu l6sen hat. Praktisch wird dies fast immer eine Optimie-
rung iiber einen gewissen Zeitraum sein. Man unterscheidet
kurzfristige, mittelfristige und Langzeitoptimierungen. Eine
Grundaufgabe ist hierbei die Momentan-Optimierung der Er-
zeugungskosten. Die wesentlichen Grundlagen sollen nun an-
hand eines vereinfachten Modells dargestellt werden.
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L’auteur donne les bases de travail conventionnelles pour une
exploitation optimale dans le secteur de I'approvisionnement en
énergie. Pour réaliser cette conception, il utilise les seules bases
élémentaires du calcul différentiel et des variations entrant en
considération. A coté de ces interconnexions purement ther-
miques, l'auteur a également abordé le probléeme des intercon-
nexions hydrothermiques avec des centrales hydrauliques d’ accu-
mulation.

2. Momentanoptimierung eines thermischen
Verbundsystems

Will man die Erzeugungskosten fiir einen Verbundbetrieb
optimieren, so muss man zuvor die Abhédngigkeiten der Ener-
gieerzeugungskosten aller Kraftwerke von den Einspeiselei-
stungen kennen. Sie heissen Absolutkostenfunktionen (Fig. 1a),
und sie sind in der Regel nur von thermischen Kraftwerken
bekannt. Jedoch auch von Ubergabestellen existieren solche
Absolutkostenfunktionen. Fiir Kraftwerke und Ubergabe-
stellen gelten gleichzeitig auch minimale und maximale Grenz-
leistungen P; bzw. P

Die Absolutkostenfunktionen K; werden dann durch folgende
Gleichungen beschrieben

Ki = Fi(Py) (€))

P < P < P i=1.n )

Wir wollen annehmen, dass die Absolutkostenfunktionen
stetig sind und 1. und 2. Ableitungen besitzen. Die ersten Ab-
leitungen nennt man die Zuwachskosten ki (Fig. 1b). Fiir sie
gilt
fa=f1(p) = 258 ®

Wenn man annimmt, dass die Absolutkosten mit der Leistung
nicht fallen, so gilt auch
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Fig. 1 Typische Absolutkostenkurve a) und die dazugehorige
Zuwachskostenkurve b)

ki = fi(P;) < 0. (Monotonititsbedingung) %)

Wenn dariiber hinaus auch die Zuwachskosten mit der Lei-
stung steigen, so gilt ferner
ﬂ;,(P—I_)i)— > 0. (Konvexitdtsbedingung)!) o)
1
Sofern (4) und (5) erfiillt ist, hat die gestellte Optimierungs-
aufgabe eine eindeutige Losung. Die Auswahl der einzusetzen-

den Maschinen sei schon vorbestimmt, dann lisst sich die
Haupt-Optimierungsforderung bereits hinschreiben. Sie lautet

K= > Ki= i Fi(Py) = Min.
i i=1

(Zielfunktion) 6)

mit den bereits erwidhnten Grenzleistungsbedingungen (2)
Py < P, <P Q)]

Wiirden wir die Leistungsforderung der Abnehmer ausser
acht lassen, hitte man die triviale Losung: «Man schalte alle
Kraftwerke ab», was wohl nicht der Sinn einer Optimierung
sein kann. Aus diesem Grund miissen wir noch die Neben-
bedingung beriicksichtigen, welche die Abnehmersummenlei-
stung als konstant festlegt (Fig. 3). Die Abnehmersummen-
leistung Py, ist die Differenz zwischen der Summe der Kraft-
werksleistungen und den Netzverlusten Py. Es ist also noch
die folgende Bedingung zu beachten

Z P;i — Py = P1 = const. ®)

i=1

Aufgrund der gemachten Voraussetzungen iiber die Abso-
lutkostenfunktionen ist es uns moglich, das Optimierungs-
problem mit Hilfe der Differentialrechnung zu 16sen, und zwar
dadurch, dass wir notwendige Bedingungen aufstellen, danach
die aus den notwendigen Bedingungen resultierenden Glei-

1) Eine Funktion f (x) heisst konvex, wenn das arithmetische Mittel

der Funktionswerte fiir verschiedene Argumente grosser ist als der Funk-
tionswert fiir das arithmetische Mittel der Argumente (Fig. 2)

16 (B 16)

chungen 16sen und nachpriifen, ob die Losungen Minima der
Kosten ergeben. Zur Losung eines Extremalproblems mit
Nebenbedingungen kann man grundsétzlich zwei Wege gehen:
Entweder man versucht die Nebenbedingungen durch Elimina-
tion in die Zielfunktion einzuarbeiten oder, falls dies nicht ge-
lingt oder umstédndlich ist, man wendet die Lagrange-Methode
an. Sind Nebenbedingungen auch noch in Ungleichungsform
gegeben, so muss man die Lagrange-Methode durch diejenige
von Kuhn und Tucker erweitern. Wir werden zunéchst, um
die Lagrange-Methode in ihrer urspriinglichen Form verwen-
den zu konnen, die Ungleichungsbedingungen ausser acht las-
sen. Die Lagrange-Methode besteht nun darin, dass man eine —
entsprechend der Anzahl der Nebenbedingungen — durch Zu-
satzterme erweiterte Zielfunktion zugrundelegt. Jeder Zusatz-
term besteht aus dem Produkt eines Lagrangefaktors und der
betreffenden Nebenbedingung in Nullform. Eine solche erwei-
terte Zielfunktion, auch Lagrange-Funktion @ genannt, lautet
in unserem Fall

n n
® (P1...Pn, ) = D Fi(P) + A(PL.— D Pi+ Pv) ©)
i=1 i=1

Die neue Zielfunktion enthélt jetzt zwar eine Unbekannte
mehr. Wir werden jedoch in den notwendigen Bedingungen
auch eine zusitzliche Gleichung erhalten. Die notwendigen
Bedingungen bestehen darin, dass alle partiellen Ableitungen
nach den Veranderlichen Pi... Py null zu setzen sind. Es miissen
also folgende Gleichungen erfiillt sein (Pr, ist hierbei als kon-
stant anzusehen)

od _ dF; (Pj) —/1(
OP; dP;

== j=1.n (10)

Hinzu kommt noch die Nebenbedingung Gl. (8). Damit
haben wir n + 1 Gleichungen fiir n + 1 Unbekannte (Pi...
P, 2).

2.1 Sonderfall: Vernachlissigung der Netzverluste

Setzt man die Netzverlustleistung Pv = 0, so vereinfachen
sich die Gleichungen (10) so, dass man alle Ableitungen der
Absolutkosten nach den Einspeiseleistungen gleich A setzen
muss, das heisst man erhélt die sehr einfache Forderung

yi
y=F(x) 1"(x)>0 oder
\ f (x1)ef(x2) >f(x,oxz)
2 2
fur x;#xy
)I(I Xy+Xy ;(2 X
2

Fig.2 Konvexe Funktion
F1’ Netz D P'-I

mit Netzverlusten

n
R=2

PI_2
|
1BikPi P R =Y R =const.
R =1 !
ﬁ 1

Fig.3 Verbundnetz mit n Kraftwerken und / Lasten
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Fig. 4 Optimierung eines Verbundsystems unter Vernachlissigung
der Netzverluste durch Gleichsetzen der Zuwachskosten f; (P;)

dF; (Py)

gp, - Fd=a J=l.n (10a)
und
Z P; = Pr.2) (8a)

i—1

Die Ableitungen der Absolutkosten sind die Zuwachs-
kosten. Es ist also zweckmadssig, aus den Absolutkostenfunk-
tionen F;(P;) durch Differentiation die Zuwachskostenfunk-
tionen fi (Pi) bereitzustellen. Nun ist es leicht, die Forderung
(10a) zu erfiillen. Hierzu zeichnet man die Zuwachskostenkur-
ven aller Kraftwerke nebeneinander (Fig. 4) auf. Beim Anlegen
eines waagerechten Lineals in der Hohe A ergeben die Schnitt-
punkte jeweils optimale Betriebszustinde, und zwar fir Py, =
Z Pi. Damit ldsst sich eine Lastverteilerkurvenschar Pi = ¢;
b ¥
(Pr) gewinnen, wie sie in Fig. 5 wiedergegeben ist. Fig. 6 zeigt
auch anschaulich, warum sich das Minimum der Absolutkosten-
summe nur dann ergibt, wenn die Zuwachskosten, das heisst
die Steigungen der Absolutkosten, gleich sind. Man sieht auch
ferner, dass sich mit Sicherheit ein eindeutiges Minimum bei
konvexen Absolutkostenfunktionen ergibt. Die Bedingung ist
hinreichend, wie man leicht einsieht, jedoch nicht zugleich auch
notwendig; denn es gentigt bereits, dass die Zielfunktion (6)
unter Beriicksichtigung der Nebenbedingung (8a) konvex ist.

2.2 Beriicksichtigung der Netzverluste durch eine Verlustformel

Unter Netzverlusten Py versteht man die Summe der Ver-
lustwirkleistungen in den Ubertragungsmitteln. Man kann sie
somit als Differenz der Kraftwerks-Einspeiseleistungen und
der Abnehmerleistungen geméss definieren, das heisst es ist

Py = z P; — Pr. Die Netzverluste sind Funktionen der Kraft-
i

werkswirk- und Blindleistungen, der Einspeisespannungen, der
Abnehmerwirk- und Blindleistungen und deren Spannungen;
ferner sind sie auch vom Schaltzustand des Netzes und den
Transformatorstufenstellungen abhingig. Unter gewissen ver-
einfachenden Annahmen ist es moglich, mit guter Niherung
eine Verlustformel durch eine quadratische Form der P; anzu-
geben. Die folgende Verlustformel von G. Kron
n n
Py = Z Bix Pi Py
i=1k=1

(1D

gilt unter der Annahme, dass die Kraftwerke mit konstantem
cos ¢ und konstanter Spannung einspeisen und dass der Netz-
zustand mit den Stufenstellungen der Transformatoren kon-

?) In diesem Fall sind also die Summen der Einspeiseleistungen einer-
seits und der Abnehmerleistungen einander gleich.
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stant bleiben. Ferner ist angenommen, dass die komplexen
Abnehmerstrome sich bei veridnderlicher Abnehmersummen-
leistung Pr, untereinander nur proportional dndern diirfen.
Zur Auflosung der Gleichungen (10) bendtigt man die Ablei-
tung 0Pv/0P;j. Die Matrix der Bix ist symmetrisch und positiv-
definit. Dann ergibt sich

(12)

Die Gleichungen (10) lassen sich, wie im folgenden beschrie-
ben wird, nach Einfiihrung der Verlustformel leicht auflosen.
Man erhilt zunichst die folgenden Gleichungen

dEPY _ ;s _ o {y_ 0Py
“ap, - e = 41— 5p0) W
:,1(1—2 > Bix Pk) (14)
k=1 /

n
= (1 —2 > B Pk) — 2 Bj Pi. (15)
k=1
k#j
Diese Gleichungen konnen nun iterativ fiir jedes angenom-
mene A gelost werden., Man erhilt dann wieder Lastverteiler-
kurven, dhnlich wie in Fig. 5 wiedergegeben. Gegeniiber dem

Fall ohne Netzverluste ergibt sich dann nicht mehr ein Schnitt

Py =@5(P)
P, =@,(P,)

P, =0, (P,)

ol

P

1
-

Fig.5 Lastverteilerkurvenschar P; = ¢; (Pp)
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Fig. 6 Anschauliche Optimierung eines Verbundsystems von zwei
Kraftwerken ohne Beriicksichtigung der Netzverluste.
Durch die gegeneinander um 1800 gedrehten Absolutkosten-
kurven wird gewihrleistet, dass die Summe der
Kraftwerksleistungen Py und Py konstant gehalten wird.
Das Minimum der Absolutkostensumme tritt ein, wenn die
Steigungen beider Kostenkurven gleich sind.
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Fig. 7 Iterative Auflosung der Optimierungsgleichungen unter
Beriicksichtigung der Netzverluste.

Die Gerade, welche die Zuwachskosten schneidet, hat eine
negative Steigung und schneidet die k;-Achse im allgemeinen
unterhalb von A

der Zuwachskostenfunktion mit einer waagerechten Geraden
in der Hohe A, sondern ein Schnitt der Zuwachskostenfunktion
mit einer fallenden Geraden mit der Steigung — 2 1 Bjj
(Fig. 7). Ferner ist der Schnittpunkt dieser Geraden mit der
Ki-Achse um — 2 Z Bjk Px versetzt. Die hierfiir notwendige
k#j

Grosse A ist durch die Beriicksichtigung der Verluste grosser
geworden, was seinen Grund darin hat, dass Verluste Geld
kosten. An dieser Stelle wire es niitzlich, etwas iiber die an-
schauliche Bedingung von A zu erfahren. Der folgende Ab-
schnitt sagt Ndheres dariiber aus.

2.3 Bedeutung von A und das Zuwachskostenintegral

Gleichung (13) lédsst sich auch in Differentialform schreiben.
Man erhéilt dann

dFj(Pj)=),%de. (16)
Durch Summation tber alle j = 1...n erhilt man

n n n aPL

j; dF; (Ps) = dj; Fi(P) = dK = Aj;ﬁj—dpj. (17)

Die rechts stehende Summe ist nun aber gerade das voll-
standige Differential dPr., woraus sich die Beziehung ergibt

dK = A dP1, (18)
und

_dK
A= TP " -

Der Lagrange-Faktor A erweist sich somit in Abhangigkeit
von Pr, als die abnehmerseitige Zuwachskosten-Funktion. Beim
iterativen Auflosen der Gleichungen (15) mit vorgegebenem A
ergibt sich aus der Nebenbedingung die Abnehmerleistung Pr..
Damit erhilt man A als Funktion von Pr. Der Flidcheninhalt
unterhalb der Kurve 2 = A (P1) erweist sich in einem Gebiet,
in welchem die Zuwachskostenfunktionen der Kraftwerke
monoton wachsen und keine Spriinge aufweisen, als die Diffe-
renz der Absolutkosten zweier Optimierungszustdnde, das
heisst es ist

?
K (Pr) — K (Pr) = fL % (Pr) dPx. (20)
Pr

Die rechte Seite von Gleichungen (20) wird Zuwachskosten-
integral genannt (Fig. 8).

18 (B 1)

2.4 Beriicksichtigung von Gleichungs- und
Ungleichungsbedingungen

Betrachten wir in Fig. 6 die Verhiltnisse wie die optimale
Kraftwerksleistung P; durch einen Schnitt mit einer fallenden
Geraden ermittelt wird, so erkennt man, dass in den Fillen,
in welchen man einen Leistungswert P; festlegen will (zum
Beispiel in einem Laufwasserkraftwerk), sich dort die Zuwachs-
kosten automatisch dadurch ergeben, dass man anstelle einer
Zuwachskostenkurve eine senkrechte Gerade mit der Abszisse
P; einfiihrt. Jeder Schnitt mit einer fallenden Geraden ergibt
dann immer nur den Abszissenwert Pi. Die Ordinate liefert
den Zuwachskostenwert mit dem die Leistung des Laufwasser-
werks differentiell zu bewerten wire. Damit liefert die Glei-
chungsbedingung eine Bewertung der Energie.

Im Falle der mit den Gleichungen (7) eingefiihrten Unglei-
chungen gibt es zwei Moglichkeiten: entweder wir befinden uns
im Inneren oder an den Rédndern des Intervalls. Im Innern er-
gibt der Schnitt der fallenden Geraden mit der Zuwachskosten-
funktion die optimale Kraftwerksleistung P;. Bei hinreichend
klein angenommenem Lagrangefaktor A wiirde die fallende
Gerade die Zuwachskostenkurve nicht mehr treffen. Damit sich

A
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~

I
|
|
I
|
I
!
|
I
| L
)

K(P)-K(B)=/ A(R) dP,
I
Lid
| -
_PL R PL R
Fig. 8 Das Zuwachskostenintegral
)
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Fig.9 a) Pump- und Entnahmewassermenge pro Zeiteinheit
in Abhiingigkeit der aufgenommenen bzw. abgegebenen
elektrischen Leistung
b) Zugehorige fiktive Zuwachskostenkurven fiir einen
bestimmten Wasserbewertungsfaktor /;
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als Ergebnis hier wenigstens der Minimalwert P; durch einen
Schnitt mit der fallenden Geraden einstellt, muss die Zuwachs-
kostenkurve am linken Ende durch eine senkrechte Gerade
nach unten erginzt werden. Durch entsprechende Uberlegungen
findet man auch, dass die Zuwachskostenkurve rechts durch
eine senkrechte Gerade nach oben ergidnzt werden muss, damit
auch dort durch einen Schnitt mit der fallenden Geraden der
Maximalwert P; ermittelt wird. Die gleichen Ergebnisse hétten
wir erhalten, wenn wir die erweiterte Lagrange-Methode von
Kuhn und Tucker zur Beriicksichtigung von Ungleichungsbe-
dingungen angewandt hétten.

2.5 Optimale Maschinenauswahl und Einsatzplanung

In der bisher dargestellten Theorie des optimalen Verbund-
betriebs wurde vorausgesetzt, dass in jeder Momentanoptimie-
rung die Frage, welche Maschinen iiberhaupt am Verbund-
betrieb teilnehmen, bereits vorher entschieden wurde. Uber
einen gewissen Zeitraum, zum Beispiel eines Tages (oder eines
Wochenendes) kann man an Hand der zu erwartenden Bela-
stungskurve P, = g (¢) durch einen besonderen Algorithmus
schon eine Entscheidung iiber den Maschineneinsatz machen.
Das dabei zugrundeliegende Konzept besteht im wesentlichen
darin, dass einzelne Kraftwerke mit relativ hohen Zuwachs-
kosten eigentlich nur die Aufgabe haben konnen, erstens Be-
lastungsspitzen zu decken und zweitens andere Kraftwerke, die
im Bereich der oberen Grenzleistung noch hohere Zuwachs-
kosten haben, zu hindern, dass sie besonders unter diesen
hohen Zuwachskosten arbeiten. Allerdings ist das Problem
noch etwas komplizierter. In den Pausen entstehen zwar keine
Produktionskosten, jedoch beim Wiedereinschalten entstehen
Anfahrkosten, die mit wachsendem Stillsetzungszeitraum ex-

Fiir Pumpspeicherwerke sind diese Q; praktisch gleich null zu
setzen, da diese Kraftwerke in der Regel keinen Zulauf haben.
Tatsichlich ist Qi sogar etwas negativ anzusetzen wegen der
unvermeidbaren Wasserverluste. Die fiir die Leistungsabgabe
pro Zeiteinheit bendtigten Wassermengen sind Funktionen der
Leistung, die mit L; (P;) bezeichnet werden sollen. Im moto-
rischen Betrieb sind diese L; (Pi) nur fiir diskrete Funktions-
werte, entsprechend den Nennleistungen der Pumpen definiert
(s. Fig. 9a). Die Sollwertbedingungen fiir diese Speicherwasser-
werke lauten dann in der Form von Integralnebenbedingungen

t2

f Li (Pi (1)) dt = QO (22)
t1

oder in Nullform

t2

JLi(Pi(®)di— Qi =0; i=n+l.n+s. (23)

t

Fiir die Abnehmersummenleistung Pr. = g (¢) sei ebenfalls aus
Prognosen die zu erwartende Lastcharakteristik bekannt
(Fig. 10). Auch diese Nebenbedingung in Gleichungsform wird
in Nullform vorgegeben. Man erhilt

n

Pi(t) — Py (P1(£)...Pais (£)) — g (t) =0
1

(24)

il M 4

1

Um auch diese Aufgabe nach der Methode von Lagrange
16sen zu konnen, setzen wir die Zielfunktion zusammen mit
den Nebenbedingungen durch die folgende Lagrange-Funktion
an

D (t, P1(1)...Pnis (1), Uniiepinis, A (1)) =

( n n+s n+s
f { > Fi@)+ > mLiPi@)— A1) [ > Pit)— P
t 1i=1 i=n+1 i=1

n+s

\rﬁg([)]}dlﬁ. Z Ui Qi.

i=n-+1

(25)

ponentiell grosser werden. Es muss also gepriift werden, ob
und wie lange in Schwachlastzeiten solche Kraftwerke abge-
schaltet werden konnen. Hierzu existiert ein Algorithmus [1]
auf den hier nicht ndher eingegangen werden soll.

3. Der hydrothermische Verbundbetrieb mit
Speicherwasserkraftwerken

Beim hydrothermischen Verbundbetrieb kommt ein wesent-
lich neuer Gesichtspunkt hinzu: Der Einsatz von speicher-
fihiger Energie in Form von Wasser. Um eine Antwort auf die
Frage zu geben, wie die Wasserkrifte einzusetzen sind, muss
liber einen gewissen Zeitraum #1...f2 optimiert werden. An die
Stelle des Augenblickskostenminimums tritt damit das Minimum
eines Kostenintegrals fiir die n-thermischen Kraftwerke iiber
diesen Zeitraum, was wir mit der Forderung

t2 n t2 n

[ 2 Kidt=[ > Fi(P)di =Min

t; i=1 tg i=1
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ausdriicken kénnen. Weil hier ein Integral als Zielfunktion ver-
wendet wird, benotigen wir fiir die Losung die Methoden der
Variationsrechnung. Aus Prognosen seien liber den gleichen
Zeitraum fiir die s Wasserkraftwerke diejenigen Wassermengen
Qi bekannt, die voraussichtlich zur Verfiigung stehen werden.
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Integralnebenbedingungen erhalten zeitlich konstante La-
grange-Faktoren ui, Gleichungsnebenbedingungen hingegen
zeitlich verdnderliche Lagrange-Faktoren A (¢). Die notwendige
Bedingung fiir das Eintreten eines Minimums ist das Ver-
schwinden der Variationsableitung nach dem Vektor p =
(P1...Pn-+s), das heisst es muss sein

[®@ (t1, P1(1)...Pnss (1), ns1...tnss, A (2))]p = 0. (26)
Formal wire nun zu setzen

[ = B —- S (B + (@ — b 0 @n
P P dr * p dr? P o5

Da aber die ersten und die hoheren Ableitungen in unserem
Ansatz nicht vorkommen, bleibt nur @, = 0 zu beriicksichti-
gen. Das bedeutet aber, dass alle partiellen Ableitungen nach
den P; (i = 1..n-+s) gleich null zu setzen sind. Man erhilt

dann flir die thermischen Kraftwerke die Bedingungen

OF; (P (1) _ Py _ .
OP; ) (1 OP; > =0 (23)
firty < ¢t <t2undj = 1..n;
fir die Speicherwasserkraftwerke

AL (P () _ 8Py .
w0 (1— 55 = 0; (29)

firsi < ¢ < fteundj = n-+1..n+s.
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Fig. 10 Typische Tagesbelastungskurve

Setzt man, wie auch schon in Gleichung (13) geschehen, die
Ableitungen der Absolutkostenfunktionen gleich den Zuwachs-
kostenfunktionen, dann erhdlt man fiir die thermischen Kraft-
werke

0F; (Pi (1))

op,  —J1Pi(®0); firj = L.n.

(30)

Fur die Speicherwasserkraftwerke drangt es sich auf, die mit
den Faktoren w; multiplizierten Funktionen L; als Zuwachs-
kosten-Funktionen einzufiihren (Fig. 9b). Dann wire zu setzen

0L (Py (1))

Hi oP; =fi (P;(t)); fur j = n+1..n+s.

(31)
Hierdurch lassen sich die notwendigen Bedingungen ein-
heitlich schreiben in der Form

HEO =20 (1= 55) 5 7= 1.nts

(32)

Damit wire formal das Problem des hydrothermischen Ver-
bundbetriebs auf den thermischen Verbundbetrieb zuriickge-
fithrt. Die zu bewiltigende Rechenarbeit ist jedoch sehr viel
grosser. Es muss fiir jeden Zeitpunkt 7 (in einem Tag vielleicht
24mal fiir jede Stunde) das System (32) unter Beachtung der
Nebenbedingungen nach Gleichung (24) gelost werden. Hierbei
sind die Faktoren u;i zundchst noch unbekannt. Sie miissen
einstweilen geschitzt werden. Welche unmittelbar interpretier-
bare Bedeutung haben diese Faktoren? Die Antwort ist leicht
zu geben: Sie haben die Dimension Geldeinheit pro Volumen-
einheit Wasser des betreffenden Speichers. Man nennt sie daher
Wasserbewertungsfaktoren. Beim rechnerischen Abfahren der
Tagesbelastungsfunktion g () zum Beispiel nach Fig. 10 (wobei
A (t) so gewihlt werden muss, dass Gleichung (24) in jedem
Zeitpunkt erfillt wird) ergibt sich ein Wasserverbrauchs-
integralwert Q; nach Gleichung (22) fiir jedes Wasserkraftwerk.
Nun gilt die Regel: Wird zuviel Wasser verbraucht, so wire
wi zu niedrig angesetzt, das heisst das Wasser zu billig; wird
hingegen zuwenig Wasser verbraucht, so wire u; zu hoch an-
genommen. Nach dieser « Wasserbdrse» innerhalb des Verbund-
betriebs erhilt man die Losung minimaler thermischer Energie-
erzeugungskosten iiber den betrachteten Zeitraum. Hierbei ist
es wesentlich, dass die ui, sind sie einmal bekannt, fiir den
Betrieb iiber den betrachteten Zeitraum als konstant eingesetzt
werden miissen, auch dann wenn die Prognosen tiber den be-
trachteten Zeitraum nicht genau zutreffen, es sei denn, man
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erkennt rechtzeitig, dass zum Beispiel gleichzeitig die ange-
nommenen Wassermengen Qi zu gross waren und die Bela-
stungskurve zu niedrig angesetzt wurde. Dann miisste man die
ui hoher setzen. Im allgemeinen werden sich die Unsicherheiten
jedoch gegenseitig aufheben.

4. Folgerungen

Die Rechenvorschriften zur Berechnung eines optimalen
Verbundbetriebs liefern primér Vorschriften iiber den zeit-
lichen Einsatz der Kraftwerke, kurz «optimale Lastverteilung»
genannt. Dies fiihrt im einzelnen zu folgenden Konsequenzen :
Beim Durchlaufen einer zeitlichen Belastungskurve (zum Bei-
spiel Tagesbelastungskurve) ergeben vorgegebene Kosten-
kurven vorgeschriebene Leistungswerte in Abhéngigkeit der
Zeit, hingegen ergeben fest vorgegebene Leistungen in Ab-
hingigkeit der Zeit entsprechende Kosten, die dann auch zeit-
lich verdnderlich sind.

Eine logische Folge davon wére zum Beispiel auch ein ent-
sprechend dem Auslastungsgrad des Netzes entsprechender
zeitlich verdnderlicher Tarif. Er konnte neben der Rundsteue-
rung auch dafiir sorgen, dass die Tagesbelastungskurven aus-
geglichener verlaufen. Die Optimierungsrechnung liefert aus-
serdem auch fiir den Fall, dass Speicherwasserkraftwerke am
Verbundbetrieb beteiligt sind, aus den vorgegebenen Arbeits-
mengen iiber einen Zeitraum eine Bewertung des Speicher-
mediums (in der Regel Wasser). Die hier vorgetragene Theorie
liefert ausser wirksamen Rechenvorschriften auch einen inter-
essanten Einblick in den Mechanismus der Kostenbewertungen
innerhalb eines Energieversorgungsunternehmens, aber auch
sinnvoller Kostenverrechnungen zwischen verschiedenen Un-
ternehmen. Zur Kostenorientierung bendtigt man wenigstens
einen Partner mit vorgegebener Kostenkurve.
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