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In diesem Zusammenhang sei der Industrie der Wunsch
der Elektrizitätswerke nach immer besseren, weniger
störungsanfälligen und billigeren Betriebsmitteln ans Herz
gelegt.

Abschliessend darf festgestellt werden, dass sich die
Zusammenarbeit der Elektrizitätswerke voll bewährt hat. Heute
herrscht die absolute Überzeugung, die beste Gewähr für
eine sichere und preiswerte Versorgung der Schweiz mit
elektrischer Energie bestehe in der bisherigen Weiterarbeit in
eigener Verantwortung und im direkten Gespräch zwischen
den einzelnen Werken.

Adresse des Autors
Dr. E. Triimpy, Direktionspräsident der Aare-Tessin AG für Elektrizität,
Bahnhofquai i2, 4600 Ölten.

Von H. Edelmann

Die Arbeit gibt die klassischen Grundlagen für die
Betriebsoptimierung im Bereich der elektrischen Energieversorgung. Es
werden zur Herleitung nur elementare Gundlagen der
Differentialrechnung und der Variationsrechnung benötigt. Neben dem
rein thermischen Verbundbetrieb wird auch der hydrothermische
Verbundbetrieb mit Speicherwasserkraftwerken betrachtet.

1. Einleitung
Elektrizitätsversorgungsunternehmen sind Einrichtungen,

die zum Ziele haben, elektrische Energie zu erzeugen und zu
verkaufen. Wie jedes Unternehmen muss es darauf abzielen,
bei Erfüllung der vertragsmässigen Verpflichtungen einen
möglichst grossen Gewinn zu erwirtschaften. Diesem Gewinn sind

freilich Grenzen gesetzt: Rohstoffe für Energiequellen sind

nicht beliebig billig. Die verkaufte Energie kann auch nicht
beliebig teuer verkauft werden. Während sich die Preise der
Rohstoffe für Energiequellen im allgemeinen nach Angebot
und Nachfrage regeln, herrscht auf der Abnehmerseite kein
freier Markt. Hier wacht eine gewisse staatliche Kontrolle
darüber, dass der Abnehmer einen gerechten Tarif erhält. Im
ganzen gesehen wird also jedes Versorgungsunternehmen darauf

achten müssen, die vom Abnehmer geforderte Energie
möglichst billig zu erzeugen. Für den Ingenieur im EVU-
Bereich ergibt sich hierdurch eine Optimierungsaufgabe, die er
durch mathematische Hilfsmittel und den Einsatz von Rechnern

zu lösen hat. Praktisch wird dies fast immer eine Optimierung

über einen gewissen Zeitraum sein. Man unterscheidet

kurzfristige, mittelfristige und Langzeitoptimierungen. Eine
Grundaufgabe ist hierbei die Momentan-Optimierung der

Erzeugungskosten. Die wesentlichen Grundlagen sollen nun
anhand eines vereinfachten Modells dargestellt werden.

Enfin, on peut constater pour terminer que la collaboration

entre les entreprises d'électricité a parfaitement joué.
Une certitude absolue apparaît aujourd'hui, à savoir que le
meilleur moyen d'assurer un approvisionnement de la Suisse

en énergie électrique de façon sûr et à un prix intéressant
réside dans la poursuite du travail accompli jusqu'ici dans un
esprit de responsabilité propre et dans un contact direct entre
les diverses entreprises.

Adresse de l'auteur
E. Triimpy, président de la direction de l'Aar et Tessin S.A. d'Electricité,
Bahnhofquai 12, 4600 Olten.

Energieversorgung

L'auteur donne les bases de travail conventionnelles pour une
exploitation optimale dans le secteur de l'approvisionnement en
énergie. Pour réaliser cette conception, il utilise les seules bases
élémentaires du calcul différentiel et des variations entrant en
considération. A côté de ces interconnexions purement
thermiques, l'auteur a également abordé le problème des interconnexions

hydrothermiques avec des centrales hydrauliques
d'accumulation.

2. Momentanoptimierung eines thermischen
Verbundsystems

Will man die Erzeugungskosten für einen Verbundbetrieb
optimieren, so muss man zuvor die Abhängigkeiten der
Energieerzeugungskosten aller Kraftwerke von den Einspeiseleistungen

kennen. Sie heissen Absolutkostenfunktionen (Fig. la),
und sie sind in der Regel nur von thermischen Kraftwerken
bekannt. Jedoch auch von Übergabestellen existieren solche
Absolutkostenfunktionen. Für Kraftwerke und Übergabestellen

gelten gleichzeitig auch minimale und maximale
Grenzleistungen Pi bzw. Pi.

Die Absolutkostenfunktionen Ki werden dann durch folgende
Gleichungen beschrieben

Ki Fi (Pf) (1)

Pi Lj Pi A Pi /=1...« (2)

Wir wollen annehmen, dass die Absolutkostenfunktionen
stetig sind und 1. und 2. Ableitungen besitzen. Die ersten
Ableitungen nennt man die Zuwachskosten ki (Fig. lb). Für sie

gilt

ki fi (Pi) dFiJ£ù (3)

Wenn man annimmt, dass die Absolutkosten mit der Leistung
nicht fallen, so gilt auch

Betriebsoptimierung in der elektrischen
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tsfr./h]
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Fig. 1 Typische Absolutkostenkurve a) und die dazugehörige
Zuwachskostenkurve b)

ki /i(Pi) ^ 0. (Monotonitätsbedingung) (4)

Wenn darüber hinaus auch die Zuwachskosten mit der

Leistung steigen, so gilt ferner

dfi (Pi)
dPi > 0. (Konvexitätsbedingung)1) (5)

K — jr Ki 2 Fi (Pi) — Min. (Zielfunktion)
i l i 1

2 Pi — Pv Ph const.

chungen lösen und nachprüfen, ob die Lösungen Minima der
Kosten ergeben. Zur Lösung eines Extremalproblems mit
Nebenbedingungen kann man grundsätzlich zwei Wege gehen :

Entweder man versucht die Nebenbedingungen durch Elimination

in die Zielfunktion einzuarbeiten oder, falls dies nicht
gelingt oder umständlich ist, man wendet die Lagrange-Methode
an. Sind Nebenbedingungen auch noch in Ungleichungsform
gegeben, so muss man die Lagrange-Methode durch diejenige

von Kuhn und Tucker erweitern. Wir werden zunächst, um
die Lagrange-Methode in ihrer ursprünglichen Form verwenden

zu können, die Ungleichungsbedingungen ausser acht
lassen. Die Lagrange-Methode besteht nun darin, dass man eine -
entsprechend der Anzahl der Nebenbedingungen - durch Zu-
satzterme erweiterte Zielfunktion zugrundelegt. Jeder Zusatz-
term besteht aus dem Produkt eines Lagrangefaktors und der

betreffenden Nebenbedingung in Nullform. Eine solche erweiterte

Zielfunktion, auch Lagrange-Funktion <P genannt, lautet
in unserem Fall

0 (Pi...P„, X) 2 Fi (Pi) - X(PL- P, I Pv) (9)

Die neue Zielfunktion enthält jetzt zwar eine Unbekannte
mehr. Wir werden jedoch in den notwendigen Bedingungen
auch eine zusätzliche Gleichung erhalten. Die notwendigen
Bedingungen bestehen darin, dass alle partiellen Ableitungen
nach den Veränderlichen Pi...Pn null zu setzen sind. Es müssen
also folgende Gleichungen erfüllt sein (Pl ist hierbei als

konstant anzusehen)

80
8Pi

dFj (Pi)
dPi

X 1 —
8Pj

l...n (10)

Sofern (4) und (5) erfüllt ist, hat die gestellte Optimierungsaufgabe

eine eindeutige Lösung. Die Auswahl der einzusetzenden

Maschinen sei schon vorbestimmt, dann lässt sich die

Haupt-Optimierungsforderung bereits hinschreiben. Sie lautet

(6)

mit den bereits erwähnten Grenzleistungsbedingungen (2)

Pi ^ Pi ^ Pi. (7)

Würden wir die Leistungsforderung der Abnehmer ausser
acht lassen, hätte man die triviale Lösung: «Man schalte alle
Kraftwerke ab», was wohl nicht der Sinn einer Optimierung
sein kann. Aus diesem Grund müssen wir noch die
Nebenbedingung berücksichtigen, welche die Abnehmersummenleistung

als konstant festlegt (Fig. 3). Die Abnehmersummenleistung

Pl ist die Differenz zwischen der Summe der
Kraftwerksleistungen und den Netzverlusten Pv. Es ist also noch
die folgende Bedingung zu beachten

Hinzu kommt noch die Nebenbedingung Gl. (8). Damit
haben wir n + 1 Gleichungen für n + 1 Unbekannte (Pi...
Pn, X).

2.1 Sonderfall: Vernachlässigung der Netzverluste

Setzt man die Netzverlustleistung Pv 0, so vereinfachen
sich die Gleichungen (10) so, dass man alle Ableitungen der
Absolutkosten nach den Einspeiseleistungen gleich X setzen

muss, das heisst man erhält die sehr einfache Forderung

y

f"(x)>0 oder

f (xi)*f(x2) ^X,xi«x2,

Fig. 2 Konvexe Funktion

(8)

Aufgrund der gemachten Voraussetzungen über die
Absolutkostenfunktionen ist es uns möglich, das Optimierungsproblem

mit Hilfe der Differentialrechnung zu lösen, und zwar
dadurch, dass wir notwendige Bedingungen aufstellen, danach
die aus den notwendigen Bedingungen resultierenden Glei-

x) Eine Funktion / (x) heisst konvex, wenn das arithmetische Mittel
der Funktionswerte für verschiedene Argumente grösser ist als der
Funktionswert für das arithmetische Mittel der Argumente (Fig. 2)

(»0-

Pn0~

Netz
mit Netzverlusten

'v =.^-?.Bit<PiPk
1=1 k=1

IiIn
| PL=EPL. const.

I.~~(j B
" i"-1

Fig. 3 Verbundnetz mit n Kraftwerken und I Lasten
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Fig. 4 Optimierung eines Verbundsystems unter Vernachlässigung
der Netzverluste durch Gleichsetzen der Zuwachskosten /j (Pj)

dFj (Pj)
dPi

und

/j(P|) ' A j l...n

2 Pi Pl.2)

(10a)

(8a)

Pv= J 2 Pi Pk
i=1k=l

stant bleiben. Ferner ist angenommen, dass die komplexen
Abnehmerströme sich bei veränderlicher Abnehmersummenleistung

Pl untereinander nur proportional ändern dürfen.
Zur Auflösung der Gleichungen (10) benötigt man die Ableitung

dPv/dPj. Die Matrix der Pik ist symmetrisch und positiv-
definit. Dann ergibt sich

4£=2 2 %p, (12)

Die Gleichungen (10) lassen sich, wie im folgenden beschrieben

wird, nach Einführung der Verlustformel leicht auflösen.
Man erhält zunächst die folgenden Gleichungen

dFj (Pj)
dPi fi (Pj) 2(1-

8Pv\

11

ÖP.i

n

2 2 5ikPk
k= 1

(13)

(14)

Die Ableitungen der Absolutkosten sind die Zuwachskosten.

Es ist also zweckmässig, aus den Absolutkostenfunktionen

Fi(Pi) durch Differentiation die Zuwachskostenfunktionen

/i(Pi) bereitzustellen. Nun ist es leicht, die Forderung
(10a) zu erfüllen. Hierzu zeichnet man die Zuwachskostenkurven

aller Kraftwerke nebeneinander (Fig. 4) auf. Beim Anlegen
eines waagerechten Lineals in der Höhe 2 ergeben die Schnittpunkte

jeweils optimale Betriebszustände, und zwar für Pl
2 Pi- Damit lässt sich eine Lastverteilerkurvenschar Pi
i
(Pl) gewinnen, wie sie in Fig. 5 wiedergegeben ist. Fig. 6 zeigt
auch anschaulich, warum sich das Minimum der Absolutkostensumme

nur dann ergibt, wenn die Zuwachskosten, das heisst
die Steigungen der Absolutkosten, gleich sind. Man sieht auch
ferner, dass sich mit Sicherheit ein eindeutiges Minimum bei
konvexen Absolutkostenfunktionen ergibt. Die Bedingung ist
hinreichend, wie man leicht einsieht, jedoch nicht zugleich auch
notwendig; denn es genügt bereits, dass die Zielfunktion (6)
unter Berücksichtigung der Nebenbedingung (8a) konvex ist.

2.2 Berücksichtigung der Netzverluste durch eine Verlustformel

Unter Netzverlusten Pv versteht man die Summe der
Verlustwirkleistungen in den Übertragungsmitteln. Man kann sie

somit als Differenz der Kraftwerks-Einspeiseleistungen und
der Abnehmerleistungen gemäss definieren, das heisst es ist

Pv 2 ~ -Pl- Die Netzverluste sind Funktionen der Kraft-
i

werkswirk- und Blindleistungen, der Einspeisespannungen, der
Abnehmerwirk- und Blindleistungen und deren Spannungen;
ferner sind sie auch vom Schaltzustand des Netzes und den

Transformatorstufenstellungen abhängig. Unter gewissen
vereinfachenden Annahmen ist es möglich, mit guter Näherung
eine Verlustformel durch eine quadratische Form der Pi
anzugeben. Die folgende Verlustformel von G. Krön

21 2 2 Pik Pk) - 2 2 Bü Pj. (15)
k 1

k#j
Diese Gleichungen können nun iterativ für jedes angenommene

2 gelöst werden. Man erhält dann wieder Lastverteilerkurven,

ähnlich wie in Fig. 5 wiedergegeben. Gegenüber dem

Fall ohne Netzverluste ergibt sich dann nicht mehr ein Schnitt

P;

p3 =qypL>
p2=^2(pL)

p, =% (pl>

P P
L L

Fig. 5 Lastverteilerkurvenschar Pj <p i Pl)

(11)

gilt unter der Annahme, dass die Kraftwerke mit konstantem
cos cp und konstanter Spannung einspeisen und dass der
Netzzustand mit den Stufenstellungen der Transformatoren kon-

2) In diesem Fall sind also die Summen der Einspeiseleistungen einerseits

und der Abnehmerleistungen einander gleich.

Fig. 6 Anschauliche Optimierung eines Verbundsystems von zwei
Kraftwerken ohne Berücksichtigung der Netzverluste.
Durch die gegeneinander um 180° gedrehten Absolutkostenkurven

wird gewährleistet, dass die Summe der
Kraftwerksleistungen und Pg konstant gehalten wird.
Das Minimum der Absolutkostensumme tritt ein, wenn die
Steigungen beider Kostenkurven gleich sind.

Bull. SEV/VSE 67(1976)1, 10. Januar (B 17) 17



M 2ZBj|<Pk)

k*i

Fig. 7 Iterative Auflösung der Optimierungsgleichungen unter
Berücksichtigung der Netzverluste.

Die Gerade, welche die Zuwachskosten schneidet, hat eine
negative Steigung und schneidet die kj-Achse im allgemeinen
unterhalb von A

der Zuwachskostenfunktion mit einer waagerechten Geraden

in der Höhe X, sondern ein Schnitt der Zuwachskostenfunktion
mit einer fallenden Geraden mit der Steigung — 2 k B'jj

(Fig. 7). Ferner ist der Schnittpunkt dieser Geraden mit der

jAi-Achsc um — 2 ^ B\k Pk versetzt. Die hierfür notwendige
k A j

Grösse k ist durch die Berücksichtigung der Verluste grösser

geworden, was seinen Grund darin hat, dass Verluste Geld
kosten. An dieser Stelle wäre es nützlich, etwas über die
anschauliche Bedingung von k zu erfahren. Der folgende
Abschnitt sagt Näheres darüber aus.

2.3 Bedeutung von k und das Zuwachskostenintegral

Gleichung (13) lässt sich auch in Differentialform schreiben.

Man erhält dann

dFj(Pj) =k^~~ dP\.

Durch Summation über alle j l...n erhält man

2 dFi (Fi) d f Fi (Fj) — dK k 2 |p- dPi.
1 1 1 1 i 1

dK= k dPL

und

k dK
dP-L '

PL

K (Fl) - K (Fr,) / k (Fl) cIP!:.

pl

2.4 Berücksichtigung von Gleichungs- und

Ungleichungsbedingungen

Betrachten wir in Fig. 6 die Verhältnisse wie die optimale
Kraftwerksleistung Fj durch einen Schnitt mit einer fallenden
Geraden ermittelt wird, so erkennt man, dass in den Fällen,
in welchen man einen Leistungswert Fi festlegen will (zum
Beispiel in einem Laufwasserkraftwerk), sich dort die Zuwachskosten

automatisch dadurch ergeben, dass man anstelle einer
Zuwachskostenkurve eine senkrechte Gerade mit der Abszisse

Fi einführt. Jeder Schnitt mit einer fallenden Geraden ergibt
dann immer nur den Abszissenwert Fi. Die Ordinate liefert
den Zuwachskostenwert mit dem die Leistung des Laufwasserwerks

differentiell zu bewerten wäre. Damit liefert die
Gleichungsbedingung eine Bewertung der Energie.

Im Falle der mit den Gleichungen (7) eingeführten
Ungleichungen gibt es zwei Möglichkeiten : entweder wir befinden uns
im Inneren oder an den Rändern des Intervalls. Im Innern
ergibt der Schnitt der fallenden Geraden mit der Zuwachskostenfunktion

die optimale Kraftwerksleistung Fj. Bei hinreichend
klein angenommenem Lagrangefaktor k würde die fallende
Gerade die Zuwachskostenkurve nicht mehr treffen. Damit sich

X(PL)-

(16)

(17)

dP,

Fig. 8 Das Zuwachskostenintegral

Die rechts stehende Summe ist nun aber gerade das

vollständige Differential dPi, woraus sich die Beziehung ergibt

(18)

(19)

Der Lagrange-Faktor X erweist sich somit in Abhängigkeit
von Fl als die abnehmerseitige Zuwachskosten-Funktion. Beim
iterativen Auflösen der Gleichungen (15) mit vorgegebenem k

ergibt sich aus der Nebenbedingung die Abnehmerleistung Fl.
Damit erhält man X als Funktion von Fl. Der Flächeninhalt
unterhalb der Kurve X X (Fl) erweist sich in einem Gebiet,
in welchem die Zuwachskostenfunktionen der Kraftwerke
monoton wachsen und keine Sprünge aufweisen, als die Differenz

der Absolutkosten zweier Optimierungszustände, das

heisst es ist

l-l(f) /I- c a)/ ;/ 1 CO/ 1 -S5/ | 2^/ | -p c
Pj 2 Pit / 1

C O/ Lii >/ 1

: i ^ P: £ P:
1 Q. 1

£

motorischer Betrieb
Q-

generatorischer Betrieb

f. (p.) _ m.
dLi(pi>

1 1 " dPi
b)

— ' i- 1

F i 2
P ii pj PI

motorischer Betrieb generatorischer Betrieb

(20)

Die rechte Seite von Gleichungen (20) wird Zuwachskosten-

integral genannt (Fig. 8).

Fig. 9 a) Pump- und Entnahmewassermenge pro Zeiteinheit
in Abhängigkeit der aufgenommenen bzw. abgegebenen
elektrischen Leistung

b) Zugehörige fiktive Zuwachskostenkurven für einen
bestimmten Wasserbewertungsfaktor /i;

K(PL)-K(PL)=|\(PL)

18 (B 18) Bull. ASE/UCS 67(1976)1, 10 janvier



als Ergebnis hier wenigstens der Minimalwert Pj durch einen

Schnitt mit der fallenden Geraden einstellt, muss die
Zuwachskostenkurve am linken Ende durch eine senkrechte Gerade
nach unten ergänzt werden. Durch entsprechende Überlegungen
findet man auch, dass die Zuwachskostenkurve rechts durch
eine senkrechte Gerade nach oben ergänzt werden muss, damit
auch dort durch einen Schnitt mit der fallenden Geraden der
Maximalwert Pj ermittelt wird. Die gleichen Ergebnisse hätten
wir erhalten, wenn wir die erweiterte Lagrange-Methode von
Kuhn und Tucker zur Berücksichtigung von Ungleichungsbedingungen

angewandt hätten.

2.5 Optimale Maschinenauswahl und Einsatzplanung

In der bisher dargestellten Theorie des optimalen Verbundbetriebs

wurde vorausgesetzt, dass in jeder Momentanoptimierung

die Frage, welche Maschinen überhaupt am Verbundbetrieb

teilnehmen, bereits vorher entschieden wurde. Über
einen gewissen Zeitraum, zum Beispiel eines Tages (oder eines

Wochenendes) kann man an Hand der zu erwartenden
Belastungskurve Pl g (t) durch einen besonderen Algorithmus
schon eine Entscheidung über den Maschineneinsatz machen.

Das dabei zugrundeliegende Konzept besteht im wesentlichen

darin, dass einzelne Kraftwerke mit relativ hohen Zuwachskosten

eigentlich nur die Aufgabe haben können, erstens

Belastungsspitzen zu decken und zweitens andere Kraftwerke, die

im Bereich der oberen Grenzleistung noch höhere Zuwachskosten

haben, zu hindern, dass sie besonders unter diesen

hohen Zuwachskosten arbeiten. Allerdings ist das Problem
noch etwas komplizierter. In den Pausen entstehen zwar keine

Produktionskosten, jedoch beimWiedereinschalten entstehen

Anfahrkosten, die mit wachsendem Stillsetzungszeitraum ex-

/ { f Fi (t) + f Mi Li (Pi (0 - 2 (ü)
tl 1 i=n + i

ponentiell grösser werden. Es muss also geprüft werden, ob
und wie lange in Schwachlastzeiten solche Kraftwerke
abgeschaltet werden können. Hierzu existiert ein Algorithmus [1]
auf den hier nicht näher eingegangen werden soll.

3. Der hydrothermische Verbundbetrieb mit
Speicherwasserkraftwerken

Beim hydrothermischen Verbundbetrieb kommt ein wesentlich

neuer Gesichtspunkt hinzu: Der Einsatz von speicherfähiger

Energie in Form von Wasser. Um eine Antwort auf die

Frage zu geben, wie die Wasserkräfte einzusetzen sind, muss
über einen gewissen Zeitraum optimiert werden. An die
Stelle des Augenblickskostenminimums tritt damit das Minimum
eines Kostenintegrals für die n-thermischen Kraftwerke über
diesen Zeitraum, was wir mit der Forderung

la n t2 n

/ 2 Ki dt / 2 Fi (Pi) dt Min (21)
ti i 1 ti i 1

ausdrücken können. Weil hier ein Integral als Zielfunktion
verwendet wird, benötigen wir für die Lösung die Methoden der

Variationsrechnung. Aus Prognosen seien über den gleichen
Zeitraum für die s Wasserkraftwerke diejenigen Wassermengen
Qi bekannt, die voraussichtlich zur Verfügung stehen werden.

Für Pumpspeicherwerke sind diese Qi praktisch gleich null zu

setzen, da diese Kraftwerke in der Regel keinen Zulauf haben.

Tatsächlich ist Qi sogar etwas negativ anzusetzen wegen der

unvermeidbaren Wasserverluste. Die für die Leistungsabgabe

pro Zeiteinheit benötigten Wassermengen sind Funktionen der

Leistung, die mit Li (Pi) bezeichnet werden sollen. Im
motorischen Betrieb sind diese Li (Pi) nur für diskrete Funktionswerte,

entsprechend den Nennleistungen der Pumpen definiert
(s. Fig. 9a). Die Sollwertbedingungen für diese Speicherwasserwerke

lauten dann in der Form von Integralnebenbedingungen

t2

/ Li (Pi (t)) dt Qi (22)

ti

oder in Nullform

*2

J Li (Pi (t)) dt — Qi 0; i n + l...n+s. (23)
ti

Für die Abnehmersummenleistung Pl g (t) sei ebenfalls aus

Prognosen die zu erwartende Lastcharakteristik bekannt
(Fig. 10). Auch diese Nebenbedingung in Gleichungsform wird
in Nullform vorgegeben. Man erhält

n + s

2 Pi (t) - Pv (Pl «...Pn+s (0) - g (0 0 (24)
i 1

Um auch diese Aufgabe nach der Methode von Lagrange
lösen zu können, setzen wir die Zielfunktion zusammen mit
den Nebenbedingungen durch die folgende Lagrange-Funktion
an

0 (t, Pl (t\..Pn+s (0? /^n+l...yWn+s, A (/))

n + s

\dt— 2 Pi Qi- (25)
i n + 1

Integralnebenbedingungen erhalten zeitlich konstante La-
grange-Faktoren jui, Gleichungsnebenbedingungen hingegen
zeitlich veränderliche Lagrange-Faktoren 2 (t). Die notwendige
Bedingung für das Eintreten eines Minimums ist das

Verschwinden der Variationsableitung nach dem Vektor p
(Pi...Pn+s), das heisst es muss sein

[t? (tl, Pl (Ü-Pn+s (0s gn+l...jUn+s, 2 (t))]p 0* (26)

Formal wäre nun zu setzen

[<P]„ + -*.($;)- +...=o (27)

Da aber die ersten und die höheren Ableitungen in unserem
Ansatz nicht vorkommen, bleibt nur 0 zu berücksichtigen.

Das bedeutet aber, dass alle partiellen Ableitungen nach
den Pi (i l...n+s) gleich null zu setzen sind. Man erhält
dann für die thermischen Kraftwerke die Bedingungen

'«QgSa_iw(l_
für t\ gf t -f. t2 und j l...n;

für die Speicherwasserkraftwerke

m-1(o(l_^)_0i
für tiifttLtz und j n + l...n+s.

"n + s

2 F(o-Pv-g(o
-i 1
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Fig. 10 Typische Tagesbelastungskurve

Setzt man, wie auch schon in Gleichung (13) geschehen, die

Ableitungen der Absolutkostenfunktionen gleich den
Zuwachskostenfunktionen, dann erhält man für die thermischen Kraftwerke

SFj CPi (Q)
dPi /j (-Pj (0); für j l...n. (30)

Für die Speicherwasserkraftwerke drängt es sich auf, die mit
den Faktoren m multiplizierten Funktionen Li als
Zuwachskosten-Funktionen einzuführen (Fig. 9b). Dann wäre zu setzen

ßi -
8h (Pi (0)

8Pi
— fs (Pi (0); für; n + l...n+s. (31)

Hierdurch lassen sich die notwendigen Bedingungen
einheitlich schreiben in der Form

fi (Pi (t) 2 (t) l — ffpi. ' J= 1-n+s. (32)

Damit wäre formal das Problem des hydrothermischen
Verbundbetriebs auf den thermischen Verbundbetrieb zurückgeführt.

Die zu bewältigende Rechenarbeit ist jedoch sehr viel
grösser. Es muss für jeden Zeitpunkt t (in einem Tag vielleicht
24mal für jede Stunde) das System (32) unter Beachtung der

Nebenbedingungen nach Gleichung (24) gelöst werden. Hierbei
sind die Faktoren ßi zunächst noch unbekannt. Sie müssen
einstweilen geschätzt werden. Welche unmittelbar interpretierbare

Bedeutung haben diese Faktoren? Die Antwort ist leicht
zu geben: Sie haben die Dimension Geldeinheit pro Volumeneinheit

Wasser des betreffenden Speichers. Man nennt sie daher
Wasserbewertungsfaktoren. Beim rechnerischen Abfahren der

Tagesbelastungsfunktion g (t) zum Beispiel nach Fig. 10 (wobei
X (t) so gewählt werden muss, dass Gleichung (24) in jedem
Zeitpunkt erfüllt wird) ergibt sich ein Wasserverbrauchsintegralwert

Qi nach Gleichung (22) für jedes Wasserkraftwerk.
Nun gilt die Regel: Wird zuviel Wasser verbraucht, so wäre

Pi zu niedrig angesetzt, das heisst das Wasser zu billig; wird
hingegen zuwenig Wasser verbraucht, so wäre m zu hoch
angenommen. Nach dieser « Wasserbörse» innerhalb des Verbundbetriebs

erhält man die Lösung minimaler thermischer
Energieerzeugungskosten über den betrachteten Zeitraum. Hierbei ist
es wesentlich, dass die tu, sind sie einmal bekannt, für den

Betrieb über den betrachteten Zeitraum als konstant eingesetzt
werden müssen, auch dann wenn die Prognosen über den
betrachteten Zeitraum nicht genau zutreffen, es sei denn, man

erkennt rechtzeitig, dass zum Beispiel gleichzeitig die

angenommenen Wassermengen ßi zu gross waren und die
Belastungskurve zu niedrig angesetzt wurde. Dann müsste man die

pi höher setzen. Im allgemeinen werden sich die Unsicherheiten
jedoch gegenseitig aufheben.

4. Folgerungen

Die Rechenvorschriften zur Berechnung eines optimalen
Verbundbetriebs liefern primär Vorschriften über den
zeitlichen Einsatz der Kraftwerke, kurz «optimale Lastverteilung»
genannt. Dies führt im einzelnen zu folgenden Konsequenzen:
Beim Durchlaufen einer zeitlichen Belastungskurve (zum
Beispiel Tagesbelastungskurve) ergeben vorgegebene Kostenkurven

vorgeschriebene Leistungswerte in Abhängigkeit der

Zeit, hingegen ergeben fest vorgegebene Leistungen in
Abhängigkeit der Zeit entsprechende Kosten, die dann auch zeitlich

veränderlich sind.
Eine logische Folge davon wäre zum Beispiel auch ein

entsprechend dem Auslastungsgrad des Netzes entsprechender
zeitlich veränderlicher Tarif. Er könnte neben der Rundsteuerung

auch dafür sorgen, dass die Tagesbelastungskurven
ausgeglichener verlaufen. Die Optimierungsrechnung liefert
ausserdem auch für den Fall, dass Speicherwasserkraftwerke am
Verbundbetrieb beteiligt sind, aus den vorgegebenen Arbeitsmengen

über einen Zeitraum eine Bewertung des Speichermediums

(in der Regel Wasser). Die hier vorgetragene Theorie
liefert ausser wirksamen Rechenvorschriften auch einen
interessanten Einblick in den Mechanismus der Kostenbewertungen
innerhalb eines Energieversorgungsunternehmens, aber auch
sinnvoller Kostenverrechnungen zwischen verschiedenen
Unternehmen. Zur Kostenorientierung benötigt man wenigstens
einen Partner mit vorgegebener Kostenkurve.
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