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Zur Berechnung des Kapazitätsbelags
von Streifenleitungen mit der Teilflächenmethode
Von F. Arndt

Die Kapazitätsbeläge von Streifenleitungen werden mit Hilfe
der Teilflächenmethode berechnet, wobei durch eine optimale
Teilstreckenunterteilung der Fehler minimal wird. Es wird eine
obere und eine untere Fehlerschranke festgelegt, die sich einfach
aus dem Potentialverlauf ermitteln lässt. Weiter wird ein
Näherungsausdruck zur Fehlerabschätzung angegeben.

621.372.821 : 621.3.054

Les capacités linéiques de canalisations en bande sont
calculées en appliquant la méthode des aires partielles, l'erreur
étant rendue minimale par une subdivision optimale des sections
partielles. Les limites supérieure et inférieure d'erreur peuvent
être facilement déterminées d'après la variation du potentiel.
L'auteur indique en outre une formule approchée pour
l'estimation de l'erreur.

1. Einführung
Nur in Sonderfällen ist die Berechnung der Kapazität durch

exakte mathematische Methoden möglich. «Exakt» heisst
dabei : Die Lösung ist vollständig durch einen in der Mathematik

definierten Ausdruck darstellbar. Diese Ausdrücke (z.B.
elliptische Integrale) sind jedoch in vielen Fällen nur in tabel-
lierter Form bzw. nur durch numerische Integration zugänglich.

Aus diesen beiden Gründen interessieren sehr oft
Näherungsverfahren.

In dieser Arbeit wird als Näherungsverfahren die
Teilflächenmethode, z. B. [1...9]1), benützt, um den Kapazitätsbelag
von Streifenleitungen zu berechnen. Eine Streifenleitung ist
hier eine Anordnung von Leitern mit polygonaler Randkurve
zwischen parallelen leitenden Ebenen (Fig. 1). Die Teilflächenmethode

besitzt gegenüber anderen Näherungsverfahren
folgende Vorteile:

1. Es werden nur die Ladungen auf der Leiteroberfläche und
nicht das gesamte Feld approximiert (wie z. B. bei der Methode der
finiten Differenzen), das man zur Kapazitätsberechnung nicht
unmittelbar benötigt. Dadurch hält sich der numerische Aufwand in
engen Grenzen.

2. Die Teilflächenmethode ist für jeden Geometrie-Grundtyp
verwendbar, für den die Greensche Funktion angebbar ist.
Ausgehend von diesem Grundtyp (z. B. Linienladung zwischen zwei
leitenden Ebenen) kann die Geometrie der zu untersuchenden
Leiteranordnung in weiten Grenzen verändert werden (z. B. Mehrfachleitungen

mit polygonaler Leiterberandung zwischen zwei leitenden
Ebenen), ohne dass neue Ansätze getroffen werden müssen.

3. Die Teilflächenmethode konvergiert sehr gut. Bereits mit
wenigen Teilflächen pro Leiteroberfläche sind Fehler unter 1 %
erreichbar.

Ziel dieser Arbeit ist weiter, durch Approximation des

Ladungsbelags mit einer Treppenfunktion ungleicher Stufenbreite

den Fehler bei gegebener Stufenzahl zu optimieren. Da
bei einem Näherungsverfahren eine Fehlerabschätzung wichtig
ist, wird gezeigt, dass man eine obere und eine untere
Fehlerschranke sehr einfach, nämlich direkt aus dem Potentialverlauf,

ermitteln kann. Darüber hinaus wird ein Näherungsdruck
zur Fehlerabschätzung angegeben, der nahe bei dem wirklichen
Fehler liegt.

2. Teilflächenmethode
Die Teilflächenmethode ist bereits ausführlich in [1...9]

dargestellt. Es sei deshalb nur kurz auf das Wesentliche
eingegangen.

Zur Bestimmung der Kapazitätsbeläge c auf einem System
mit M Leitern benutzt man zunächst die Beziehung zwischen

D Siehe Literatur am Schluss des Aufsatzes.

den Ladungsbelägen Q und den Potentialwerten V auf diesen

Leitern [10]

(Q) (c)( V)

mit

fCll C12 ClM '

C21 C22 C2M

^CMl CM2 CMM/

(1)

Matrix der Kapazitätsbelagskoeffizienten

Cik,

wobei cik Cki ist.

Aus Gl. (1) ergibt sich die Vorschrift für das Randwertproblem

zur Bestimmung eines einzelnen Kapazitätsbelagskoeffizienten.

Cki zwischen dem Leiter k und dem Leiter /, zu

V(x,y) -1= 0 konstant auf dem Leiter, z. B. gleich Ui,
V (x, y) 0 auf den Leitern n #= /

Es ist also

Cki ^

ök
Üi Fn + l 0 (2)

Der unbekannte Ladungsbelag Qk wird näherungsweise
mit der Teilflächenmethode bestimmt (wobei im vorliegenden
ebenen Fall anstelle von «Teilflächen» nur «Teilstrecken»
betrachtet zu werden brauchen). Der Umfang des Leiters k wird
dazu in Nk Teilstrecken .Skm (Fig. 1) unterteilt, längs deren der
unbekannte Ladungsbelag pro Breiteneinheit qkm konstant

angenommen wird. Der Ladungsbelag des Leiters k ist dann:

Nk
Qk ^ qkm ^km (3)

m 1

(Nk ist die Anzahl der Teilstrecken auf dem Leiter k).
M

Zur Berechnung der insgesamt N 2 Nk Unbekannten
k 1

qi der M Leiter sind N Gleichungen nötig, die man mit folgender

Beziehung für das Potential Vi in einem beliebigen
Aufpunkt Fi zwischen den leitenden Ebenen aufstellen kann (wobei
anstelle der Doppelindizierung «km» in Gl. (3) zur
Vereinfachung der Schreibweise eine einfache Indizierung «_/'»

verwendet wird)

Vi 2 a» H
j i

(4)

an sind dabei die «Ladungskoeffizienten», die für einen

Geometriegrundtyp (z. B. hier Leiter zwischen parallelen
leitenden Ebenen) numerisch bestimmt werden können [siehe
Gl. (8)].

Bull. SEV/VSE 66(1975)16, 16. August (A 375) 873



y

<x„-y„ >

• •

o

Teilstrecke s,.

Fig. U

Untersuchte
Streifenleitungsanordnung

: 2sL i

parallelen leitenden
Ebenen (Höhe der Streifenleitung)

Um die benötigten N Gleichungen aufzustellen, legt man
den Aufpunkt P, nacheinander in jede Teilstrecke, z. B. jeweils
in deren Mitte. Dort ist das Potential aber bekannt, nämlich
gleich dem vorgegebenen Wert Ui (z. B. 1 V) auf dem Leiter /
und Vn + i 0 [Gl. (2)] auf den restlichen Leitern. Das so

aufgestellte Gleichungssystem

(F) (u) (q) (5)

Fig. 2 Einfache Streifenleitung
Kapazitätsfehler Fe bei Verschiebung der beiden Aufpunkte
in der Nähe des Leiterrandes
Teilstreckenzahl N — 6; Teilstreckenunterteilung nach Gl. (11)

w Breite des Innenleiters
t Abstand des Aufpunkts vom Leiterrand

ii Breite der ersten Teilstrecke
h Höhe der Streifenleitung

kann dann nach den N unbekannten Ladungsbelägen qj pro
Breiteneinheit aufgelöst werden.

Die Ladungskoeffizienten aij in Gl. (4) bzw. (5) werden aus
der Lösung der allgemeinen Poissonschen Gleichung für den

ebenen Fall [11] bestimmt

v(x, y) J G (x, y; x', y') (x\ y') d,v' (x\ y') (6)

(G ist die Greensche Funktion [11].)

Bei der Teilflächenmethode ist hier der Ladungsbelag q (x',
y') pro Teilstrecke .vj jeweils konstant angenommen, so dass

man näherungsweise für das Potential Vi im Punkt Pi (xi, yi)
erhält :

N
1 rVi (xi, yi) 2 Ii — I G (xi, yi; xj', y{) djj' (x{, y{) (7)

j 1
Sj

Durch Vergleich mit Gl. (4) ergibt sich für die dort mit
öij abgekürzten Potentialkoeffizienten

ß« -j f G (xi, yil xi', Tj') d.Vj ' (xs', yt ')
Sj

(8)

In Tabelle I sind die Greenschen Funktionen für einige
Geometriegrundtypen zusammengestellt. Für das vorliegende
Problem der Streifenleitung ist die Greensche Funktion Nr. 4
einzusetzen. Die Integration in Gl. (8) wird numerisch
durchgeführt, wobei man die Singularität bei x' x und y y'
separieren muss.

3. Optimierung der Teilstrecken
Die Teilflächenmethode wird als Approximationsproblem

interpretiert, bei dem das Potential Vk konstant längs einer
Leiterberandung durch Gl. (4) bzw. (7) angenähert werden
soll. Nach Gl. (4) bzw. (7) wird Übereinstimmung in den

Funktionswerten

Vi (xi, yi) Vk (9)

gefordert an N festen Aufpunkten.
Es liegt zunächst der Gedanke nahe, durch geeignete Wahl

der Lage der Aufpunkte (insbesondere derjenigen auf der
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Beispiele zur Greenschen Funktion Tabelle I

»P(*,y,z)
-J

Punkt laduna

R(x'.y:z,) G(co)=O

G(x,y.z;x;y;z,)=^-r(xyZi!(;y;z.)

p (x;y)

r7 Linien laduna

R(xly') G(oo)=0

G(x,y; xy) =-1- - In.-, ^2TC r(x,y; x,yj

r0= Bezugsradius,bei dem G einen bestimmten
Wert annehmen möge

P(x,y)

R'(x;-y')

Linien laduna über
leitende Ebene

G=0
G|x,y,x,y)-^ In

r, (»c.^x'y)

I//////J SS S/SssSs^fSssSs////////
• P(x,y)

' 1////W

•R(x',y')

W////ov//w///yw^

r,fv « v-v.)_ 1 v22- In (x-x')+(y-y'-2nhrb.y.x.y 1-^2_ in
(x_xf,(y*>,._2nh|-

G=0
Linienladung zwischen
parallelen leitenden

Ebenen

sinh2f -x'+sin24^'-L |n 2 h 2 h
4TC sinh^2ÇS'+ sin^y+y'2 h 2 n

[6]

I inienladunq in einem
Jejtgndem Zylinder

G(xy.x'y')=-fln-T-^—\ + ln i xy'0
0(x,y,x,y; ^ ^(x.yx'.y) R /

rQ vgl. Bemerkung bei

{

f f
h m=l kTl

*„^M)Sin°(!^inM.(xVI) sin =2^)
Linienladuna in einem
Jgjtendem Rechteckkasten [18]

m2+ k2(y ]
Î

y èh
y' à h

'/////77TTTTTTfTTTrTT\
Linieniaduna
einer dielektrischen Schicht
überleitender Schicht

G(x y x'y') - —V (-1 f In |(x-x')2 + (y+y'+2kh);|
01x,y,xy;_4it^ |) ln[(x-x)2+(y-/-2kh)5 J

y'-2(k-1)
y'+2(k+l)h):

[7]

k=0

k=0

_
1 f,i-ine!-ei",,lJ(x-x,)+(y+y-2(k-l)h)!]

k+e/ ln[(x-xT+(y-y'+2(k+l)h)j
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Randteilstrecke) zu versuchen, den Kapazitätsfehler gegenüber
dem bei Lage der Aufpunkte in Teilstreckenmitte zu verringern.

In Fig. 2 wird anhand der einfachen Streifenleitung
gezeigt, dass bei einer entsprechenden Verschiebung (t/si 0,19)
der beiden Aufpunkte jeweils auf der Randteilstrecke Ol bzw.
10 des Innenleiters der Fehler Fc bei den Abmessungen
w/h 0,01... 10 im Bereich Fc \ < 0,18 % bleibt gegenüber
| Fe | < 0,63 % bei Lage der Aufpunkte in Teilstreckenmitte
(t/si 0,5).

Weiter kann man versuchen, das Approximationsproblem
mit Hilfe der «mittleren Approximation» zu lösen. Hier gibt
man 7VP > N Punkte vor, an denen der Approximationsausdruck

(4) vorgegebene Werte annehmen soll [12],
Trotz der Vorteile dieser beiden Approximationsverfahren

(Verschiebung der Aufpunkte, mittlere Approximation), nämlich

hohe Genauigkeit, geringe Rechenzeit, ist ein Nachteil
schwerwiegend: Für jede Teilstreckenzahl und für jede Ände-
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Fig. 3 Hinsichtlich eines geringen Kapazitätsfehlers optimale Teilungs¬
verhältnisse Tj Sj+i/sj der Teilstrecken als Funktion von h/w
bei der einfachen Streifenleitung. Parameter ist die Anzahl N/2
der Teilstrecken pro Leiterhälfte

rung der geometrischen Abmessungen muss der Ort der
Aufpunkte für minimalen Fehler neu bestimmt werden. Dies kann
zwar etwa nach dem Kriterium eines möglichst glatten
Potentialverlaufs erfolgen, die Bestimmung ist dennoch unbequem
und zeitraubend. Im folgenden wird deshalb die Lage der

Aufpunkte durchweg in Teilflächenmitte und ihre Zahl gleich
der Zahl der unbekannten Ladungsbeläge pro Breiteneinheit

angenommen. Es wird die Teilstreckenbreite optimiert.
Die Teilstrecken müssen zweckmässigerweise an den Stellen

hoher Ladungsdichte (z. B. bei der einfachen Streifenleitung,
Fig. 2, in der Nähe der Leiterenden) kleiner sein als an Stellen

geringerer Ladungsdichte. In [3 ; 4] werden die Leiteroberflächen

bei Parallelbandleitungen so unterteilt, dass das
Verhältnis der Grössen zweier aufeinanderfolgender Teilstrecken
konstant ist (geometrische Unterteilung). Die geometrische
Unterteilung ist jedoch bei Streifenleitungen noch nicht optimal.

Anhand von Fig. 2 lässt sich erkennen, dass der Kapazitätsfehler

bei der Streifenleitung negativ ist, wenn die Aufpunkte
in die Mitten der Teilstrecken gelegt werden. Dies bedeutet,
dass der Fehler dann minimal wird, wenn der Gesamtladungs-
belag Qk auf dem Leiter k bei einer vorgegebenen Teilstreckenzahl

ein Maximum besitzt. Die optimale Teilstreckenunterteilung

wird mit einem Optimierungsverfahren nach [13]numerisch
ermittelt. Dieses Optimierungsverfahren gestattet, eine Funktion

mehrerer Veränderlicher

/(Fi, Tz, Ta,...) ßk (10)

zu optimieren, auch wenn (wie hier) kein direkt formelmässig
beschreibbarer Zusammenhang zwischen den Variablen und

ßk besteht.
Die Variablen sind im vorliegenden Fall die Teilungsverhältnisse

Tj Sj+i/sj jeweils zweier aufeinander folgender
Teilstrecken Sj und sj+i. Die Unterteilung in Teilstrecken wird
dabei symmetrisch zur Mitte des jeweiligen geraden Stücks der
Leiteroberfläche vorgenommen, das in Teilstrecken unterteilt
werden soll (bzw. symmetrisch zur Mitte des gesamten Leiters
bei einem Fall wie in Fig. 2). Es wird von der geometrischen
Unterteilung als erster Näherung ausgegangen und schrittweise
eine Verbesserung p + 1 gesucht, für die gilt :

f (Fip+i, F2p+i,...) > f (Tip, r2p,...)

Das Verfahren arbeitet mit sich dem Problem angleichender
Schrittweite.

In Fig. 3 sind die optimalen Teilungsverhältnisse Tj für die
einfache Streifenleitung aufgetragen. Man erkennt, dass sich

für Teilstreckenzahlen pro Leiterhälfte N/2 > 3 ein von den

Abmessungen nahezu unabhängiges Gesetz für die optimale
Teilstreckenaufteilung aufzeigen lässt:

Fi
Fj

10

3 U > 1)
OD

Lediglich bei sehr breiten Innenleitern (h/w 0,5) steigt
jeweils das Verhältnis der innersten Teilstrecke zu der
danebenliegenden auf etwa 10 an. Der Anstieg erklärt sich aus dem
bei sehr breiten Innenleitern nahezu homogenen Feld in der
Nähe der Leitermitte, wo dann die Teilstrecke sehr gross werden

kann. Das Gesetz (11) für die optimale Teilstreckenaufteilung

bei der einfachen Streifenleitung lässt sich auch ohne

grossen zusätzlichen Fehler bei Streifenleitungen mit mehreren
Innenleitern und mit Innenleitern von komplizierterem Quer-

876 (A 378) Bull. ASE/UCS 66(1975)16, 16 août



Fig. 4 Kapazitätsbelag bei der unsymmetrischen einfachen Streifenleitung

c Kapazitätsbelag
h Höhe der Streifenleitung
w Breite des Innenleiters
b Abstand des Innenleiters von der unteren Ebene

schnitt anwenden. Dies kommt daher, dass das Optimum der

Funktion von Gl. (10) sehr flach verläuft.
In Fig. 4 sind für die unsymmetrische einfache Streifenleitung

und in Fig. 5 für die gekoppelte Streifenleitung die

Kapazitätsbeläge als ein Berechnungsbeispiel für die

Teilstreckenunterteilung nach Gl. (11) aufgetragen. Die Anzahl
der Teilstrecken pro Leiterhälfte beträgt jeweils N/2 5. Der
Kapazitätsfehler ist dabei kleiner als 1 %.

4. Fehlerabschätzung
Bei einem Näherungsverfahren ist es wichtig, eine

Möglichkeit der Fehlerabschätzung zu besitzen. Hier bietet die

Teilflächenmethode, neben der Einfachheit sowie der relativ
hohen Genauigkeit bei geringer Teilflächenzahl, einen weiteren

Vorteil, wie in diesem Abschnitt gezeigt wird.
Es ist sinnvoll, zur Fehlerabschätzung der Kapazitätsberechnung

den Potentialfehler heranzuziehen, den man leicht
berechnen kann, weil man ja das vorgegebene Sollpotential
längs der Leiteroberfläche kennt. Als Kapazitätsfehler Fc wird
definiert

Fe
C Cw

Cw
(12)

wobei c der näherungsweise berechnete Kapazitätsbelag und
Cw der wirkliche Kapazitätsbelag sind.

Zunächst wird ein näherungsweise bestimmbarer Ausdruck
für den Kapazitätsfehler hergeleitet. Hierzu wird der zweite

Greensche Satz in der Ebene benutzt [14; 15]:

/(" 8v
dn

du
dn j ds yy (vAu — uAv) dx dy (13)

Fig. 5 Kapazitätsbeläge bei der gekoppelten Streifenleitung

a Eigenkapazitätsbelag cn
b Teilkapazitätsbelag C12

s Abstand der Innenleiter
Weitere Bezeichnungen siehe Fig. 4

wird über die Konturen der Oberflächen der Innenleiter sowie

längs der Kontur des Aussenleiters durchgeführt (längs des

Aussenleiters ist u 0, v 0).

Mit der Einführung der Potentialabweichung <5 Vi vom
vorgegebenen Sollpotential Ui auf der Leiteroberfläche /'

SVi Vi - Ui (14)

ergibt sich dann der Näherungsausdruck FNcn für den Fehler
des Eigenkapazitätsbelages cn des Leiters:

u sei gleich der Potentialfunktion des vorgegebenen Dirichlet-
schen Problems (im Bereich B zwischen den Leitern ist Au 0,

u ist auf der Leiterberandung bekannt), v sei gleich der nach
Gl. (7) näherungsweise berechneten Potentialfunktion (wofür
analog Av 0 gilt). Die Integration über die Randkurve W

FNcu

M Ni

2 2
i=ij=i

<7 U /
sj

Ô Vt
Ui

dsj

ßi
(15)

(Qi Näherungs-Ladungsbelag auf dem Leiter I, M Anzahl der
Leiter, Ni Anzahl der Teilstrecken auf dem Leiter ;,
Ladungsbelag pro Breiteneinheit auf der Teilstrecke j des Leiters i,
U\ ist das Sollpotential auf dem Leiter /).
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Fig. 6 Kapazitätsfehler Fc, näherungsweise berechneter Kapazitätsfehler
FNc sowie obere Fv+ und untere Fehlerschranke Fv~ bei der
gekoppelten Streifenleitung aufgetragen über der halben
Teilstreckenzahl N/2

Der Teilkapazitätsbelag cm zwischen den Leitern k und /
berechnet sich aus der gleichen Potentialverteilung, aber mit
anderem Näherungs-Ladungsbelag Qk [Gl. (2)]. Deshalb ist
für den Näherungsausdruck des entsprechenden Fehlers in
Gl. (15) ßk anstelle von Qi zu setzen. Der Fehler von Ck ist
grösser (Qk < Qi).

Eine Fehlerabschätzung kann dann als gelöst betrachtet
werden, wenn wie z. B. bei der Variationsmethode eine Fehler-
eingrenzung möglich ist, d. h. wenn man eine obere und eine

untere Fehlerschranke angeben kann. Dies soll im folgenden
für die Teilflächenmethode gezeigt werden.

Zur Angabe einer oberen und einer unteren Fehlerschranke
geht man wieder von der Beziehung (13) aus. Setzt man die
nach Gl. (7) näherungsweise berechnete Potentialfunktion
jeweils pro Leiterkontur / gleich dem dort auftretenden grössten
Wert Fmax l bzw. gleich dem dort auftretenden kleinsten Wert
kmini, so ergibt sich für die Fehlereingrenzung der Berechnung
des Kapazitätsbelags cn eines Leiters /:

Fminl y— Fmax 1- 1 < Fe < - 1 (16)

Fv~ Fv+

(Fv~ grösster negativer Potentialfehler, FV+ grösster positiver
Potentialfehler). Bei mehreren Leitern ist für TV bzw. Fv+jeweils
die Summe der maximalen Potentialfehler einzusetzen.

878 (A 380)

Die maximalen Potentialfehler sind aus Gl. (7) berechenbar,
nachdem die Ladungsbeläge pro Breiteneinheit bestimmt
worden sind. Da die grösste Potentialabweichung vom
Sollpotential erfahrungsgemäss meist an den Leiterkanten bzw.
-ecken auftritt, kann man sich in diesen Fällen auf die Beachtung

dieser Punkte beschränken. In Fig. 6 sind zum Vergleich
als Beispiel der Kapazitätsfehler Fc (berechnet aus der Beziehung

mit elliptischen Integralen [16]), der näherungsweise
berechenbare Kapazitätsfehler nach Gl. (15) sowie die obere
und untere Fehlerschranke FV~ und Fv+ nach Gl. (16) für eine

gekoppelte Streifenleitung angegeben.

5. Feldberechnung
Über die Kapazitätsberechnung hinaus ist es oft auch

interessant, bei einer Leiteranordnung Aufschluss über die Feld-
und Potentialverteilung zu erlangen. Es wurde hier ein
Zeichenprogramm zum direkten Zeichnen der Feld- und Potentiallinien

erstellt.
Eine Potentiallinie ist der geometrische Ort aller Punkte

P (x, y), für die V (x, y) Vi konstant gilt, wobei F (x, y)
das Potential im Punkt P (x, y) bedeutet. Eine Feldlinie ist die
Lösungskurve der Differentialgleichung y' Ey/Ex, wobei

y' dy/dx,

Ey ~4y V(X' y)

sind. Als Anfangswerte für die Lösung der Differentialgleichung

dienen die Koordinaten eines Punktes dieser Kurve.
Die Berechnung des Potentials erfolgt über die Teilflächenmethode

nach Gl. (7). Die Lösung wurde numerisch durchgeführt.

Die Berechnung der Feldstärke erfolgt ebenfalls numerisch.
Parameter sind die Koordinaten des Punktes P (x, y) ; geliefert
werden die Komponenten der Feldstärke in x- bzw. y-Rich-
tung. Die Differentiation E -grad F wird analytisch durch
partielles Differenzieren der Ladungskoeffizienten durchgeführt.

Zur Integration der Differentialgleichung für die Feldlinien
wird das Runge-Kutta-Verfahren gewählt, weil es im Gegen-

Fig. 7 Potential- und Feldlinien bei der einfachen unsymmetrischen
Streifenleitung
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satz zum Romberg-Verfahren Kriterien für die Wahl der

Schrittweite und damit zur Fehlerverminderung liefert. Die
Schrittweite wird durch die Schrittkennzahl [17] überwacht
und der Krümmung der Kurve angepasst. In Fig. 7 sind die

Potential- und Feldlinien bei einer einfachen Streifenleitung
mit unsymmetrisch angeordnetem Innenleiter als Beispiel
aufgetragen.

Literatur
[1] J. C. Maxwell: The electrical researches of the honourable Henry Ca¬

vendish. London, Cambridge University Press, 1879.
[2] D. K. Reitan and T. J. Higgins: Calculation of the electrical capaci¬

tance of a cube. Journal of Applied Physics 22(1951)2, p. 223...226.
[3] A. Kessler, A. Vlcek und O. Zinke: Methoden zur Bestimmung von

Kapazitäten unter besonderer Berücksichtigung der Teilflächenmethode.
AEÜ 16(1962)8, S. 365...380.

[4] D. Pflügel: über die Teilflächenmethode zur Bestimmung der Kapazi¬
tät beliebiger Leiter. Zeitschrift für Angewandte Physik 23(1967)2,
S. 89...94.

[5] R. F. Harrington: Field computation by moment methods. New York,
Macmillan, 1968.

[6] D. W. Kammler: Calculation of characteristic admittances and coupling
coefficients for strip transmission lines. Trans. IEEE MTT 16(1968)11,
p. 925...937.

[7] W. T. Weeks: Calculation of coefficients of capacitance of multicon-
ductor transmission lines in the presence of a dielectric interface. Trans.
IEEE MTT 18(1970)1, p. 35...43.

[8] A. Farrar and A. T. Adams: Matrix methods for microstrip three-di¬
mensional problems. Trans. IEEE MTT 20(1972)8, p. 497...504.

[9] H. Singer: Flächenladungen zur Feldberechnung von Hochspannungs¬
systemen. Bull. SEV/VSE 65(1974)10, S. 739...746.

[10] K. Simonyi: Theoretische Elektronik. 4. Auflage. Berlin, VEB Deut¬
scher Verlag der Wissenschaften, 1971.

[11] H. Buchholz: Elektrische und magnetische Potentialfelder. Berlin/Göt¬
tingen/Heidelberg, Springer Verlag, 1957.

[12] L. Krauss: Ausgleichung nach der Methode der kleinsten Quadrate. Un¬
terprogramme für Fortran IV, Blatt 8, Darmstadt, Rechenzentrum der
Technischen Hochschule, 1970.

[13] R. Hooke and T. A. Jeeves: Direct search solution of numerical and
statistical problems. Journal of the Association for Computing Machinery

8(1961)-, p. 212...229.
[14] H. J. Greenberg: The determination of upper and lower bounds for

the solution of the Dirichlet problem. Journal of Mathematics and
Physics 27(1948)-, p. 161...182.

[15] R. Courant und D. Hilbert: Methoden der mathematischen Physik II.
2. Auflage. Berlin/Heidelberg/New York, Springer-Verlag, 1968.

[16] S. B. Cohn: Characteristic impedance of the shielded-strip transmission
line. IRE Trans. MTT 2(1954)2, p. 52...57.

[17] R. Zurmühl: Praktische Mathematik für Ingenieure und Physiker. Ber¬
lin/Heidelberg, Springer-Verlag, 1965.

[18] P. C. Chestnut: On determinating the capacitances of shielded multi-
conductor transmission lines. Trans. IEEE MTT 17(1969)10, p. 734...745.

Adresse des Autors:
Prof. Dr.-Ing. F. Arndt, Fachgebiet Hochfrequenztechnik der Universität
Bremen, Achterstrasse, D-28 Bremen.

Walter Kummer 1875-1962

Wer alt wird, sieht seine Freunde sterben, wird oft einsam und vergessen. So ging es
auch Walter Kummer. Sein 100. Geburtstag am 10. August 1975 soll daher zum Anlass
genommen werden, sein Leben kurz nachzuzeichnen.

Sein Vater, ursprünglich Pfarrer, bekleidete nacheinander die Ämter eines bernischen
Regierungsrates, des Direktors des eidg. Statistischen Amtes und des Versicherungsamtes.
Nach dem Besuch des humanistischen Gymnasiums Bern studierte Kummer am Eidg.
Polytechnikum in Zürich, das er 1897 mit dem Diplom eines Maschineningenieurs verliess.
Während er bei Professor F. Weber Physikassistent war, schrieb er seine Dissertation, auf
Grund deren ihm die Universität Zürich den Titel Dr. phil. verlieh, denn am Poly war es
damals noch nicht möglich zu doktorieren.

Nach einer kurzen Tätigkeit bei BBC trat er 1899 in den Dienst der MFO, für die er
einige Jahre in Belgien arbeitete. In die Schweiz zurückgekehrt, installierte er sich 1907
als Ingenieurkonsulent in Zürich, eine Tätigkeit, die er bis 1940 ausübte. 1908 habilitierte
er sich als Privatdozent an der ETH, die ihn 4 Jahre später zum ordentlichen Professor
ernannte. Er las bis 1940 über Maschinenlehre und über Probleme der elektrischen Traktion.

Auf diesem Gebiet hat sich Kummer sehr verdient gemacht. Als Mitarbeiter der 1904

gegründeten «Schweizerischen Studienkommission für elektrischen Bahnbetrieb» hatte er
teils in Zusammenarbeit mit den Professoren Thormann und Wyssling, später auch allein
verschiedene Berichte zu erstatten. Die beiden wichtigsten sind: Grundlagen und
Bedingungen des Fahrdienstes für den elektrischen Betrieb der Schweizerischen Bundesbahnen
sowie Wahl der Periodenzahl für Wechselstromtraktion. Der Schweizer Vorschlag für
15000 Volt, 15 Hz führte 1912 zum internationalen Übereinkommen zwischen Preussen,
Bayern, Baden und der Schweiz (15 kV, 16 1h Hz), dem später auch Österreich, Schweden
und Norwegen beitraten.

In seiner Eigenschaft als Mitglied der eidg. Wasserwirtschaftskommission beantragte
Kummer die Errichtung des Amtes für Elektrizitätswirtschaft. Sein Postulat wurde 1930
verwirklicht.

Ausser den vier Büchern über die Maschinenlehre der elektrischen Zugförderung, die Wahl der Stromart für grössere elektrische Bahnen,
die wissenschaftlichen Grundlagen für die Preisbildung für elektrische Arbeit und das physikalische Verhalten der Maschinen im Betrieb ver-
fasste Kummer zahlreiche Aufsätze, die vorab in der Schweizerischen Bauzeitung erschienen; sie waren stets originell, geistreich und zeugten
von hoher Gesinnung. Bis ins hohe Alter blieb er dem Fortschritt offen; sein letzter, 1961 veröffentlichter Aufsatz handelte vom
Einphasenbahnbetrieb mit 50 Hz. Nach seiner Emeritierung im Jahre 1940 beschäftigte er sich am liebsten mit historischen und archäologischen
Studien, bei denen ihm seine humanistische Bildung, auf die er stolz war, sehr zu statten kam. Er starb am 9. März 1962 in Zürich. H. Wiiger
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