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Statistische Betrachtungen zur Oberschwingungsproblematik
in Anlagen der Leistungselektronik
Von A. Kloss

Bei Grossanlagen der Leistungselektronik mit mehreren
unabhängigen Einheiten ist es zweckmässig, die
Stromoberschwingungen des Netzes mit statistischen Methoden zu
untersuchen. Die Oberschwingungen kann man wie zweidimensionelle
Zufallsvektoren betrachten, bei denen man mit der Monte-Carlo-
Methode den Summenvektor für ein vorgegebenes Risikomass
ermitteln kann. Zahlreiche Beispiele mit verschiedenen typischen
Zufallsvektoren zeigen, wie gross der statistische Einfluss auf
den resultierenden Summenvektor ist, und können weiter als
Basis bei Untersuchungen der Netzbelastung mit
Stromoberschwingungen dienen.

621.382.333.34 : 621.316.7 : 621.3.018.32

Pour de grandes installations d'électronique de puissance,
comprenant plusieurs unités indépendantes, il convient d'étudier
statistiquement les harmoniques de courant du réseau. Ces

harmoniques peuvent être considérées comme des vecteurs aléatoires
bidimensionnels, dont on peut déterminer, par la méthode de

Monte-Carlo, le vecteur résultant avec une marge donnée. De
nombreux exemples avec différents vecteurs aléatoires typiques
montrent l'importance de l'influence statistique sur le vecteur
résultant et peuvent servir de base pour les études de la sollicitation

du réseau par des suroscillations de courant.

1. Problemstellung
Die Anlagen der Leistungselektronik - wie Stromrichter,

Umrichter, Wechselstrom und Drehstromsteller - belasten das

speisende Netz mit nichtsinusförmigen Strömen. Für die
einzelnen Schaltungen der Leistungselektronik ist, bei gewisser

Idealisierung, der Oberschwingungsgehalt des Netzstromes
relativ leicht mit der Fourieranalyse zu ermitteln. So treten

zum Beispiel bei der meistverbreiteten Drehstrombrücken-

schaltung die Oberschwingungen der 5., 7., 11., 13., 17., 19.

usw. Ordnungszahl n auf, wobei die Amplituden der

Oberschwingungen mit der steigenden Ordnungszahl indirekt
proportional abnehmen.

Die Anlagen der Leistungselektronik sind in der Regel zur
Steuerung der Leistung verwendet und wie
Spannung-Ausschnittsteuergeräte aufgebaut. Mit der Aussteuerung der Spannung

verschiebt sich der Netzstrom und gleichzeitig auch seine

Grund- und Oberschwingungen. Die Oberschwingung der

Ordnungszahl n verschiebt sich ungefähr «-mal schneller als

die Grundschwingung. Das verursacht, dass schon ein relativ

1.1

kleiner Steuerbereich von 35° für die 5. Oberwelle eine
Phasenverschiebung von fast 180° und für die 11. Oberwelle über 360°

bedeutet. Bei thyristorgespeisten Antrieben liegt der Steuerwinkel

der Stromrichter zwischen 10 bis 165° el., und die

Strombelastung variiert von 0 bis 300 % des Nennwertes.
Dementsprechend ändert sich auch die Amplitude und die Phasenlage

der Oberschwingungen des Netzstromes.
Bei Anlagen mit mehreren A'-Einhciten ist der Oberschwin-

gungsnetzstrom In mit der geometrischen Summe der einzelnen

Oberschwingungsströme der gleichen Ordnungszahl gebildet.
Bei kleinerer Anzahl von Einheiten, mit definierten Strom- und
Steuerverhältnissen, kann man während des Arbeitsprozesses
den zeitlichen Verlauf In=f(t) der Netz-Oberschwingungen
ermitteln. Das sei auf Beispiel eines Umkehr-Kaltwalzwerkes
gezeigt (Fig. 1).

Das Kaltwalzwerk (Fig. 1) besteht aus drei Einheiten -
Abhaspei, Gerüst und Aufhaspel -, die mit dem gewälzten
Bandmaterial so gebunden sind, dass man in jedem Augenblick
die Ströme Im und Spannungen Um der Antriebsmotoren M

Oberschwingungsstrom

-K-

-M- -M-

-0*)—7
V—J Gl ei'eichstrommotor

(M)
Abhaspel

H 1 h
10

Fig. 1

Schema der Speisung eines Umkehr-

'/// Kaltwalzwerkes und typischer Strom- und
Spannungsverlauf beim Hochfahren

Im Strom im Gleichstrommotor M
Un Spannung am Gleichstrommotor 1VI

t Zeit
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feststellen kann. Damit sind also auch der Aussteuerungswinkel

und Ströme der speisenden Stromrichter S gegeben,

so dass man die Oberschwingungen auch in jedem Augenblick
berechnen kann. Im Beispiel von Fig. 1 ist jeder Stromrichter
in zwei seriegeschaltete Gruppen aufgeteilt, die separat
gesteuert sind («Folgesteuerung»), so dass der Netz-Oberschwin-
gungsstrom mit geometrischer Summe von insgesamt sechs

Vektoren (N 6) gebildet ist. Summenvektor der 7.

Oberschwingung h bei Hochfahren des Kaltwalzwerkes ist dann in
zeitlicher Darstellung aus Fig. 2 zu ersehen. Zum Vergleich
ist da noch Verlauf der arithmetischen Summe dargestellt.

Bei Anlagen mit grosser Anzahl unabhängigen
Stromrichtereinheiten ist es praktisch unmöglich, genau die Oberschwingungen

im Netz zu berechnen. In diesem Fall rechnet man
meistens einfach mit der «Worst case »-Methode, das heisst, man

Stossbelastung

Arithmetische
Summe y

Nennbelastung / i Worst

case

r-y
Geometrische Summe bei Netzlast

Statistischer Wert mit 1% Risiko </>

1 i—

[ 1 Geometrische Summe

1 1 1 4 1 1 1

»

1

Wirklichkeit

0 2 4 6 8 10s
t

Fig. 2 Die Netzstrom-Oberschwingung der 7. Ordnungszahl
des Kaltwalzwerkes beim Hochfahren

t Zeit
h Oberschwingungsstrom

bildet die arithmetische Summe von allen Oberschwingungen
der einzelnen Stromrichter. Da muss man aber für die
arithmetische Summe als Basis die Nennbelastung, die Stossbela-

stung oder eine andere angenommene Betriebsbelastung der
Einheiten annehmen. Das Resultat kann dann vom wirklichen
Oberschwingungsverlauf stark abweichen, wie es schon in
Fig. 2 gezeigt wurde.

Je grösser die Anzahl der Einheiten N in Anlagen der
Leistungselektronik, desto unwahrscheinlicher ist es, dass sich die

Oberschwingungen arithmetisch addieren. Die «Worst case»-

Methode führt da also zur Überschätzung der
Oberschwingungsbelastung des Netzes. Um eine realistische Schätzung zu
bekommen, ist es zweckmässig, bei den Oberschwingungsuntersuchungen

die Methoden der mathematischen Statistik zu
verwenden und so die Wahrscheinlichkeiten zu berechnen, mit
denen ein bestimmter Wert der Oberschwingung eintreten kann.
Mit der statistischen Methode muss man also immer mit einer
Unsicherheit rechnen.

2. Statistische Aufgabestellung
des Oberschwingungsproblems

Für die statistische Betrachtung des Oberschwingungsproblems

bei Anlagen mit N unabhängigen Oberschwingungsquellen

kann man das Problem wie folgt formulieren.
Es sind N Oberschwingungsvektoren der gleichen

Ordnungszahl n gegeben (x 1, 2...N). Jeder Vektor /nx ändert
in der betrachteten Zeit zufällig seine Länge Inx und seinen

Phasenwinkel pnx:

/nx min U /nx ^ /nx max

<Pnx min ^ <Pnx 5^ <Pnx max

wobei die Häufigkeitsverteilung der Länge und des Winkels
vorgegeben wird. In jedem Augenblick bilden diese zweidimensionalen

Zufallvektoren eine geometrische Summe :

In Ini "F In2 -f"..4nx ~f".../nN

Der Summenvektor In ist dann auch eine zufällige
Veränderliche mit einer Häufigkeitsverteilung, die von der Anzahl N
und Häufigkeitsverteilungen der einzelnen Inx abhängt.
Absolutes Maximum des Summenvektors ist mit der arithmetischen

Summe der einzelnen Vektorsmaximum gebildet:
N

In max — ^ /nx max
1

Aus dem Verlauf der relativen Summenhäufigkeit des Vektors

In kann festgestellt werden, wie gross die Wahrscheinlichkeit

p, dass ein bestimmter Betrag des Summenvektors Inp
nicht überschritten wird, ist. Oder umgekehrt kann man für
eine vorgegebene Wahrscheinlichkeit p den Betrag des

Summenvektors Inp, der nicht überschritten wird, ermitteln.
Für Berechnung der relativen Summenhäufigkeiten der

geometrischen Summe In von N zweidimensionalen Zufallvektoren

Inx, mit vorgegebener Verteilung der Länge und des

Winkels, ist es zweckmässig, die statistische Simulation des

zufälligen Experiments - Methode Monte Carlo - zu verwenden.

Da wird einfach m-mal die Berechnung des Summenvektors

In durchgeführt und dann aus den w-Werten die

Summenhäufigkeit gebildet, wobei für jede Berechnung die Länge
und der Winkel der einzelnen Vektoren von einem

Zufallgenerator geliefert wird. Anzahl m der Berechnungen -
Versuchen - muss genügend hoch sein, um zuversichtliche

Aussagen zu bekommen.
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Anzahl Vektoren N 100 20 N= 100

0 10 20 30 40 50 60 70 80 90 100%
Summenvektor in % der arithm. Summe »

Fig. 3 Summenhäufigkeit Fj des bezogenen Summenvektors
für N gleiche Vektoren mit konstantem und gleichem Winkel
und zufälliger Länge mit konstanter Häufigkeitsverteilung
zwischen 0 und 1

1,00

20 30 40 50 60 70 80 90 100%
Summenvektor in % der arithm. Summe

Fig. 4 Summenhäufigkeit Fj des bezogenen Summenvektors
für N gleiche Vektoren mit konstanter Länge und
zufälligem Winkel mit konstanter Häufigkeitsverteilung
zwischen 0 und 360°

3. Relative Summenhäufigkeiten der geometrischen
Summe von typischen Zufallsvektoren

Die Oberschwingungsströme von N unabhängigen
Leistungselektronik-Einheiten sind als zweidimensionale
Zufallsvektoren betrachtet, wo die Häufigkeitsverteilung der Länge
und des Winkels mit den Betriebsbedingungen der Einheiten
gegeben ist. Für einige typische Fälle werden mit der Monte-
Carlo-Methode die relativen Summenhäufigkeiten der
Summenvektoren berechnet und ausgewertet. Für die Berechnungen

wurde ein spezielles Computerprogramm entwickelt.

3. / Vektoren mit konstantem Winkel und zufälliger Länge

Bei N gleichen Vektoren mit gleichem und konstantem
Winkel <p und mit einer Länge, die zwischen 0 und 1 liegt,
wurde mit der Monte-Carlo-Methode die relative
Summenhäufigkeit des auf die arithmetische Summe bezogenen
Summenvektors berechnet und in das Wahrscheinlichkeitsnetz
eingetragen. Die Häufigkeitsverteilung der zufälligen Längen
wurde als konstant angenommen, d. h., jeder Wert zwischen

0 und 1 hat bei jedem Vektor dieselbe Wahrscheinlichkeit.
Das Resultat zeigt Fig. 3. Die Summenhäufigkeiten verlaufen

ganz symmetrisch durch den Schwerpunkt des Netzes, und bei

höheren N > 5 ist der Verlauf linear. Das bedeutet, dass es

sich hier um eine normale (Gaussische) Verteilung handelt,
was theoretisch übrigens zu erwarten ist (Wirkung des zentralen

Grenzwertsatzes).

3.2 Vektoren mit konstanter Länge und zufälligem Winkel

In diesem Falle wurden alle N Vektoren mit konstanter und

gleicher Länge, aber mit zufälligem Winkel angenommen.
Winkel jedes Vektors hat im Bereich von 0 bis 360° konstante

Häufigkeitsverteilung. Die berechneten Summenhäufigkeiten
des Summenvektors werden gleich wie im ersten Beispiel
auf die arithmetische Summe bezogen und ins Wahrscheinlichkeitsnetz

eingetragen. Das Resultat ist aus Fig. 4 zu
ersehen.

3.3 Vektoren mit zufälliger Länge und zufälligem Winkel

Bei der dritten Variante von Berechnungen der
Summenhäufigkeit von Summenvektoren wurden beide Veränderliche -
die Länge und der Winkel - als Zufällige betrachtet. Mit
konstanter Häufigkeitsverteilung liegt die Länge der Vektoren
zwischen 0 und 1 und der Winkel zwischen 0 und 360°. Das Resultat

ist in Fig. 5 dargestellt.
Anschaulich kann man die drei untersuchten Beispiele

vergleichen, wenn man zu den Summenhäufigkeiten des bezogenen
Summenvektors die entsprechende Häufigkeitsverteilung bildet
(Fig. 6).

Ist der Winkel konstant und die Länge die zufällige
Veränderliche, dann konzentriert sich die Häufigkeit des Summen-

N 100

0 10 20 30 40 50 60

Summenvektor in % der arithm. Summe

100%

Fig. 5 Summenhäufigkeit Fj des bezogenen Summenvektors für N
gleiche Vektoren mit zufälliger Länge (0...1) und zufälligem
Winkel (0...3600) mit konstanten Häufigkeitsverteilungen
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vektors mit zunehmender Anzahl der Vektoren N immer stärker

zu dem 50- %-Wert der maximalen arithmetischen Summe

(Fig. 6a). Ist der Winkel die zufällige Veränderliche, dann
verschiebt sich das Häufigkeitsmaximum zu den kleineren Werten
(Fig. 6b und c).

Summenvektor in °/0 der arithm. Summe

Fig. 6 Häufigkeitsverteilung des bezogenen Summenvektors
entsprechend den Summenhäufigkeiten in

a Fig. 3

b Fig. 4
c Fig. 5

fi Häufigkeit

430 (A160)

3.4 Einfluss der Parameter

Die obigen drei Varianten stellen die Extremfälle der beiden
Parameter - Länge und Winkel - dar: entweder ist der
Parameter konstant oder er schwankt zufällig im vollen Bereich.

Auf einem Beispiel von 20 gleichen Zufallsvektoren wird weiter
gezeigt, wie stark der Einfluss der einzelnen Parameter auf die

Summenhäufigkeit des Summenvektors eigentlich ist. Lässt
man die Vektorlänge konstant und ändert in Stufen den
Schwankbereich des Zufallswinkels (0 bis 90°, 0 bis 180°, 0 bis
270° und 0 bis 360°), dann verlaufen die entsprechenden
Summenhäufigkeiten so, wie dies Fig. 7 zeigt. Die entsprechenden
Häufigkeitsverteilungen sind dann in Fig. 8 dargestellt. Fig. 8

zeigt weiter auch die Häufigkeiten der Summenvektoren für
folgende Fälle:

Der Winkel ist konstant, und die Längeschwankung ändert
sich, der Winkel schwankt im vollen Bereich bei verschiedenen

Längeschwankungen, und bei voller Längeschwankung ändert
sich die Winkelschwankung. In Fig. 9 ist dann die ganze
Berechnung zusammengefasst und für 99 % der Summenhäufigkeit

ausgewertet. Es ist zu ersehen, dass der Winkel einen
stärkeren Einfluss hat als die Länge.

3.5 Gruppen von ungleichen Vektoren

Bei den obigen Varianten handelt es sich immer um gleiche
Zufallsvektoren. Das Ergebnis gilt aber auch für Vektoren mit
unterschiedlichen Längen, soweit die Häufigkeitsverteilung der

Längen gleich ist. Zum Beispiel bei N 10 Vektoren mit
gleichen Längen (0 bis 1) ist der Verlauf der Summenhäufigkeit des

bezogenen Summenvektors gleich wie für 10 Vektoren mit
unterschiedlichen Längen (0 bis 0 1, 0 bis 0 • 2, 0 bis 0 3...0
bis 0 • 9, 0 bis 1), wenn die Häufigkeitsverteilung der Längen
und die Zufallswinkel von beiden Gruppen gleich sind.

%

Summenvektor in % der arithm.Summe

Fig. 7 Summenhäufigkeit Fj des Summenvektors von 20 gleichen
Vektoren konstanter Länge mit verschiedenen Schwankungsbereichen

des Zufallswinkels
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A ip= 0... 360°

Summenvektor in %der arithm. Summe
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Fig. 8 Häufigkeitsverteilung f\ des bezogenen Summenvektors
von 20 gleichen Vektoren für verschiedene Fälle des
Schwankbereiches des Zufallwinkels A<p und der Zufailänge A/

Vergleichen wir weiter folgende zwei Gruppen von
Zufallsvektoren. Eine Gruppe besteht aus zwei gleichen Vektoren mit
zufälligem Winkel (0...3600) und zufälliger Länge (0...1). Die
zweite Gruppe besteht aus drei Vektoren, wo der eine gleich
den Vektoren der ersten Gruppe ist (0...1, 0...3600) und die
zwei weiteren Vektoren die halbe Länge haben (0...0,5) und
wieder in vollem Winkelbereich (0...3600) schwänken. (Dieses

Beispiel entspricht dem Vergleich zwischen zwei einfachgesteuerten

Stromrichtern und zwei Stromrichtern mit
Folgesteuerung.) Das Ergebnis der statistischen Simulation ist in
Fig. 10 ersichtlich. Auch da ist zu ersehen, dass auf die
Summenhäufigkeit des bezogenen Summenvektors die Anzahl der
Vektoren den entscheidenden Einfluss hat; die Verteilung der
Gruppe von drei Vektoren der Länge 1, 0,5, 0,5 ist praktisch
gleich der Verteilung von drei gleichen Vektoren (1,1, 1).

4. Praktische Anwendung der statistischen Methode
4.1 Anzahl der Monte-Carlo-Versuche

Bei der Monte-Carlo-Methode sind die Zufallsversuche
mathematisch simuliert. Von der Anzahl x der Simulationsversuche

ist die Genauigkeit des betrachteten Summenvektors

Fig. 9 Abhängigkeit des bezogenen Summenvektors von 20 gleichen
Vektoren von der Schwankungsbreite des Zufallwinkels Aç> und
Zufailänge A/

Auswertung für 99% der Summenhäufigkeit t Zeit

abhängig - je höher die Anzahl ist, desto zuverlässiger ist auch
das Resultat. Fig. 11 zeigt, wie bei 5 und 10 Zufallsvektoren
mit zufälliger Länge und zufälligem Winkel die Werte des

bezogenen erwarteten Summenvektors von der Anzahl der

Berechnungsversuche abhängen. Mit zunehmender Anzahl der
Versuche nehmen auch erwartungsgemäss die maximalen
Werte des Summenvektors, die in der Versuchsreihe auftreten,
zu. Aus Fig. 11 ist weiter zu ersehen, wie viele Versuche nötig
sind, um über eine vorgegebene Summenhäufigkeit eine
zuverlässige Aussage zu bekommen. Summenhäufigkeit von 99 %

ist z. B. nach ca. 500 Versuchen, Summenhäufigkeit von 99,9 %
nach ca. 5000 Versuchen schon stabilisiert.

4.2 Oberschwingungsreduktion des Netzstromes
bei Grossantagen der Leistungselektronik

Man sieht, dass bei grösserer Anzahl der Zufallsvektoren
die Wahrscheinlichkeit, dass die arithmetische Summe auftritt,
sehr gering ist, und dass, wenn man auf ein kleines vertretbares
Risiko eingeht, dann mit einer erheblichen Reduktion des

Summenvektors zu rechnen ist. Fig. 12 zeigt, wie man bei einem

vorgegebenen Risikomass die Reduktion von N Zufallsvektoren

mit gleichen Häufigkeitsverteilungen ermitteln kann. Es

Beim konst.Winkel ändert
sich Bereich der Länge -

Bei voller Längeschwankung AI
ändert sich Winkelbereich A

sich Bereich A V Schwan
kungen

ändert sich weiter AI
100% 100%
0

Schwankungsbereich der
zufälligen Variablen Alp, AI
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N 3 3 2

(1,1,1) (1,0,5,0,5) (1,1)
\ \

100

1,00

0 10 20 30 40 50 60 70 80 90 100%
Summenvektor in %der arithm.Summe

Fig. 10 Die Summenhäufigkeit F\ des bezogenen Summenvektors ist
nur von der Anzahl N der Vektoren abhängig bei gleicher
Häufigkeitsverteilung der Längen und bei gleichem Zufallwinke!
Wie die einzelne Vektorlänge gross wird, spielt keine Rolle.
So ist die Summenhäufigkeit von drei gleichen Vektoren
(1, 1, 1) gleich der Summenhäufigkeit von drei ungleichen
Vektoren (1, 0,5, 0,5)

werden da die drei ersten typischen Fälle der Vektoren, für die

in Fig. 3, 4 und 5 die Summenhäufigkeiten dargestellt sind,
betrachtet.

Besteht zum Beispiel eine Stromrichteranlage aus 10

unabhängigen Einheiten, deren Strombelastung und Aussteuerungswinkel

im vollen Bereich schwanken, dann kann man damit
rechnen, dass mit 99 % Wahrscheinlichkeit die Oberwellenströme

nicht 38 % der arithmetischen Summe überschreiten.

Mit 99,99 % Wahrscheinlichkeit, d. h. mit Risikomass von
0,01 %, wird nicht der 52-%-Wert überschritten, und die
Wahrscheinlichkeit, dass die arithmetischen Summen überhaupt
auftreten, beträgt (wenn man die Resultate der Fig. 11 weiter
extrapoliert) 10~8 —10°.

Es sei noch einmal das am Anfang erwähnte Kaltwalzwerk
(Fig. 1) betrachtet. Die Anlage besteht für jede Stromrichtung

Anzahl der Monte Carlo - Versuche •

Fig. II Abhängigkeit des bezogenen Summenvektors von der Anzahl
durchgeführter Monte-Cario-Versuchen
Es sind die Werte aufgezeichnet, die den Summenhäufigkeiten
von 90, 99, 99,9 und 99,99 % entsprechen, sowie die absolut
maximalen Werte des bezogenen Summenvektors, die während
der Versuchsreihe auftreten

Fig. 12

Auf die maximale arithmetische Summe bezogener
Summenvektor von N gleiche Zufallvektoren,
der mit einer bestimmten Wahrscheinlichkeit nicht
überschritten wird.
Auswertung von drei Varianten der Zufallvektoren
nach den Fig. 3, 4 und 5

3 4 5 6 7 9 101

Anzahl der Vektoren N

7 8 9 KV
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aus 6 Stromrichtereinheiten, und weil die Stromrichter in
Folgesteuerung arbeiten, wirken sie, statistisch betrachtet (Fig. 10),

wie 4,5 unabhängige Einheiten, so dass man bei 99 %
Wahrscheinlichkeit mit einer Reduktion der Oberwellen gegenüber
dem arithmetischen Wert auf 56 % rechnen kann (Fig. 12). Aus
Fig. 2 ist zu ersehen, dass dieser statistische Wert noch über
dem genau berechneten Verlauf liegt, so dass man in diesem

Fall auch mit der statistischen Schätzung an der sicheren Seite

liegt.
Die Netzstrom-Oberschwingungen einer Stromrichteranlage

sind bekanntlich von den Kommutierungsreaktanzen,
Strombelastung, Aussteuerung und Schaltung der Stromrichter
abhängig. Bei den statistischen Berechnungen müssen selbstverständlich

diese Einflüsse, neben den für die statistische Simula¬

tion erforderlichen Kenntnissen über die Häufigkeitsverteilung
der Amplitude und des Phasenwinkels des Oberschwingungsvektors,

berücksichtigt werden.
Die Oberschwingungsuntersuchung dient generell für die

Entscheidung, ob für die betrachtete Anlage der Leistungselektronik

Saugkreise nötig sind oder nicht, und weiter als

Grundlage für die Auslegung der Saugkreise. Die Anwendung
der statistischen Methode kann also unter ETmständen dazu

führen, dass man auf die sonst für den «Worst case» notwendige

Saugkreisanlage verzichten kann oder ihre Leistung reduziert.

Adresse des Autors:
A. Kloss, Berechnungsingenieur, BBC AG Brown, Boveri & Cie.,
5400 Baden.

Literatur- Bibliographie

621.316.9 SEV-Nr. A 463

Schutzmassnahmen in elektrischen Anlagen. Elektroschutz - Fra¬

gen und Antworten. Von Gottfried Biegelmeier. 5. Auflage.
Wien, Österreichischer Gewerbeverlag, 1974; kart., 8°, 288 S.,
199 Fig., Tab. - Schriftenreihe des Wirtschaftsförderungs-
institutes der Bundeskammer der gewerblichen Wirtschaft.

Die kürzlich in fünfter Auflage in Österreich erschienene
Veröffentlichung «Schutzmassnahmen in elektrischen Anlagen»
weist eine auffällige Ähnlichkeit mit dem gleichnamigen im
Jahre 1973 vom Verlag «Der Elektromonteur» in Aarau
herausgegebenen Buch auf. In beiden Ausgaben wurde die Frage- und
Antwortform angewendet, wodurch sich eine übersichtliche
Gruppierung ergibt und sich die im Laufe der Zeit ergebenden
Vorschriftenänderungen relativ leicht anpassen lassen. Auch textlich

sind verschiedene Übereinstimmungen zu finden. Diese
Parallelen haben sich nicht zufällig ergeben. Vielmehr ist daraus ein
Zusammenwirken der beiden Autoren zu erkennen. Die
schweizerische Ausgabe stützt sich auf die dritte Auflage des vorliegenden

Buches, enthält aber verschiedene in der Zwischenzeit
bekannt gewordene Neuerungen und trägt den schweizerischen
Eigenheiten Rechnung. Das gleiche Verfahren, aber aus
österreichischer Sicht, wendet nun der bekannte Verfasser bei seiner
neuesten, fünften Ausgabe an. Besonders hervorzuheben ist, dass
sich Dr. G. Biegelmeier bemühte, die letzten bekannt gewordenen
Beschlüsse der internationalen Normenkommission (CEI 64) in

seine Arbeit aufzunehmen. Dadurch erhielt das Buch über die
Grenzen Österreichs hinaus Bedeutung.

Zum Inhalt ist zu bemerken, dass der Leser nicht nur einen
umfassenden Überblick über die möglichen und vorgeschriebenen

Schutzmassnahmen gegen gefährliche Auswirkungen der
Elektrizität im Niederspannungsbereich erhält, sondern auch eine
Begründung der empfohlenen Massnahmen findet. Es wurde
jedoch bewusst auf mathematische Abhandlungen verzichtet.
Dadurch ist das Buch auch für Praktiker wie Elektromeister, Elek-
tromonteure, Servicemonteure von Grossmaschinen und Sonderanlagen

usw. verständlich. Als besonders wertvoll darf der
Hauptabschnitt «Schutzmassnahmen in Räumen und Anlagen
besonderer Art» gelten. Die allgemeinen Schutzvorkehren sind in
verschiedenen Büchern beschrieben, doch selten werden die
zahlreichen Anlagen an Orten erhöhter Gefahr oder für ausserge-
wöhnliche Zwecke behandelt.

Da es, abgesehen von wenigen Spezialisten, den Fachleuten
schwer fällt, sich im umfangreichen Vorschriftenwerk zurechtzufinden

und seine Hintergründe zu erkennen, wird das vorliegende
Buch ganz wesentlich dazu beitragen, dass jeweils die richtige
Schutzmassnahme getroffen wird. E. Homberger

Wir möchten noch darauf hinweisen, dass die Schreibweise
der Buchstabensymbole im Text und in den Figuren verschieden
ist und diese nicht der internationalen Norm (CEI) entsprechen.
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