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Statistische Betrachtungen zur Oberschwingungsproblematik

in Anlagen der Leistungselektronik
Von A. Kloss

Bei Grossanlagen der Leistungselektronik mit mehreren un-
abhiingigen Einheiten ist es zweckmdssig, die Stromober-
schwingungen des Netzes mit statistischen Methoden zu unter-
suchen. Die Oberschwingungen kann man wie zweidimensionelle
Zufallsvektoren betrachten, bei denen man mit der Monte-Carlo-
Methode den Summenvektor fiir ein vorgegebenes Risikomass
ermitteln kann. Zahlreiche Beispiele mit verschiedenen typischen
Zufallsvektoren zeigen, wie gross der statistische Einfluss auf
den resultierenden Summenvektor ist, und konnen weiter als
Basis bei Untersuchungen der Netzbelastung mit Stromober-
schwingungen dienen.

1. Problemstellung

Die Anlagen der Leistungselektronik — wie Stromrichter,
Umrichter, Wechselstrom und Drehstromsteller — belasten das
speisende Netz mit nichtsinusformigen Stromen. Fiir die ein-
zelnen Schaltungen der Leistungselektronik ist, bei gewisser
Idealisierung, der Oberschwingungsgehalt des Netzstromes
relativ leicht mit ‘der Fourieranalyse zu ermitteln. So treten
zum Beispiel bei der meistverbreiteten Drehstrombriicken-
schaltung die Oberschwingungen der 5., 7., 11., 13., 17., 19.
usw. Ordnungszahl n auf, wobei die Amplituden der Ober-
schwingungen mit der steigenden Ordnungszahl indirekt pro-
portional abnehmen.

Die Anlagen der Leistungselektronik sind in der Regel zur
Steuerung der Leistung verwendet und wie Spannung-Aus-
schnittsteuergerite aufgebaut. Mit der Aussteuerung der Span-
nung verschiebt sich der Netzstrom und gleichzeitig auch seine
Grund- und Oberschwingungen. Die Oberschwingung der
Ordnungszahl n verschiebt sich ungefihr nz-mal schneller als
die Grundschwingung. Das verursacht, dass schon ein relativ

Netz

621.382.333.34 : 621.316.7 : 621.3.018.32
Pour de grandes installations d’électronique de puissance,
comprenant plusieurs unités indépendantes, il convient d’étudier
statistiquement les harmoniques de courant du réseau. Ces har-
moniques peuvent étre considérées comme des vecteurs aléatoires
bidimensionnels, dont on peut déterminer, par la méthode de
Monte-Carlo, le vecteur résultant avec une marge donnée. De
nombreux exemples avec différents vecteurs aléatoires typiques
montrent I'importance de linfluence statistique sur le vecteur
résultant et peuvent servir de base pour les études de la sollici-
tation du réseau par des suroscillations de courant.

kleiner Steuerbereich von 350 fiir die 5. Oberwelle eine Phasen-
verschiebung von fast 1800 und fiir die 11. Oberwelle {iber 360°
bedeutet. Bei thyristorgespeisten Antrieben liegt der Steuer-
winkel der Stromrichter zwischen 10 bis 1659 el., und die
Strombelastung variiert von O bis 300 %; des Nennwertes. Dem-
entsprechend dndert sich auch die Amplitude und die Phasen-
lage der Oberschwingungen des Netzstromes.

Bei Anlagen mit mehreren N-Einheiten ist der Oberschwin-
gungsnetzstrom /I, mit der geometrischen Summe der einzelnen
Oberschwingungsstrome der gleichen Ordnungszahl gebildet.
Bei kleinerer Anzahl von Einheiten, mit definierten Strom- und
Steuerverhaltnissen, kann man wihrend des Arbeitsprozesses

~den zeitlichen Verlauf I'n = f(#) der Netz-Oberschwingungen

ermitteln. Das sei auf Beispiel eines Umkehr-Kaltwalzwerkes
gezeigt (Fig. 1).

Das Kaltwalzwerk (Fig. 1) besteht aus drei Einheiten —
Abhaspel, Geriist und Aufhaspel —, die mit dem gewilzten
Bandmaterial so gebunden sind, dass man in jedem Augenblick
die Strome Iy und Spannungen Uy der Antriebsmotoren M

Oberschwingungsstrom

Stromrichter
(s)
I Up
(M)
~ \Gleichstrommotor
(M)
Abhaspel

Fig. 1

Schema der Speisung eines Umkehr-

Kaltwalzwerkes und typischer Strom- und

Spannungsverlauf beim Hochfahren

In  Strom im Gleichstrommotor M

Uwm Spannung am Gleichstrommotor M
I t Zeit
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feststellen kann. Damit sind also auch der Aussteuerungs-
winkel und Strome der speisenden Stromrichter .S gegeben,
so dass man die Oberschwingungen auch in jedem Augenblick
berechnen kann. Im Beispiel von Fig. 1 ist jeder Stromrichter
in zwei seriegeschaltete Gruppen aufgeteilt, die separat ge-
steuert sind («Folgesteuerung»), so dass der Netz-Oberschwin-
gungsstrom mit geometrischer Summe von insgesamt sechs
Vektoren (N = 6) gebildet ist. Summenvektor der 7. Ober-
schwingung I7 bei Hochfahren des Kaltwalzwerkes ist dann in
zeitlicher Darstellung aus Fig. 2 zu ersehen. Zum Vergleich
ist da noch Verlauf der arithmetischen Summe dargestellt.
Bei Anlagen mit grosser Anzahl unabhingigen Stromrich-
tereinheiten ist es praktisch unmoglich, genau die Oberschwin-
gungen im Netz zu berechnen. In diesem Fall rechnet man
meistens einfach mit der « Worst case»-Methode, das heisst, man
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Fig. 2 Die Netzstrom-Oberschwingung der 7. Ordnungszahl
des Kaltwalzwerkes beim Hochfahren

t Zeit
_ I Oberschwingungsstrom
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bildet die arithmetische Summe von allen Oberschwingungen
der einzelnen Stromrichter. Da muss man aber fiir die arith-
metische Summe als Basis die Nennbelastung, die Stossbela-
stung oder eine andere angenommene Betriebsbelastung der
Einheiten annehmen. Das Resultat kann dann vom wirklichen
Oberschwingungsverlauf stark abweichen, wie es schon in
Fig. 2 gezeigt wurde.

Je grosser die Anzahl der Einheiten N in Anlagen der Lei-
stungselektronik, desto unwahrscheinlicher ist es, dass sich die
Oberschwingungen arithmetisch addieren. Die «Worst case»-
Methode fiihrt da also zur Uberschitzung der Oberschwin-
gungsbelastung des Netzes. Um eine realistische Schiatzung zu
bekommen, ist es zweckmassig, bei den Oberschwingungsunter-
suchungen die Methoden der mathematischen Statistik zu ver-
wenden und so die Wahrscheinlichkeiten zu berechnen, mit
denen ein bestimmter Wert der Oberschwingung eintreten kann.
Mit der statistischen Methode muss man also immer mit einer
Unsicherheit rechnen. '

2. Statistische Aufgabestellung
des Oberschwingungsproblems

Fur die statistische Betrachtung des Oberschwingungs-
problems bei Anlagen mit N unabhingigen Oberschwingungs-
quellen kann man das Problem wie folgt formulieren.

Es sind N Oberschwingungsvektoren der gleichen Ord-
nungszahl n gegeben (x = 1, 2...N). Jeder Vektor Inx dndert
in der betrachteten Zeit zufillig seine Linge Inx und seinen
Phasenwinkel ¢nx:

Inx min é Inx § Inx max
@nx min é Pnx é @Pnx max

wobei die Hiufigkeitsverteilung der Linge und des Winkels
vorgegeben wird. In jedem Augenblick bilden diese zweidimen-
sionalen Zufallvektoren eine geometrische Summe:

L =TI + Ing +..Iix +..Ihx

Der Summenvektor Iy ist dann auch eine zufillige Verdn-
derliche mit einer Haufigkeitsverteilung, die von der Anzahl N
und Hiufigkeitsverteilungen der einzelnen Inx abhingt. Ab-
solutes Maximum des Summenvektors ist mit der arithmeti-
schen Summe der einzelnen Vektorsmaximum gebildet:

N
In max :Z Inx max
1

Aus dem Verlauf der relativen Summenhaufigkeit des Vek-
tors Iy kann festgestellt werden, wie gross die Wahrscheinlich-
keit p, dass ein bestimmter Betrag des Summenvektors Inp
nicht tiberschritten wird, ist. Oder umgekehrt kann man fiir
eine vorgegebene Wahrscheinlichkeit p den Betrag des Sum-
menvektors Inp, der nicht iiberschritten wird, ermitteln.

Fiir Berechnung der relativen Summenhéufigkeiten der geo-
metrischen Summe I, von N zweidimensionalen Zufallvek-
toren Inx, mit vorgegebener Verteilung der Ldnge und des
Winkels, ist es zweckmissig, die statistische Simulation des
zufilligen Experiments — Methode Monte Carlo — zu verwen-
den. Da wird einfach m-mal die Berechnung des Summen-
vektors I durchgefiihrt und dann aus den m-Werten die Sum-
menhiufigkeit gebildet, wobei fiir jede Berechnung die Linge
und der Winkel der einzelnen Vektoren von einem Zufall-
generator geliefert wird. Anzahl m der Berechnungen — Ver-
suchen — muss geniigend hoch sein, um zuversichtliche Aus-
sagen zu bekommen.
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Fig. 3 Summenhiufigkeit F; des bezogenen Summenvektors
fiir N gleiche Vektoren mit konstantem und gleichem Winkel
und zufilliger Linge mit konstanter Haufigkeitsverteilung
zwischen 0 und 1

3. Relative Summenhaufigkeiten der geometrischen
Summe von typischen Zufallsvektoren

Die Oberschwingungsstrome von N unabhingigen Lei-
stungselektronik-Einheiten sind als zweidimensionale Zufalls-
vektoren betrachtet, wo die Hiufigkeitsverteilung der Lénge
und des Winkels mit den Betriebsbedingungen der Einheiten
gegeben ist. Fiir einige typische Fille werden mit der Monte-
Carlo-Methode die relativen Summenhéufigkeiten der Sum-
menvektoren berechnet und ausgewertet. Fiir die Berechnun-
gen wurde ein spezielles Computerprogramm entwickelt.

3.1 Vektoren mit konstantem Winkel und zufdlliger Linge

Bei N gleichen Vektoren mit gleichem und konstantem
Winkel ¢ und mit einer Linge, die zwischen 0 und 1 liegt,
wurde mit der Monte-Carlo-Methode die relative Summen-
haufigkeit des auf die arithmetische Summe bezogenen Sum-
menvektors berechnet und in das Wahrscheinlichkeitsnetz ein-
getragen. Die Haufigkeitsverteilung der zufilligen Liangen
wurde als konstant angenommen, d. h., jeder Wert zwischen
0 und 1 hat bei jedem Vektor dieselbe Wahrscheinlichkeit.
Das Resultat zeigt Fig. 3. Die Summenhéufigkeiten verlaufen
ganz symmetrisch durch den Schwerpunkt des Netzes, und bei
héheren NV > 5 ist der Verlauf linear. Das bedeutet, dass es
sich hier um eine normale (Gaussische) Verteilung handelt,
was theoretisch iibrigens zu erwarten ist (Wirkung des zentra-
len Grenzwertsatzes).

3.2 Vektoren mit konstanter Lénge und zufélligem Winkel

In diesem Falle wurden alle N Vektoren mit konstanter und
gleicher Linge, aber mit zufilligem Winkel angenommen.
Winkel jedes Vektors hat im Bereich von 0 bis 360° konstante
Haufigkeitsverteilung. Die berechneten Summenhdufigkeiten
des Summenvektors werden gleich wie im ersten Beispiel
auf die arithmetische Summe bezogen und ins Wahrschein-
lichkeitsnetz eingetragen. Das Resultat ist aus Fig. 4 zu er-
sehen.
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Fig. 4 Summenhiufigkeit F; des bezogenen Summenvektors
fiir N gleiche Vektoren mit konstanter Lange und
zufilligem Winkel mit konstanter Haufigkeitsverteilung
zwischen 0 und 360°

3.3 Vektoren mit zufilliger Liinge und zufilligem Winkel

Bei der dritten Variante von Berechnungen der Summen-
héufigkeit von Summenvektoren wurden beide Verdnderliche —
die Lange und der Winkel — als Zuféllige betrachtet. Mit kon-
stanter Haufigkeitsverteilung liegt die Linge der Vektoren zwi-
schen 0 und 1 und der Winkel zwischen 0 und 360°. Das Resul-
tat ist in Fig. 5 dargestellt.

Anschaulich kann man die drei untersuchten Beispiele ver-
gleichen, wenn man zu den Summenhéiufigkeiten des bezogenen
Summenvektors die entsprechende Hiufigkeitsverteilung bildet
(Fig. 6).

Ist der Winkel konstant und die Lange die zufillige Ver-
anderliche, dann konzentriert sich die Haufigkeit des Summen-
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Fig. 5 Summenhiufigkeit F; des bezogenen Summenvektors fiir N

gleiche Vektoren mit zufilliger Linge (0...1) und zufilligem
Winkel (0...360°) mit konstanten Haufigkeitsverteilungen
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vektors mit zunehmender Anzahl der Vektoren N immer stéir-
ker zu dem 50- %-Wert der maximalen arithmetischen Summe
(Fig. 6a). Ist der Winkel die zufillige Veranderliche, dann ver-
schiebt sich das Hiufigkeitsmaximum zu den kleineren Werten
(Fig. 6b und c).
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0] 50
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3.4 Einfluss der Parameter

Die obigen drei Varianten stellen die Extremfille der beiden
Parameter — Liange und Winkel — dar: entweder ist der Para-
meter konstant oder er schwankt zufillig im vollen Bereich.
Auf einem Beispiel von 20 gleichen Zufallsvektoren wird weiter
gezeigt, wie stark der Einfluss der einzelnen Parameter auf die
Summenhaufigkeit des Summenvektors eigentlich ist. Lésst
man die Vektorlinge konstant und #dndert in Stufen den
Schwankbereich des Zufallswinkels (0 bis 90°, 0 bis 180°, 0 bis
2700 und 0 bis 360°), dann verlaufen die entsprechenden Sum-
menhdufigkeiten so, wie dies Fig. 7 zeigt. Die entsprechenden
Haufigkeitsverteilungen sind dann in Fig. 8 dargestellt. Fig. 8
zeigt weiter auch die Hiufigkeiten der Summenvektoren fir
folgende Fille:

Der Winkel ist konstant, und die Langeschwankung dndert
sich, der Winkel schwankt im vollen Bereich bei verschiedenen
Langeschwankungen, und bei voller Lingeschwankung dndert
sich die Winkelschwankung. In Fig. 9 ist dann die ganze Be-
rechnung zusammengefasst und fiir 99 % der Summenhé&ufig-
keit ausgewertet. Es ist zu ersehen, dass der Winkel einen
stiarkeren Einfluss hat als die Linge.

3.5 Gruppen von ungleichen Vektoren

Bei den obigen Varianten handelt es sich immer um gleiche
Zufallsvektoren. Das Ergebnis gilt aber auch fiir Vektoren mit
unterschiedlichen Liangen, soweit die Haufigkeitsverteilung der
Liangen gleich ist. Zum Beispiel bei N = 10 Vektoren mit glei-
chen Lingen (0 bis 1) ist der Verlauf der Summenhéufigkeit des
bezogenen Summenvektors gleich wie fiir 10 Vektoren mit
unterschiedlichen Lingen (0 bis 0+ 1, 0 bis 0-2, 0 bis 0- 3...0
bis 0-9, 0 bis 1), wenn die Hiufigkeitsverteilung der Ldngen
und die Zufallswinkel von beiden Gruppen gleich sind.
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Fig. 7 Summenhiufigkeit F; des Summenvektors von 20 gleichen
Vektoren konstanter Linge mit verschiedenen Schwankungs-
bereichen des Zufallswinkels
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Vergleichen wir weiter folgende zwei Gruppen von Zufalls-
vektoren. Eine Gruppe besteht aus zwei gleichen Vektoren mit
zufilligem Winkel (0...360°) und zufilliger Linge (0...1). Die
zweite Gruppe besteht aus drei Vektoren, wo der eine gleich
den Vektoren der ersten Gruppe ist (0...1, 0...360°) und die
zwei weiteren Vektoren die halbe Linge haben (0...0,5) und
wieder in vollem Winkelbereich (0...360°) schwianken. (Dieses
Beispiel entspricht dem Vergleich zwischen zwei einfachge-
steuerten Stromrichtern und zwei Stromrichtern mit Folge-
steuerung.) Das Ergebnis der statistischen Simulation ist in
Fig. 10 ersichtlich. Auch da ist zu ersehen, dass auf die Sum-
menhéiufigkeit des bezogenen Summenvektors die Anzahl der
Vektoren den entscheidenden Einfluss hat; die Verteilung der
Gruppe von drei Vektoren der Liange 1, 0,5, 0,5 ist praktisch
gleich der Verteilung von drei gleichen Vektoren (1, 1, 1).

4. Praktische Anwendung der statistischen Methode
4.1 Anzahl der Monte-Carlo-Versuche

Bei der Monte-Carlo-Methode sind die Zufallsversuche ma-
thematisch simuliert. Von der Anzahl x der Simulationsver-
suche ist die Genauigkeit des betrachteten Summenvektors

Bull. SEV/VSE 66(1975)8, 19. April

Fig. 9 Abhingigkeit des bezogenen Summenvektors von 20 gleichen
Vektoren von der Schwankungsbreite des Zufallwinkels Ag und
Zufallinge A/

Auswertung fiir 99 % der Summenhiufigkeit ¢ Zeit

abhingig — je hoher die Anzahl ist, desto zuverléssiger ist auch
das Resultat. Fig. 11 zeigt, wie bei 5 und 10 Zufallsvektoren
mit zufélliger Lange und zufilligem Winkel die Werte des be-
zogenen erwarteten Summenvektors von der Anzahl der Be-
rechnungsversuche abhidngen. Mit zunehmender Anzahl der
Versuche nehmen auch erwartungsgemiss die maximalen
Werte des Summenvektors, die in der Versuchsreihe auftreten,
zu. Aus Fig. 11 ist weiter zu ersehen, wie viele Versuche notig
sind, um iiber eine vorgegebene Summenhiufigkeit eine zuver-
lassige Aussage zu bekommen. Summenhaufigkeit von 99 %
ist z. B. nach ca. 500 Versuchen, Summenhéiufigkeit von 99,9 %
nach ca. 5000 Versuchen schon stabilisiert.

4.2 Oberschwingungsreduktion des Netzstromes
bei Grossanlagen der Leistungselektronik

Man sieht, dass bei grosserer Anzahl der Zufallsvektoren
die Wahrscheinlichkeit, dass die arithmetische Summe auftritt,
sehr gering ist, und dass, wenn man auf ein kleines vertretbares
Risiko eingeht, dann mit einer erheblichen Reduktion des
Summenvektors zu rechnen ist. Fig. 12 zeigt, wie man bei einem
vorgegebenen Risikomass die Reduktion von N Zufallsvek-
toren mit gleichen Haufigkeitsverteilungen ermitteln kann. Es
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aus 6 Stromrichtereinheiten, und weil die Stromrichter in Fol-
gesteuerung arbeiten, wirken sie, statistisch betrachtet (Fig. 10),
wie 4,5 unabhingige Einheiten, so dass man bei 99 %, Wahr-
scheinlichkeit mit einer Reduktion der Oberwellen gegeniiber
dem arithmetischen Wert auf 56 %, rechnen kann (Fig. 12). Aus
Fig. 2 ist zu ersehen, dass dieser statistische Wert noch iiber
dem genau berechneten Verlauf liegt, so dass man in diesem
Fall auch mit der statistischen Schitzung an der sicheren Seite
liegt.

Die Netzstrom-Oberschwingungen einer Stromrichteranlage
sind bekanntlich von den Kommutierungsreaktanzen, Strom-
belastung, Aussteuerung und Schaltung der Stromrichter ab-
hidngig. Bei den statistischen Berechnungen miissen selbstver-
standlich diese Einfliisse, neben den fiir die statistische Simula-

tion erforderlichen Kenntnissen iiber die Haufigkeitsverteilung
der Amplitude und des Phasenwinkels des Oberschwingungs-
vektors, beriicksichtigt werden.

Die Oberschwingungsuntersuchung dient generell fiir die
Entscheidung, ob fiir die betrachtete Anlage der Leistungs-
elektronik Saugkreise notig sind oder nicht, und weiter als
Grundlage fiir die Auslegung der Saugkreise. Die Anwendung
der statistischen Methode kann also unter Umstdnden dazu
fithren, dass man auf die sonst fiir den «Worst case» notwen-
dige Saugkreisanlage verzichten kann oder ihre Leistung redu-
ziert.

Adresse des Autors:

A. Kloss, Berechnungsingenieur, BBC AG Brown, Boveri & Cie.,
5400 Baden.
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Die kiirzlich in fiinfter Auflage in Osterreich erschienene
Verdffentlichung «Schutzmassnahmen in elektrischen Anlagen»
weist eine auffillige Ahnlichkeit mit dem gleichnamigen im
Jahre 1973 vom Verlag «Der Elektromonteur» in Aarau heraus-
gegebenen Buch auf. In beiden Ausgaben wurde die Frage- und
Antwortform angewendet, wodurch sich eine iibersichtliche
Gruppierung ergibt und sich die im Laufe der Zeit ergebenden
Vorschriftendnderungen relativ leicht anpassen lassen. Auch text-
lich sind verschiedene Ubereinstimmungen zu finden. Diese Pa-
rallelen haben sich nicht zufallig ergeben. Vielmehr ist daraus ein
Zusammenwirken der beiden Autoren zu erkennen. Die schwei-
zerische Ausgabe stiitzt sich auf die dritte Auflage des vorliegen-
den Buches, enthilt aber verschiedene in der Zwischenzeit be-
kannt gewordene Neuerungen und trigt den schweizerischen
Eigenheiten Rechnung. Das gleiche Verfahren, aber aus Osterrei-
chischer Sicht, wendet nun der bekannte Verfasser bei seiner
neuesten, fiinften Ausgabe an. Besonders hervorzuheben ist, dass
sich Dr. G. Biegelmeier bemiihte, die letzten bekannt gewordenen
Beschliisse der internationalen Normenkommission (CEI 64) in

Bull. SEV/VSE 66(1975)8, 19. April

seine Arbeit aufzunehmen. Dadurch erhielt das Buch iiber die
Grenzen Osterreichs hinaus Bedeutung.

Zum Inhalt ist zu bemerken, dass der Leser nicht nur einen
umfassenden Uberblick iiber die moglichen und vorgeschriebe-
nen Schutzmassnahmen gegen gefihrliche Auswirkungen der
Elektrizitédt im Niederspannungsbereich erhilt, sondern auch eine
Begriindung der empfohlenen Massnahmen findet. Es wurde je-
doch bewusst auf mathematische Abhandlungen verzichtet. Da-
durch ist das Buch auch fiir Praktiker wie Elektromeister, Elek-
tromonteure, Servicemonteure von Grossmaschinen und Sonder-
anlagen usw. verstindlich. Als besonders wertvoll darf der
Hauptabschnitt «Schutzmassnahmen in Raumen und Anlagen be-
sonderer Art» gelten. Die allgemeinen Schutzvorkehren sind in
verschiedenen Biichern beschrieben, doch selten werden die zahl-
reichen Anlagen an Orten erhdhter Gefahr oder fiir ausserge-
wohnliche Zwecke behandelt.

Da es, abgesehen von wenigen Spezialisten, den Fachleuten
schwer fillt, sich im umfangreichen Vorschriftenwerk zurechtzu-
finden und seine Hintergriinde zu erkennen, wird das vorliegende
Buch ganz wesentlich dazu beitragen, dass jeweils die richtige
Schutzmassnahme getroffen wird. E. Homberger

Wir mochten noch darauf hinweisen, dass die Schreibweise
der Buchstabensymbole im Text und in den Figuren verschieden
ist und diese nicht der internationalen Norm (CEI) entsprechen.
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