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Korrelationsverfahren zur Bestimmung
der Zeitverschiebung von regellosen Signalen

Eine theoretische Untersuchung
Von H. Meyr, H. Ryser und C. Zimmer

Zur Messung der Zeitverschiebung zwischen zwei Versionen
eines regellosen Signals wird ein Regelkreis («Tracking System»)
beniitzt, der eine elektronische Verzogerung laufend der tatsich-
lichen Zeitverschiebung nachfiihrt. Die notwendige Regelgrosse
wird aus der Korrelation der beiden Signale gewonnen.

Im ersten Abschnitt des Aufsatzes wird das Blockdiagramm
des Mefisystems diskutiert und ein mathematisch dquivalentes
Modell hergeleitet. Die darauffolgende Analyse beniitzt die
Fokker-Planck-Methode. Damit werden statistische Aussagen
iiber die Messqualitit des Systems moglich. Die Resultate konnen
zur Dimensionierung und Optimierung verwendet werden. Im
letzten Abschnitt wird die Theorie auf das Problem der beriih-
rungslosen Geschwindigkeitsmessung angewendet.

1. Einfihrung

Das Problem, die Laufzeitdifferenz 7" zwischen zwei Ver-
sionen des gleichen Signals zu bestimmen, findet sich in vielen
Gebieten wie Radar, Sonar [1]1), Satellitenkommunikation [2]
usw. Dabei kann es sich, wie z. B. beim Radar, darum handeln,
die Verzogerung zwischen ausgesandtem und reflektiertem
Signal zu bestimmen, oder auch darum, die Laufzeitdifferenz
eines von einer Quelle emittierten Signals zu bestimmen, das
auf verschiedenen Wegen zwei rdumlich getrennte Empfanger
erreicht. Als Beispiel sei die Funkpeilung erwiahnt [3; 4].

Eine leicht abgednderte Form des Messproblems findet man
in der berithrungslosen Geschwindigkeitsmessung. Die Ge-
schwindigkeit eines Objektes — oder auch diejenige eines stro-
menden Mediums — ldsst sich prinzipiell dadurch bestimmen,
dass die Laufzeit 7" des betreffenden Objektes zwischen zwei
festen Punkten gemessen wird. Bei bekanntem Abstand L
zwischen den zwei Punkten ist die Geschwindigkeit dann

V=g M

Das Blockschema eines solchen Gerétes ist in Fig. 1 dar-
gestellt. Zwei lichtemittierende Dioden, die in Bewegungsrich-
tung im Abstand L hintereinander angeordnet sind, werfen
ihr Licht auf die Oberfliche. Entsprechend der ortlichen Be-
schaffenheit der Oberfliche wird mehr oder weniger Licht
reflektiert, das dann in den Photodioden in elektrische Signale
zuriickverwandelt wird. Im Idealfall sind die beiden regellosen
Signale von identischer Form und nur um die Laufzeit 7 gegen-
einander verschoben. Geschwindigkeit v, Abstinde L und T
sind dabei durch GI. (1) verkniipft. Zur Bestimmung der Lauf-
zeitdifferenz 7 kann man die Tatsache ausniitzen, dass die
Korrelationsfunktion

Ru,x(T—1)=E [x t—T)x(— ‘L')]

eine gerade Funktion ist und ihr Maximum fiir 77— t = 0 hat.
Das Messverfahren (Fig. 1) beruht nun darauf, das Signal
x (¢) des ersten Messgebers in der Verzogerungsleitung kiinst-
lich zu verzdgern, und zwar um eine Zeit T , die der Rechner
auf 7 = T einstellen muss. Im Prinzip konnte man sich einen
Korrelationsrechner vorstellen, der die Korrelationsfunktion
fiir verschiedene (TA“~ T) berechnet und zu jedem Zeitpunkt

1) Siehe Literatur am Schluss des Aufsatzes.
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Pour la mesure d'un décalage temporel entre deux versions
d’'un signal non réglé, on a recours a un circuit de réglage pro-
duisant une temporisation électronique suivant le décalage effec-
tif. La grandeur de réglage nécessaire est obtenue par corrélation
des deux signaux.

Le diagramme fonctionnel du systeme de mesure est tout
d’abord décrit et un modéle mathématiquement équivalent est
établi. L'analyse qui suit applique la méthode de Fokker-Plank,
ce qui rend possible des indications statistiques sur la qualité de
mesure du systéeme. Les résultats peuvent servir au dimensionne-
ment et a loptimalisation. Pour terminer, la théorie est appliquée
au probléme de la mesure de la vitesse sans contact matériel.

das Maximum bestimmt. Die genannten Operationen lassen
sich aber betrdchtlich vereinfachen. Da nur der Ort des Maxi-
mums, nicht aber sein Wert von Interesse ist, stellt sich die
Frage, ob nicht eine Messgrosse gefunden werden kann, die
fiir 7 = T eine Nullstelle hat (Fig. 2). Ein solches Nullstellen-
verfahren hitte den Vorteil, dass

1. es unabhédngig von Schwankungen des Maximumwertes wire;

2. die Nullstelle — innerhalb gewisser Grenzen — durch Riick-
kopplung gefunden werden konnte.

In der praktischen Anwendung kommen Leistungsschwan-
kungen der Signale bis zu 60 dB vor (die durch einen AGC?2)
ausgemittelt werden miissen), so dass ein Extremalwertregler
kaum funktionsfihig wire. Davon abgesehen ist ein Extremal-
wertregler erheblich aufwendiger als eine einfache Riickkopp-
lungsschaltung. Man kann zeigen [5; 6], dass eine ungerade
Korrelationsfunktion durch ein lineares Netzwerkpaar erzeugt
werden kann (Fig. 3).

Der Erwartungswert des Produktes £ [ y1 (¢) - y2 ()] ist dann

eine ungerade Funktion der Differenz @ = T — 7 und wirkt
als Regelgrosse auf die variable Verzogerungsleitung. Fir
@ = 0 erscheint am Multiplikatorausgang im Mittel der Wert
Null, d.h., der Regelkreis befindet sich im stabilen Arbeits-
punkt. Es ist wichtig festzuhalten, dass das Produkt yi (¢)- y2(¢)
fiir @ = 0 nur im Mittel verschwindet. Dem Mittelwert ist in

2) AGC = Automatic Gain Control
(selbsttitige Verstirkungsregelung).

X (t) X(t-T)

2| X(t-T)

=

Oberflache

Fig. 1 Beriihrungslose Geschwindigkeitsmessung

I lichtemittierende Dioden

2 Photodioden

3 steuerbare Verzogerungsleitung
4 Korrelationsrechner
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ungerade
Korrelationsfunktion

B=T-T

|
gerade |
Korrelationsfunktion :

Fig. 2 Gerade und ungerade Korrelationsfunktion

l Filter1 v (1)
= 1
x(1) | T x(t-T) Hy () u(t)
/
F(w) }J—r '[3
H, (w)
x (t-T) 2 © ¥, (1)

Fig. 3 Blockschema des Korrelationsrechners

jedem Fall ein mittelwertfreier Rauschprozess iiberlagert, selbst
dann, wenn die beiden Signale x (¢ — T) und x (z — 7) in bei-
den Kanilen identisch sind. Anschaulich, aber nicht ganz kor-
rekt, kann man die mathematische Zerlegung in Scharmittelwert
und mittelwertfreien Rauschprozess

yi() y2()=E[y1(t) y2 ()] +

. 2
+ {1 @) y2 (1) — E[yi (1) y2(0] } @

in Analogie setzen zur Zerlegung eines Signals in Gleichstrom-
und Wechselstromanteil. Das Filter F(w) hat die Aufgabe,
Mittelwert und Rauschen moglichst gut voneinander zu tren-
nen.

In Anlehnung an den Phase-Locked Loop (PLL) soll der in
Fig. 3 dargestellte Regelkreis Delay-Locked Loop (DLL) ge-
nannt werden. Obwohl der DLL am Beispiel der beriihrungs-
losen v-Messung eingefiihrt wurde, ist klar, dass der Regel-
mechanismus fiir alle andern genannten Anwendungen der
gleiche ist.

Die Funktion des DLL ist in mancher Hinsicht analog der-
jenigen des PLL. Beim PLL wird eine lokal erzeugte, perio-
dische Referenz mit dem ankommenden Signal korreliert.
Analog dem DLL ist der Mittelwert der Multiplikatorspan-
nung eine ungerade Funktion der Phasendifferenz (@1 — (:)1).
Im Gegensatz zum DLL ist diese Funktion aber periodisch.

Trotz der Einfachheit des Messprinzips bereitet die mathe-
matische Analyse des Regelkreises grosse Miihe. Dies hat zwei
Hauptgriinde:

1. Die zur Laufzeitmessung verwendeten Signale sind regellose
Grossen.

2. Wegen des Multiplikators ist der Regelkreis nichtlinear.

Mathematisch gesehen hat man es mit nichtlinearen, sto-
chastischen Differentialgleichungen zu tun. Leider ist es nicht
moglich, eine befriedigende Analyse durch Linearisierung zu
erhalten. Zum einen wiirden in vielen — auch fiir die Praxis
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wichtigen — Fillen die Ergebnisse ungenau und zweifelhaft,
zum anderen liessen sich wichtige Phinomena mit einer lineari-
sierten Theorie tiberhaupt nicht erkléiren.

Der erste Teil dieser Publikation ist der mathematischen
Erfassung (Modellbildung) gewidmet. Es wird ein mathema-
tisch dquivalentes, iibersichtliches Modell fiir den Regelkreis
von Fig. 3 hergeleitet. Mit Hilfe dieses Modells lisst sich das
Verhalten des Regelkreises einfach iiberblicken und verstehen.

Das zweite Kapitel beschiftigt sich im wesentlichen mit dem
mathematischen Werkzeug zur Analyse des Regelkreises. Vor-
erst werden die Leistungskriterien von deterministischen Sy-
stemen — wie z. B. Klirrfaktor, Frequenzgang — denjenigen der
in der statistischen Nachrichtentechnik iiblichen gegeniiber-
gestellt. Wegen der regellosen Signale yi1 (¢) und y2 (¢) ist auch
@(1) selber eine regellose Grosse, die sich durch eine zeit-
abhangige Wahrscheinlichkeitsdichtefunktion p (@; 1) beschrei-
ben ldsst. Diese Dichtefunktion p(®; ¢) gehorcht einer par-
tiellen Differentialgleichung, die in der Literatur unter dem
Namen Fokker-Planck-(F-P-)Gleichung bekannt ist. Die F-P-
Gleichung wird heuristisch hergeleitet. Von grossem Nutzen
fir das Verstidndnis erweist sich eine physikalische Interpreta-
tion der F-P-Gleichung.

Anschliessend wird der DLL im Detail analysiert. Lei-
stungskriterien wie Streuung o2, die mittlere Zeit zwischen
«ausser Tritt fallen» usw. werden fiir ein Beispiel numerisch
berechnet und die analytischen Resultate mit den Ergebnissen
einer Computersimulation verglichen.

Im letzten Teil wird die Theorie auf das Problem der be-
rithrungslosen Geschwindigkeitsmessung angewendet. Aus-
gehend von der exakten Theorie werden verschiedene Néhe-
rungsformeln fiir die wichtigsten Leistungskriterien und deren
Abhingigkeit hergeleitet.

2. Modellbildung
2.1 Aufbau des Regelkreises

Die wichtigsten Funktionsblocke eines analogen DLL
(Fig. 5) sind der Multiplikator, ein Tiefpassfilter F(w), das
Filterpaar Hi(w), H2(w) zur Erzeugung der ungeraden Korre-
lationsfunktion sowie eine steuerbare Verzogerungsleitung.

Flw)
Kess [wo te @] (t)]

Fig. 4 Phase-Locked Loop (PLL)
VCO spannungsgesteuerter Oszillator

Asin [wo t+6,(H]

A x(t)+7,(t) l f‘(m__l H, (@) l_A, y,(H)+n.(t)

[r o]
A, x(t=T)+7,(t) _I_HZ_(_w)_l A (f)+n2(f)

2Y2

Fig. 5 Blockschaltbild und Signale des analogen DLL
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Man kann zeigen [5], dass zwischen den beiden physikalisch
realisierbaren Filtern Hi(w) und Hz(w) die Bedingung

Re [Hi(w) - H2* ()] =0
Im [Hi(0) - He*(@)] = — Im [Hi(~ o) - Ho* (— )] O

erfiillt sein muss, damit gilt:
Ryl, v2 (Q) = s va: v2 (— d))

Die Aufteilung der Pole und Nullstellen des Produktes
Hi(w) - H2* (o) ist nicht eindeutig. Eine speziell geeignete Auf-
teilung (siehe 2.5) fiihrt zur folgenden Zerlegung:

Hi(w) = i Ha(w) 4)

Beide Signale durchlaufen das gleiche Netzwerk Ha(w).
Die ungerade Korrelationsfunktion wird dann durch den
idealen Differentiator (iw) im oberen Signalpfad erzeugt. Man
beachte, dass der Differentiator nur in Verbindung mit dem
Filter Ha(w) physikalisch realisierbar ist. Im einfachsten Fall
gilt

» iw
1 {—llwex )

A oy

Hi(w) =

Das Steuergesetz der Verzogerungsleitung sei linear:

T
‘‘‘‘‘ = Kus(r) (©)
(K = Proportionalititsfaktor)

Es ist zu beachten, dass am Ausgang einer passiven, verlust-
losen Verzogerungsleitung mit x(7) als Eingangsgrosse nicht
x(t — T),sondern

y@) = Vl = %;T— x(t—T) M

erscheint [9]. Der Wurzelfaktor l/l = df/dt bewirkt, dass Ein-
gangs- und Ausgangsenergie gleich sind. In den meisten prak-
tischen Anwendungen ist die Ungleichung

T« ®
erfiillt, und man kann diesen Effekt vernachlissigen.

In der Praxis ist meistens in beiden Signalkanilen ein AGC
eingebaut, damit die Leistung am Eingang des Regelkreises
konstant bleibt. Fiir die weitere Untersuchung sei aber ange-
nommen, dass die Signalleistung Pi, P2 der beiden Kanile
konstant sei:

P = A2 Ps = Ao )]

(k—:f)+n‘(k)

Y—"‘Alyc

- Hc(z)I 1
A, x(k=T)+(k) Z
A,y (k=T)+n,(k)

Fig. 6 Blockschaltbild und Signale des digitalen DLL
digitaler Signalpfad
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Der Einfluss des AGC wird in [9] diskutiert.

Im Blockschema des digitalen DLL (Fig. 6) findet man die
gleichen Funktionsblocke wie beim analogen DLL. Zusitzlich
sind noch Abtaster, A/D- und D/A-Wandler vorhanden. Im
Gegensatz zu zeitkontinuierlichen, variablen Verzdgerungs-
leitungen lassen sich Verzogerungen von Abtastwerten durch
Schieberegister mit variabler Abtastfrequenz technisch einfach
bewerkstelligen. Dabei ist allerdings zu beachten, dass sich T
withrend der Durchlaufszeit 7" nur wenig dndern darf
d7

T oawey
=g <!

A~

a7
dt

~»

T< (10)
damit das Schieberegister angenihert das Verhalten einer Ver-
zogerungsleitung hat. Ist diese Bedingung nicht erfiillt, kénnen
Oszillationen des Regelkreises auftreten. Da die Frequenz fp
wertekontinuierlich ist und wegen df/dr < 1, begeht man einen
vernachldssigbaren Fehler, wenn man auch fiir den digitalen
DLL das Steuergesetz (6) annimmt. Damit ist man in der Lage,
beide Regelkreise durch Differentialgleichungen (statt in einem
Fall Differenzengleichungen) zu beschreiben. Dies ist fiir die
folgende Analyse von grosser Wichtigkeit, da man in beiden
Fillen die Fokker-Planck-Methode anwenden kann.

Das zu GI. (3) korrespondierende Resultat fiir den digitalen
DLL lautet [5]:

Hi(z) H2(1/z) = — H1(1/z) H2(z2) (11)

Auch hier erweist sich eine symmetrische Aufteilung der
Pole und Nullstellen als am besten geeignet (Fig. 6). Man priift
leicht nach, dass der Mittelwert von E [z(#; ®)] dann gegeben
ist durch

E[z(t; )] = E{[~ A1y k= T) + A1 ye k—2— )] -
“Asye(k—1=T)} = A1 As [~ Rye,ye (@ + D+ (12)
‘l‘ Rye,yc ((p“ 1)]

Gl. (12) zeigt, dass man im einfachsten Fall nur zwei um
2 - 1/fp verschobene Punkte der Korrelationsfunktion Rye, ye(k)
berechnen muss. Infolge der geraden Symmetrie von Rye, ye
(@ =n+e),|e| <1, verschwindet die Differenz fiir @ = 0.
Wegen der grossen Einfachheit findet sich diese Losung in vie-
len praktischen Anwendungen, z. B. [9; 10].

2.2 Charakterisierung des Produkiprozesses

Schon bei der qualitativen Beschreibung des Regelkreises
in Abschnitt 1 wurde klar, dass die statistischen Eigenschaften
des Produktprozesses yi(z) - y2(¢) von zentraler Bedeutung
sind. Fur diese Anwendung geniigt — wie man spiter sehen
wird — die Kenntnis des Mittelwertes E [z(r — @)] und des
Leistungsdichtespektrums Sy, ,(w; @) des Produktprozesses.

Bei jeder realen Anwendung sind die Nutzsignale x(#) und
x(t— T) durch zusitzliche Storsignale gestort (Fig. 5 und 6).
Diese Storsignale konnen additiv oder multiplikativ einwirken.
Multiplikative Storungen entstehen beispielsweise durch den
AGC und verursachen systematische Messfehler, da die Korre-
lationsfunktion Ryi,y2(®) ihre Symmetrie verliert. Additive
Storungen entstehen durch Verstidrkerrauschen, Riittelbewe-
gungen des Vehikels, Quantisierungsfehler, um nur einige
typische Storursachen zu nennen. Solche additiven Storungen
fiihren zu einer Vergrosserung der Streuung von @, nicht aber
zu systematischen Messfehlern, da die Signale 7i1(¢) und 7i2(7)
(Fig. 5) mit dem Nutzsignal unkorreliert sind. Fiir die weiteren
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Untersuchungen sollen nur mittelwertsfreie, gegenseitig und
mit dem Nutzsignal x (¢) unkorrelierte Storprozesse beriicksich-
tigt werden.

E[nx()] =0

13
E[nx(@) nj )] =0 e

E[nx(t)-x(@®)] =0

Der Produktprozess z(¢; @) sei in Mittelwert und mittelwert-
freien Rauschprozess zerlegt:

z(t; @) = E[z(t; ®)] + {z(t; ®) — E[zx(r; D) ]}
n(t; ®)

(14)

Diese Aufspaltung ist eine rein mathematische Konstruk-
tion und physikalisch nicht realisierbar. Ebenfalls gilt es zu
beachten, dass E [z(7; ®)] ein mathematisch definierter Schar-
mittelwert ist, d. h., wiirde man eine sehr grosse Anzahl iden-
tischer Regelkreise zum gleichen Zeitpunkt 7 betrachten, dann
wiirde man finden:

N
E[z(t; ®)] =lim > 1/N-zx(t; @) (15)

N->oo k=1
zx (t; @) = Wert des k-ten Systems

Dieser Scharmittelwert darf nicht verwechselt werden mit
dem Zeitmittelwert
. T
Z(t; B) =T1_T;~ﬁfz(r; ®) dr (16)
-T
Wiihrend Gl. (15) auch fiir nichtstationire Prozesse — wie sie

hier vorliegen — sinnvoll ist, ist Z(#; @) fiir dieses Problem {iber-
haupt nicht definiert.

2.2.1 Mittelwert E[z(r; @)]

Wegen der Linearitidt des Netzwerkpaares /1 (t), A2(¢) sind
die Signale yi(¢) und ya(f) gegeben durch Faltung des Ein-
gangssignals mit den entsprechenden Stossantworten. Das
durch das Nutzsignal verursachte Signal bezeichne man mit:

Ay =m@*x@—T) E[n2@®]=1

(17)
Asy2 (1) = ha )*x(t—T)  E[y2(0)] =1
Die Signalleistung in beiden Kandilen ist dann:
P1 = A2 Ps = A2 (18)

Die Storsignale 71 (¢), n2(¢) sind dann sinngemaéss durch

ni(t) = h(2)* fir(t)

na(t) = ha(t)* fia(t) (19)

gegeben. Wegen der Annahme in Gl. (13) findet man fiir den
(evtl. zeitabhéngigen) Mittelwert E [z(r; ®)]:

E[z(t; ®)] = A1 A2 E [y1(1)- y2(0)] (20)
Gl. (20) kann auch in der Form
E[z(t; )] = a1 Asz/n(t — V) -he (1 — &)
00 21)

CE{x[v—TW] x[¢ —T©®]} dvd¢

geschrieben werden. Der Mittelwert £ {x [v —T(v)] "X [é —T(é)]}
wird durch die statistischen Eigenschaften des Prozesses x und
die Dynamik von 7(¢) bestimmt. Es sei angenommen, dass
der Prozess x stationdr ist. Im allgemeinen sind 7 und T keine
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Konstanten und daher ist E {x [v — f’(v)] ZF [é — T(é)]} -
trotz der Stationaritdt von x — nicht nur von der Differenz der
Argumente abhidngig. Bezeichnet man mit cx, k = 1,2, die
Zeitdauer, wahrend der die Stossantwort der beiden Netzwerke
wesentlich von Null verschieden ist, so darf man die Zeit-
abhingigkeit von 7(¢) und f‘(t) vernachlissigen, falls die An-
derung dieser beiden Grossen wihrend der Zeit ¢k vernach-
lassigbar ist.

d7
dr

—(:%Ck<T k=12

a<T (22)
In diesem Fall ist der Mittelwert nur noch von der Differenz
der Argumente abhingig. Damit wird:

E[z(t; ®)] =Ar Az [ [l (t —v) b2 (t — &)
w ‘Re,x (v — & — @) dvdé

Die rechte Seite von Gl. (23) ist nunmehr identisch mit der
Korrelationsfunktion Ry, y2 (@) fiir stationdre Prozesse. Fiir
die weitere Analyse ist es vorteilhaft, E [z(¢; )] als Produkt
einer auf 1 normierten Funktion mit einer Konstanten 4 zu
schreiben:

(23)

Ag(®) = A1 A2 Ry1,y2 (D) = E [2(t; )] (24)
2.2.2 Leistungsdichtespektrum und Intensititskoeffizient

Es bleibt noch, den Rauschprozess
n(t; @)=z (t; @) — E[z(1; D)] (25)

zu beschreiben. Insbesondere werden wir zu einem spiteren
Zeitpunkt das Leistungsdichtespektrum Shu,n (w; @) kennen
miissen. Am bequemsten ldsst sich diese Funktion via Korre-
lationsfunktion berechnen:

Ru,n (13 ®) = Ra(t; @) — E2[2(t; D)] (26)
Definitionsgemass ist
Ry (v; @) = E{[A1y1(2) + n1(t)] [A2y2 (8) + n2 (1) ]+ @

#[diyi+ 0 +m @+ 0] [A2y2 (0 +9) +m2 (0 + D]}

Yon den 16 Summanden innerhalb der geschweiften Klam-
mer bleiben, wegen der Annahme in GI. (13), nur vier iibrig.

Ru,n (15 @) = A22 Ry2,y2 (1) * Ru1,m1 (7) +
+ A12 Ry1,y1 (t) Rn2,n2 (7) + Rni,n1 (7) Ru2,n2 (1) +
+ Rui, ni (7; D)

(28)

Es ist wichtig zu verstehen, dass n(z; @) in zwei Rausch-
prozesse mit ganz verschiedenen Ursachen zerfillt. Gl. (28)
zeigt dies. Die ersten 3 Summanden beschreiben den Einfluss
der additiven Storprozesse. Diese Korrelationsfunktionen ver-
schwinden, falls 71 = n2 = 0; weiterhin sind sie unabhéngig
von @. Der Summand Rni,ni(t; @)

Ruini(t; @) = (A1 422 {E [y1(2) " y2(2) 31t + 7) -
2+ 0] = E2 [y () »2(0)]}
beschreibt den Einfluss des Eigenrausches (intrinsic noise). Das

Eigenrauschen entspricht dem mittelwertfreien Rauschprozess
am Ausgang des Multiplikators

(29

ni(t; ®) = z(t; @) — E[z(t; D))

ni(t) =n2(t)=0 (30)

falls die Signale x(z — f“) und x(r — T) fiir @ = 0 exakt liber-
einstimmen. Bei wichtigen Anwendungen, z. B. Geschwindig-
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Fig. 7 Korrelationsfunktion Ryc, yc (x) und Nichtlinearitit g (x)
Ay = A2; Dx = 1/fp

keitsmessung, kann der «Intrinsic Noise» dominierend sein
und darf keinesfalls vernachldssigt werden. Weiter ist zu be-
merken, dass ;i (¢; @) die Genauigkeitsgrenze eines korrelativen
Trackingsystems bestimmt. Fiir viele praktische Anwendungen
ist der Prozess x(¢) ungefihr gaussverteilt. Fiir die symme-
trische Aufteilung der Pole und Nullstellen [GIl. (4)] des Pro-
duktes Hi(w) - Ha2*(w) findet man unter dieser Annahme nach
ldngerer, aber elementarer Rechnung

Rni,ni(T; @) =
d d .
= (A1 A2)? [_d‘t" Ry2,y2(t — D) ERYZIYZ @T+o)+ (@D

dz
+ Ryz,y2 (1) a2 Ryo, VZ(T)]

Fiir den Regelkreis ist insbesondere das Verhalten des Lei-
stungsdichtespektrums in der Umgebung « = O interessant,
denn dieser Anteil muss durch das Filter F(w) moglichst gut
entfernt werden. Man definiert in [11] den Intensititskoeffi-
zienten eines stochastischen Prozesses x () als:

Ky = fox(T) dr = Sy, x (O) (32)

Durch partielle Integration von G1.(31) findet man Kni(®=0)
= 0. Diese Eigenschaft ist darum von grosser Wichtigkeit,
weil @ = 0 bei konstantem 7'der stabile Arbeitspunkt des Regel-
kreises ist. Es ist eine sehr erwiinschte Eigenschaft, dass in
diesem Punkt die Stiarke des Rauschens minimal ist. Das ent-
sprechende Resultat fiir den in Fig. 6 gezeigten digitalen DLL
lautet

Rui,ni(m; @) = (A1 A2)? [Ryc,ye(m + 1 — @) —
~ Ryc,ye (m — 1 — D)] - [Ryc,ye(m — 1 + @) —
— Rye,ye(m + 1 + ®)] + (41 A2)2[ — Ryc,ye(m —2) +
+ 2 Rye,ye(m) — Rye,ye(m + 2] * Ry, ye(m)

(33)

mit
|
T=m—

S

Leistungsdichtespektrum und Korrelationsfunktion des ab-
getasteten Signals sind durch die Relation

Shi,ni(z; @) = fy z Rui,ni(m; @) zm
m= —0o0
z=exp (io 1/fp)

verkniipft. Das Leistungsdichtespektrum am Ausgang des
D/A-Wandlers findet man leicht durch Multiplikation von
Su,n(z; @) mit der Ubertragungsfunktion | Hp/a (@)]2:

(34)

Sn,n(@; @) = Sn,u [z =exp(iv 1/fp)] - | Hpja (@) |? (35)

Der Intensitdtskoeffizient ist dann wieder durch GI. (32)
definiert.
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Beispiel: Leistungsdichtespektrum und Intensitétskoeffizient
fir einen digitalen DLL mit dreieckformiger Korrelations-
funktion.

Die Korrelationsfunktion Rye, yc (@) (siche Fig. 6) sei drei-
eckformig. Die resultierende ungerade Korrelationsfunktion
ist in Fig. 7 dargestellt. Das Leistungsdichtespektrum Shui, ni
(z; x) fiir verschiedene x und der Intensitdtskoeffizient sind in
den Fig. 8a und 8b dargestellt.

2.3 Differentialgleichung und dquivalentes Modell

fiir den DLL I.Ordnung

Wir wollen uns hier auf den DLL 1. Ordnung, d. h. F(w)
= 1, beschranken. Fiir die Anwendung ist das der weitaus
wichtigste Fall.

Man geht vom Steuergesetz der variablen Verzogerungs-
leitung [GI. (6)] aus. Man zerlegt den Produktprozess wie in
Abschnitt 2.2 in langsam verdnderlichen Mittelwert und mit-
telwertsfreien Rauschprozess und setzt in Gl. (6) ein:

d7
=K [4g(®) + n(r; D)] 36)
a
T 3
X
“_Q.
>
u‘)é
S
_’ < ’
! !
.-[ o«
0 0,5 1 —
t/f,
b
- \\
¥C
o 2
L <N
=
._'\,_a
1
0 ! “ ’

X —p

Fig. 8 Leistungsdichtespektrum und Intensititskoeffizient

a) Normiertes Leistungsdichtespektrum

I ! I oo
fp ’ >(A17Az)'~’r Sni, ni (f/fll, .\)

b) Normierter Intensitdtskoeffizient Kni (x)
1 1
S o =~ K i(x
E A
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Ersetzt man 7 durch 7= T — @, so erhilt man schliess-
lich die gesuchte Differentialgleichung fiir den Fehler @:

dT

do dr
ds

g = Kl[4g@) +n(; 0)] + (37

In dieser Differentialgleichung tritt 7°(¢) als Storfunktion
auf. 7(z) kann ein deterministisch bestimmter Bewegungsablauf
oder ein Zufallsprozess mit bekannten Eigenschaften sein. Es
sei festgehalten, dass GlI. (37)

a) nichtlinear ist wegen g (@) und n (¢; @),

b) eine regellose Grosse # (1; @) enthalt.

Damit wird @(7) selber ein Zufallsprozess. Deswegen ist es
prinzipiell unmdoglich, fiir @(¢) eine Losung in Form einer
«Funktion» anzugeben. Im nédchsten Abschnitt wird gezeigt,
dass man eine zu Gl. (37) korrespondierende partielle Diffe-
rentialgleichung fiir die Wahrscheinlichkeitsdichtefunktion
p(@; t) herleiten kann. Die Kenntnis von p(@; t) geniigt zur
vollstandigen statistischen Beschreibung des Regelkreises. Man
priift leicht nach, dass der in Fig. 9 dargestellte Regelkreis der
gleichen Differentialgleichung 37 gehorcht, also mathematisch
dquivalent ist. Das in Fig. 9 gezeigte Modell hat grosse Ahn-
lichkeit mit dem bekannten Basisbandmodell des PLL [7; 8].
Im Gegensatz zum DLL ist im letzteren Fall die Nichtlineari-
tat — entsprechend dem periodischen Charakter des zu folgen-
den Signals — periodisch. Des weiteren ist #(¢; @) nicht von @
abhidngig. Diese auf den ersten Blick verbliiffende Verwandt-
schaft ldasst sich einfach erkliaren: Beide Kreise beniitzen die
gleiche mathematische Eigenschaft, niamlich die Orthogonali-
tit. Beim PLL beniitzt man die Orthogonalitit zweier peri-
odischer Funktionen mit endlichem Orthogonalititsintervall.
Beim DLL sind die beiden Zufallsvariabeln yi(¢) und y2(#) zu
jedem Zeitpunkt orthogonal, falls @ = 0. Vertauscht man —
was eigentlich nur fiir 7 7 = konstant zulédssig ist — Schar-

und Zeitmittelwert
t

1
E[11(0) 2] - lim o [ 2y ar’ (38)

—>00
-t
so kann man sagen, dass das Orthogonalitéitsintervall der bei-

den Funktionen unendlich ist.

2.4 «Tracking»- und « Acquisition»-Betrieb beim DLL

Bei allen korrelativen Trackingsystemen (Verfolgungs- oder
Nachfiihrungssystemen) unterscheidet man zwei grundsitzlich
verschiedene Betriebsverhalten:

1. «Acquisition»

2. «Tracking»

Da die Riickstellkraft Ag(®) mit wachsendem Fehlerbetrag
@ rasch abnimmt, muss der Regelkreis zu Beginn jederMessung
in die Umgebung von @ = 0 gebracht werden («Acquisition»).
Dies kann beispielsweise durch «Sweepen» der elektronischen
Verzogerungsleitung 7 iiber den vermuteten Wertebereich von
T geschehen. Sofern die Anderung df‘/df nicht zu rasch ist,
wird der Regelkreis beim Durchlaufen von @ = 0 einhingen
und anschliessenden Anderungen von 7 nachfolgen («Track-
ing»). Doch selbst wenn der DLL einmal eingehingt hat, be-
steht immer eine gewisse Wahrscheinlichkeit, dass er zu einem
spéteren Zeitpunkt «ausser Tritt» fallt. Unter «ausser Tritt
fallen» versteht man, dass der Fehlerbetrag @ gewisse Grenzen
uberschreitet. Die Griinde dafiir sind entweder eine zu grosse
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| F(p)

T _lq_rl-r (1) A—-%‘é

g(®)

0'\,_,_

Fig. 9 Mathematisch dquivalentes Modell des DLL

Beschleunigung d7/d: oder der Rauschprozess n(t; @). Die
angefiihrten Phinomene sind

a) statistischer Natur

b) nichtlinear

und treten bei einer idealisierten, linearen Riickstellkraft Ag(®)
= A® nicht auf.

3. Analyse des DLL mit Hilfe der Fokker-Planck-Methode
3.1 Leistungskriterien in der statistischen Systemtheorie

Entsprechend dem statistischen Charakter des Regelpro-
zesses @ (¢) miissen auch dieser Tatsache angepasste Leistungs-
kriterien verwendet werden. Die dem Ingenieur aus der deter-
ministischen Systemtheorie vertrauten Kriterien, wie z. B.
Klirrfaktor, Frequenzgang usw., verlieren in diesem Fall ihren
Sinn. Die in der statistischen Nachrichtentechnik am hiufig-
sten angewendeten Kriterien sind die verschiedenen Momente,
wie z. B. Mittelwert E(®) oder Streuung o42. Sie allein geniigen
aber nicht, um das Verhalten zu beschreiben. Beispielsweise
lasst sich das «Ausser-Tritt-Fallen» des DLL dadurch nicht
erfassen. Es ist klar, dass gerade dieses Verhalten fiir die An-
wendung von grosser Bedeutung ist. In gewissen Fillen mag
man eine gewisse Ungenauigkeit — ausgedriickt durch g4 —
tolerieren, hingegen darf das «Ausser-Tritt-Fallen» nur mit
einer sehr kleinen Wahrscheinlichkeit passieren. Fiir andere
Anwendungen [2] mag eine kurze Acquisitionszeit Tacq VON
Bedeutung sein. Allen diesen Kriterien ist gemeinsam, dass sie
statistische Aussagen sind. Man kann z. B. nie ausschliessen,
dass der Regelkreis ausser Tritt fillt, sondern nur die Wahr-
scheinlichkeit fiir das Eintreten dieses Ereignisses angeben.

Das Ziel dieses Abschnittes ist es, zu zeigen, wie sich solche
Leistungskriterien mathematisch ermitteln lassen. Die zur
Anwendung gelangende Technik ist in der Literatur unter dem
Namen «Fokker-Planck-Methode» bekannt. In einem weiteren
Schritt sollen diese abstrakten Grossen und ihr Zusammenhang
mit den geometrischen und kinematischen Parametern fiir den
Fall der beriihrungslosen Geschwindigkeitsmessung ermittelt
werden.

3.2 Die Fokker-Planck-Gleichung

Um die Fokker-Planck-Methode effektiv anwenden zu kon-
nen, ist ein Verstindnis der physikalischen Aussage dieser
Gleichung unerlisslich. Die F-P-Gleichung ldsst sich streng
mathematisch mit Hilfe der Theorie der kontinuierlichen
Markov-Prozesse herleiten [7; 8; 13; 16]. Hier soll eine heu-
ristische, auf physikalischen Argumenten basierende Herlei-
tung gegeben werden.
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Angenommen, das System befinde sich zur Zeit t = 0 im
Punkt @ = @,. Fiir Zeiten ¢ > 0 beschreibt die Trajektorie
@(¢) eine komplizierte Bahn, ganz dhnlich einem Teilchen, das
einer Brownschen Bewegung unterworfen wird. Stellt man sich
nun eine sehr grosse Anzahl solcher Teilchen vor, so hat man
eine Art Gas vor sich, das in Richtung der @-Achse nach links
und rechts diffundiert und dessen Dichte proportional der
Wabhrscheinlichkeitsdichtefunktion p(®, ¢) ist. Man spricht in
diesem Modell daher von der «Anzahl Molekiile» statt von

«Grosse der Wahrscheinlichkeity, und man versteht unter
D2

fp(dS; t)d® die Anzahl Molekiile im Intervall [®1; @2] oder
D v
den Bruchteil der Zeit, den ein Molekiil in diesem Intervall

verbringt. Natiirlich versteht man unter «Anzahl Molekiile»
die relative, nicht die absolute Zahl von Teilchen, denn diese
Bruchteile entsprechen der Wahrscheinlichkeitsdichtefunktion.
Wenn man versucht, dieses Modell quantitativ zu beschreiben,
so muss man offensichtlich mathematisch erfassen, dass die
Molekiile nicht verschwinden, sondern sich nur verschieben
konnen (Erhaltungssatz). Der Erhaltung der Molekiile ent-
spricht dann die Erhaltung der Wahrscheinlichkeit, d. h., das
Integral der Dichtefunktion p(®; ¢) liber den ganzen Bereich
muss zu jedem Zeitpunkt 1 ergeben (sicheres Ereignis).
Wihrend der Zeit o7 fliessen Ni-Teilchen in das Elementar-
volumen JF - 6® hinein und N--Teilchen heraus (Fig. 10).

Ni =G (D; 1) 0F ot N-=G (@ +0D;1t)0F-ot (39)

Zur Zeit ¢t befanden sich im Volumen 6F - 6® N Teilchen,
nach J¢ Sekunden sind es N st Teilchen.

Ni= o (P; 1) 0F b

Nisst— o (D; 1+ 61) 6F- 6 (40)

Da die Teilchen innerhalb des Elementarvolumens nicht
verschwinden konnen (Erhaltungssatz), muss gelten

Niist— Ne=Ny — N- (41)
Also
e (P51 +01)—e(@5t) _ G(P;0) =G (P+0P51) 4

ot oD

Vollzieht man den Grenziibergang d¢, 60 -0, so wird aus
Gl. (42):

oo (P;t) G (P; 1)
a P (43)

In unserer Analogie entspricht o(®; ¢) der Dichtefunktion
p(®;t), wihrend G(®;t) durch einen Wahrscheinlichkeits-

e(d; 1)

///_/5.=

G(D:60,1)
7
0] ®+69

Fig. 10 Zur Herleitung des Erhaltungssatzes
G (@; 1) Teilchenstromdichte
0 (@; 1) Teilchendichte
oF Elementarfliche

G(d;t
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dichtestrom ersetzt werden muss. Die F-P-Gleichung ist also
nichts anderes als der Erhaltungssatz der Wahrscheinlichkeit
in Differentialform.

Es bleibt nun noch zu zeigen, wie sich die F-P-Gleichung
aus der Differentialgleichung (37) herleiten ldsst. Strengge-
nommen ldsst sich eine F-P-Gleichung nur finden, wenn
n(t; @) ein weisser, GauBscher Rauschprozess ist. Kein physi-
kalischer Prozess erfiillt diese Bedingung. Wenn hingegen die
Bandbreite des Regelkreises — oder anders ausgedriickt die von
@ (t)—viel kleiner ist als diejenige des Rauschprozesses n(t; @),
kann man in guter Ndherung schreiben

Rn,n(T; q)) =53 5(1)-IR11,11(T; ¢)dT = (44)

=0(7)* Sn,n(w = 0; @) [0(7): Diracfunktion]

Auf die mathematischen Feinheiten dieser Approximation
kann hier nicht eingegangen werden (siehe z. B. [11; 16]). Man
kann zeigen, dass bei korrekt durchgefiihrtem Grenziibergang
die zu Gl. (37) korrespondierende F-P-Gleichung die folgende
Gestalt annimmt [7; 11]:

L/ ACH
at op

(Ko @ -p(@; 1)

;a% [Ko,0(®) - p(; t)]] —0

(45)

Die Funktionen Ko(®) und Ko,o(®) sind durch folgende
Beziehungen definiert [7; 8; 11]:

Ko(®)— lim E[®@+d1)— @(t)]
S0 T 8y A
(46)
Ko, o(®) = lim E{[?(t jﬁét?@}
8t —> o0 57

definiert. Zur Berechnung von Ko,o(®) sei die Differential-
gleichung (37) iiber das sehr kleine Interval or integriert. Durch
Quadrieren von 6@ = &(¢ + 5t) — ®@(¢) und anschliessende
Mittelwertbildung findet man (d7/d7 = a)

E (6®2) = [KAg(d>) = a]z 02— g
—2[KAg [®) —a] [ E[n(t; ®)] dt’+ (47)
t+ ot t

+ K2 [ [ E[n(v; @) n(&; )] dvde
t

Wegen der Stationaritit von n(z; @) ist £ [n(v; D)-n(é; di)]
nur von der Differenz der Argumente abhidngig. Ersetzt man
Ru,n(v — &; @) durch die rechte Seite von GI. (44) und divi-
diert beide Seiten von Gl. (47) durch d¢, so resultiert:

Ko, 0(®) = K2 Sn,n (0 =0; @) (48)

Das Spektrum Sn,n(@; @) wurde in Abschnitt 2.2 berech-
net. Wie GI. (48) zeigt, beschreibt der Intensititskoeffizient
Ko, o(®) die Stirke des Rauschens. Physikalisch kann Ko, o(®)
als Diffusionskoeffizient interpretiert werden.

Geht man zur Berechnung von Ko (®) analog vor, so findet
man

dr

—— = a = konstant

ds “49)

Ko(®) = — KAg(®) +a
die korrekte Form von Ko(®) lautet aber [11; 12]:

Ko(®) = — KAg(®) +a + -}1— K? dd—(p [Sn.n(w=0;D)] (50)

Ito-Korrektur
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Fig. 11 Aufbau der stationiren Dichtefunktion

Der Grund fiir diese Diskrepanz liegt im inkorrekten
Grenziibergang von n(z; @) zu einem weissen Rauschprozess.
Der It6-Term wird hiufig iibersehen, was zu fragwiirdigen
Ergebnissen fiihrt. Beziiglich dieses anspruchsvollen Fragen-
komplexes sei auf [11...14] verwiesen. Physikalisch gesehen
beschreibt Ko(®) die mittlere Driftgeschwindigkeit eines Teil-
chens, verursacht durch die Riickstellkraft 4g(®) —a. Im
Grenzfall, wo Ko(®) gegeniiber Ko, o(®P) vernachléssigt werden
kann, hat man einen reinen Diffusionsprozess; im andern
Grenzfall ein total determiniertes System.

3.3 Stationdgre Dichtefunktion p(®)
und mittlere Zeit E(71) zwischen zwei Ausféllen

Der Aufbau der stationidren Dichtefunktion p(®), fiir die
definitionsgemadss gilt
WD g
P (@;t)=0 (51
ist qualitativ in Fig. 11 gezeichnet.

Im Laufe der Zeit verteilt sich die anfanglich schmale
Dichtefunktion p(@; ) iiber einen weiteren Bereich. Das
dauert so lange, bis im stationdren Zustand die Dichtefunktion
verschwindet.

p(P)=p(P;1)=0

t—> o0

aber (52)

[ p(®)do =1

Dies bedeutet, dass die Wahrscheinlichkeit, ein Teilchen in
irgendeinem Intervall der @-Achse zu finden, iiberall gleich
gross ist. Daher besitzt p(®) eine unendlich grosse Streuung.
Man konnte sich auch vorstellen, dass p(@; ¢) asymptotisch
gegen eine Grenzverteilung p(®) mit endlicher Streuung
strebte. Die Frage des asymptotischen Verhaltens ist eng mit
dem Intensititskoeffizienten der F-P-Gleichung verkniipft.
Man kann zeigen, dass alle physikalisch realisierbaren Track-
ingsysteme das zuerst beschriebene Verhalten zeigen, d.h. fiir
t — oo, p(@; t) = 0 [5]. Dies hiangt damit zusammen, dass die
Driftkraft Ko(®) in GIL. (45) fiir wachsendes @ gegen Null
strebt, wihrend die Diffusionskomponente Ko, o(®) gegen eine
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Konstante strebt, so dass die Teilchen im Verlaufe einer un-
endlich langen Zeit iiber den ganzen Bereich verteilt werden.
Der Zerfall der Dichtefunktion p(®; ) kann dabei so langsam
geschehen, dass sich quasistationdre Zustdnde ausbilden, die
von einem Experimentator praktisch nicht von echt stationiren
Zustanden unterschieden werden konnen.

Da das stationdre Verhalten der Regelkreise aber von
grosster praktischer Bedeutung ist, muss ein dquivalenter Pro-
zess gesucht werden, der die statistischen Eigenschaften des
urspriinglichen Prozesses beibehilt und im stationdren Fall
eine sinnvolle Losung ergibt.

Zur Konstruktion eines solchen Prozesses geht man am
besten vom tatsichlichen Verhalten des Regelkreises aus. Zu
Beginn jeder Messung muss der DLL durch einen Suchvorgang
(«Acquisition») in den «In Lock»-Bereich gebracht werden
(Fig. 12), wobei die Definition des «In Lock »-Bereiches an und
fiir sich willkiirlich ist. Die Uberwachung des «In Lock»-
Zustandes geschieht durch eine in Fig. (13) dargestellte Uber-
wachungsschaltung (Lock Detector). Diese Uberwachungs-
schaltung misst im Prinzip die gerade Korrelationsfunktion,
die bei @ = 0 ihr Maximum hat. Sobald der Wert am Ausgang
des Tiefpasses — der im Mittel gleich der Korrelationsfunktion
Ry, x(®) ist — unter eine gewisse Grenze sinkt, signalisiert die
Schaltung «Out of Lock». Dabei muss beachtet werden, dass
die Uberwachungsschaltung nur im Mittel bei @ = -+ Prock
anspricht, dass aber fiir jeden anderen Wert von @ eine Wahr-
scheinlichkeit S (®) besteht, dass die Schaltung fehlanspricht.
Nach jedem Ansprechen der Uberwachungsschaltung wird ein
neuer Suchvorgang initialisiert. Dieses Verhalten kann man
mathematisch folgendermassen beschreiben:

Zur Zeit t = 0 startet eine Trajektorie im Punkt @ = @
(Fig. 14). @ ist der stabile Gleichgewichtspunkt, d.h. der
Punkt, wo Ko(®) verschwindet. Zu jedem Zeitpunkt besteht
eine von @ abhingige Wahrscheinlichkeit S(®), dass der Pro-

b R (@)

! N schwelle Ky
4 ¢ — o
-® ? [0)
lock lock
— fet - TS
out of lock in lock out of lock

Fig. 12 Definition des’«In-Lock »-Bereiches

L= Rux(D)> k, =>in-lock

- j}_p =R, (®)<k, = out of lock

Tiefpass-Filter

Fig. 13 Delay-Locked Loop und zugehorige Uberwachungsschaltung
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zess in seinem momentanen Standort gestoppt wird. Zusitzlich
sei angenommen, dass der Prozess spitestens bei @ = Pmin,
®Dmax gestoppt wird. Diese Grenzen sind endlich, aber sonst

erweist es sich als vorteilhaft, @ durch die dimensionslose
Variable x zu ersetzen:

beliebig. Da fiir ein praktisch verwendbares System die Lebens- x; @111 B lisi ——— GD
dauer 71, einer Trajektorie viel grosser ist als die Suchzeit, darf (Px: Normalisierungskonstante)
man annehmen, dass unmittelbar danach ein neuer Prozess
im Punkt @ = @, gestartet wird. Durch geeignetes Umformen ergibt sich schliesslich
Xmax
o S(x) /
p(x) = . - exp | — Dx Uo(x) Do — u(x’ — xo)| exp | @x Uo(x") | dx’ (58)
E(t1) [1/es N(x) + 1/en] [ 1 Jew] ]
mlt Xmin
X
Uo(x)=—-—1— — . —g(x’)—l—ajﬁT— dx’—lln 1/0s N(x) + 1/on
®x | [1/es N(x) + 1/ean] P 2
Ko =A/®x; 1/ar =4 Br, = KKo; A= A1 A2
= Shni,ni (0 =0, (582)
1/0s =2 Blfo; N (x) =, S22 =0.2)
2 By, - S, =0
1/ On = = nx;‘:n (CO )

Es ist intuitiv klar, dass der in Fig. 14 dargestellte Prozess
eine stationdre Losung hat. Tatsichlich kann man zeigen [5],
dass die Dichtefunktion des wiederholten Prozesses der F-P-
Gleichung gehorcht:

d (Ko(®) 1 d [Koo(D) _ 6(D— Do)
1% | S(o) p(¢)_7'd—¢[ S(@) P(‘p)]}‘ E(en)
(53)

Dabei ist 6(®@ — Do) die Anfangsverteilung der Trajektorie,
E(71) die mittlere Lebensdauer einer Trajektorie. Es ist inter-
essant, dass man die wichtigsten Parameter, die das Betriebs-

verhalten des DLL beschreiben, durch Losen einer F-P-Glei-

chung erhalten kann.
Durch einmalige unbestimmte Integration wird aus Gl. (53):

Ko(2) 1 d [ Ko,o(D) B
s@ 2P "7 4 [ S(@) P@)] = .
1
B [u(qs ek DO] [ (...) Sprungfunktion]
Dy ist bestimmt durch die Randbedingungen [5]:
Dmax ,
J exp [~ 2 Ko(@)/ Ko,o(®)] dd
Do= 33— (55)
[ exp [~ 2Ko(®)/ Ko,o(®)] ded
Pmin

Das gefundene Resultat ldsst sich mit Hilfe des Wahrschein-
lichkeitsdichtestroms Jo(®) anschaulich interpretieren. Die
rechte Seite von Gl. (54) ist definitionsgemass gleich Jo(®):
(56)

Jo(®) = [ (@ — ®0) — Do

1
E(t1)
Der Strom ist zeitlich konstant. Die an den Rindern ab-
fliessenden Teilchen werden laufend durch die an der Stelle
. @ = @ liegende Quelle ersetzt. Die Grosse der Strome zu den
Rindern @Pmin, Pmax teilt sich dabei im Verhiltnis Do zu
(1 — Do) auf.
Die stationidre Dichtefunktion p(®) findet man durch Losen
der Differentialgleichung (54). Fiir die praktische Anwendung
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Die eingefiihrten Parameter haben anschaulich physika-
lische Bedeutung. ar ist die Zeitkonstante des linearisierten
Regelkreises mit
g@="20 (59)
wiahrend Bz, die dquivalente Bandbreite ist. gn ist das Signal-zu-
Gerdusch-Verhéltnis (SNR) des linearisierten Kreises, wenn
man annimmt, dass z(¢) ein weisser Rauschprozess und #; (¢; @)
= 0 ist. 1/gs N(x) ist die entsprechende Grosse fiir das Eigen-
rauschen. Man beachte, dass diese Grosse unabhiingig von der
Signalleistung ist, wie es sein muss.

Zur Illustration der Theorie sind im folgenden einige nume-
rische Ergebnisse fiir den in Fig. 6 gezeigten digitalen DLL mit
dreieckformiger Nichtlinearitit (Fig. 7) dargestellt. Wenn man
sich den stochastischen Prozess & (¢) als Irrfahrt eines Molekiils
vorstellt, so bewegt sich das Teilchen in einem Potentialtopf
Uo(x). Je steiler und hoher die Flanken, desto eher bleibt das
Teilchen am Boden des Topfes. Die nichtlineare Riickstellkraft
ist die Ableitung der Potentialfunktion nach der Ortsvariabeln.
Die Kraft ist im Potentialminimum (stabiler Arbeitspunkt)
Null (Fig. 15). Fiir xo = 0 strebt die Funktion Up(x) fiir
x = 4 oo gegen eine Konstante, d. h., die Riickstellkraft ver-
schwindet. Fiir xo 7= 0 existiert ein weiterer, aber instabiler
Gleichgewichtspunkt.

lock ”®_
min

Fig. 14 Typischer Verlauf der Trajektorie @ (7) des wiederholten
Prozesses
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Fig. 15 Normalisierte Potentialfunktion des digitalen DLL mit
dreieckformiger Nichtlinearitit
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Fig. 16 Wahrscheinlichkeitsdichte-Funktion p(x) fiir den digitalen DLL
mit dreieckformiger Nichtlinearitiit
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569 {0 sonst

Man beachte, dass das Potential fiir eine linearisierte Kenn-
linie g(®) eine Parabel ist:

Uo(x) = bx?
(b: Konstante)

(60)

Im Unterschied zum nichtlinearen, physikalisch realisier-
baren Regelkreis, strebt dieser Potentialtopf gegen oo, was
bedeutet, dass ein solcher Regelkreis einen unendlich grossen
Fangbereich hitte und nie «ausser Tritt fallen» wiirde.

Die Dichtefunktion p(x) ist fiir verschiedene xo (stabile
Gleichgewichtspunkte) in Fig. 16 und 17 dargestellt. Wegen
der Tatsache, dass Sn,n(w = 0; x) fiir x = 0 ein Minimum
hat, ist bei x = 0 eine scharfe Spitze zu beobachten. Die Streu-
ung ox2 nimmt aus dem gleichen Grund mit wachsendem | xo |
stark zu. Dieses Verhalten ldsst sich nur durch eine nichtlineare
Theorie erkliren. Zur Verifikation der Theorie wurden durch
Computersimulation zwei Dichtefunktionen fiir xo = 0 und
xo = 0,5 ermittelt. Simuliert wurde der tatsichliche Regelkreis
(Fig. 3), nicht das dquivalente Modell. Auch in der Simulation
(Fig. 17) aussert sich die starke Abhéngigkeit des Leistungs-
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dichtespektrums Sn,n(®w = 0; x) von x in einer grosseren
Breite der Dichtefunktion fiir xo %% 0. Die Ubereinstimmung
zwischen Theorie und Simulation ist sehr gut. Die mittlere
Lebensdauer E(r1) einer Trajektorie ist sehr stark vom Signal-
zu-Gerdusch-Verhiltnis und vom stabilen Arbeitspunkt xo ab-
héangig (Fig. 18). Fiir die Praxis von grosser Wichtigkeit ist die
‘Wahrscheinlichkeit eines Funktionsausfalles innerhalb einer
bestimmten Zeit. Unter Funktionsausfall versteht man das
Ansprechen der Uberwachungsschaltung. Zu diesem Zweck
betrachte man die Zufallsvariable, welche zur Zeit ¢ die Ge-
samtzahl der Zyklen angibt (Fig. 14). Falls man ndherungs-
weise annimmt, dass diese Zufallsvariable poissonverteilt ist,
erhélt man fiir die Wahrscheinlichkeit eines Funktionsausfalls:

Paustan (7) ~ 1 — exp (_ E(gL)) ’ (az_l:r)

4. Anwendung der Theorie auf das Problem
der beriihrungslosen Geschwindigkeitsmessung

(61)

4.1 Rdumliche und zeitliche Korrelation

Die Intensitdt des empfangenen Lichtes ist eine Funktion
der Oberfliche am betrachteten Ort. Man definiert daher eine
rdumliche Korrelation, wobei man annehmen darf, dass diese
Funktion nur vom Abstand d der Punkte abhingt. Die Gestalt
dieser Funktion hingt von der Oberflichenbeschaffenheit und
der Optik ab [10]. Den Zusammenhang zwischen ridumlicher
und zeitlicher Korrelation findet man durch Ersetzen von &
durch d/v.

Rx,x(d)

rdumliche Korrelation

=% sz,x(dj = d/U)

zeitliche Korrelation

(62)

Die Breite der Korrelationsfunktion Rx,x(®) ist somit in-
direkt proportional zur Geschwindigkeit. In allen bisherigen
Rechnungen wurde angenommen, dass g(®) nicht von 7 ab-
hédngt. Diese Einschriankung ist fiir alle praktischen Fille ohne
Bedeutung, da man den Bereich von 7 immer in Segmente
aufspalten kann, in denen g(®) niherungsweise konstant ist.

4.2 Berechnung der Parameter fiir den digitalen DLL

In Tabelle I sind die notwendigen Relationen zwischen den
geometrischen und kinematischen Parametern und den in
Abschnitt 3 verwendeten Grossen zusammengestellt.

4.3 Die Streuung

Die Streuung oe? ist im Trackingmodus wohl die wichtigste
Kenngrosse. Die genaue Abhédngigkeit von den verschiedenen
Parametern ist kompliziert. Sie muss durch numerische Inte-
gration von GI. (58) berechnet werden. Unter gewissen An-
nahmen lassen sich aber einfache Nédherungsformeln herleiten,
die den prinzipiellen Einfluss der verschiedenen Grossen richtig

Relationen zwischen den geometrischen und kinematischen Parametern

Tabelle I
T =L
Jfo = Zs-1/T; Zs Anzahl Schieberegisterstufen in der
Verzogerungsleitung

on = 1/fp
X0 = @/PN = a- ap/PN
a = — Ljv?-dv/dt
A]_ = Az Al Az/A = 1
Ko = A/Px
K =1/xr-1/Ko
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darstellen. Im Falle hoher Geschwindigkeit ist das Eigen-
rauschen vernachlissigbar, da ¢s proportional zur Geschwin-
digkeit v ist. Man findet [5] fiir den relativen Fehler:

Oo Ov dKorr 1
On

T v L

(63)
dxorr ist ein Mass fiir die rdumliche Korrelationslinge der
Oberflache.

64

dxorr = PNV

Punkte, die mehr als dkorr voneinander entfernt sind, sind
praktisch statistisch unabhéngig. Nach GI. (63) sinkt der rela-
tive Fehler mit wachsendem L, dafiir wird das System be-
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formiger Nichtlinearitit

. . o . . . 1 Xmin §x§ Xmax
Qs—24,xmm~ I’S’X"‘“_l’s’S(x){Osonst
E(T
a ﬁ in Abhidngigkeit von gn
ar
E(T
b ﬁin Abhingigkeit von xo
ar

schleunigungsempfindlicher. Eine Verkleinerung von dxorr
oder, anders ausgedriickt, eine Vergrosserung der raumlichen
Bandbreite bewirkt ebenfalls eine lineare Verbesserung, wih-
rend gn nur mit der Quadratwurzel eingeht.

Fur tiefe Geschwindigkeiten ist das Eigenrauschen domi-
nierend. Man findet [5]:

3
Op _ Ov _ T (dl{orr )7
T v o

|53 ©63)

Im Unterschied zu Gl. (63) ist der relative Fehler von T
(oder L/v) abhidngig. Wie schon erwéhnt, sind Gl. (63) und
GIl. (65) nur qualitative Ndherungsformeln. Fiir numerische

Ergebnisse muss auf die exakte Theorie zuriickgegriffen werden.

Bull. ASE/UCS 66(1975)2, 25 janvier



4.4 Untere Geschwindigkeitsmessgrenzen

Von einer unteren Messgrenze zu sprechen ist nicht ganz
richtig, da das System beliebig kleine, aber konstante Ge-
schwindigkeiten messen kann. Dazu muss die Zeitkonstante o
entsprechend gross und, damit verbunden, die Messzeit eben-
falls gross gewihlt werden. Sobald man variable Geschwindig-
keiten messen will, tritt aber eine untere Grenze auf. Dies lehrt
ein Blick auf Gl. (37). Fiir eine stabile Gleichgewichtslage muss
do/dt = @ im Mittel verschwinden:

E (®|®o) = KAg (Po) +a =0 (66)

Wegen g (@)max = 1 und wegen den GI. (582) und (64)
findet man

la| < Kd = ot o1 ﬂ':,}_ dv

ap U

dv (5%

dr

dxorr v
L o

Die gemachte Uberlegung ist nicht ganz korrekt, da die
Abhiéngigkeit von n(¢; ®) von @ vernachlissigt wurde. Sie
gibt aber die Verhiltnisse qualitativ richtig wieder. Man sieht,
dass die Beschleunigungsfihigkeit indirekt proportional zur
Zeitkonstanten ap und zu L und direkt proportional zu v ist.
Zwischen den Anforderungen der Genauigkeit [GI. (63), (65)]
und denjenigen einer guten Beschleunigungsfihigkeit [Gl. (67)]
bestehen offensichtlich Widerspriiche.

Die Ungleichung (67) ist eine notwendige, aber nicht hin-
reichende Bedingung fiir eine stabile Gleichgewichtslage. Die
Wabhrscheinlichkeit eines Ausfalls, d. h. «ausser Tritt fallen»,
im Zeitintervall (0, ¢) ist durch Gl. (61) gegeben. Eine untere
Messgrenze wird darum sinnvollerweise durch ein maximal
zuldssiges Paustan (#) in Funktion des Parameterpaars (v, dv/dz)
definiert.
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