Zeitschrift:	Bulletin des Schweizerischen Elektrotechnischen Vereins, des Verbandes Schweizerischer Elektrizitätsunternehmen = Bulletin de l'Association suisse des électriciens, de l'Association des entreprises électriques suisses
Herausgeber:	Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer Elektrizitätsunternehmen
Band:	65 (1974)
Heft:	24
Artikel:	Schémas électriques équivalents des armures des câbles
Autor:	Benoît, B.
DOI:	https://doi.org/10.5169/seals-915474

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 09.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Schémas électriques équivalents des armures des câbles

Par B. Benoît

L'utilisation de la formule simplifiée, donnant le facteur de réduction des armures des câbles, peut conduire à des erreurs importantes lors des calculs de construction. Après la définition des types d'armures utilisés en pratique, on donne les schémas équivalents et leurs zones de validité. La vérification expérimentale des schémas montre que, pour des fréquences inférieures ou égales à 125 Hz, ces derniers sont vérifiés à $8 \, 0/_0$.

1. Introduction

L'armure¹) d'un câble se compose généralement d'une gaine d'étanchéité conductrice (Pb), de feuillards (C) et de méplats de traction en acier (F), soit, selon la notation conventionnelle: Pb-CF. Pour le calcul du facteur de réduction de l'armure, on utilise généralement la relation:

$$r_{\rm k} = \frac{R_{\rm g}}{\sqrt{R_{\rm g}^2 + X^2}}$$

avec:

- $R_{\rm g}$ résistance en courant continu de tous les composants de l'armure connectés en parallèle, Ω/\rm{km} .
- X partie inductive de l'impédance tenant compte de la fréquence du courant perturbateur, de l'inductivité de l'armure et du circuit de retour du courant par la terre, Ω/km .

Cependant, si l'on utilise cette relation pour le calcul d'optimisation «prix-performance» d'un câble du type Pb-CF, on constatera une très forte divergence entre le facteur de réduction (r_k) calculé et le facteur de réduction mesuré, l'erreur pouvant atteindre 40 % ou plus. 621.315.22.001

Die Anwendung der vereinfachten Formel zur Bestimmung des Reduktionsfaktors von Kabelarmierungen kann anlässlich der Aufbauberechnungen zu erheblichen Fehlern führen. Nach Erklärung der in der Praxis vorkommenden Armierungen werden die entsprechenden elektrischen Ersatzschemas und ihre Gültigkeitsbereiche angegeben. Versuche haben ergeben, dass für Frequenzen bis 125 Hz die berechneten und gemessenen Werte nicht mehr als 8 % voneinander abweichen.

Le développement du mesureur du facteur de réduction type 7145 nous a permis de vérifier les schémas équivalents des armures des câbles et de définir les câbles à structures simples, dont le schéma équivalent correspond au modèle représenté par la relation précédente, et les câbles à structures générales.

Notons finalement que ces schémas sont utilisés dans les programmes d'optimisation des câbles à bon facteur de réduction.

2. Théorie

Dans le but de simplifier l'exposé nous ne reporterons que les résultats des développements théoriques. Ces développements, que nous tenons à la disposition du lecteur intéressé, sont basés sur les Directives du CCITT³) [1]²), en particulier le chapitre XII, p. 129 et suivantes.

- 1) définition voir § 2.1.
- 2) voir la bibliographie à la fin de l'article.

3) CCITT = Comité Consultatif International Télégraphique et Téléphonique.

Tableau I

Structure Structure simple Structure générale élémentaire réelle élémentaire réelle I-1 I-2 II-1 II-2 Type Exemple Pb-C Pb-C Pb-C-F Pb-C-F Schémas de MITTITITITA Ph construction mmm -Ph Pb Pb mmmm 11/1/1/1/1/1/ 1111111

F couche de fils métalliques méplats appliqués sans déjoint, en hélice à pas long

C deux feuillards d'acier appliqués avec déjoint de 10 à 30%, en deux couches superposées, le feuillard supérieur recouvrant le déjoint du feuillard inférieur

Pb gaine tubulaire extrudée en plomb

2.1 Définition des armures (Tableau I)

On appellera «système gaine armure» ou «armure» l'ensemble des constituants composant le câble depuis la ceinture posée sur le toron.

On dira qu'une armure est à structure:

Simple élémentaire:

si elle se compose d'une couche conductrice ($\mu_r = cte$) sur la ceinture, puis d'une couche magnétique entièrement isolée de la couche conductrice.

Simple réelle:

si elle se compose d'une couche conductrice ($\mu_r = cte$) sur la ceinture, puis d'une couche magnétique isolée sur toute sa longueur sauf à ses extrémités où elle est connectée à la couche conductrice.

Générale élémentaire:

si elle se compose d'une structure simple élémentaire, revêtue d'une couche conductrice ($\mu_r = cte$) isolée sur toute sa longueur, sauf à ses extrémités où elle est connectée à la première couche conductrice.

Générale réelle:

si elle se compose d'une structure simple réelle, revêtue d'une couche conductrice (μ_r = cte) isolée sur toute sa longueur, sauf à ses extrémités où elle est connectée à la première couche conductrice.

2.2 Schéma équivalent des câbles à structure simple élémentaire

Le schéma équivalent, donné sur la fig. 1, correspond aux relations:

$$r_{\rm k} \equiv rac{E_{12}}{E_{23}} = rac{'R}{|Z|} = rac{R_{
m g}}{\sqrt{R_{
m g}^2 + [2\pi f(L_{
m g} + L_0)]^2}}$$

 $E_{23} = \frac{R_{\rm g} \, H \, \pi \, D_{\rm m}}{r_{\rm k}}$

avec:

$$egin{aligned} L_{
m g} &= rac{S_{
m Fe} \; \zeta}{\pi \; D_{
m m}} \; \mu_0 \; \mu_{
m r} \ 'R &= R_{
m g} \ Z &= R_{
m g} + j \omega \left(L_0 + L_{
m g}
ight) \end{aligned}$$

- rk facteur de réduction
- E_{12} tension perturbatrice induite sur un conducteur protégé, V/km
- E23 tension perturbatrice induite sur un conducteur non protégé, V/km
- '*R* «résistance de l'armure», Ω/km , ou impédance de transfert
- Z impédance de l'armure, Ω/km
- $R_{\rm g}$ résistance en courant continu de l'armure, $\Omega/\rm km$
- $X=2\pi f(L_{\rm g}+L_0)$
- f fréquence du courant perturbateur, Hz

 $\omega = 2\pi f$

- $L_{\rm g}$ inductance de l'armure, H/km
- L_0 inductance du circuit de retour du courant par la terre = 2 mH/km
- $S_{\rm Fe}$ section magnétique (m² par km de câble)
- ξ facteur de remplissage de la couche magnétique

- Dm diamètre magnétique, m
- μ_0 perméabilité du vide
- μ_r perméabilité de l'acier composant l'armure
- H champ, A/m

L'influence de la variation des paramètres R_g et X ayant déjà été analysée dans notre précédent article [2], nous rappellerons uniquement que:

si R_g diminue: r_k diminue, E_{23} diminue (à f = cte) si X diminue: r_k augmente, E_{23} diminue (à f = cte)

2.3 Schéma équivalent des câbles à structure générale élémentaire

Comme une partie du courant ne passe pas par L_g , on aura le schéma, donné sur la fig. 2, correspondant aux relations:

$$egin{aligned} r_{\mathrm{k}} &\equiv rac{E_{12}}{E_{23}} = rac{|'R|}{|Z|} & E_{23} &= |Z| \cdot |I_{\mathrm{c}}| \ & |'R| &= lpha \, \sqrt{eta^2 + X^2} \ & |Z| &= \delta \, \sqrt{(R_{\mathrm{g}} - lpha eta)^2 + \left(rac{X_0}{\delta} + lpha X
ight)^2} \ & |I_{\mathrm{c}}| &= rac{R_{\mathrm{g}} \, |'R|}{\gamma lpha} \ & I_{\mathrm{a}} &= \pi \, H \, D_{\mathrm{m}} \ & eta &\equiv R_{\mathrm{g}} + R_{\mathrm{F}} & lpha &\equiv \gamma/(eta^2 + X^2) \ & \gamma &\equiv R_{\mathrm{g}} \, R_{\mathrm{F}} & X &= 2\pi f \, L_{\mathrm{g}} \ & \delta &\equiv R_{\mathrm{F}}/R_{\mathrm{g}} & X_0 &= 2\pi f \, L_0 \end{aligned}$$

avec:

 $R_{\rm F}$ résistance en courant continu de la couche conductrice externe (posée sur la couche magnétique) en $\Omega/{\rm km}$.

Fig. 2 Schéma équivalent des câbles à structure générale élémentaire

Si l'on varie les paramètres, R_F étant constant, on observera les mêmes déplacements du r_{kmf} [2] (facteur de réduction minimum pour la fréquence f), que pour les câbles à structure simple.

Si l'on varie $R_{\rm F}$, on observera le même déplacement du $r_{\rm kmf}$ que si l'on varie le X du câble à structure simple.

Cette propriété, où une résistance se comporte comme une inductance, doit être utilisée dès que la section magnétique du câble à structure simple devient trop importante ou dès que les tensions perturbatrices E_{23} sont trop élevées.

3. Vérifications expérimentales

Les mesures ont été faites avec le mesureur de facteur de réduction 7145⁴) sur des câbles [2] du type ALTFF1,2_{Aluman} CCT⁵), sur lesquels on a ajouté une couche conductrice simulant les méplats de traction.

4) Mesureur automatique développé par SECE.

⁵) ALT = gaine constituée d'un feuillard d'aluminium, posé longitudinalement avec recouvrement, comportant une couche de copolymère collant le feuillard à une gaine extrudée en polyéthylène.

Les caractéristiques principales des échantillons de câbles

Paramètre	Unités	Structure simple		Structure générale	
		élémentaire M 146	réelle M 124	élémentaire M 146+Cu externe	réelle M 124+Cu externe
Résistance de la gaine R_g Résistance des feuillards R_c Résistance $R_g R_c$ Résistance de la couche cond. ext. R_F Résistance totale	Ω/km Ω/km Ω/km Ω/km Ω/km	0,281 6,8 0,27 ∞ 0,27	0,238 6,8 0,23 ∞ 0,23	0,281 6,8 0,27 0,445 0,168	0,238 6,8 0,23 0,169 0,0974
Section magnétique $S_{\rm Fe}$ Facteur de remplissage ξ Section magnétique effective ' $S_{\rm Fe} \equiv S_{\rm Fe} \xi$ Diamètre magnétique $D_{\rm m}$ Inductivité de terre L_0	m² m H/km	$20,7381,47640 \cdot 10^{-3}1,72 \cdot 10^{-3}$	$20,7531,50640 \cdot 10^{-3}1,72 \cdot 10^{-3}$	$20,7381,47640 \cdot 10^{-3}1,72 \cdot 10^{-3}$	$20,7531,50640 \cdot 10^{-3}1,72 \cdot 10^{-3}$
Caractéristiques de la couche conductrice externe				2 cordes étamées de cuivre	31 fils de cuivre de 2,04 mm \emptyset

3.1 Conditions expérimentales

Les 223 mesures ont été faites en mode automatique (variation continue de E_{23}) à fréquence fixe, sur des échantillons de 1 m de longueur, préparés selon les méthodes mises au point à SECE⁶).

L'inductivité de la terre L_0 était de 1,72 \pm 0,03 mH/km.

La reproductibilité des mesures meilleure que 1 %.

La précision des mesures de 5 %.

On a mesuré successivement pour les fréquences de

⁶) SECE = Société d'Exploitation des Câbles Electriques, Cortaillod.

16²/₃-50-125-200-400-800-1000 et 1600 Hz:

- la courbe de perméabilité μ_r (*H*)_f des feuillards d'un échantillon de câble (directement sur le câble);

- l'inductivité de la boucle L_0 ;

- puis pour chaque géométrie d'armure: 'R(I); Z(I);

 $r_{\rm k}$ (E₂₃).

Notons que chaque échantillon initial était démonté couche par couche et mesuré.

3.2 Caractéristiques principales des échantillons de câbles

Les caractéristiques initiales des échantillons sont données dans le tableau II.

Simple Structure Générale Elémentaire Réelle Elémentaire Réelle Echantillon M 146 M 124 M 146 + cuivre M 124 + cuivreSchéma Rg Lg Rg Lg Lo \geq (par Lo extension) R_F \geq (par extension) Courbe de $\mu_{\rm r} \; {\rm A007}$ $\mu_{\rm r}$ A007 perméabilité $\mu_{\rm r}$ A007 μ_r M123 $\mu_r A007$ μ_r M123 μ_r M123 μ_r M123 <u>-3 %</u> $\begin{array}{r} -3 \ \% \\ < 1 \ \% \\ + 7 \ \% \\ + 10 \ \%^{1} \end{array}$ -1,4 % -1 % < 3 %-4 % +9 % $\Delta r_{\rm k}/r_{\rm k}$ 16²/₃ Hz < 1 % - 4 %—13 % $\Delta E_{23}/E_{23}$ -3 %+ 3 % $\Delta' R / R$ +13 %+3%7 % +2% $\Delta Z/Z$ -7 % $< 1 \% < 1 \% < 1 \% + 20 \% ^{1}$ —13 %¹) 11 % +6% $\Delta r_{\rm k}/r_{\rm k}$ - 11 % -22 % $\Delta E_{23}/E_{23}$ E_{23} mf non mesurable Hz -4 % -3 % $13 \%^{1}$ - 18 \%^{1} $\Delta' R / R$ + 4 %+6%50 + 3 % $\Delta Z/Z$ $+ 23 \%^{1}$ -4 % $\begin{array}{ccc} < 1 & \ \% \\ < 1 & \ \% \end{array}$ 20 %1) + 15 % 1) $-34 \%^{1}$ $-43 \%^{1}$ $+ 39 \%^{1} + 51 \%^{1}$ $\Delta r_{\rm k}/r_{\rm k}$ < 1 % -15 %¹) 125 Hz E_{23} mf non mesurable E_{23} mf non mesurable $\Delta E_{23}/E_{23}$ $+ 51 \%^{1}$ + 3 \% % + 35 % 1) $-34 \%^{1}$ - 46 \%^{1}) $\Delta' R / R$ -8 %¹) + 31 % 1) $+52 \%^{1}$ $+ 16 \%^{1}$ -1 % $\Delta Z/Z$

¹) ie hors tolérance

Variations relativement aux valeurs mesurées avec le 7145 $r_{\rm kmf}/E_{23mf}$

Tableau II

Tableau III

Le contenu de figures 3 à 14

Fig. N° Mesure de référence		Structure	Echantillon	Courbes			
3	12–18	Simple álámontoire	M 146	$r_{\rm k} (E_{23})$			
4	12	Simple elementane	140	'R(I); Z(I)			
5	15	Simula réalla	M 124	$r_{\mathrm{k}}(E_{23})$			
6	8-9-10-11-15	Simple reche	11/1 124	'R(I); Z(I)			
7	19	Cánánala álámantaina	M 146 + C n	$r_{k}(E_{23})$			
8	19	Generale elementaire	M 140 + Cu	'R(I); Z(I)			
9	13		M 124 + Cu	$\frac{16^{2}/_{3} \text{ Hz } r_{k}(E_{23})}{'R(I); Z(I)}$			
10	13	Générale réelle		50 Hz $r_{\rm k} (E_{23})$ ' $R(I); Z(I)$			
11	13			125 Hz $r_{k}(E_{23})$ ' $R(I); Z(I)$			
12	13	Générale réelle calculée avec structure simple	M 124 + Cu	$\begin{array}{c} 16^{2}/_{3} \ \mathrm{Hz} \\ r_{\mathrm{k}} \ (E_{23}) \\ 'R(I); \ Z(I) \end{array}$			
13	Résumé des mesures avec indication des tolérancesStructure simple: $\frac{\Delta r_{\mathbf{k}}}{r_{\mathbf{k}}} = \pm 8 \%$ $\frac{\Delta E_{23}}{E_{23}} = \pm 14 \% \frac{\Delta' R}{R} = \pm 7 \%$ $\frac{\Delta Z}{Z} = \pm 9 \%$ Structure générale: $\frac{\Delta r_{\mathbf{k}}}{r_{\mathbf{k}}} = \pm 11 \% \frac{\Delta E_{23}}{E_{23}} = \pm 26 \% \frac{\Delta' R}{R} = \pm 7 \%$ $\frac{\Delta Z}{Z} = \pm 4 \%$						
14	Tableau II Fig. 5–9–11	Comparaison de la structure simple réelle à la structure générale réelle $r_k(E_{23})$					

3.3 Méthode d'analyse

Pour chaque type de structure nous disposions des valeurs mesurées suivantes:

- a) Géométrie réelle du câble;
- b) Résistances électriques de chaque composant;
- c) Facteur de réduction et 'R(I), Z(I).

Nous avons introduit les valeurs mesurées (a) et (b) dans les relations données au § 2 et comparé les valeurs de r_k , 'R et Z calculées aux valeurs mesurées (c). Nous avons refait les mêmes calculs depuis les valeurs utilisées à priori pour la construction optimale des câbles dans le but de déterminer les sécurités à prendre sur les calculs lors de la construction des câbles.

3.4 Résultats

Pour améliorer la présentation des résultats, les courbes, mesurées avec le 7145, ont été reportées sur les figures 3 à 13 et le tableau III. Le contenu de ces figures est résumé sur le tableau IV.

Fig. 3 Structure simple élémentaire Câble M 146

 $\begin{array}{ll} R_{\rm g} = 0,27 \,\, \Omega/{\rm km} & {}^\prime S_{\rm Fe} = 1,476 \,\, {\rm m}^2 \\ L_{\rm o} = 1,72 \cdot 10^{-3} \,\, {\rm H}/{\rm km} & D_{\rm m} = 40 \cdot 10^{-3} \,\, {\rm m} \end{array}$

- Courbes M 146 calculées avec $\mu_r A 007$
- + Courbes M 146 calculées avec μ_r M 123
- Courbes-Nº 12–18 mesurées avec le 7145

Bull. ASE/UCS 65(1974)24, 30 novembre

Bull. SEV/VSE 65(1974)24, 30. November

⁽A 837) 1729

Fig. 10 Structure générale réelle Câble M 123 + Cu - 50 Hz • Courbes M 124 + Cu calculées avec μ_r M 123 + Courbes M 124 + Cu calculées avec μ_r A 007 — Courbes N° 13 mesurées 7145 (Caractéristiques du câble voir fig. 9)

4. Conclusions

Les schémas équivalents sont vérifiés, pour les fréquences de $16^2/_3$ et 50 Hz avec une précision de 8 % pour la structure simple et de 11 % pour la structure générale. A 125 Hz seule la structure simple est vérifiée à 8 %.

Bien que les structures réelles des câbles ne correspondent pas strictement aux schémas utilisés, on peut les appliquer dans les limites précitées.

Etant donné la précision des calculs de construction, il ne nous semble pas justifié d'effectuer une vérification plus fine des schémas.

Bien que nous ayons mesuré nos câbles jusqu'à des fré-

quences de 1600 Hz, nous n'avons pas jugé utile de développer des schémas permettant de calculer avec précision des câbles prévus pour des fréquences perturbatrices supérieures à 125 Hz, car seules les fréquences inférieures à 125 Hz nécessitent des armures spéciales.

Nous avons montré [2] que la protection la plus économique est obtenue pour les câbles à structures simples; cette structure d'armure devrait être utilisée de façon générale sauf si:

- la section magnétique devient trop importante;

 les conditions de pose nécessitent une couche supplémentaire de traction externe;

- le câble doit être protégé contre des tensions élevées.

Fig. 11 Structure générale réelle

Câble M 123 + Cu - 125 Hz

• Courbes M124 + Cu calculées avec μ_r M123

+ Courbes M124 + Cu calculées avec μ_r A 007

— Courbes M124 + Cu mesurées 7145

---- Courbes M 124 + Cu calculées avec μ_r M 123

(Caractéristiques du câble voir fig. 9)

Bibliographie

 Directives concernant la protection des lignes de télécommunication contre les actions nuisibles des lignes électriques. Genève, CCITT, 1963.
 P. Benoît: Protection des câbles de télécommunication contre les perturbations électromagnétiques. Câbles, Bulletin des Câbleries de Brugg, Cortaillod et Cossonay -(1973)1, p. 13...18.

Adresse de l'auteur:

P. Benoît, Service de Recherche, Société d'Exploitation des Câbles Electriques Système Berthoud, Borel & Cie, 2016 Cortaillod.