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Flachenladungen zur Feldberechnung von Hochspannungssystemen

Von H. Singer

Die Arbeit umfasst Untersuchungen iiber die Verwendung von
Fldchenladungen zur Berechnung des elektrischen Feldes von Hoch-
spannungssystemen. Der Aufsatz geht aus von einer kurzen Darstellung
des Ladungsverfahrens mit diskreten Ladungen und einigen damit ver-
bundenen Schwierigkeiten und zeigt als Ausweg eine kontinuierliche
Belegung der Randflichen mit Flichenladungen.

Wegen der Einschrinkungen, die durch eine analytische Integration
der Ladungsflichen bedingt sind, zielten die Bemiihungen der Arbeit auf
eine numerische Integration ab. Um giinstige Rechenzeiten zu errei-
chen, wurde allerdings die analytische Losung der Integrale soweit wie
moglich damit kombiniert,; weiterhin wurden Polynome zweiten Grades
anstelle trigonometrischer Funktionen benutzt. Ausserdem kam fiir
Aufpunkte auf Ladungsflichen eine schnelle Approximation zur Ver-
wendung.

Bei der Schilderung der Berechnung einiger Beispiele wurde betont,
dass Flichenladungen gegeniiber diskreten Ladungen vorteilhaft einzu-
setzen sind bei Elektroden, bei denen die Ausdehnung in einer Richtung
sehr klein ist. Ausserdem wurden dielektrische Grenzflichen als giin-
stige Anwendungsmaoglichkeit fiir Flichenladungen herausgestellt, und
schliesslich deutlich gemacht, dass Fléichenladungen in manchen Fiillen
ein kleineres Gleichungssystem und damit weniger Speicherplatz im
Rechner erfordern als diskrete Ladungen.

1. Einfiihrung

Die gegenwirtige Entwicklung der Hochspannungstechnik
ist gekennzeichnet durch eine iiberaus rasche Steigerung des
Spannungsniveaus in allen Anwendungsbereichen. Zur Unter-
suchung der dabei auftretenden Probleme werden aufwendige
Hochstspannungslaboratorien gebaut [1]1), die experimentell
fundierte Unterlagen fiir die Planung von Anlagen in den hoch-
sten Spannungsebenen liefern sollen. Parallel dazu sind theo-
retische Untersuchungen notig, um eine gute Verldsslichkeit
der Ergebnisse zu erreichen. Eine Voraussetzung zur Optimie-
rung in dieser Richtung bildet die Berechnung des elektrischen
Feldes — auch komplizierter Elektrodenanordnungen.

Wie die Literatur der vergangenen Jahre erkennen lésst,
wurden fiir die Berechnung des elektrischen Feldes verschie-
dene Rechenverfahren entwickelt. Nach den rein analytischen
Losungsverfahren haben mit der Entwicklung der Rechen-
maschinentechnik numerische Verfahren mehr und mehr an
Bedeutung gewonnen. Bei der Aufzihlung solcher Verfahren
sind das Differenzenverfahren zu nennen [2...8] und das Ver-
fahren der finiten Elemente [9; 10]. Daneben wurde in den
letzten Jahren ein numerisches Verfahren entwickelt, das mit
diskreten Ladungen arbeitet [11...13], und damit eine Vielzahl
von Feldsystemen der Hochspannungstechnik untersucht
[14...19].

Gegeniiber dem Differenzenverfahren und dem Verfahren
der finiten Elemente weist das Ladungsverfahren grundsitzlich
eine Reihe von Vorziigen auf, so beispielsweise die Moglich-
keit, auch offene, unbegrenzte Anordnungen berechnen zu
konnen, deren Feld sich bis ins Unendliche erstreckt. Weiterhin
erlaubt das Ladungsverfahren, auch dreidimensionale Felder
beliebiger Feldkonfigurationen mit vertretbarem Aufwand zu
berechnen. Ausserdem garantiert dieses Verfahren neben einer
hohen Genauigkeit eine vergleichsweise geringe Rechenzeit.

Das Ladungsverfahren ist allerdings bisher nicht so weit
entwickelt, dass damit alle zu erwartenden Feldanordnungen

1) Siehe Literatur am Schluss des Aufsatzes.
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Exposé concernant une étude de Pemploi de charges superfi-
cielles pour le calcul du champ électrique de systémes a haute ten-
sion. On décrit tout d’abord briévement le procédé de charges
discretes et quelques difficultés qu’il présente, puis montre le
moyen d’obtenir des charges continues dans les parties margi-
nales.

En raison des limitations de l'intégration analytique des sur-
faces chargées, le travail consistait a prévoir une intégration nu-
mérique. Afin de réduire le temps nécessaire pour le calcul, la so-
lution analytique des intégrales a toutefois été combinée dans
la mesure du possible; en outre, on a eu recours a des polynémes
de second degré, au lieu de fonctions trigonométriques, et a une
approximation rapide pour les points considérés des surfaces
chargées.

Lors de la description du calcul pour quelques exemples, on
montre que des charges superficielles sont préférables a des char-
ges discrétes, dans le cas d’électrodes dont I'extension dans un sens
est trés faible. Des surfaces diélectriques marginales permettent
une application plus avantageuse pour des décharges superficiel-
les. Enfin, lauteur indique que, dans certains cas, ces charges
n'exigent qu'un systéme d’équations plus restreint, c’est-a-dire
moins de place dans la mémoire du calculateur électronique.

berechnet werden konnen. Eine Schwierigkeit fiir das Ladungs-
verfahren mit diskreten Ladungen bieten sehr flache, abge-
plattete Elektroden und Bleche, etwa Polycon-Elektroden [16]
oder Rogowski-Profile. Diinne Stege und flache, bandférmige
Zuleitungen, beispielsweise an Abschirmelektroden, sind hier
ebenfalls zu nennen. Der Grund liegt darin, dass beim La-
dungsverfahren der Abstand zwischen Konturpunkt und zu-
gehoriger Ladung in derselben Grossenordnung liegen muss
wie der Abstand zwischen zwei benachbarten Konturpunkten.
Diese Forderung ldsst sich aber bei Elektroden, bei denen die
Ausdehnung in einer Richtung sehr klein wird, mit den dis-
kreten Ladungen nur mit Schwierigkeiten verwirklichen. Ginz-
lich unmdoglich zu berechnen ist mit dem Ladungsverfahren in
der bisherigen Form beispielsweise das Feld an Steuerbelagen
von Durchfiihrungen oder Kabelendverschliissen.

Auf Grund der oben beschriebenen Vorziige des Ladungs-
verfahrens erschien es sinnvoll, das Verfahren so zu entwickeln
und zu erweitern, dass es fiir moglichst alle auftretenden Feld-
probleme universell angewendet werden kann. Einen Ansatz
zur Losung des Problems bietet eine kontinuierliche Belegung
der Randflichen mit Fliachenladungen. Da dieser Weg erfolg-
versprechend erschien, wurden die weiteren Arbeiten darauf
ausgerichtet.

2. Bisher bekannte Rechenverfahren mit Flachenladungen

Verfahren mit Flachenladungen wurden bisher von ver-
schiedenen Autoren bekannt [20...27], vor allem die « Method
of Moments» und die «Teilflichenmethode». Diese Methoden
bauen auf denselben mathematischen Grundlagen auf wie das
Ladungsverfahren mit diskreten Ladungen, benutzen also
Partikuldarlésungen der Laplaceschen Potentialgleichung.

Den engsten Bezug zum oben erwidhnten Ladungsverfahren
hat die «Method of Moments» von R.F. Harrington [26; 27],
die sowohl mit Flachenladungen als auch mit diskreten Ladun-
gen arbeitet. Im Gegensatz zum erstgenannten Verfahren wer-
den hier aber die Ladungen nicht in ein nicht interessierendes
Feldgebiet gelegt, sondern auf die Berandungen des Feldes,
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also beispielsweise auf eine Elektrodenoberfliche. Dafiir wer-
den fast ausschliesslich Punktladungen verwendet. Flichen-
ladungen werden dazu benutzt, um Diskontinuititsstellen zu
vermeiden, wenn das Potential oder die Feldstirke in einem
Punkt berechnet werden soll, in dem sich eine Punktladung
befindet. Diese wird dann durch eine Flichenladung ersetzt.
Da hauptsiachlich Potentiale von Punktladungen berechnet
werden miissen, ist das Verfahren sehr schnell. Ein weiterer
Vorzug des Verfahrens liegt darin, dass die entstehende Matrix
symmetrisch ist, also nur zur Hilfte im Rechner gespeichert
zu werden braucht. Allerdings ist die Anzahl der Ladungen
und Konturpunkte sehr gross, so dass der Vorteil der Matrix-
symmetrie wieder kompensiert wird. Der grosse Nachteil der
«Method of Moments» besteht darin, dass wegen der Diskre-
tisierung der Ladungen auf Elektrodenoberflichen die Feld-
stiarke an den Elektroden nur héchst ungenau bestimmt werden
kann, obwohl in den meisten Fillen das Feld gerade dort am
starksten interessiert.

Unter dem Begriff «Teilflichenmethode» wurde ein Ver-
fahren bekannt [20...25], das ausschliesslich mit Flichenladun-
gen arbeitet. Hierbei wird die Berandung des Feldgebietes in
einzelne Teilflichen zerlegt, die mit Fldchenladungen, vorzugs-
weise mit konstanter Ladungsdichte, belegt werden. Die Be-
rechnung der Grosse der Ladungen erfolgt wie bei Verwendung
diskreter Ladungen, also durch Vorgabe von Konturpunkten
und Losung eines linearen Gleichungssystems. Die Methode
wurde in einfacher Form zum erstenmal von H. Cavendish [20]
vorgestellt. In den fiinfziger Jahren griffen D.K. Reitan und
T.J. Higgins [21; 22] das Verfahren auf. Wihrend sie die Elek-
troden in gleichgrosse Teilflichen zerlegten, passten A. Kessler,
A. Vicek, O. Zinke [23] die Grosse der einzelnen Teilflachen
der Geometrie der Elektrodenanordnung an, verwendeten also
verschieden grosse Teilflichen. F.J. Berle [24] und D. Pfliigel
[25] bauten das Verfahren weiter aus und veroffentlichten vor
allem Kapazitdtsberechnungen von zylindrischen Systemen
und rotationssymmetrischen Feldanordnungen. Die zitierten
Beispiele sind auf Anordnungen mit verhiltnisméssig einfachen
Konturen beschrinkt, wie z. B. parallele Platten, flache Ringe
oder quaderférmige Elektroden oder Dielektrika. Wie sich
dabei zeigte, eignet sich die «Teilflichenmethode» gut fiir Ka-
pazititsberechnungen. Feldstirkeberechnungen mit der «Teil-
flichenmethode» sind nur in begrenztem Umfang bekannt ge-
worden.

Da die «Teilflichenmethode» die grossten Aussichten bie-
tet, die in der Einfiihrung genannten Aufgaben zu 16sen, wurde
sie im Hinblick auf diese Zielsetzung ndher untersucht.

Fig. 1 Flichenladungselement da mit den Koordinaten x1,, ¥, z1L,
auf der Fliche 4 und Aufpunkt P (x, y, z)
in einem kartesischen Koordinatensystem
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Fig. 2 Kugelkoordinatensystem mit Ladungselement
ri, 91, w1 und Aufpunkt r, 3, v

3. Potential von Flachenladungen in einigen wichtigen
Koordinatensystemen mit Hilfe analytischer Integration

Bei der Teilflichenmethode wird eine Ladungsfliche 4 in
eine Anzahl von T Teilflichen zerlegt, iber die bei der Berech-
nung des Potentials zu summieren ist. Im allgemeinen wurden
bisher die Teilflichenladungen o; als konstant vorausgesetzt.
Wenn x1, y1, z1. die Koordinaten des jeweils betrachteten La-
dungsflichenelementes da und s den Abstand zwischen diesem
Flachenelement und einem Aufpunkt P mit den Koordinaten
x, ¥, z bezeichnen (Fig. 1), lautet das Potential @ in diesem
Aufpunkt:

1 \" da
q§(x,y,z)——4n8- [djfs(x,y,z;xL,yL,ZL)]

Wird das Kugelkoordinatensystem r, 3, v (Fig. 2) zur Be-
rechnung herangezogen, so konnen die Flichen 3 = konstant,
also Kegelflichen, mit Ladungen belegt werden. Die Teilflachen
stellen dann also Teile von Kegelflichen dar.

Um auch nichtrotationssymmetrische Felder berechnen zu
konnen, soll im folgenden eine Ladungsverteilung angesetzt
werden, die in Abhéngigkeit des Rotationswinkels periodisch
verdnderlich ist, namlich

N
o = > [on cos nyr]
n=0

wobei n die Ordnungszahl der jeweiligen Welle und N die Maxi-
malzahl der Oberwellen angeben. Um auch die Moglichkeit
zu haben, stetige, nicht sprunghafte Ladungsiiberginge zwi-
schen den einzelnen Teilflichen zu erreichen, ist eine Ladungs-
belegung vorzusehen, die von der Koordinate r abhidngt, und
zwar in Form einer Polynom-Verteilung. Damit ergibt sich

M N
Z \“[ (VL )’“cos ]
— —_— n
. Ly om2 | Ro e
m=0n=0

Ry ist ein beliebiger Bezugsradius, M der hochste Grad der
Polynome. Die zunichst unbekannten Koeffizienten omn, deren

Bull. ASE/UCS 65(1974)10, 18 mai



Anzahl sich fiir jede Teilfliche j auf (N + 1) - (M —+ 1) belduft,
werden, wie beim Ladungsverfahren und bei der «Teilflichen-
methode» iiblich, iiber ein lineares Gleichungssystem durch
Erfiillung der Randbedingungen in ebenso vielen Konturpunk-
ten ermittelt. Fiir insgesamt 7" Teilflichen ergeben sich also
T-(N + 1) - (M + 1) unbekannte Koeffizienten bzw. Kontur-
punkte.

Die Potentiale fiir die obige Ladungsverteilung wurden in
der Habilitationsschrift des Autors abgeleitet. Sie werden durch
unendliche Reihen von zugeordneten Kugelfunktionen darge-
stellt. Bei der Berechnung dieser Potentiale stellte sich heraus,
dass die Reihen zwar konvergieren, jedoch zum Teil sehr lang-
sam. Die Rechnungen, die an der Rechenanlage TR 440 des
Leibniz-Rechenzentrums der Bayerischen Akademie der Wis-
senschaften durchgefiihrt wurden, benétigten fiir den Poten-
tialwert aus einem einzigen Ladungsanteil omn bis zu 1 s2). Mit
einer Konvergenzbeschleunigung iiber Zusatzreihen wurde
eine Reduzierung der Rechenzeit auf ein Drittel der urspriing-
lichen Zeit erzielt.

Mit Hilfe der beschriebenen Methodik wurde ein Test-
beispiel durchgerechnet, und zwar die Elektrodenanordnung
Kugel-Ebene (Fig. 3). Diese Anordnung wurde einerseits ge-
wiahlt, weil sie ein Beispiel fiir den in der Hochspannungs-
technik meist gebrduchlichen Fall einer allseits abgerundeten
Elektrode ohne Kanten darstellt, anderseits, um einen Ver-
gleich mit der rein analytischen Losung und mit dem Verfahren
der diskreten Ladungen zu erhalten. Wegen der lingeren
Rechenzeiten, die sich mit Flachenladungen ergeben, wird
diese Anordnung normalerweise analytisch oder mit diskreten
Ladungen berechnet. Die Kegelflichen werden hier so an die
Elektrode angelehnt, dass sie, im Schnitt gesehen, als Sehnen
innerhalb der Kreiskontur liegen. Hier zeigt sich neben der
langen Rechenzeit der weitere Nachteil, dass sich bei gekriimm-
ten Flachen die Kegelflichen nicht mit der Oberfliche decken
konnen und deshalb an den Ubergangsstellen zwischen den
einzelnen Teilflichen Knicklinien entstehen, die eine falsche
Uberhohung der Feldstirke um maximal 50 bis 100 % an die-
sen Stellen zur Folge haben. Die Kugel wurde dabei mit 12
Flichen konstanter und linear verédnderlicher Ladungsdichte
und ebenso vielen Konturpunkten nachgebildet, diec Ebene
durch Spiegelung der Ladungen an ihr.

Ein weiterer gravierender Nachteil der Kegelflichen besteht
darin, dass Stiicke von Kreiszylindern damit nicht nachgebildet
werden konnen, also beispielsweise kein kreiszylindrischer
Stab, da eine Kegelfliche fiir § = 0 zu einer Linie wird. Fiir
kreiszylindrische Fldachen ist also eine andere Losung notwen-
dig, die aus dem Kreiszylinder-Koordinatensystem ableitbar
ist. Das Potential einer kreiszylindrischen Fliche lisst sich
nach [28] durch eine Reihe von Kugelfunktionen angeben.

Um falsche Feldstidrkeerhhungen bei dreidimensional ge-
kriimmten Elektrodenflichen, beispielsweise Kugeln oder Rin-
gen, zu vermeiden, sind dreidimensional gekriimmte Ladungs-
flichen vorzuziehen. Solche Ladungsflichen sind ableitbar
beispielsweise aus dem Kugelkoordinatensystem in Form von
Kugelabschnitten. Sie wiren aber nur brauchbar fiir rotations-
symmetrische Elektrodenteile, deren Kriimmungsmittelpunkt
auf der Rotationsachse liegt. Fiir andere Elektroden miisste
beispielsweise das Toroidkoordinatensystem mit Abschnitten
von Ringflichen herangezogen werden. Diese Ladungen sind

2) Die Rechenanlage TR 440 kann im Mittel etwa 830 000 Opera-
tionen/s oder 2 000 000 Festkomma-Additionen/s durchfiihren.
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Fig. 3
l Feldberechnung fiir das Test-
beispiel Kugel-Ebene

Ladungen auf Kegelflichen an der
Kreiskontur

Abmessungen in cm

15

77

—_——

aber mit beliebiger Ladungsverteilung nicht analytisch inte-
grierbar. Aus diesem Grund ist das Toroidkoordinatensystem
nur fiir wenige Fille geeignet.

4. Potential von Flidchenladungen
mit Hilfe numerischer Integration

Nachdem sich zeigte, dass eine analytische Integration nur
in einfachen Fillen zur Potentialberechnung dienen kann,
wurde untersucht, welche Ergebnisse eine numerische Integra-
tion von Flichenladungen bringt. Die numerische Integration
erlaubt es generell, mit Oberflichen beliebiger Form zu rechnen
und die Ladungsbelegung frei wihlen zu konnen, so dass sich
die Ladungen den Oberflichenkriimmungen und der Geo-
metrie der Elektrodenanordnung anpassen lassen. Da in der
Hochspannungstechnik in der Hauptsache Elektrodensysteme
mit rotationssymmetrischen Elektrodenteilen auftreten, die
allerdings im allgemeinen so gegeneinander angeordnet sind,
dass das entstehende Feld nicht mehr rotationssymmetrisch
ist, sind die weiteren Uberlegungen auf diesen Fall abgestimmt.

4.1 Vorversuche mit einfachen, analytisch losbaren Integralen

Um Rechenzeit und Genauigkeit der numerischen Integra-
tion mit der analytischen Rechenweise vergleichen zu kénnen,
wurden Vorversuche mit einfachen, auch auf analytischem Weg
losbaren Integralen gestartet. Dazu diente eine Ringladung
nach Fig. 4 mit periodischer Ladungsverteilung. Wenn der
Ring mit der Ladungsdichte

A = An CcOs ny/1,

; |

s N
v
dy L
L7
T n _/

| i

Fig. 4 Ladungselement unter dem Winkel y 1. auf einer Ringladung
auf der Hohe z1, mit dem Radius 71,

Aufpunkt P im Abstand s
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belegt wird, berechnet sich das Potential im Punkt P (r, v, z)
nach [12] aus

An
27e

(z—z1)2+r24r3
2Fry,

D(r,p,z) = rTLQn—%( )cosnw

Die analytische Berechnung dieses Potentials iiber die To-
rusfunktion Qn -1 dauerte an der TR 440 im Mittel 2 ms. Die
numerische Integration wurde u. a. durchgefiihrt mit Hilfe von
Gauss-Quadraturen und nach der Simpson-Regel. Da die letzt-
genannte Methode flexibler ist, wurde sie bevorzugt. Es stellte
sich dabei heraus, dass sich damit sehr genaue Ergebnisse fiir
die Potentialwerte erzielen lassen, wenn der Abstand # zwi-
schen zwei Stiitzstellen nicht konstant gehalten wird, sondern
proportional dem Abstand s zwischen jeweiliger Stiitzstelle und
dem interessierenden Aufpunkt gemacht wird. Gute Ergeb-
nisse wurden erzielt mit 42 = 0,2 s. Die obere Grenze fiir &
wurde so festgelegt, dass mindestens 21 Stiitzstellen in einem
Ringteilstiick n/n lagen. Bei dieser Integration muss vermieden
werden, den Aufpunkt auf die Ringladung selbst zu legen, da
dieser Fall zu @ — oo fiihren wiirde.

Mit der zuletzt beschriebenen numerischen Integrations-
methode bendtigte der Rechner fiir die Ermittlung eines Po-
tentialwertes im Mittel 20 ms. Im Verhiltnis zur analytischen
Integration ist hier also fiir die numerische Integration die
zehnfache Rechenzeit erforderlich. Da es zur Berechnung von
Flachenladungen aber einer doppelten Integration bedarf und
fiir die numerische Integration die hundertfache Zeit der ana-
lytischen Integration zu erwarten ist, wurde fiir die Berechnung
der Potentiale von Fliachenladungen ein etwas anderer Weg
eingeschlagen.

4.2 Doppelte Integration von Flichenladungen

Fir Flachenladungen erweist es sich als vorteilhaft, analy-
tische und numerische Integration zu kombinieren. Dazu wer-
den Ringladungen verwendet, die in einem ersten Schritt ana-
Iytisch integriert werden und in einem zweiten Schritt koaxial
auf der Elektrodenoberfliche aneinandergereiht und nume-
risch zum Potential von Flichenladungen aufintegriert werden.
Auf diese Weise ergibt sich nur eine einzige numerische Inte-
gration tuber die Kurve Ci (Fig. 5), die sich mit Hilfe der
Simpson-Regel durchfiihren l4sst. Diese Integration lautet:

cosn .
oy 2) =S [o ()|
CL

C—z1)2+r24r1?
2 rry,

‘QnA%( )dCL

Fiir Konturen Cp, mit Kreisbogen sind rg, und zy, trigono-
metrische Funktionen eines Winkels. Die Funktionen sin und

cos erfordern auf dem Rechner verhiltnisméssig viel Zeit,
néamlich rund 90 ps. Da sie bei der numerischen Integration

\ N
N

dc,

rL'ZL
CL Fig. 5

Numerische Integration iiber
eine Kurve C1,
Ladungselement dCr, mit den
Koordinaten r1. und zr,
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mit der Simpson-Regel sehr oft berechnet werden miissen,
empfiehlt es sich, diese Berechnungen nach Moglichkeit zu
umgehen. Das lasst sich durch Beschreibung der Kontur mit
Polynomen zweiten Grades erreichen, indem also ein Kreis
durch Parabelstiicke ersetzt wird, und zwar fiir jede Teilkontur,
die im Schnitt einer Teilflache entspricht, eine Parabel. Auf
diese Weise ist nur

zL.=A+ Bry + Cri2

zu integrieren mit den Konstanten 4, B, C, die sich aus der
geometrischen Form der Teilkontur bestimmen. Der Wert von
zy, ergibt sich also aus 3 Multiplikationen und 2 Additionen,
woraus fiir die TR 440 ein Rechenaufwand von rund 14 ps
folgt. Damit wird aus dem obigen Integral:

O v, 2) = [ o))/ T+B+2Cm)e
L
— — — 2)2 . 2
'Qn—%(l‘i‘ (z— A— Bry ZrCr’Ir:L) +@r—ry) )er

Wiéhrend fiir Konturen mit flacher Neigung vorzugsweise
zr, = f (r1) zu setzen ist, erweist sich fiir stark gegen die z-
Ebene geneigte Konturen rr, = f (z1) glinstiger. Die Potential-
formel errechnet sich dhnlich wie im Fall z1, = f (r1).

Wenn in einem Aufpunkt, der auf der Ladungsflache selbst
liegt, das Potential berechnet werden soll, wird es zwar nicht
unendlich wie im Fall von Linien- oder Ringladungen, jedoch
wéchst Qn -4 iiber alle Grenzen, so dass eine numerische Inte-
gration mit der bisher beschriebenen Methode nicht mehr
moglich ist. Fiir diesen Fall, bei dem das Argument von
On -1 nahe 1 liegt, gilt der Niherungsansatz [29]

Ow s(1+8)~—y+¥m+0,5 +052—05 Ind

mit o als sehr kleiner Zahl, y als Eulerscher Konstante und der
Funktion ¥ als logarithmischer Ableitung der Gammafunk-
tion. Mit diesem Ansatz kann eine analytische Integration iiber
In 6 durchgefiihrt werden, so dass auch fiir einen Aufpunkt auf
der Ladungsfliche eine Potentialberechnung moglich ist.

Diese analytische Niherungsmethode ist allerdings mit dem
Nachteil verbunden, dass viele Sonderfille zu unterscheiden
sind, die grossen Aufwand erfordern. Als schnellerer Weg bot
sich ein numerisches Naherungsverfahren an: Es wurde fest-
gestellt, dass bei der Integration nach der Simpson-Regel mit
Ladungsintervallen 2 ~ s die Potentialanteile In der einzelnen
Intervalle bei Anndherung an den Aufpunkt abnehmen wie
Glieder einer geometrischen Reihe:

LjLi-1=f<1

fist ein praktisch konstanter Wert und stets < 1. Die nu-
merische Integration nach der Simpson-Regel kann also bei
einem Ladungsintervall nahe dem Aufpunkt abgebrochen
werden und die Summe der restlichen Potentialanteile bis zum
Aufpunkt aus der Summenformel der geometrischen Reihe
bestimmt werden. Dieses Nédherungsverfahren konnte ohne
Schwierigkeit bis auf eine relative Ungenauigkeit von 10-3 an
die Ergebnisse der analytischen Naherungsmethode mit der
Integration iiber ¢ herangebracht werden.

Mit den drei Massnahmen

— nur einfache Integration auf numerischem Weg;

— Ersatz der trigonometrischen Funktionen durch Polynome

zweiten Grades;

— Verwendung der Summenformel der geometrischen Reihe fiir
Aufpunkte auf den Ladungsflichen
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Fig. 6 Qualitatives Beispiel fiir Ladungsbelegung
entlang der numerisch zu integrierenden Kontur

a Uberlagerung von konstanter und linearer
Ladungsverteilung

b Uberlagerung von konstanter und linearer
Ladungsverteilung mit der Zusatzbedingung der
Stetigkeit

o Flachenladungsdichte
ri, z1. Ladungskoordinaten

betrug die Rechenzeit fiir einen Potentialwert im Mittel nur
6 bis 8 ms, also nur das drei- bis vierfache der Rechenzeit der
diskreten Ladungen. Diese Zeit ist durchaus tragbar, da Flai-
chenladungen einen grosseren Bereich iiberstreichen als dis-
krete Ladungen und die Berechnung unter Umstdnden mit
einer geringeren Anzahl von Fldchenladungen als von diskreten
Ladungen durchgefiihrt werden kann.

4.3 Varianten der Ladungsverteilung auf den Teilfldchen

Wie bereits angeklungen ist, wird die Ladungsbelegung ent-
lang der numerisch zu integrierenden Kontur zweckmaissiger-
weise in Form einer Polynom-Verteilung angesetzt. Allerdings
ist damit der Ladungsverlauf nicht stetig: An den Ubergangs-
stellen zwischen den einzelnen Teilflichen treten Ladungs-
spriinge auf (Fig. 6a), die die Feldstirkewerte an der Ober-
fliche verfdlschen konnen, und zwar um so mehr, je grosser
die Ladungsspriinge sind. Durch die zusitzliche Bedingung,
dass die Ladungsdichte am Ende einer Teilfliche gleich der
Ladungsdichte am Anfang der folgenden Teilfliche sein soll,
kann jedoch die Ladungsstetigkeit erreicht werden. Damit er-
geben sich beim Matrixaufbau zwei verschiedene Arten von
Bedingungsgleichungen, und zwar Bedingungsgleichungen fir
die Randbedingungen (meistens Einhaltung vorgegebener Po-
tentiale in den Konturpunkten) und die zuletzt genannten Be-
dingungsgleichungen fiir die Ladungsstetigkeit. Da diese Be-
dingung mathematisch sehr einfach formulierbar ist und auf
Grund dessen im entsprechenden Teil der Matrix nur Nullen,
Einsen und einige wenige Potenzen von Koordinaten stehen,
verkleinert sich die durchschnittliche Rechenzeit fiir ein Ma-
trixelement erheblich. Fiir eine lineare Ladungsverteilung
(M = 1) mit Ladungsstetigkeit ergaben sich an einem Beispiel
Rechenzeiten von etwa 3,5 ms fiir ein Matrixelement.

Fig. 7 zeigt als Beispiel eines Ergebnisses den Verlauf der
Ladungsdichte auf der Kugel der Anordnung Kugel-Ebene
nach Fig. 3. Die Ladungsflichen, verifiziert durch Parabel-
gleichungen, schmiegen sich an die Kugeloberfliche an. Der
Kurvenzug dieser Figur, der aus Geraden besteht, ist aus 12
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gleich grossen Teilstiicken zusammengesetzt und hat einen
stetigen Verlauf. Die Neigung der do/da-Ladung im untersten
Punkt der Kugel (« = 0°) ist nicht gleich Null, wie es in Wirk-
lichkeit sein misste. Eine diesbeziigliche Verbesserung kann
aber leicht erreicht werden durch feinere Einteilung der ersten
Teilfliche 0° < a < 15° Ansonsten approximiert der Linien-
zug gut die Wirklichkeit. Eine Steigerung des Grades der Poly-
nome iiber M = 1 hinaus brachte keine spiirbare Verbesse-
rung.

4.4 Lage der Konturpunkte

Im Rahmen der Variation der Ladungsverteilung wurde
auch die Lage der Konturpunkte auf den Teilflichen gedndert.
Wie schon aus [25] ersichtlich ist, lassen sich die besten Ergeb-
nisse mit Konturpunkten erzielen, die in der Mitte der jeweili-
gen Teilkontur liegen. Bei kantigen und eckigen Elektroden,
beispielsweise bei Bindern, riickt die optimale Lage der Kon-
turpunkte in Richtung der Kante oder Ecke.

4.5 Feldstirkeberechnung

Wihrend diskrete Ladungen die Potential- und Feldstirke-
verteilung nur in einem bestimmten Bereich des Feldes wieder-
geben und in unmittelbarer Nihe der Ladungen infolge der
Diskretisierung ein der Wirklichkeit nicht entsprechendes Bild
erzeugen, bieten Flachenladungen die Moglichkeit, in allen
Bereichen der Anordnung ein wirklichkeitsgetreues Feld zu
erreichen. Da fiir die beiden Seiten der Flichenladungen keine
getrennten Potentialformeln existieren und eine Differentiation
des Potentials in der gewiinschten Richtung einen hohen
Rechenaufwand fordern wiirde, wird hier zweckmaissigerweise
die Feldstirke mit Hilfe einer Differenzenbildung von Poten-
tialen ermittelt. Mit Hilfe dieses Vorgehens ergeben sich auto-
matisch auf den beiden Seiten einer Ladung voneinander ver-

24
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Fig. 7 Errechnete Ladungsverteilung auf den Teilflichen der Anordnung
Kugel-Ebene bei Uberlagerung von konstanter und linearer
Ladungsverteilung mit der Zusatzbedingung der Stetigkeit
o Flichenladungsdichte
o Umlaufwinkel
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Fig. 8

Kugelformige Abschirmhaube
! als Beispiel fiir eine
halboffene Elektrode

schiedene Feldstirken. Im Innern einer Elektrode wird die
Feldstiarke zu Null, im Gegensatz zur Rechnung mit diskreten
Ladungen.

5. Anwendung des Verfahrens zur Feldberechnung

Im Prinzip kdnnen Flidchenladungen zur Berechnung be-
liebiger Anordnungen dienen und stellen eine gute Alternative
zu diskreten Ladungen dar. Mit den folgenden Anwendungs-
moglichkeiten und Beispielen sollen einige Anhaltspunkte ge-
geben werden, um beide Ladungsarten gegeneinander abwégen
zu konnen.

5.1 Anwendungsmoglichkeiten

Wie in der Einfiihrung bereits erwidhnt wurde, sind Fldchen-
ladungen vor allem zur feldméssigen Simulation von Elektro-
den notwendig, die in einer Richtung nur eine geringe Ausdeh-
nung haben. Flachenladungen sind also erforderlich vor allem
bei bandformigen Leitern, bei flachen, abgeplatteten Elektro-
den und bei Blechen und Metallfolien, beispielsweise bei Be-
ldgen von Durchfithrungen. Da sich bei der Nachbildung von
Elektrodenoberflichen mit Flichenladungen auf beiden Seiten
der Oberfliche automatisch verschiedene Feldstiarken ergeben,
kann mit Flachenladungen ohne Schwierigkeiten das Feld
einer halboffenen Elektrode, beispielsweise einer Abschirm-
elektrode (Fig. 8), gleichzeitig in allen Bereichen der Anord-
nung untersucht werden. Ausserdem ist es moglich, Flichen-
ladungen vorteilhaft bei Feldern mit mehreren Dielektrika
einzusetzen.

5.2 Erfassung von dielektrischen Grenzflichen
mit Flichenladungen

Zur Erfassung von Dielektrikumsspriingen werden auf die
dielektrischen Grenzflichen Flichenladungen gelegt. Die Be-
dingung, die fiir die dielektrischen Grenzflichen anzusetzen
ist, ergibt sich aus der Konstanz der elektrischen Flussdichte
senkrecht zur Grenzfliche oder dementsprechend aus der Re-
lation der Normalfeldstdrken im Verhiltnis der Dielektrizitéits-
konstanten der Dielektrika I und II:

Eun e
Em E11

Im Gegensatz zum Verfahren mit diskreten Ladungen [13]
enthdlt das hier beschriebene Verfahren automatisch die Be-
dingung der Potentialstetigkeit auf beiden Seiten der dielek-
trischen Grenzfliche, identisch mit der Stetigkeit der Tangen-
tialfeldstarke an der Grenzflache [13; 28]. Deshalb ist im Fall
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der Fliachenladungen fiir jeden Konturpunkt, auch auf den
dielektrischen Grenzflichen, nur eine einzige Bedingungsglei-
chung erforderlich, und die Matrix des Gleichungssystems ist
entsprechend kleiner als bei Verwendung diskreter Ladungen.
Die Berechnung von Feldern mit mehreren Dielektrika
wurde getestet am Beispiel einer Anordnung aus [13], ndmlich
einer spannungsfithrenden Kugelelektrode mit Stabzufiihrung
in einem gasformigen Medium mit & = 1 uiber einer geerdeten
Ebene. Im Feld befindet sich ein halbkugelformiges Dielektri-
kum mit &r = 4 (Fig. 9). Die Kugel und der Stab wurden durch
20 diskrete Punkt-, Linien- und Ringladungen nachgebildet,
wihrend die dielektrische Grenzfliche durch 12 Flichenladun-
gen simuliert wurde. Bei der Spannung von 1 kV an der Kugel
ergaben sich fiir den Scheitelpunkt der Kugel eine Feldstirke
von 0,142 75 kV/cm und fiir den Scheitelpunkt der dielektri-
schen Grenzfliche 0,077 54 kV/cm. Die Rechenzeit fir dieses
Testbeispiel an der Rechenanlage TR 440 betrug 9,5 s.

5.3 Weitere Anwendungsbeispiele

Neben diesem Beispiel wurden weitere Anordnungen be-
rechnet. Dabei kamen diskrete Ladungen zur Verwendung, und
wo diese Ladungen nicht sinnvoll waren, wurden Flidchen-
ladungen herangezogen. Nach dem Testbeispiel wurde das
Feld einer Tellerelektrode untersucht, eine Ringelektrode
(Fig. 10) und eine flache Scheibenelektrode (Fig. 11). Ausser-
dem umfassten die Berechnungen eine gesteuerte Durchfiih-
rung und einen gesteuerten Kabelendverschluss.

Mit dem Beispiel von Fig. 10 wurde berechnet, welchen
Einfluss eine an den spannungsfithrenden Ring angesetzte
Platte auf das Feld in der Umgebung des Ringes hat. Der Ring
wurde durch 17 diskrete Ringladungen, die Platte durch 10

/lkv
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Fig. 9 Testbeispiel Kugel-Ebene mit Stabzufiihrung und halbkugel-
formigem Dielektrikum nach [13]
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Fig. 10 Ringelektrode gegen Ebene

a Platte in der Mitte angesetzt
b Platte unten angesetzt

r, z Koordinaten
s Elektrodenabstand
¢  Umlaufwinkel

Masse in cm

Flachenladungen nachgebildet. In der Nahe des Ansatzpunktes
der Platte am Ring wurden die Ladungen jeweils verdichtet.
Die Ergebnisse der Feldstarkeberechnung zeigt die Tabelle I.
Dabei wurden die Anordnungen

— Ring;

— Ring mit in der Mitte angesetzter Platte;

— Ring mit unten angesetzter Platte

gegen Erde miteinander verglichen. Der Ring hat gegeniiber
der geerdeten Ebene die Spannung von 1 kV. Wie die Ergeb-
nisse zeigen, werden die Maximalfeldstirken am Ring durch
die Platte nur unwesentlich verringert, jedoch dndert sich der
Feldverlauf um den Ring (¢ = 0...3609) grundlegend. Im Fall
der in der Mitte angesetzten Platte konnen die realen Werte
E = 0 im Ansatzpunkt der Platte (¢ = 270°) durch das vor-
liegende numerische Verfahren nicht exakt erreicht werden;
die errechneten Werte liegen bei etwa 1%, der Maximalfeld-
stirke. Bei hoherer Verdichtung der Ladungen in der Néihe
dieses Punktes konnten diese Feldstirken jedoch verringert
werden und damit der Wirklichkeit noch ndher kommen. Die
Feldstarken an der Plattenober- und -unterseite sind gleich-
zeitig berechenbar ; sie unterscheiden sich deutlich voneinander.
Die Rechenzeit fiir diese Anordnung betrug an der TR 440
rund 23 s fiir den Ring mit Platte und 6,5 s fiir den Ring ohne
Platte.

Das Beispiel von Fig. 11, die Scheibenelektrode, stellt einen
Grenzfall dar, bei dem von Fall zu Fall abzuwigen ist, ob
sinnvollerweise Flichenladungen oder diskrete Ladungen zu
verwenden sind. Am effektivsten erwies sich bei der Berechnung
dieser Anordnung eine Uberlagerung von 16 Flichenladungen
in den beiden ebenen Teilen der Scheibe und 9 Ringladungen
im Bereich der Krimmung. Mit diesen insgesamt 25 Ladungen
betrug die Rechenzeit 27 s. In Fig. 11 sind einige errechnete
Feldstarkenwerte eingetragen. Dieses Beispiel liesse sich auch
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mit diskreten Ladungen ohne Verwendung von Fliachenladun-
gen berechnen. Allerdings lige dann die Zahl der Ladungen
mindestens bei 40. Die Matrix des Gleichungssystems und der
Speicherplatz im Rechner wiren dann entsprechend umfang-
reicher. Eine Verwendung von multiplen diskreten Ladungen
[13] wiirde zwar diesen Nachteil vermeiden, diese konnten
aber bei extrem flachen Elektroden nicht mehr zum Ziel fiihren.

6. Zusammenfassung

Nach einer Recherche der verschiedenen Methoden, die
mit Flichenladungen rechnen, werden in der vorliegenden
Arbeit Systeme untersucht, die eine analytische Integration
uber die Ladungsflichen zur Potentialberechnung erlauben.
Auf Grund der mit einer analytischen Integration verbundenen
Einschriankungen zielten die weiteren Bemiihungen auf eine
numerische Integration ab. Um giinstige Rechenzeiten zu er-
reichen, wurde dennoch die analytische Losung soweit wie
moglich mit herangezogen; weiterhin wurden Polynome zwei-
ten Grades anstelle trigonometrischer Funktionen benutzt, und
ausserdem kam fiir Aufpunkte auf Ladungsflichen eine schnelle
Approximation zur Verwendung.

Bei der Schilderung der Berechnung einiger Beispiele wurde
betont, dass Flachenladungen gegeniiber diskreten Ladungen
vorteilhaft einzusetzen sind bei den in der Einfiihrung als Ziel-
setzung genannten Elektroden, bei denen die Ausdehnung in
einer Richtung sehr klein ist. Ausserdem wurden dielektrische
Grenzflachen als giinstige Anwendungsmoglichkeit fiir Fla-
chenladungen herausgestellt, und schliesslich wurde deutlich
gemacht, dass Fliachenladungen in manchen Fillen ein kleine-
res Gleichungssystem und damit weniger Speicherplatz im
Rechner erfordern als diskrete Ladungen.
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