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Flächenladungen zur Feldberechnung von Hochspannungssystemen
Von H. Singer

Die Arbeit umfasst Untersuchungen über die Verwendung von
Flächenladungen zur Berechnung des elektrischen Feldes von
Hochspannungssystemen. Der Aufsatz geht aus von einer kurzen Darstellung
des Ladungsverfahrens mit diskreten Ladungen und einigen damit
verbundenen Schwierigkeiten und zeigt als Ausweg eine kontinuierliche
Belegung der Randflächen mit Flächenladungen.

Wegen der Einschränkungen, die durch eine analytische Integration
der Ladungsflächen bedingt sind, zielten die Bemühungen der Arbeit auf
eine numerische Integration ab. Um günstige Rechenzeiten zu erreichen,

wurde allerdings die analytische Lösung der Integrale soweit wie
möglich damit kombiniert; weiterhin wurden Polynome zweiten Grades
anstelle trigonometrischer Funktionen benutzt. Ausserdem kam für
Aufpunkte auf Ladungsflächen eine schnelle Approximation zur
Verwendung.

Bei der Schilderung der Berechnung einiger Beispiele wurde betont,
dass Flächenladungen gegenüber diskreten Ladungen vorteilhaft
einzusetzen sind bei Elektroden, bei denen die Ausdehnung in einer Richtung
sehr klein ist. Ausserdem wurden dielektrische Grenzflächen als
günstige Anwendungsmöglichkeit für Flächenladungen herausgestellt, und
schliesslich deutlich gemacht, dass Flächenladungen in manchen Fällen
ein kleineres Gleichungssystem und damit weniger Speicherplatz im
Rechner erfordern als diskrete Ladungen.

1. Einführung
Die gegenwärtige Entwicklung der Hochspannungstechnik

ist gekennzeichnet durch eine überaus rasche Steigerung des

Spannungsniveaus in allen Anwendungsbereichen. Zur
Untersuchung der dabei auftretenden Probleme werden aufwendige
Höchstspannungslaboratorien gebaut [l]1), die experimentell
fundierte Unterlagen für die Planung von Anlagen in den höchsten

Spannungsebenen liefern sollen. Parallel dazu sind
theoretische Untersuchungen nötig, um eine gute Verlässlichkeit
der Ergebnisse zu erreichen. Eine Voraussetzung zur Optimierung

in dieser Richtung bildet die Berechnung des elektrischen
Feldes - auch komplizierter Elektrodenanordnungen.

Wie die Literatur der vergangenen Jahre erkennen lässt,
wurden für die Berechnung des elektrischen Feldes verschiedene

Rechenverfahren entwickelt. Nach den rein analytischen
Lösungsverfahren haben mit der Entwicklung der
Rechenmaschinentechnik numerische Verfahren mehr und mehr an
Bedeutung gewonnen. Bei der Aufzählung solcher Verfahren
sind das Differenzenverfahren zu nennen [2...8] und das

Verfahren der finiten Elemente [9; 10], Daneben wurde in den
letzten Jahren ein numerisches Verfahren entwickelt, das mit
diskreten Ladungen arbeitet [11... 13], und damit eine Vielzahl
von Feldsystemen der Hochspannungstechnik untersucht
[14...19].

Gegenüber dem Differenzenverfahren und dem Verfahren
der finiten Elemente weist das Ladungsverfahren grundsätzlich
eine Reihe von Vorzügen auf, so beispielsweise die Möglichkeit,

auch offene, unbegrenzte Anordnungen berechnen zu
können, deren Feld sich bis ins Unendliche erstreckt. Weiterhin
erlaubt das Ladungsverfahren, auch dreidimensionale Felder
beliebiger Feldkonfigurationen mit vertretbarem Aufwand zu
berechnen. Ausserdem garantiert dieses Verfahren neben einer
hohen Genauigkeit eine vergleichsweise geringe Rechenzeit.

Das Ladungsverfahren ist allerdings bisher nicht so weit
entwickelt, dass damit alle zu erwartenden Feldanordnungen

i) Siehe Literatur am Schluss des Aufsatzes.
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Exposé concernant une étude de l'emploi de charges superficielles

pour le calcul du champ électrique de systèmes à haute
tension. On décrit tout d'abord brièvement le procédé de charges
discrètes et quelques difficultés qu'il présente, puis montre le
moyen d'obtenir des charges continues dans les parties marginales.

En raison des limitations de l'intégration analytique des
surfaces chargées, le travail consistait à prévoir une intégration
numérique. Afin de réduire le temps nécessaire pour le calcul, la
solution analytique des intégrales a toutefois été combinée dans
la mesure du possible; en outre, on a eu recours à des polynômes
de second degré, au lieu de fonctions trigonométriques, et à une
approximation rapide pour les points considérés des surfaces
chargées.

Lors de la description du calcul pour quelques exemples, on
montre que des charges superficielles sont préférables à des charges

discrètes, dans le cas d'électrodes dont l'extension dans un sens
est très faible. Des surfaces diélectriques marginales permettent
une application plus avantageuse pour des décharges superficielles.

Enfin, l'auteur indique que, dans certains cas, ces charges
n'exigent qu'un système d'équations plus restreint, c'est-à-dire
moins de place dans la mémoire du calculateur électronique.

berechnet werden können. Eine Schwierigkeit für das
Ladungsverfahren mit diskreten Ladungen bieten sehr flache,
abgeplattete Elektroden und Bleche, etwa Polycon-Elektroden [16]
oder Rogowski-Profile. Dünne Stege und flache, bandförmige
Zuleitungen, beispielsweise an Abschirmelektroden, sind hier
ebenfalls zu nennen. Der Grund liegt darin, dass beim
Ladungsverfahren der Abstand zwischen Konturpunkt und
zugehöriger Ladung in derselben Grössenordnung liegen muss
wie der Abstand zwischen zwei benachbarten Konturpunkten.
Diese Forderung lässt sich aber bei Elektroden, bei denen die

Ausdehnung in einer Richtung sehr klein wird, mit den
diskreten Ladungen nur mit Schwierigkeiten verwirklichen. Gänzlich

unmöglich zu berechnen ist mit dem Ladungsverfahren in
der bisherigen Form beispielsweise das Feld an Steuerbelägen

von Durchführungen oder Kabelendverschlüssen.

Auf Grund der oben beschriebenen Vorzüge des

Ladungsverfahrens erschien es sinnvoll, das Verfahren so zu entwickeln
und zu erweitern, dass es für möglichst alle auftretenden
Feldprobleme universell angewendet werden kann. Einen Ansatz
zur Lösung des Problems bietet eine kontinuierliche Belegung
der Randflächen mit Flächenladungen. Da dieser Weg
erfolgversprechend erschien, wurden die weiteren Arbeiten darauf
ausgerichtet.

2. Bisher bekannte Rechenverfahren mit Flächenladungen
Verfahren mit Flächenladungen wurden bisher von

verschiedenen Autoren bekannt [20...27], vor allem die «Method
of Moments» und die «Teilflächenmethode». Diese Methoden
bauen auf denselben mathematischen Grundlagen auf wie das

Ladungsverfahren mit diskreten Ladungen, benutzen also

Partikulärlösungen der Laplaceschen Potentialgleichung.
Den engsten Bezug zum oben erwähnten Ladungsverfahren

hat die «Method of Moments» von R.F. Harrington [26; 27],
die sowohl mit Flächenladungen als auch mit diskreten Ladungen

arbeitet. Im Gegensatz zum erstgenannten Verfahren werden

hier aber die Ladungen nicht in ein nicht interessierendes

Feldgebiet gelegt, sondern auf die Berandungen des Feldes,
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also beispielsweise auf eine Elektrodenoberfläche. Dafür werden

fast ausschliesslich Punktladungen verwendet.
Flächenladungen werden dazu benutzt, um Diskontinuitätsstellen zu
vermeiden, wenn das Potential oder die Feldstärke in einem

Punkt berechnet werden soll, in dem sich eine Punktladung
befindet. Diese wird dann durch eine Flächenladung ersetzt.
Da hauptsächlich Potentiale von Punktladungen berechnet
werden müssen, ist das Verfahren sehr schnell. Ein weiterer

Vorzug des Verfahrens liegt darin, dass die entstehende Matrix
symmetrisch ist, also nur zur Hälfte im Rechner gespeichert

zu werden braucht. Allerdings ist die Anzahl der Ladungen
und Konturpunkte sehr gross, so dass der Vorteil der
Matrixsymmetrie wieder kompensiert wird. Der grosse Nachteil der

«Method of Moments» besteht darin, dass wegen der Diskre-
tisierung der Ladungen auf Elektrodenoberflächen die
Feldstärke an den Elektroden nur höchst ungenau bestimmt werden

kann, obwohl in den meisten Fällen das Feld gerade dort am
stärksten interessiert.

Unter dem Begriff «Teilflächenmethode» wurde ein
Verfahren bekannt [20...25], das ausschliesslich mit Flächenladungen

arbeitet. Hierbei wird die Berandung des Feldgebietes in
einzelne Teilflächen zerlegt, die mit Flächenladungen, vorzugsweise

mit konstanter Ladungsdichte, belegt werden. Die
Berechnung der Grösse der Ladungen erfolgt wie bei Verwendung
diskreter Ladungen, also durch Vorgabe von Konturpunkten
und Lösung eines linearen Gleichungssystems. Die Methode
wurde in einfacher Form zum erstenmal von H. Cavendish [20]

vorgestellt. In den fünfziger Jahren griffen D.K. Reitan und
T. J. Higgins [21 ; 22] das Verfahren auf. Während sie die
Elektroden in gleichgrosse Teilflächen zerlegten, passten A. Kessler,

A. Vlcek, O. Zinke [23] die Grösse der einzelnen Teilflächen
der Geometrie der Elektrodenanordnung an, verwendeten also

verschieden grosse Teilflächen. F. J. Berle [24] und D. Pfliigel
[25] bauten das Verfahren weiter aus und veröffentlichten vor
allem Kapazitätsberechnungen von zylindrischen Systemen
und rotationssymmetrischen Feldanordnungen. Die zitierten
Beispiele sind auf Anordnungen mit verhältnismässig einfachen

Konturen beschränkt, wie z. B. parallele Platten, flache Ringe
oder quaderförmige Elektroden oder Dielektrika. Wie sich

dabei zeigte, eignet sich die «Teilflächenmethode» gut für
Kapazitätsberechnungen. Feldstärkeberechnungen mit der
«Teilflächenmethode» sind nur in begrenztem Umfang bekannt
geworden.

Da die «Teilflächenmethode» die grössten Aussichten bietet,

die in der Einführung genannten Aufgaben zu lösen, wurde
sie im Hinblick auf diese Zielsetzung näher untersucht.

Fig. 1 Flächenladungselement da mit den Koordinaten xl, Vi., zl
auf der Fläche A und Aufpunkt P (x, y, z)
in einem kartesischen Koordinatensystem

Fig. 2 Kugelkoordinatensystem mit Ladungselement
zl, $l, (f l und Aufpunkt r, 3, ig

3. Potential von Flächenladungen in einigen wichtigen
Koordinatensystemen mit Hilfe analytischer Integration

Bei der Teilflächenmethode wird eine Ladungsfläche A in
eine Anzahl von T Teilflächen zerlegt, über die bei der Berechnung

des Potentials zu summieren ist. Im allgemeinen wurden
bisher die Teilflächenladungen oy als konstant vorausgesetzt.
Wenn xl, yi., zi, die Koordinaten des jeweils betrachteten
Ladungsflächenelementes da und s den Abstand zwischen diesem

Flächenelement und einem Aufpunkt P mit den Koordinaten

x, y, z bezeichnen (Fig. 1), lautet das Potential <P in diesem

Aufpunkt :

<l> (x, y, z) —V \<Ji f — — r-1
4 7i e L J s (x, y, z; xl, yi,, zij i

S 1 Ai

Wird das Kugelkoordinatensystem r, $, ig (Fig. 2) zur
Berechnung herangezogen, so können die Flächen S konstant,
also Kegelflächen, mit Ladungen belegt werden. Die Teilflächen
stellen dann also Teile von Kegelflächen dar.

Um auch nichtrotationssymmetrische Felder berechnen zu
können, soll im folgenden eine Ladungsverteilung angesetzt
werden, die in Abhängigkeit des Rotationswinkels periodisch
veränderlich ist, nämlich

N

a 2 [<xn cos mgl]
n 0

wobei n die Ordnungszahl der jeweiligen Welle und Adie
Maximalzahl der Oberwellen angeben. Um auch die Möglichkeit
zu haben, stetige, nicht sprunghafte Ladungsübergänge
zwischen den einzelnen Teilflächen zu erreichen, ist eine Ladungsbelegung

vorzusehen, die von der Koordinate r abhängt, und

zwar in Form einer Polynom-Verteilung. Damit ergibt sich

M N

m 0 n 0

Ro ist ein beliebiger Bezugsradius, M der höchste Grad der

Polynome. Die zunächst unbekannten Koeffizienten omn, deren

740 (A 392) Bull. ASE/UCS 65(1974)10,18 mai



Anzahl sich für jede Teilfläche j auf (N + 1) • (M + 1) beläuft,
werden, wie beim Ladungsverfahren und bei der «Teilflächenmethode»

üblich, über ein lineares Gleichungssystem durch
Erfüllung der Randbedingungen in ebenso vielen Konturpunkten

ermittelt. Für insgesamt T Teilflächen ergeben sich also
T (N + 1) (M + 1) unbekannte Koeffizienten bzw. Konturpunkte.

Die Potentiale für die obige Ladungsverteilung wurden in
der Habilitationsschrift des Autors abgeleitet. Sie werden durch
unendliche Reihen von zugeordneten Kugelfunktionen dargestellt.

Bei der Berechnung dieser Potentiale stellte sich heraus,
dass die Reihen zwar konvergieren, jedoch zum Teil sehr langsam.

Die Rechnungen, die an der Rechenanlage TR 440 des

Leibniz-Rechenzentrums der Bayerischen Akademie der
Wissenschaften durchgeführt wurden, benötigten für den
Potentialwert aus einem einzigen Ladungsanteil crmn bis zu 1 s2). Mit
einer Konvergenzbeschleunigung über Zusatzreihen wurde
eine Reduzierung der Rechenzeit auf ein Drittel der ursprünglichen

Zeit erzielt.
Mit Hilfe der beschriebenen Methodik wurde ein

Testbeispiel durchgerechnet, und zwar die Elektrodenanordnung
Kugel-Ebene (Fig. 3). Diese Anordnung wurde einerseits
gewählt, weil sie ein Beispiel für den in der Hochspannungstechnik

meist gebräuchlichen Fall einer allseits abgerundeten
Elektrode ohne Kanten darstellt, anderseits, um einen
Vergleich mit der rein analytischen Lösung und mit dem Verfahren
der diskreten Ladungen zu erhalten. Wegen der längeren
Rechenzeiten, die sich mit Flächenladungen ergeben, wird
diese Anordnung normalerweise analytisch oder mit diskreten

Ladungen berechnet. Die Kegelflächen werden hier so an die
Elektrode angelehnt, dass sie, im Schnitt gesehen, als Sehnen

innerhalb der Kreiskontur liegen. Hier zeigt sich neben der

langen Rechenzeit der weitere Nachteil, dass sich bei gekrümmten

Flächen die Kegelflächen nicht mit der Oberfläche decken

können und deshalb an den Übergangsstellen zwischen den

einzelnen Teilflächen Knicklinien entstehen, die eine falsche
Überhöhung der Feldstärke um maximal 50 bis 100 % an diesen

Stellen zur Folge haben. Die Kugel wurde dabei mit 12

Flächen konstanter und linear veränderlicher Ladungsdichte
und ebenso vielen Konturpunkten nachgebildet, die Ebene

durch Spiegelung der Ladungen an ihr.
Ein weiterer gravierender Nachteil der Kegelflächen besteht

darin, dass Stücke von Kreiszylindern damit nicht nachgebildet
werden können, also beispielsweise kein kreiszylindrischer
Stab, da eine Kegelfläche für 5 0 zu einer Linie wird. Für
kreiszylindrische Flächen ist also eine andere Lösung notwendig,

die aus dem Kreiszylinder-Koordinatensystem ableitbar
ist. Das Potential einer kreiszylindrischen Fläche lässt sich
nach [28] durch eine Reihe von Kugelfunktionen angeben.

Um falsche Feldstärkeerhöhungen bei dreidimensional
gekrümmten Elektrodenflächen, beispielsweise Kugeln oder Ringen,

zu vermeiden, sind dreidimensional gekrümmte Ladungsflächen

vorzuziehen. Solche Ladungsflächen sind ableitbar
beispielsweise aus dem Kugelkoordinatensystem in Form von
Kugelabschnitten. Sie wären aber nur brauchbar für
rotationssymmetrische Elektrodenteile, deren Krümmungsmittelpunkt
auf der Rotationsachse liegt. Für andere Elektroden müsste

beispielsweise das Toroidkoordinatensystem mit Abschnitten
von Ringflächen herangezogen werden. Diese Ladungen sind

2) Die Rechenanlage TR 440 kann im Mittel etwa 830 000
Operationen/s oder 2 000 000 Festkomma-Additionen/s durchführen.

Fig. 3

Feldberechnung für das
Testbeispiel Kugel-Ebene
Ladungen auf Kegelflächen an der
Kreiskontur
Abmessungen in cm

aber mit beliebiger Ladungsverteilung nicht analytisch
integrierbar. Aus diesem Grund ist das Toroidkoordinatensystem
nur für wenige Fälle geeignet.

4. Potential von Flächenladungen
mit Hilfe numerischer Integration

Nachdem sich zeigte, dass eine analytische Integration nur
in einfachen Fällen zur Potentialberechnung dienen kann,
wurde untersucht, welche Ergebnisse eine numerische Integration

von Flächenladungen bringt. Die numerische Integration
erlaubt es generell, mit Oberflächen beliebiger Form zu rechnen
und die Ladungsbelegung frei wählen zu können, so dass sich
die Ladungen den Oberflächenkrümmungen und der
Geometrie der Elektrodenanordnung anpassen lassen. Da in der
Hochspannungstechnik in der Hauptsache Elektrodensysteme
mit rotationssymmetrischen Elektrodenteilen auftreten, die
allerdings im allgemeinen so gegeneinander angeordnet sind,
dass das entstehende Feld nicht mehr rotationssymmetrisch
ist, sind die weiteren Überlegungen auf diesen Fall abgestimmt.

4.1 Vorversuche mit einfachen, analytisch lösbaren Integralen

Um Rechenzeit und Genauigkeit der numerischen Integration

mit der analytischen Rechenweise vergleichen zu können,
wurden Vorversuche mit einfachen, auch auf analytischem Weg
lösbaren Integralen gestartet. Dazu diente eine Ringladung
nach Fig. 4 mit periodischer Ladungsverteilung. Wenn der
Ring mit der Ladungsdichte

X 2n cos nij/ij

Fig. 4 Ladungselement unter dem Winkel i//l auf einer Ringladung
auf der Höhe zl mit dem Radius ri,
Aufpunkt P im Abstand s
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belegt wird, berechnet sich das Potential im Punkt P (r, t//, z)
nach [12] aus

\ i/rL /(z — a)2 + r2 + r2l\0(r> Z) In, y — Ö"-5 2r;-[, C0Sm"

Die analytische Berechnung dieses Potentials über die To-
rusfunktion Qn s dauerte an der TR 440 im Mittel 2 ms. Die
numerische Integration wurde u. a. durchgeführt mit Hilfe von
Gauss-Quadraturen und nach der Simpson-Regel. Da die

letztgenannte Methode flexibler ist, wurde sie bevorzugt. Es stellte
sich dabei heraus, dass sich damit sehr genaue Ergebnisse für
die Potentialwerte erzielen lassen, wenn der Abstand h

zwischen zwei Stützstellen nicht konstant gehalten wird, sondern

proportional dem Abstand s zwischen jeweiliger Stützstelle und
dem interessierenden Aufpunkt gemacht wird. Gute Ergebnisse

wurden erzielt mit h 0,2 s. Die obere Grenze für h

wurde so festgelegt, dass mindestens 21 Stützstellen in einem

Ringteilstück 7i/n lagen. Bei dieser Integration muss vermieden

werden, den Aufpunkt auf die Ringladung selbst zu legen, da
dieser Fall zu <F -> oo führen würde.

Mit der zuletzt beschriebenen numerischen Integrationsmethode

benötigte der Rechner für die Ermittlung eines

Potentialwertes im Mittel 20 ms. Im Verhältnis zur analytischen
Integration ist hier also für die numerische Integration die

zehnfache Rechenzeit erforderlich. Da es zur Berechnung von
Flächenladungen aber einer doppelten Integration bedarf und

für die numerische Integration die hundertfache Zeit der

analytischen Integration zu erwarten ist, wurde für die Berechnung
der Potentiale von Flächenladungen ein etwas anderer Weg
eingeschlagen.

4.2 Doppelte Integration von Flächenladungen

Für Flächenladungen erweist es sich als vorteilhaft, analytische

und numerische Integration zu kombinieren. Dazu werden

Ringladungen verwendet, die in einem ersten Schritt
analytisch integriert werden und in einem zweiten Schritt koaxial
auf der Elektrodenoberfläche aneinandergereiht und numerisch

zum Potential von Flächenladungen aufintegriert werden.

Auf diese Weise ergibt sich nur eine einzige numerische
Integration über die Kurve Cl (Fig. 5), die sich mit Hilfe der

Simpson-Regel durchführen lässt. Diese Integration lautet :

> cf£-/•(«

Für Konturen Cl mit Kreisbögen sind fl und zl
trigonometrische Funktionen eines Winkels. Die Funktionen sin und
cos erfordern auf dem Rechner verhältnismässig viel Zeit,
nämlich rund 90 ps. Da sie bei der numerischen Integration

Fig. 5

Numerische Integration über
eine Kurve Cl
Ladungselement dCL mit den
Koordinaten ri, und zl

mit der Simpson-Regel sehr oft berechnet werden müssen,

empfiehlt es sich, diese Berechnungen nach Möglichkeit zu
umgehen. Das lässt sich durch Beschreibung der Kontur mit
Polynomen zweiten Grades erreichen, indem also ein Kreis
durch Parabelstücke ersetzt wird, und zwar für jede Teilkontur,
die im Schnitt einer Teilfläche entspricht, eine Parabel. Auf
diese Weise ist nur

z-L A + B TL + C rj?

zu integrieren mit den Konstanten A, B, C, die sich aus der

geometrischen Form der Teilkontur bestimmen. Der Wert von

zl ergibt sich also aus 3 Multiplikationen und 2 Additionen,
woraus für die TR 440 ein Rechenaufwand von rund 14 ps

folgt. Damit wird aus dem obigen Integral :

A> (r, yj, z) f o (rL) j/l + (B + 2 Cldf
TL

Qn-i (l +
(Z ^"ßrL'2^L2)2

l (r ^L)2) df'L

Während für Konturen mit flacher Neigung vorzugsweise

zl f (rj.) zu setzen ist, erweist sich für stark gegen die z-
Ebene geneigte Konturen n. f (zl) günstiger. Die Potentialformel

errechnet sich ähnlich wie im Fall zl f (ri).
Wenn in einem Aufpunkt, der auf der Fadungsfläche selbst

liegt, das Potential berechnet werden soll, wird es zwar nicht
unendlich wie im Fall von Linien- oder Ringladungen, jedoch
wächst Qn-i über alle Grenzen, so dass eine numerische
Integration mit der bisher beschriebenen Methode nicht mehr
möglich ist. Für diesen Fall, bei dem das Argument von
Qn-i nahe 1 liegt, gilt der Näherungsansatz [29]

ßn-i(l + <5) ^ - y + ¥(n + 0,5) + 0,5 • In 2 - 0,5 • In <5

mit <5 als sehr kleiner Zahl, y als Eulerscher Konstante und der
Funktion XF als logarithmischer Ableitung der Gammafunk-
tion. Mit diesem Ansatz kann eine analytische Integration über
In <5 durchgeführt werden, so dass auch für einen Aufpunkt auf
der Ladungsfläche eine Potentialberechnung möglich ist.

Diese analytische Näherungsmethode ist allerdings mit dem
Nachteil verbunden, dass viele Sonderfälle zu unterscheiden
sind, die grossen Aufwand erfordern. Als schnellerer Weg bot
sich ein numerisches Näherungsverfahren an: Es wurde
festgestellt, dass bei der Integration nach der Simpson-Regel mit
Ladungsintervallen h ~ s die Potentialanteile In der einzelnen
Intervalle bei Annäherung an den Aufpunkt abnehmen wie
Glieder einer geometrischen Reihe:

Ii/h-i =/< 1

/ ist ein praktisch konstanter Wert und stets < 1. Die
numerische Integration nach der Simpson-Regel kann also bei
einem Ladungsintervall nahe dem Aufpunkt abgebrochen
werden und die Summe der restlichen Potentialanteile bis zum
Aufpunkt aus der Summenformel der geometrischen Reihe
bestimmt werden. Dieses Näherungsverfahren konnte ohne

Schwierigkeit bis auf eine relative Ungenauigkeit von 10~5 an
die Ergebnisse der analytischen Näherungsmethode mit der

Integration über ö herangebracht werden.

Mit den drei Massnahmen

- nur einfache Integration auf numerischem Weg;

- Ersatz der trigonometrischen Funktionen durch Polynome
zweiten Grades;

- Verwendung der Summenformel der geometrischen Reihe für
Aufpunkte auf den Ladungsflächen
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a

Fig. 6 Qualitatives Beispiel für Ladungsbelegung
entlang der numerisch zu integrierenden Kontur

a Überlagerung von konstanter und linearer
Ladungsverteilung

b Überlagerung von konstanter und linearer
Ladungsverteilung mit der Zusatzbedingung der
Stetigkeit

g Flächenladungsdichte

ri, zl Ladungskoordinaten

betrug die Rechenzeit für einen Potentialwert im Mittel nur
6 bis 8 ms, also nur das drei- bis vierfache der Rechenzeit der
diskreten Ladungen. Diese Zeit ist durchaus tragbar, da

Flächenladungen einen grösseren Bereich überstreichen als
diskrete Ladungen und die Berechnung unter Umständen mit
einer geringeren Anzahl von Flächenladungen als von diskreten
Ladungen durchgeführt werden kann.

4.3 Varianten der Ladungsverteilung aufden Teilflächen

Wie bereits angeklungen ist, wird die Ladungsbelegung
entlang der numerisch zu integrierenden Kontur zweckmässigerweise

in Form einer Polynom-Verteilung angesetzt. Allerdings
ist damit der Ladungsverlauf nicht stetig: An den Übergangsstellen

zwischen den einzelnen Teilflächen treten Ladungssprünge

auf (Fig. 6a), die die Feldstärkewerte an der
Oberfläche verfälschen können, und zwar um so mehr, je grösser
die Ladungssprünge sind. Durch die zusätzliche Bedingung,
dass die Ladungsdichte am Ende einer Teilfläche gleich der

Ladungsdichte am Anfang der folgenden Teilfläche sein soll,
kann jedoch die Ladungsstetigkeit erreicht werden. Damit
ergeben sich beim Matrixaufbau zwei verschiedene Arten von
Bedingungsgleichungen, und zwar Bedingungsgleichungen für
die Randbedingungen (meistens Einhaltung vorgegebener
Potentiale in den Konturpunkten) und die zuletzt genannten
Bedingungsgleichungen für die Ladungsstetigkeit. Da diese

Bedingung mathematisch sehr einfach formulierbar ist und auf
Grund dessen im entsprechenden Teil der Matrix nur Nullen,
Einsen und einige wenige Potenzen von Koordinaten stehen,
verkleinert sich die durchschnittliche Rechenzeit für ein
Matrixelement erheblich. Für eine lineare Ladungsverteilung
(M =1) mit Ladungsstetigkeit ergaben sich an einem Beispiel
Rechenzeiten von etwa 3,5 ms für ein Matrixelement.

Fig. 7 zeigt als Beispiel eines Ergebnisses den Verlauf der

Ladungsdichte auf der Kugel der Anordnung Kugel-Ebene
nach Fig. 3. Die Ladungsflächen, verifiziert durch
Parabelgleichungen, schmiegen sich an die Kugeloberfläche an. Der
Kurvenzug dieser Figur, der aus Geraden besteht, ist aus 12

gleich grossen Teilstücken zusammengesetzt und hat einen

stetigen Verlauf. Die Neigung der dc/da-Ladung im untersten
Punkt der Kugel (a 0°) ist nicht gleich Null, wie es in
Wirklichkeit sein müsste. Eine diesbezügliche Verbesserung kann
aber leicht erreicht werden durch feinere Einteilung der ersten

Teilfläche 0° gl a ^ 15°. Ansonsten approximiert der Linienzug

gut die Wirklichkeit. Eine Steigerung des Grades der
Polynome über M 1 hinaus brachte keine spürbare Verbesserung.

4.4 Lage der Konturpunkte

Im Rahmen der Variation der Ladungsverteilung wurde
auch die Lage der Konturpunkte auf den Teilflächen geändert.
Wie schon aus (25] ersichtlich ist, lassen sich die besten Ergebnisse

mit Konturpunkten erzielen, die in der Mitte der jeweiligen

Teilkontur liegen. Bei kantigen und eckigen Elektroden,
beispielsweise bei Bändern, rückt die optimale Lage der
Konturpunkte in Richtung der Kante oder Ecke.

4.5 Feldstärkeberechnung

Während diskrete Ladungen die Potential- und Feldstärkeverteilung

nur in einem bestimmten Bereich des Feldes wiedergeben

und in unmittelbarer Nähe der Ladungen infolge der

Diskretisierung ein der Wirklichkeit nicht entsprechendes Bild
erzeugen, bieten Flächenladungen die Möglichkeit, in allen
Bereichen der Anordnung ein wirklichkeitsgetreues Feld zu
erreichen. Da für die beiden Seiten der Flächenladungen keine

getrennten Potential formein existieren und eine Differentiation
des Potentials in der gewünschten Richtung einen hohen
Rechenaufwand fordern würde, wird hier zweckmässigerweise
die Feldstärke mit Hilfe einer Differenzenbildung von Potentialen

ermittelt. Mit Hilfe dieses Vorgehens ergeben sich
automatisch auf den beiden Seiten einer Ladung voneinander ver-

cft

r
0° 30° 60° 90° 120° 150° 180°

a

Fig. 7 Errechnete Ladungsverteilung auf den Teilflächen der Anordnung
Kugel-Ebene bei Überlagerung von konstanter und linearer
Ladungsverteilung mit der Zusatzbedingung der Stetigkeit
a Flächenladungsdichte
a Umlaufwinkel
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schiedene Feldstärken. Im Innern einer Elektrode wird die

Feldstärke zu Null, im Gegensatz zur Rechnung mit diskreten

Ladungen.

5. Anwendung des Verfahrens zur Feldberechnung
Im Prinzip können Flächenladungen zur Berechnung

beliebiger Anordnungen dienen und stellen eine gute Alternative
zu diskreten Ladungen dar. Mit den folgenden
Anwendungsmöglichkeiten und Beispielen sollen einige Anhaltspunkte
gegeben werden, um beide Ladungsarten gegeneinander abwägen

zu können.

5.1 Anwendungsmöglichkeiten

Wie in der Einführung bereits erwähnt wurde, sind
Flächenladungen vor allem zur feldmässigen Simulation von Elektroden

notwendig, die in einer Richtung nur eine geringe Ausdehnung

haben. Flächenladungen sind also erforderlich vor allem
bei bandförmigen Leitern, bei flachen, abgeplatteten Elektroden

und bei Blechen und Metallfolien, beispielsweise bei
Belägen von Durchführungen. Da sich bei der Nachbildung von
Elektrodenoberflächen mit Flächenladungen auf beiden Seiten

der Oberfläche automatisch verschiedene Feldstärken ergeben,
kann mit Flächenladungen ohne Schwierigkeiten das Feld
einer halboffenen Elektrode, beispielsweise einer Abschirmelektrode

(Fig. 8), gleichzeitig in allen Bereichen der Anordnung

untersucht werden. Ausserdem ist es möglich,
Flächenladungen vorteilhaft bei Feldern mit mehreren Dielektrika
einzusetzen.

5.2 Erfassung von dielektrischen Grenzflächen

mit Flächenladungen

Zur Erfassung von Dielektrikumssprüngen werden auf die
dielektrischen Grenzflächen Flächenladungen gelegt. Die
Bedingung, die für die dielektrischen Grenzflächen anzusetzen

ist, ergibt sich aus der Konstanz der elektrischen Flussdichte
senkrecht zur Grenzfläche oder dementsprechend aus der
Relation der Normalfeldstärken im Verhältnis der Dielektrizitätskonstanten

der Dielektrika I und II :

Eiin _ El

Ein fill

Im Gegensatz zum Verfahren mit diskreten Ladungen [13]
enthält das hier beschriebene Verfahren automatisch die

Bedingung der Potentialstetigkeit auf beiden Seiten der
dielektrischen Grenzfläche, identisch mit der Stetigkeit der Tangen-
tialfeldstärke an der Grenzfläche [13; 28]. Deshalb ist im Fall

der Flächenladungen für jeden Konturpunkt, auch auf den
dielektrischen Grenzflächen, nur eine einzige Bedingungsgleichung

erforderlich, und die Matrix des Gleichungssystems ist

entsprechend kleiner als bei Verwendung diskreter Ladungen.
Die Berechnung von Feldern mit mehreren Dielektrika

wurde getestet am Beispiel einer Anordnung aus [13], nämlich
einer spannungsführenden Kugelelektrode mit Stabzuführung
in einem gasförmigen Medium mit er 1 über einer geerdeten
Ebene. Im Feld befindet sich ein halbkugelförmiges Dielektrikum

mit £r 4 (Fig. 9). Die Kugel und der Stab wurden durch
20 diskrete Punkt-, Linien- und Ringladungen nachgebildet,
während die dielektrische Grenzfläche durch 12 Flächenladungen

simuliert wurde. Bei der Spannung von 1 kV an der Kugel
ergaben sich für den Scheitelpunkt der Kugel eine Feldstärke
von 0,142 75 kV/cm und für den Scheitelpunkt der dielektrischen

Grenzfläche 0,077 54 kV/cm. Die Rechenzeit für dieses

Testbeispiel an der Rechenanlage TR 440 betrug 9,5 s.

5.3 Weitere Anwendungsbeispiele

Neben diesem Beispiel wurden weitere Anordnungen
berechnet. Dabei kamen diskrete Ladungen zur Verwendung, und

wo diese Ladungen nicht sinnvoll waren, wurden
Flächenladungen herangezogen. Nach dem Testbeispiel wurde das

Feld einer Tellerelektrode untersucht, eine Ringelektrode
(Fig. 10) und eine flache Scheibenelektrode (Fig. 11). Ausserdem

umfassten die Berechnungen eine gesteuerte Durchführung

und einen gesteuerten Kabelendverschluss.
Mit dem Beispiel von Fig. 10 wurde berechnet, welchen

Einfluss eine an den spannungsführenden Ring angesetzte
Platte auf das Feld in der Umgebung des Ringes hat. Der Ring
wurde durch 17 diskrete Ringladungen, die Platte durch 10

Fig. 9 Testbeispiel Kugel-Ebene mit Stabzuführung und halbkugel¬
förmigem Dielektrikum nach [131

er Dielektrizitätszahl
Masse in cm
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Fig. 10 Ringelektrode gegen Ebene

a Platte in der Mitte angesetzt
b Platte unten angesetzt

/•, z Koordinaten
s Elektrodenabstand
<p Umlaufwinkel
Masse in cm

Flächenladungen nachgebildet. In der Nähe des Ansatzpunktes
der Platte am Ring wurden die Ladungen jeweils verdichtet.
Die Ergebnisse der Feldstärkeberechnung zeigt die Tabelle I.
Dabei wurden die Anordnungen

- Ring;
- Ring mit in der Mitte angesetzter Platte;
- Ring mit unten angesetzter Platte

gegen Erde miteinander verglichen. Der Ring hat gegenüber
der geerdeten Ebene die Spannung von 1 kV. Wie die Ergebnisse

zeigen, werden die Maximalfeldstärken am Ring durch
die Platte nur unwesentlich verringert, jedoch ändert sich der

Feldverlauf um den Ring Up 0...3600) grundlegend. Im Fall
der in der Mitte angesetzten Platte können die realen Werte
E 0 im Ansatzpunkt der Platte Up 270°) durch das

vorliegende numerische Verfahren nicht exakt erreicht werden;
die errechneten Werte liegen bei etwa 1 % der Maximalfeldstärke.

Bei höherer Verdichtung der Ladungen in der Nähe
dieses Punktes könnten diese Feldstärken jedoch verringert
werden und damit der Wirklichkeit noch näher kommen. Die
Feldstärken an der Plattenober- und -Unterseite sind gleichzeitig

berechenbar; sie unterscheiden sich deutlich voneinander.
Die Rechenzeit für diese Anordnung betrug an der TR 440

rund 23 s für den Ring mit Platte und 6,5 s für den Ring ohne
Platte.

Das Beispiel von Fig. 11, die Scheibenelektrode, stellt einen
Grenzfall dar, bei dem von Fall zu Fall abzuwägen ist, ob
sinnvollerweise Flächenladungen oder diskrete Ladungen zu
verwenden sind. Am effektivsten erwies sich bei der Berechnung
dieser Anordnung eine Überlagerung von 16 Flächenladungen
in den beiden ebenen Teilen der Scheibe und 9 Ringladungen
im Bereich der Krümmung. Mit diesen insgesamt 25 Ladungen
betrug die Rechenzeit 27 s. In Fig. 11 sind einige errechnete
Feldstärkenwerte eingetragen. Dieses Beispiel liesse sich auch

mit diskreten Ladungen ohne Verwendung von Flächenladungen

berechnen. Allerdings läge dann die Zahl der Ladungen
mindestens bei 40. Die Matrix des Gleichungssystems und der

Speicherplatz im Rechner wären dann entsprechend umfangreicher.

Eine Verwendung von multiplen diskreten Ladungen
[13] würde zwar diesen Nachteil vermeiden, diese könnten
aber bei extrem flachen Elektroden nicht mehr zum Ziel führen.

6. Zusammenfassung
Nach einer Recherche der verschiedenen Methoden, die

mit Flächenladungen rechnen, werden in der vorliegenden
Arbeit Systeme untersucht, die eine analytische Integration
über die Ladungsflächen zur Potentialberechnung erlauben.

Auf Grund der mit einer analytischen Integration verbundenen

Einschränkungen zielten die weiteren Bemühungen auf eine
numerische Integration ab. Um günstige Rechenzeiten zu
erreichen, wurde dennoch die analytische Lösung soweit wie

möglich mit herangezogen ; weiterhin wurden Polynome zweiten

Grades anstelle trigonometrischer Funktionen benutzt, und
ausserdem kam für Aufpunkte auf Ladungsflächen eine schnelle

Approximation zur Verwendung.
Bei der Schilderung der Berechnung einiger Beispiele wurde

betont, dass Flächenladungen gegenüber diskreten Ladungen
vorteilhaft einzusetzen sind bei den in der Einführung als

Zielsetzung genannten Elektroden, bei denen die Ausdehnung in
einer Richtung sehr klein ist. Ausserdem wurden dielektrische
Grenzflächen als günstige Anwendungsmöglichkeit für
Flächenladungen herausgestellt, und schliesslich wurde deutlich
gemacht, dass Flächenladungen in manchen Fällen ein kleineres

Gleichungssystem und damit weniger Speicherplatz im
Rechner erfordern als diskrete Ladungen.
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