Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins

Herausgeber: Schweizerischer Elektrotechnischer Verein; Verband Schweizerischer

Elektrizitätswerke

**Band:** 64 (1973)

Heft: 25

**Artikel:** Einschaltprobleme bei zwangskommutierten Stromrichtern

Autor: Zach, F.

**DOI:** https://doi.org/10.5169/seals-915636

## Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

### **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

## Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF:** 05.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

## Einschaltprobleme bei zwangskommutierten Stromrichtern

Von F. Zach

621.316.5:621.314.55

Für Zwangskommutierungen in der Stromrichtertechnik werden vornehmlich Löschschaltungen verwendet, bei denen die Entladung von Kondensatoren zum Löschen der Thyristoren verwendet wird. Besonders beim Anfahren von solchen Schaltungen und bei Nulldurchgängen der Speisespannung müssen Zeitverzögerungen vor dem ersten Zünden der Thyristoren eingehalten werden, um durch genügende Kondensatoraufladung die nachfolgende Löschfähigkeit zu garantieren. In diesem Artikel werden diese notwendigen Zeitverzögerungen für die gebräuchlichen Löschschaltungen berechnet, was eine wichtige Voraussetzung für das sichere Anfahren von Gleichstromstellern und den Betrieb von Stromrichtern mit Anschnittsteuerung und Zwangskommutierung ist.

Pour la commutation forcée en technique des redresseurs, on a volontiers recours à des montages d'extinction, en utilisant la décharge de condensateurs pour le désamorçage des thyristors. Surtout lors de l'amorçage de ces montages et aux passages de la tension d'alimentation par zéro, des temporisations doivent intervenir avant le premier amorçage des thyristors, afin de garantir la faculté d'extinction par une recharge suffisante des condensateurs. Dans cet article, on calcule ces temporisations nécessaires pour les montages d'extinction usuels, ce qui est important pour l'amorçage sûr de régleurs de courant continu et le fonctionnement de redresseurs à réglage de phase et commutation forcée.

### 1. Einführung

Lange Zeit war die Stromrichtertechnik gekennzeichnet durch Übergänge im sog. natürlichen Kommutierungszeitpunkt, d.h. dass die nachfolgende Anode Strom übernimmt, wenn sie, bedingt durch den Netzspannungsverlauf, gegenüber der vorher stromführenden Anode positives Potential erhält. Ein Phasenanschnitt am Anfang der (meist sinusförmigen) Spannungshalbwellen haben die Stromrichteranordnungen seit langem steuerbar gemacht; die ersten Patente stammen aus dem Jahre 1903 [9;10] 1).

Dabei mussten aber stets Verzerrungen und Phasenverschiebungen in Kauf genommen werden, wodurch schon sehr bald der Wunsch entstanden ist, analog zur Verzögerung des Stromflusses über den natürlichen Kommutierungspunkt hinaus, auch Verfrühungen durch künstliche Löschung bzw. Kommutierung des Stromflusses durchzuführen. Es wurden hiefür verschiedene Vorschläge gemacht, für die Verringerung der Phasenverschiebungen zuerst in [5], wobei das Prinzip der künstlichen Löschung das erste Mal in [7] beschrieben wurde; diese Systeme waren aber wegen der langen Entionisierungszeit bei Gasentladungen wirtschaftlich nicht vertretbar. Mit Einführung von Halbleiterelementen jedoch ist die Zwangskommutierung seit ca. 10 Jahren eine vielfach angewandte, neue Betriebsweise geworden.

Es gibt zwar zahlreiche verschiedene Schaltungen in dieser neuen Technik, alle aber haben einen gemeinsamen noch zu klärenden Problemkreis, nämlich das Anfahren der Löschkreise nach Einschalten der Speisespannung oder nach deren Nulldurchgängen. Für stationären Betrieb sind bereits sehr ausführliche, befriedigende Untersuchungen verfügbar [2; 6]; diese Forschungen sollen nun hier durch die Behandlung der Anfahrprobleme ergänzt und vervollständigt werden.

Derartige Untersuchungen sind ein neues Gebiet der seit mehreren Jahren tätigen Forschungsgruppe «Leistungselektronik» des Institutes für Industrielle Elektronik der TH Wien [1], wobei die vorliegende Arbeit im speziellen notwendig wurde durch die neuen Aktivitäten auf dem Gebiet der Stromrichtersysteme mit Leistungsfaktor- und OberwellengehaltsOptimierung durch Pulszeitsteuerung [7]. Angeregt wurde die Arbeit aber zunächst durch die Untersuchungen des Institutes an Pulswechselrichtern und Gleichstromstellern.

Bei solchen Systemen ist es wichtig, insbesondere beim Anfahren hinsichtlich der Zeitabstände zwischen Zünden und Löschen der verwendeten Thyristoren, untere Grenzen einzuhalten. Die Problematik des Anfahrens tritt bei Gleichstromstellern nach Anlegen der speisenden Gleichspannung (Fig. 1a und b) und bei Stromrichtersystemen nach dem Nulldurchgang der speisenden Wechselspannung auf (Fig. 1c). Allgemein kann gesagt werden, dass nach dem Positivwerden der Speisespannung eine Zeitverzögerung vor dem ersten Zünden der Thyristoren eingehalten werden muss, um durch eine genügende Aufladung der Löschkondensatoren eine nachfolgende Löschung der Thyristoren zu garantieren. Es sollen im folgenden die notwendigen Zeitverzögerungen (Mindestzeiten) für drei für die Anwendung bedeutungsvolle Löschkreise berechnet werden, woraus sich durch Vergleich der Ergebnisse Resultate für die praktische Anwendung ergeben.

Charakteristisch für Zünd- und Löschvorgänge in der Stromrichtertechnik ist der Gleichstromsteller, auf den wir uns im folgenden wegen seines klaren Aufbaues konzentrieren wollen.

# 2. Prinzipielles zur Funktionsweise von Löschschaltungen und Gleichstromstellern

2.1 Wirkungsweise des Gleichstromstellers

Fig. 1a zeigt das Wirkungsschema des Gleichstromstellers und Fig. 1b die damit erzielte Funktion.

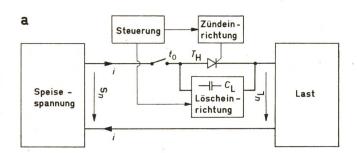
Bei der Löscheinrichtung handelt es sich üblicherweise um einen entsprechend aufgeladenen Kondensator, dessen Entladestrom in einem vorgegebenen Zeitpunkt entgegen der Durchlassrichtung des Hauptthyristors  $T_{\rm H}$  gesendet wird, um diesen zu löschen. Der genaue Vorgang wird später im Detail besprochen.

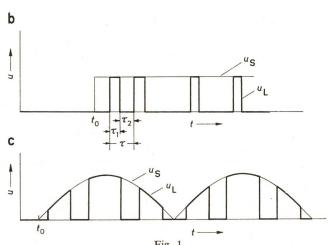
Durch geeignet kontrolliertes Zünden und Löschen des Hauptthyristors wird der Spannungsmittelwert an der Last gesteuert. Der Spannungsmittelwert  $U_{\rm L}$  hängt bei periodischem

<sup>1)</sup> Siehe Literatur am Schluss des Aufsatzes.

Betrieb im stationären Zustand vom Tastverhältnis nach der Gleichung

$$U_{
m L}=rac{ au_1}{ au_1+ au_2}\,\,U_{
m S}$$


ab, wobei  $rac{ au_1}{ au_1+ au_2}$  das Tastverhältnis bedeutet und  $u_{
m S}=U_{
m S}=$ konstant angenommen sei. Für  $\tau_1$  und  $\tau_2$  siehe Fig. 1.


### 2.2 Löschen des Hauptthyristors

Um ein Leistungsventil zum Verlöschen zu bringen, muss die Spannung am Ventil negativ gemacht werden und so lange negativ bleiben, bis die Leitfähigkeit des Ventils beendet ist. Die Zeit, während der die Spannung am Ventil negativ ist, soll als Schonzeit  $t_8$  bezeichnet werden [2]; diese muss offenbar grösser oder zumindest gleich der Freiwerdezeit tq sein. Der Löschvorgang des Ventils geht näherungsweise gemäss Fig. 2 vor sich [2].

Wie aus Fig. 2 ersichtlich ist, kann der Thyristor von  $t = t_2$ bis tb in erster Näherung durch einen Kurzschluss ersetzt werden. Die zum Zeitpunkt tb noch vorhandenen, den Leitungsmechanismus bildenden Ladungsträger werden anschliessend sehr schnell rekombiniert, wodurch der Thyristor seine Sperrwirkung in Vorwärtsrichtung wieder erlangt.

Gemäss Fig. 2 ist aus physikalischen Gründen [2] zum Löschen des Thyristors ein negativer Strom notwendig, um die





Thyristoranordnung mit Zünd- und Löscheinrichtung (a) zur Erzeugung von geeigneten Spannungsimpulsen für Gleichstromstellung (b)

bzw. Gleichrichtung mit Pulszeitsteuerung (c)

Einschaltzeitpunkt der Speisespannung

C<sub>2</sub> Löschkondensator

Zeit leitenden Thyristors TH  $\tau_1$ 

Zeit gesperrten Thyristors  $\hat{T}_H$ 

Speisespannung

Lastspannung  $u_{\rm L}$ 

Strom

Periodendauer

b und c zeigen richtiges Arbeitsverhalten; bei Nichteinhalten der Mindestzeiten würde die Ausgangsspannung gleich der Speisespannung

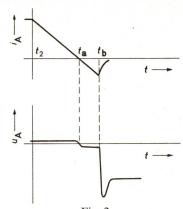



Fig. 2 Anodenstrom-  $(i_A)$  und Anodenspannungsverlauf  $(u_A)$ eines Thyristors während des Löschvorganges

Rekombination der Ladungsträger zu ermöglichen. Es sei daher im folgenden die Zeit berechnet, während der von der Löschvorrichtung ein negativer Strom i<sub>A</sub> durch den Thyristor überhaupt erzwungen werden kann. Dies ist eine notwendige Voraussetzung, um die für ein sicheres Löschen erforderliche Aufladungszeit des Löschkondensators nach Positivwerden der Speisespannung ermitteln zu können. Hiebei ist angenommen, dass der Kondensator selbst und die für ihn vorgesehene Ladespannung so gewählt sind, dass bei entsprechend langer Aufladezeit ein Löschen des Thyristors grundsätzlich möglich ist.

#### 2.3 Löschvorrichtungen-Aufbau und Wirkungsweise

Im folgenden seien drei typische Löschschaltungen behandelt, die für praktische Anwendungen von Bedeutung sind. Die Beschreibung des Löschvorganges soll nur sehr kurz erfolgen und für weitere Details sei auf [2] verwiesen.

### 2.3.1 Löschschaltung mit Umschwingdrosselspule

Fig. 3 zeigt einen Gleichstromsteller mit einer Löschschaltung mit Umschwingdrosselspule. Die prinzipielle Wirkungsweise dieser Löschschaltung ist die folgende:

Nach Anschalten der Batteriespannung zur Zeit to ist TH zunächst nicht leitend. Daher wird C über  $L_{\mathrm{L}\ddot{\mathrm{o}}}$  und die Last Zaufgeladen. Nach dem Zünden von TH in t1 entlädt sich der Kondensator in Form einer nahezu ungedämpften Schwingung über C, L<sub>Lö</sub> und den als Kurzschluss wirkenden T<sub>H</sub>. Die Stromrichtung des Entladungsvorganges ist zunächst in Durchlassrichtung von TH und wirkt dann in Sperrichtung, in dem in Fig. 2 angegebenen Sinn. War C genügend aufgeladen, so wird TH gelöscht.

Der genaue Vorgang und insbesondere dessen mathematische Analyse wird in Abschnitt 3.1 beschrieben.

#### 2.3.2 Löschschaltung mit Löschthyristor

Als typischer Vertreter dieser Kategorie soll die Schaltung nach Fig. 4 betrachtet werden. Kurz beschrieben ist die Funktion der Schaltung nach Fig. 4 wie folgt: Unmittelbar nach Einschalten der Batteriespannung im Zeitpunkt to ist TH nicht leitend, aber T<sub>L</sub> wird gezündet, wodurch sich C auflädt. Ohne Einschränkung der Allgemeinheit kann man annehmen, dass der Zeitpunkt des ersten Zündens von T<sub>L</sub> mit t<sub>0</sub> zusammenfällt.

Wenn C genügend aufgeladen ist, um später TH löschen zu können, darf im Zeitpunkt  $t_1$  der Hauptthyristor T<sub>H</sub> gezündet werden. Dadurch wird ebenso wie bei der Schaltung nach Fig. 3 der Schwingkreis C-L<sub>Lö</sub>-kurzgeschlossener HauptthyristorT<sub>H</sub> geschlossen, wobei aber nun infolge der Diode D nur eine Halbschwingung entstehen kann. Der Kondensator C lädt sich also auf die vorzeichenmässig entgegengesetzte, absolut aber gleiche Ladung wie unmittelbar vor  $t_1$  auf. C bleibt dann so lange aufgeladen, bis  $T_L$  wieder gezündet wird und C im Kreis C- $T_L$ - $T_H$  einen Strom in Sperrichtung von  $T_H$  hervorruft.  $T_H$  wird somit gelöscht und C sodann wieder von der Batterie über die Last aufgeladen. Hier ergibt sich dann wieder eine Mindestzeit, bis  $T_H$  nochmals gezündet werden kann; C muss genügend aufgeladen sein, um auf eine genügend hohe, umgekehrt gepolte Spannung umzuschwingen und so die nachfolgende Löschung von  $T_H$  zu garantieren.

Genauere Details und die mathematische Behandlung werden in Abschnitt 3.2 beschrieben.

# 2.3.3 Löschen mit Hilfe einer Brückenschaltung (Gegentaktlöschung)

Der in den oben beschriebenen beiden Schaltungen notwendige Umladevorgang über eine Drosselspule wird durch die in Fig. 5 dargestellte Brückenschaltung vermieden. Hier ist aber ebenfalls sicherzustellen, dass der Löschkondensator jeweils genügend aufgeladen ist, um eine nachfolgende Löschung garantieren zu können.

Die prinzipielle Vorgangsweise ist hier die folgende:

Im Zeitpunkt  $t_0$  wird  $U_B$  an den Gleichstromsteller gelegt, wobei  $T_H$  zunächst nicht gezündet wird, aber der Löschkondensator C durch Zünden von  $T_1$  und  $T_2$  in dem in Fig. 5 gezeigten Sinne aufgeladen wird. Sodann wird  $T_H$  gezündet, wodurch an  $T_1$  und  $T_2$  ein negativer Spannungssprung auftritt, der diese löscht. Soll  $T_H$  gelöscht werden, wird an  $T_3$  und  $T_4$  ein Zündimpuls gelegt, wodurch sich C über  $T_4$ - $T_H$ - $T_3$  entlädt und  $T_H$  (nach genügender Aufladung von C) gesperrt

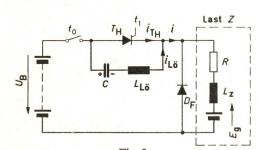



Fig. 3 Löschschaltung mit Umschwingdrosselspule  $L_{
m L\ddot{o}}$  für Gleichstromsteller

T<sub>H</sub> Hauptthyristor

C Löschkondensator

D<sub>F</sub> Freilaufdiode

U<sub>B</sub> Speisespannung

 $E_{\rm g}$  Gegenspannung

t<sub>0</sub> Zeitpunkt des Anlegens der Speisespannung

 $t_1$  Zeitpunkt des ersten Zündens von  $T_H$ 

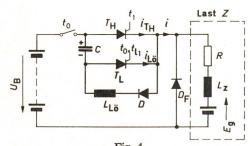



Fig. 4 Löschschaltung mit Löschtyristor  $\mathbf{T}_{L}$  für Gleichstromsteller

Zünden von  $T_L$  erfolgt in  $t_0$  und  $t_{11}$ 

 $L_{
m L\ddot{o}}$  Umschwingdrosselspule

D Sperr- bzw. Umschwingdiode

Weitere Bezeichnungen siehe in Fig. 3

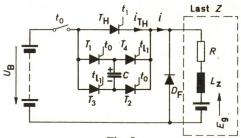
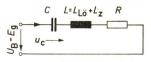




Fig. 5 Typische Gegentaktlöschschaltung mit Hilfsthyristoren  $\mathbf{T}_1$  bis  $\mathbf{T}_4$  für Gleichstromsteller

- $t_0$  Zündzeitpunkt für  $\mathrm{T}_1$  und  $\mathrm{T}_2$  und Zeitpunkt des Anlegens der Speisespannung
- $t_{l1}$  Zündzeitpunkt für  $T_3$  und  $T_4$

Weitere Bezeichnungen siehe in Fig. 3



 ${\bf Fig.~6}$  Von  $t_0$  bis  $t_1$  in Betrieb befindlicher Teilkreis der Schaltung nach Fig. 3

wird. Anschliessend wird C mit umgekehrter Polarität aufgeladen. Bis C genügend aufgeladen ist, um  $T_{\rm H}$  später löschen zu können, darf  $T_{\rm H}$  wieder gezündet werden.

Die genaue Berechnung der Mindestzeiten erfolgt in Abschnitt 3.3.

# 3. Berechnung der Mindestzeitabstände zwischen Anschalten der Speisespannung und erstem Zünden des Hauptthyristors

3.1 Löschschaltung mit Umschwingdrosselspule

# 3.1.1 Aufladen des Löschkondensators nach Anlegen der Speisespannung

Wie aus Fig. 3 zu sehen ist, wirkt die Gesamtschaltung nach Anlegen der Speisespannung im Zeitpunkt  $t_0$  bis zum Zünden des Hauptthyristors im Zeitpunkt  $t_1$ , wie dies Fig. 6 darstellt.

Die Frage ist nun, wie weit C im Zeitpunkt  $t_1$  aufgeladen ist. Dies ergibt die später für die Löschung von  $T_H$  zur Verfügung stehende Ladung und lässt umgekehrt bestimmen, wie gross  $t_1$  sein muss, um die notwendige Ladung zu erhalten.

Für die Schaltung nach Fig. 6 gilt

$$U = \frac{1}{C} \int i dt + L \frac{di}{dt} + R_i$$
 (1)

mit der Lösung [3]

$$i = \frac{U}{\omega_{\rm e}L} e^{-\frac{t}{2\tau}} \sin \omega_{\rm e}t \tag{2}$$

wobei

$$\omega_{\rm e} = \sqrt{\frac{1}{LC} - \left(\frac{R}{2L}\right)^2} \tag{3}$$

und

$$\tau = \frac{L}{R} \tag{4}$$

Hiebei ist vorausgesetzt, dass  $\frac{1}{LC} > \left(\frac{R}{2L}\right)^2$ , wie dies in Anwendungen üblich ist.

Nun wird

$$u_{\rm C} = \frac{1}{C} \int i dt = \frac{U}{\omega_{\rm e} LC} \int e^{-\frac{t}{2\tau}} \sin \omega_{\rm e} t dt$$
 (5)

mit dem Ergebnis [4]

$$u_{\rm C} = U \left[ 1 - e^{-\frac{t}{2\tau}} \left( \frac{\sin \omega_{\rm e} t}{2 \tau \omega_{\rm e}} + \cos \omega_{\rm e} t \right) \right]$$
 (6)

wobei angenommen wurde, dass die Speisespannung bei  $t_0 = 0$ ist und dann auf U springt. Ferner möge  $u_{\rm C}(0) = 0$  sein.

### 3.1.2 Zünden des Hauptthyristors und darauffolgendes Löschen

Es sei angenommen, dass der Hauptthyristor  $T_H$  bei  $t = t_1$ gezündet werde. Ab diesem Zeitpunkt kann also  $T_{\mathrm{H}}$  durch einen Kurzschluss ersetzt werden. Dann sind ab t1 in der Schaltung nach Fig. 3 zwei verschiedene Kreise zu betrachten, wie sie aus Fig. 7 hervorgehen.

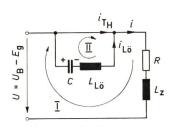



Fig. 7 Unterteilung der Schaltung nach Fig. 3 in die beiden nach Zünden des Hauptthyristors in Betrieb befindlichen Teilkreise I und II

Für Kreis I gilt

$$U = Ri + L_z \frac{\mathrm{d}i}{\mathrm{d}t} \tag{7}$$

mit der Lösung

$$i = \frac{U}{R} + \left(i_{t1} - \frac{U}{R}\right) e^{-\frac{R}{L}(t - t_1)}$$
(8)

wobei Lz durch L ersetzt wurde, da in praktisch interessanten Schaltungen  $L_z \gg L_{L\ddot{o}}$ .

Die Anfangsbedingung  $i_{t1}$  wird aus Gl. (2) mit  $t = t_1$  bestimmt.

$$0 = u_{\rm C} + L_{\rm L\"o} \frac{\mathrm{d}i_{\rm L\"o}}{\mathrm{d}t} = \frac{1}{C} \int i_{\rm L\"o} \,\mathrm{d}t + L_{\rm L\"o} \,\frac{\mathrm{d}i_{\rm L\"o}}{\mathrm{d}t} \qquad (9)$$

mit den Anfangsbedingungen  $u_{\rm C}(t_1) = u_{\rm Ct1}$ , die aus Gl. (6) mit  $t = t_1$  gewonnen wird, und  $i_{\text{L\"o}}(t_1) = i(t_1) = i_{\text{t1}}$ , die sich aus Gl. (2) ergibt.

Man erhält somit

$$i_{\mathrm{L\ddot{o}}} = \frac{i_{\mathrm{t1}}}{\sin\left(\omega t_{1} - \varphi_{1}\right)} \sin\left(\omega t - \varphi_{1}\right) \tag{10}$$

wobei

$$\omega = \frac{1}{\sqrt{L_{\text{Lo}}C}} \tag{11}$$

und

$$\varphi_1 = \omega t_1 + \operatorname{tg}^{-1} \left( \frac{i_{t1}}{\omega C u_{Ct1}} \right) \tag{12}$$

Man sieht also, dass im Thyristor TH zwei Ströme (i und  $i_{L\ddot{o}}$ ) fliessen, von denen i gegen U/R strebt und  $i_{L\ddot{o}}$  sinusförmig verläuft. Fig. 8 zeigt den prinzipiellen Verlauf.

Bereits bei Fig. 2 wurde festgestellt, dass TH im leitenden Zustand als Kurzschluss angesehen werden kann. Man muss nun feststellen, wann

 $i_{
m TH}=i-i_{
m L\ddot{o}}$ (13)

zu Null wird und wie lange  $i_{TH}$  negativ bleibt. Der Zeitpunkt, in dem  $i_{TH}$  von positiven Werten kommend zu Null wird, sei  $t_2$  und der Zeitpunkt, in dem  $i_{TH}$  von negativen Werten her wieder Null wird, t3; somit ist

$$\Delta t = t_3 - t_2 \tag{14}$$

ein Zeitintervall, das nicht kürzer als die Freiwerdezeit des Thyristors sein darf. Andernfalls wäre  $i_{TH}$  wieder positiv, bevor T<sub>H</sub> seine Löschfähigkeit erlangt hätte; es käme somit zum Durchzünden.  $\Delta t$  in Abhängigkeit von  $t_1$  wird somit zur Bestimmung von  $t_1$  dienen, jener Zeit, während der C vor dem Zünden von T<sub>H</sub> aufgeladen werden muss, um T<sub>H</sub> nachher löschen zu können.

Man setzt also

$$i - i_{\text{L\"o}} = 0 \tag{15}$$

um zunächst t2 zu bestimmen. Dies führt mit Gl. (8) und (10)

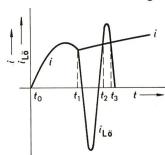
$$\frac{U}{R} + \left(i_{t1} - \frac{U}{R}\right) e^{-\frac{R}{L}(t_2 - t_1)} =$$

$$= \frac{i_{t1}}{\sin\left(\omega t_1 - \varphi_1\right)} \sin\left(\omega t_2 - \varphi_1\right) \qquad (16)$$

Betrachtet man Gl. (2), aus der sich  $i_{t1}$  ergibt, so wird es klar, dass U aus Gl. (16) wegfällt; somit ist  $t_2$  unabhängig von U, eine Tatsache, die die Anwendung vorstehender Ergebnisse auf Gleichrichtersysteme mit Pulszeitsteuerung (wo sich die speisende Spannung dauernd, z.B. sinusförmig, verändert) ermöglicht.

In Gl. (16) müssen nun  $i_{t1}$  aus Gl. (2) mit  $t = t_1$  und  $\varphi_1$  aus Gl. (12) substituiert werden.  $u_{Ct1}$  für Gl. (12) ergibt sich aus Gl. (6) mit  $t = t_1$ . Somit kann mit Gl. (16)  $t_2$  in Abhängigkeit von t1 bestimmt werden, was allerdings eine numerische Berechnung erfordert und später an Hand eines praktischen Beispiels durchgeführt werden soll.

Ebenso wie sich  $t_2$  in Abhängigkeit von  $t_1$  als Lösung von Gl. (16) ergibt, kann auch  $t_3$  in Abhängigkeit von  $t_1$  aus Gl. (16) bestimmt werden; hiezu muss nur  $t_2$  durch  $t_3$  in Gl. (16) ersetzt werden, da auch für  $t_3$  die Bedingung  $i_{TH} = 0$  vorausgesetzt wurde. Genauer ausgedrückt gilt Gl. (15) und daher auch Gl. (16) für t<sub>3</sub>.


Eine Betrachtung der Ableitung zeigt, dass als Parameter für t2 und t3 und somit auch für die maximal zur Verfügung stehende Schonzeit  $\Delta t$  die Schaltungsparameter (R, C, L,  $L_{\text{L\"o}}$ ) und t1 übrigbleiben. Für eine gegebene Schaltung kann somit t<sub>1</sub> bestimmt werden, die Zeit, die man nach Einschalten der Speisespannung warten muss, dass die für einen gegebenen Thyristortyp erforderliche Schonzeit eingehalten werden kann.

Dies soll nun an Hand eines Beispiels demonstriert werden.

#### 3.1.3 Praktisches Beispiel

Angenommen, dass

$$R=2~\Omega,~C=25~\mu{
m F},~L=1~{
m mH},~L_{
m L\ddot{o}}=25~\mu{
m H}~{
m und}~~U=100~{
m V}~~(17)$$



Verlauf des Laststromes i und des Löschstromes  $i_{\text{L}, \ddot{0}}$ für die Schaltung nach Fig. 3

Zeitpunkt des Anlegens der Speisegleichspannung Zündzeitpunkt des Hauptthyristors

 $-t_2$  zur Verfügung stehende Schonzeit für  $T_{
m H}$ 

wobei die Wahl von U nur zur schrittweisen Anwendung der abgeleiteten Gleichungen dient, letzten Endes aber unwesentlich ist. Man erhält nun mit Gl. (11)

$$\omega = 4 \cdot 10^4 \, \text{s}^{-1} \tag{18}$$

mit Gl. (3) 
$$\omega_{\rm e} = 5.38 \cdot 10^3 \, {\rm s}^{-1}$$
 (19)

und mit Gl. (4) 
$$\tau = 0.5 \text{ ms} \tag{20}$$

Die Gl. (2) und (6) liefern

$$i_{t1} = 18,6 e^{-1000 t_1} \sin(5,38 \cdot 10^3 t_1)$$
 (21)

und

$$u_{\text{Ct1}} = 100 \left[ 1 - e^{-1000 \, \text{t}_1} \left( 0,186 \sin 5,38 \cdot 10^3 \, t_1 + \cos 5,38 \cdot 10^3 \, t_1 \right) \right]$$
 (22)

Somit ergibt Gl. (12):

$$\varphi_1 = 4 \cdot 10^4 t_1 + \text{tg}^{-1} \left[ 0.186 \cdot \right]$$

$$\cdot \frac{e^{-1000 t_1} \sin 5,38 \cdot 10^3 t_1}{1 - e^{-1000 t_1} (0,186 \sin 5,38 \cdot 10^3 t_1 + \cos 5,38 \cdot 10^3 t_1)} \right] (23)$$

Numerische Lösung von Gl. (16) führt nun zu den in Fig. 9 dargestellten Kurvenverläufen für  $t_2$  und  $t_3$ .

Da die Verläufe von  $t_2$  und  $t_3$  in Fig. 9 unabhängig von U sind, können, wie bereits angedeutet, die erhaltenen Ergebnisse auch bei veränderlichen Speisespannungen herangezogen werden. Ein für Anwendungen besonders wichtiges Resultat der Fig. 9 liegt darin, dass für  $t_1 < 1,09 \cdot 10^{-4}$  überhaupt keine Schonzeit zur Verfügung steht.

#### 3.2 Löschschaltung mit Löschthyristor

## 3.2.1 Aufladen des Löschkondensators

Betrachte man Fig. 4: Wird Speisespannung zum Zeitpunkt  $t_0$  angelegt, so muss auch  $T_L$  gezündet werden, um überhaupt  $U_B$  zur Wirkung kommen zu lassen. Man kann daher ohne Einschränkung der Allgemeinheit annehmen, dass  $t_{10}=t_0=0$ . Der Index 0 bei  $t_{10}$  deutet an, dass es sich hier um das anfängliche, erstmalige Zünden von  $T_L$  handelt. Ab  $t_0$  verläuft der Aufladevorgang praktisch genauso wie in Abschnitt 3.1 gezeigt, da, wie erwähnt, mit guter Annäherung  $L=L_z$  gesetzt werden kann. Das in Fig. 6 gezeigte Schaltbild kann also übernommen werden; ebenso gelten Gl. (1) bis (6).

# 3.2.2 Zünden des Hauptthyristors und darauffolgendes Löschen

Nach dem Zünden von  $T_H$  (Fig. 4) entstehen für den Strom durch die Last Z genau dieselben Verhältnisse wie in Abschnitt 3.1.2 gezeigt und es gelten die Gl. (7) und (8) gemeinsam mit Fig. 7, Stromkreis I. Somit ist während des gesamten Vorganges der Verlauf des Laststromes i identisch mit dem in Fig. 8 gezeigten Strom i.

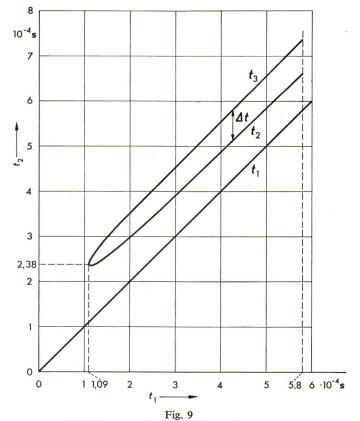
Der Löschvorgang (d.h.  $i_{L\bar{0}}$  und der in Fig. 7 gezeigte Stromkreis II) muss allerdings hier neu beschrieben werden. Nach dem Zünden von  $T_H$  schwingt C über D und  $L_{L\bar{0}}$  um, wobei gleichzeitig  $T_L$  gesperrt wird; C befindet sich dann in einem der in Fig. 4 gezeigten Ladungspolarität entgegengesetzten Ladungszustand. Durch darauffolgendes Zünden von  $T_L$  wird C wieder über  $T_L$  und  $T_H$  entladen, wodurch (nach genügender Aufladung von C)  $T_H$  wieder gelöscht wird und sich sodann die Aufladung von C in der in Fig. 4 gezeigten Polarität wiederholt.

Durch die Gleichwertigkeit der Schaltungen nach Fig. 3 und 4 bis zum Zeitpunkt  $t_1$  kann auch Gl. (6) übernommen werden; daraus ergibt sich  $u_{\text{Ct}1}$ :

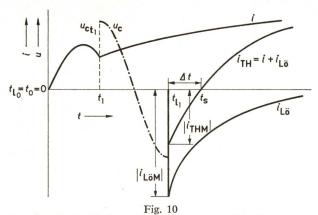
$$u_{\rm C}(t_1) = U\left[1 - \mathrm{e}^{-\frac{t_1}{2\tau}}\left(\frac{(\sin \omega_{\rm e}t_1}{2\tau\omega_{\rm e}} + \cos \omega_{\rm e}t_1\right)\right] \quad (24)$$

Es soll nunmehr angenommen werden, dass C nach dem Zünden von  $T_H$  verlustlos umschwingt. Hiebei ist nun wesentlich, dass  $t_{11}$  nicht zu knapp auf  $t_1$  folgt, um C genügend weit in die umgekehrte Polarität hineinschwingen zu lassen. Grosses  $t_{11}-t_1$  ist hiefür günstig, da sich C dann vollständig umlädt und sich weiters nicht von selbst, d.h. ohne Zünden von  $T_L$ , entladen kann. Es ist nun klar, dass sich C im Kreis  $T_H-D-L_{L\ddot{0}}-C$  in Form einer harmonischen Schwingung mit der Eigenfrequenz

$$\omega = \frac{1}{\sqrt{L_{\text{L\"o}}C}} \tag{25}$$


in der Form

$$u_{\rm C}(t) = u_{\rm Ct1} \cos \omega (t - t_1) \tag{26}$$


umlädt.

Gl. (24) und (26) liefern nunmehr die bei einem Zünden von  $T_L$  zur Verfügung stehende Ladung, die dann über  $T_L$  und  $T_H$  entladen wird und zum Löschen von  $T_H$  führt. Wir nehmen für die Zeit während des Entladungsvorganges an, dass  $T_L$  und  $T_H$  durch ihre dynamischen Widerstände [2] ersetzt werden können. Dies liefert einen exponentiellen Verlauf des Löschstroms, der in  $T_H$  dem Laststrom i entgegengesetzt ist. Fig.10 fasst die bisher besprochenen Strom- bzw. Ladungsverläufe in ihrem prinzipiellen Verlauf zusammen.

Aus Fig. 10 ist auch deutlich zu sehen, welche Zeit  $\Delta t$  als Schonzeit für  $T_{\rm H}$  zur Verfügung steht. Wie in Abschnitt 3.2



Verläufe von  $t_2$  und  $t_3$  und somit von  $\Delta t = t_3 - t_2$  (der zur Verfügung stehenden Schonzeit) für die Schaltung nach Fig. 3 in Abhängigkeit von  $t_1$ , dem Zeitpunkt der ersten Zündung des Thyristors nach Anlegen der Speisespannung zur Zeit t=0



Prinzipielle Strom (i) und Spannungsverläufe (u) der Löschschaltung mit Löschthyristor nach Fig. 4

Bezeichnungen siehe im Text

kann jedenfalls gesagt werden, dass, falls  $\Delta t$  kleiner als die Freiwerdezeit  $t_{\rm q}$  ist, Durchzünden des Thyristors  $T_{\rm H}$  erfolgt. Der Löschstrom hat die Form

$$i_{L\ddot{o}} = \frac{u_{C}(t_{11})}{R_{d}} e^{-\frac{t-t_{11}}{R_{d}C}}$$
 (27)

wobei  $u_{\rm C}$  ( $t_{\rm l1}$ ) aus Gl. (26) gewonnen wird.  $R_{\rm d}$  ist die Summe der dynamischen Widerstände von  $T_{\rm H}$  und  $T_{\rm L}$ . Fig. 10 zeigt auch, dass die Schonzeit für  $T_{\rm H}$  bei  $t_{\rm l1}$  beginnt, und endet, wenn:

$$i = i_{\text{L\"o}} \tag{28}$$

Die Gl. (8), (26) und (27) ergeben nun:

$$\frac{U}{R} + \left(i_{t1} - \frac{U}{R}\right) e^{-\frac{R}{L}(t_{s} - t_{1})} =$$

$$= -\frac{u_{Ct1} \cos \omega (t_{11} - t_{1})}{R_{d}} e^{-\frac{t_{s} - t_{1}}{R_{d}C}} \tag{29}$$

Somit kommen zwei Parameter, nämlich  $t_1$  und  $t_{11}$ , für die Bestimmung von  $t_8$  und daher auch für  $\Delta t$  in Frage. Da  $\omega$  für übliche Werte von  $L_{\text{L}\delta}$  und C über  $4 \cdot 10^4 \, \text{s}^{-1}$  liegt, kann angenommen werden, dass in der Praxis C immer vollständig umgeladen wird und dass  $u_{\text{C}}(t_1) = -u_{\text{Ct}1}$ . In diesem Fall wird Gl. (29) zu

$$\frac{U}{R} + \left(i_{t1} - \frac{U}{R}\right) e^{-\frac{R}{L}(t_s - t_1)} = -\frac{u_{Ct1}}{R_d} e^{-\frac{t_s - t_1}{R_d C}}$$
(30)

 $i_{t1}$  und  $u_{Ct1}$  werden nun aus Gl. (2) und (6) eingesetzt, womit Gl. (30) ergibt:

$$\frac{U}{R} + \left(\frac{U}{\omega_{e}L} e^{-\frac{t_{1}}{2\tau}} \sin \omega_{e} t_{1} - \frac{U}{R}\right) e^{-\frac{R}{L}(t_{s}-t_{1})} =$$

$$= \frac{U}{R_{d}} \left[1 - e^{-\frac{t_{1}}{2\tau}} \left(\frac{\sin \omega_{e} t_{1}}{2\tau\omega_{e}} + \cos \omega_{e} t_{1}\right)\right] e^{-\frac{t_{s}-t_{1}}{R_{d}C}} \tag{31}$$

Hieraus ist wieder zu sehen, dass die Ergebnisse von U unabhängig sind.

### 3.2.3 Numerisches Beispiel

Mit den speziellen Werten von Abschnitt 3.1.3 und  $R_d = 2 \cdot 10^{-3} \Omega$  erhält man:

$$50 + (18,6 e^{-1000 t_1} \sin 5,38 \cdot 10^3 t_1 - 50) e^{-2000 (t_8 - t_1)} =$$

$$= 50 \cdot 10^3 [1 - e^{-1000 t_1} (0,186 \sin 5,38 \cdot 10^3 t_1 + (32) + \cos 5,38 \cdot 10^3 t_1)] e^{-\frac{t_8 - t_1}{5 \cdot 10^{-8}}}$$

Aus Gl. (32) wurde für  $t_{11} = t_1 + 0.784 \cdot 10^{-4}$  s der Wert  $\Delta t = t_8 - t_{11}$  in Abhängigkeit von  $t_1$  berechnet und in Fig. 11 dargestellt. Hiebei ergibt der Wert

$$t_{11} - t_1 = 0.784 \cdot 10^{-4} \,\mathrm{s} \tag{33}$$

gerade vollkommenes Umschwingen von C.

Da übliche Freiwerdezeiten für schnelle Thyristoren in der Grössenordnung von 10...20  $\mu$ s liegen und daher grösser als alle  $\Delta t$  nach Fig. 11 sind, muss man hier auf die Betrachtung der Sperrverzugsladung  $q_{\rm T}$  übergehen.  $q_{\rm T}$  gibt an, welche Ladung im Thyristor ausgeräumt werden muss, um die Sperrfähigkeit wieder zu erlangen.  $q_{\rm T}$  ist abhängig von der Sperrschichttemperatur, vom vorher fliessenden Strom usw., liegt aber bei typischen Thyristoren zwischen 50 und 500  $\mu$ As. Es soll deshalb geschätzt werden, wieviel Ladung durch den Strom  $i_{\rm TH}$  zwischen  $t_{\rm l1}$  und  $t_{\rm s}$  (s. Fig. 10) ausgeräumt werden kann. Es gilt

$$|i_{\text{L\"oM}}| = \frac{u_{\text{Ct1}}}{R_{\text{d}}} \tag{34}$$

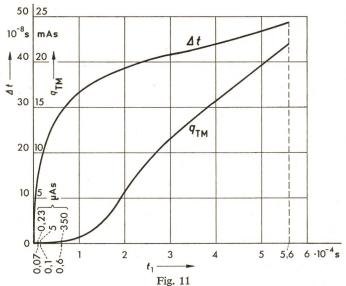
und

$$|i_{\text{THM}}| = |i_{\text{LöM}}| - i(t_{11})$$
 (35)

Da bei den angenommenen typischen Werten für Thyristorschaltungen i gegen U/R=50 A strebt, aber  $|i_{\text{L\"oM}}|$  wegen  $R_{\text{d}}=2\cdot 10^{-3}~\Omega$  bei mittleren Werten von  $u_{\text{Ct1}}$  bereits  $|i_{\text{L\"oM}}|$   $\geqslant i$   $(t_{11})$  liefert, kann ab etwa  $t_{1}=10^{-5}$  s

$$|i_{\text{THM}}| \approx |i_{\text{L\"oM}}|$$
 (36)

gesetzt werden. Für diesen Fall erhält man für die maximal ausräumbare Ladung  $q_{\mathrm{TM}}$ 


$$q_{\text{TM}} = \int_{\mathsf{t}_{\mathsf{I}_{\mathsf{I}}}}^{\mathsf{t}_{\mathsf{S}}} | i_{\mathsf{L} \circ \mathsf{M}} | \, \mathrm{d}t \tag{37}$$

was mit Gl. (34) unter Beachtung von Fig. 10 durch

$$q_{\rm TM} \approx \frac{u_{\rm Ct1}}{R_{\rm d}} \cdot \frac{t_{\rm s} - t_{\rm l_1}}{2} \tag{38}$$

angenähert werden kann.

Ist hingegen  $\omega t_1 \ll \frac{\pi}{2}$ , so wird auch  $|i_{\text{L\"o}M}|$  in die Grössenordnung von  $i(t_{11})$  kommen. Mit Hilfe von Gl. (2), (6), (8) und



Veränderung der für die Schaltung nach Fig. 4 maximal zur Verfügung stehenden Schonzeit und maximal beherrschbare Sperrverzugsladung  $q_{\rm TM}$  in Abhängigkeit von  $t_1$ , dem Zeitpunkt des ersten Zündens von  ${\rm T_H}$   $(q_{\rm TM} < 0 \ {\rm für} \ t_1 < 1, 6 \cdot 10^{-8} {\rm s})$ 

(35) kann dann bestimmt werden, bei welchem  $t_1$  überhaupt kein negativer Thyristorstrom  $i_{TH}$  mehr zustande kommt.

Gl. (8) ergibt mit Gl. (33) und (2):

$$i(t_{11}) = 7.2 + 15.9 e^{-1000 t_1} \sin \omega_e t_1$$
 (39)

Mit Gl. (6) und (34) erhält man  $|i_{L\bar{o}M}|$ . Somit setzt man zur Bestimmung von jenem  $t_1$ , bei dem  $i_{TH}$  zum Zeitpunkt  $t_{11}$ nicht mehr negativ wird,

$$U\frac{1-\cos\omega_{\rm e}t_1}{R_{\rm d}} = 7.2 + 15.9 \,{\rm e}^{-1000\,t_1}\sin\omega_{\rm e}\,t_1 \quad (40)$$

Man kann nun annehmen, dass  $\omega_{\rm e}t_1\ll 1$  und Gl. (40) linearisieren. Die erhaltene Lösung zeigt, dass die Annahme berechtigt ist; es ergibt sich

$$t_1 = 1{,}18 \cdot 10^{-7} \,\mathrm{s} \tag{41}$$

somit eine Grösse, die bei praktischen Anwendungen kaum unterschritten wird.

Es sei ferner noch  $q_{TM}$  in Abhängigkeit von  $t_1$  berechnet. Dazu sei sowohl die (exakte) Gleichung berücksichtigt

$$q_{\text{TM}} = \int_{t_{11}}^{t_{s}} |i_{\text{TH}}| dt = \int_{t_{11}}^{t_{s}} [|i_{\text{L\"{o}}}(t)| - i(t)] dt$$
 (42)

als auch die eventuell mögliche Näherung durch Gl. (38). Die Berechnung mit Hilfe von Gl. (34), (6) und (38) für den vom Löschstrom ausgeräumten Anteil der Sperrverzugsladung und mit Hilfe von Gl. (39) unter der Annahme, dass  $i(t) \approx i(t_{11})$ für  $t_{11} \le t \le t_s$ , liefert das in Fig. 11 dargestellte  $q_{\text{TM}}$ .

#### 3.3 Gegentaktlöschschaltung mit Hilfsthyristoren

#### 3.3.1 Aufladen des Löschkondensators

Wenn man die Schaltung nach Fig. 5 mit der Schaltung nach Fig. 4 vergleicht und bedenkt, dass die Aufladung von C bei Fig. 5 nach Anlegen der Batteriespannung und Zünden von T<sub>1</sub> und T<sub>2</sub> bei nichtleitendem T<sub>H</sub> erfolgt, so sieht man, dass hier dieselben Verhältnisse wie in Abschnitt 3.2.1 vorliegen.

## 3.3.2 Zünden des Hauptthyristors und darauf folgendes Löschen

Auch hier ist der Vorgang im wesentlichen gleich demjenigen in der Schaltung gemäss Fig. 4. Als einziger Unterschied entfällt das Umschwingen nach Zünden von  $T_H$  zum Zeitpunkt  $t_1$ . Somit kann hier  $t_{11} \ge t_1$  sein. Im übrigen gelten aber wieder die Gleichungen für den vollkommen umgeschwungenen Zustand aus Abschnitt 3.2.2, nämlich Gl. (30) und (31). Ebenso kann auch das numerische Beispiel aus Abschnitt 3.2.3 hier zusammen mit Fig. 11 übernommen werden.

#### 4. Zusammenfassung

Aus Abschnitt 3 kann gesehen werden, dass bei allen Schaltungen eine je nach Freiwerdezeit bzw. Sperrverzugsladung des verwendeten Thyristors verschieden grosse Mindestzeit zwischen Anlegen der Speisespannung und erstem Zünden des Hauptthyristors verstreichen muss. Im konkreten Fall wird man die Freiwerdezeit des verwendeten Thyristors mit den Werten von  $\Delta t$  in Fig. 9 bzw. seine Sperrverzugsladung mit  $q_{\rm TM}$  in Fig. 11 vergleichen und so den Mindestzeitabstand  $t_1$ zwischen Positivwerden der Speisespannung und erstem Zünden des Hauptthyristors z.B. durch eine i.a. leicht zu realisierende Verzögerungsschaltung in der betrachteten Stromrichterschaltung berücksichtigen. Durch die angestellten Überlegungen wird somit auf der einen Seite ein sicheres Anfahren der Löschkreise und der ganzen Stromrichterschaltung ermöglicht, wobei auf der anderen Seite unnötig lange Wartezeiten vermieden werden, die z.B. bei schnell zu reagierenden Systemen grosse Schwierigkeiten brächten. Da die hier erzielten Ergebnisse zu grossen Teilen von der Grösse der Speisespannung unabhängig sind, haben sie nicht nur für Gleichstromsteller Bedeutung, sondern auch für die Stromrichtersysteme mit Anschnittsteuerung und Zwangskommutierung (Pulszeitsteuerung) [7].

Der Autor ist Prof. Dr. H. Bertele für vielfache Unterstützung zu Dank verpflichtet. Weiters dankt er Dipl.-Ing. H. Oswald, H. Schock und Ph. Riedl für ihre Mithilfe durch Diskussionen bzw. Computerprogrammierungen.

#### Literatur

- [1] H. Bertele: Neue Ergebnisse auf dem Gebiete der Zwangskommutierung. 1. Konferenz über Leistungselektronik, Budapest 1970. 5. Teil Stromrichter, S. 5.11.1..5.11.24.
- [2] K. Heumann und A. C. Stumpe: Thyristoren. 2. Auflage. Stuttgart, Teubner-Verlag, 1970.
- [3] G. Oberdorfer: Lehrbuch der Elektrotechnik. Band 2: Rechenverfahren und allgemeine Theorien der Elektrotechnik. München, Oldenbourg-Ver-
- und augemeine Ineorien der Elektrotechnik. München, Oldenbourg-Verlag, 1949.

  [4] I. N. Bronstein und K. A. Semendjajew: Taschenbuch der Mathematik für Ingenieure und Studenten der technischen Hochschulen. 7. Auflage. Frankfurt a/M., Verlag Harri Deutsch, 1967.

  [5] G. Babat und J. A. Kazmann: Stromrichter mit verbessertem Leistungsfaktor und Stromrichterphasenschieher. Elektrikastva 58(1937) 4. S. 9. 16
- faktor und Stromrichterphasenschieber. Električestvo 58(19374, S. 8...16. [6] L. Abraham: Gleichstrompulswandler (elektronischer Gleichstromsteller)
- und seine digitale Steuerung. Dissertation der Technischen Hochschule, Berlin, 1967.
- [7] F. Zach: Optimierung des Oberschwingungsgehaltes und Leistungsfakters von Stromrichterschaltungen durch Pulszeitsteuerung (Kembination von Anschnittsteuerung und Zwangskommutierung). ETZ-A 94(1973)9,

#### Adresse des Autors:

Dr. Franz Zach. Institut für Industrielle Elektronik der Technischen Hochschule Wien, IV. Gusshausstrasse 25, A-1040 Wien.