Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer

Elektrizitätswerke

Band: 64 (1973)

Heft: 23

Artikel: Aspekte über zukünftige Datennetze und Datenvermittlungssysteme

Autor: Gehrig, F. / Kurz, R.

DOI: https://doi.org/10.5169/seals-915626

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 03.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

BULLETIN

DES SCHWEIZERISCHEN ELEKTROTECHNISCHEN VEREINS

Gemeinsames Publikationsorgan des Schweizerischen Elektrotechnischen Vereins (SEV) und des Verbandes Schweizerischer Elektrizitätswerke (VSE)

Aspekte über zukünftige Datennetze und Datenvermittlungssysteme

Von F. Gehrig und R. Kurz

681.3.01:621.39

Der Datenverkehr wächst ständig. Es muss nach neuen, wirtschaftlich vertretbaren, für alle Beteiligten optimalen Datenübertragungsmethoden Ausschau gehalten werden. Die Vermittlungstechnik hat, unter Zuhilfenahme neuer Durchschalteprinzipien, beachtliche Fortschritte erzielt. Es ist interessant festzustellen, welchen Komplexitätsgrad moderne, programmgesteuerte Datenvermittlungssysteme erreicht haben und welche Konsequenzen für den Verkehr Mensch-Maschine daraus resultieren.

1. Datennetze der Zukunft

1.1 Mögliche Anforderungen an zukünftige Datennetze

Die umfassenden Einwirkungen, die die Datenverarbeitung und der damit verbundene Datenverkehr auf unsere heutigen Datennetze – Telex, Datex, Mietleitungen – ausüben, verlangen einen kritischen Blick in die Zukunft. Befasst man sich mit Datennetzen, so lernt man bald, dass es zwar viele typische Formen des Datenverkehrs gibt, dass aber die Forderungen an ein einheitliches Datennetz von recht unterschiedlicher Natur sind [1]¹. Die Vielzahl der Anwendungsfälle ergibt sich aus dem charakteristischen Zusammentreffen der Kenngrössen, Datenmenge, Verbindungsdauer und Übertragungsgeschwindigkeit.

Eine grosse Unsicherheit herrscht bezüglich der Anzahl zu erwartender Datenendgeräte, denn die von den Fachleuten prophezeite Datenmenge für den Beginn der 70er Jahre ist in allen Ländern weit hinter den Erwartungen zurückgeblieben.

In den vergangenen Jahren sind Datenübertragungseinrichtungen – Geschwindigkeiten >200 Baud – für die Benutzung des Telefonnetzes entwickelt und von den Fernmeldebetrieben bereitgestellt worden. Diese Art der Datenübermittlung befriedigt nur einen engen Benutzerkreis. Struktur, Art und Qualität des modernen Datenverkehrs machen deutlich, dass der zukünftige Datenverkehr nur in

speziellen, von den heutigen analogen Telefonnetzen getrennten Netzen befriedigend abgewickelt werden kann. Es zeigt sich leider, dass unterschiedliche technische, volkswirtschaftliche und politische Gegebenheiten derzeit keine international einheitliche Lösung für ein Datennetz zulassen. Man darf aber berechtigte Hoffnungen haben, dass die allgemeine Einführung der PCM-Übertragungstechnik letztlich zu weltweit einheitlichen Datennetzen führen wird.

1.2 Leistungsmerkmale

Unabhängig von der technischen Realisierung der nationalen Datennetze scheint es unerlässlich, die grundsätzlichen Leistungsmerkmale international zu normen. Es haben sich hier drei Netzkonzepte herausgeschält:

a) Asynchrones Netz

Mit diesem Konzept eines transparenten Netzes hat man einen wirtschaftlichen Weg, den derzeitigen Telex- mit dem zukünftigen Datenverkehr zu integrieren.

b) Synchrones Netz

Das synchrone oder getaktete digitale Netz berücksichtigt bereits weitgehend die Einführung von PCM-Übertragungs- und Vermittlungssystemen.

c) Speichervermittlungsnetz

Als besondere Vorteile werden hervorgehoben: Die leichte Zusammenarbeit zwischen Datenendgeräten unterschiedlicher Geschwindigkeit sowie kostensparende Übertragungsverfahren.

Natürlich ist es möglich, im asynchronen, transparenten Netz auch Synchronverbindungen zu betreiben, wie andererseits im Synchronnetz auch der Betrieb von Start-Stop-Teilnehmern möglich sein wird.

2. Moderne Datenvermittlungssysteme

Ein neues zukunftssicheres Vermittlungssystem sollte für alle genannten Netzkonzepte gleichermassen geeignet und auch für in Übergangszeiten notwendige Mischungen dieser Netzarten in einem hybriden Netz einsetzbar sein. Darüber hinaus muss es über ein breites Spektrum von Leistungsmerkmalen verfügen, die vom Benutzer als zweckmässig er-

¹⁾ Siehe Literatur am Schluss des Aufsatzes.

Tabelle I

Leistungsmerkmale	
Aus der Sicht des Benutzers	Aus der Sicht des Fernmeldebetriebes
Code- und Geschwindigkeitstransparenz Kurze Verbindungsauf- und Abbauzeiten	Zeitmultiplexdurchschaltung Bitseriell und Bitparallel
Betriebsklassen	Raummultiplexdurchschaltung
Direktruf	Kurze Verbindungsauf- und Abbauzeiten
Kurzruf	
Rundsendung	Automatische Gebühren- erfassung
Identifizierung des fernen Teilnehmers	Minimaler Platzbedarf
Nachrichtenspeicherung mit verzögerter Aussendung	Modularer Aufbau
Code- und Geschwindigkeitsumsetzung	Möglichst wartungsfrei
Zuschreiben der Verbindungsgebühren – Daten	Niedrige Anschaffungs- kosten pro Anschlusseinheit

kannt werden und dem Fernmeldebetrieb Erleichterungen und Einsparungen bringen. In Tabelle I sind die wichtigsten Merkmale aus der Sicht des Benutzers und Fernmeldebetriebes zusammengestellt.

Grundsätzlich muss von einem modernen Vermittlungssystem verlangt werden, dass es den Stand der Technik voll ausschöpft und damit hinreichend flexibel ist. Diese Forderung führt eindeutig zu einem programmgesteuerten, rechnerähnlichen System.

3. Praktische Realisierung eines Datenvermittlungssystems

3.1 Systemstruktur

Das elektronische Datenvermittlungssystem von Siemens (EDS) wird all diesen, an ein modernes Vermittlungssystem gestellten Forderungen gerecht [2; 3]. Es soll als Grundlage für die weiteren Ausführungen dienen.

Die Entwicklungsphilosophie, die diesem System zu Grunde gelegt wurde, beinhaltet die Forderung nach grösstmöglicher Anpassungsfähigkeit an die Übertragungsmethoden zukünftiger Datennetze [4] sowie freizügige Erweiterbarkeit und absolute Zuverlässigkeit. Dies führte zu einer modularen Multi-Prozessor-Systemstruktur (Fig. 1). Sämtliche Systemeinheiten sind mehrfach vorhanden, um den Forderungen nach maximaler Zuverlässigkeit gerecht zu werden. Die problemorientierten Prozessoren werden über genormte System-Schnittstellen mit der Speichereinheit verbunden. Die Speichereinheit besteht aus mehreren Speicherbanken und der Speichersteuerung.

Folgende drei Prozessortypen sind erwähnenswert:

- a) Die Programmsteuerungseinheit ist verantwortlich für die programmierten Vermittlungsfunktionen. Zusätzlich müssen Routine- und Überwachungsfunktionen übernommen werden.
- b) Die Geräteanschlusseinheit erlaubt den Anschluss peripherer Geräte wie z. B. Magnetbandeinheiten, Plattenspeicher und Schnelldrucker.
- c) Die Durchschalteeinheit erlaubt die Anschaltung von Durchschaltegruppen für unterschiedliche Durchschaltetechniken.

Derzeit stehen Durchschaltegruppen für asynchrone transparente Netze zur Verfügung [5]. Hierfür kommt ein spezielles, auch Adresscode genanntes, Zeitmultiplexprinzip zur Anwendung. Dieses Durchschalteprinzip ist für die stark überwiegenden Tief- und Mittelgeschwindigkeits-Datenanschlüsse optimal. Jede Durchschaltegruppe kann in 8er-Stufen bis zu 4096 Anschlüss erweitert werden, was bei 7 Durchschaltegruppen eine maximale System-Anschlusskapazität von 28 672 Anschlüssen ergibt.

In naher Zukunft werden auch die in Entwicklung befindlichen Durchschaltegruppen für Bitparallele-Zeitmulitplexdurchschaltung und die Durchschaltegruppen für Raummultiplex zur Verfügung stehen. Damit ist die ursprüngliche Forderung nach grösstmöglicher Anpassungsfähigkeit an zukünftige Übertragungsmethoden erfüllt.

3.2 Programmorganisation

Die Struktur der Software ²) hat einen wesentlichen Anteil bei der wirtschaftlichen und technischen Optimierung eines speicherprogrammierten Systems. Dieser allgemeinen Voraussetzung überlagert sich beim EDS die für ein Vermittlungssystem typische Forderung nach einer differenzierten Datenstruktur mit direkter Adressierbarkeit.

2) Software = Sammelbegriff für Programme.

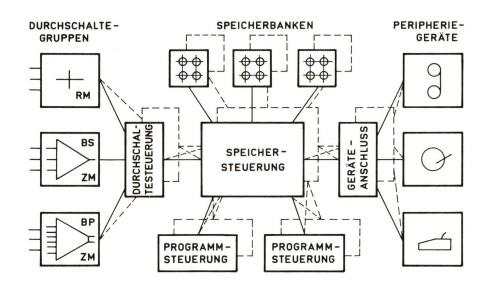


Fig. 1 EDS-Systemstruktur

Verdoppelung

RM Raummultiplex ZM Zeitmultiplex

BS Bitseriell
BP Bitparallel

Das EDS besitzt als max. ausbaubare Kernspeicherkapazität programmtechnisch gesehen 4 Speicherbezirke zu je 65 536 Worten. 1 Wort umfasst 32 Datenbits. Ein Speicherwort kann weiter unterteilt werden in 2 Halbworte, 4 Bits, 8 Ziffern oder 32 Anzeigen. Diese Datenmodi sind über den Gesamtspeicher direkt adressierbar.

Fig. 2 zeigt die Struktur des Speicherwortes mit den dafür charakteristischen Datenarten.

Mit der in einem Befehl angegebenen Grundadresse von 16 bit kann jedes Wort innerhalb eines Speicherbezirks adressiert werden. Soll eine kleinere Dateneinheit angesprochen werden, so wird an die Grundadresse ein Adressanhang von bis zu 5 bit hinzugefügt. Die Länge des Adressanhangs hängt vom Operationsmodus (Halbwort-, Bit-, Ziffer oder Anzeigenmodus) ab. Zur Adressierung von Datenblöcken im Speicherbezirk bzw. von Wortadressen in beliebigen Speicherbezirken werden Basisadressen verwendet. An die Stelle der Grundadresse tritt eine Distanzadresse (9 bit) zur Adressierung eines Wortes im Datenfeld.

Eine effektive Programmierung wird ermöglicht durch Standardbefehle, Spezialbefehle zur Lösung vermittlungstechnischer Aufgaben sowie durch Organisationsbefehle.

Die Gesamteinheit der EDS-Programme [1] besteht aus dem auf der EDS-Anlage laufenden Anlagenprogramm und den Übersetzer- und Dienstprogrammen, die auf kommerziellen Anlagen eingesetzt werden. Im EDS-Betriebssystem sind die Programme zusammengefasst, die für den Betrieb, und die Wartung der Anlage dienen. Der Komplex der Dienstprogramme umfasst Bibliotheksverwaltungsprogramme, Hilfsprogramme, Umsetzprogramme und Testhilfen. Übersetzer dienen zur Umsetzung der maschinenorientierten Assemblersprache in den EDS-Maschinencode und zur

Verarbeitung von Makros³). DIAKON⁴)-Makros werden bei der Programmierung von Vermittlungsvorgängen angewendet. Die vermittlungstechnischen Aufgaben werden, z. T. kundenindividuell, durch die Anwenderprogramme realisiert. Für die Inbetriebnahme der Anlage wird ein aus Einschaltprüfprogrammen bestehendes Inbetriebnahmesystem verwendet (Fig. 3).

Auf die Wichtigkeit eines ausgebauten Satzes von Dienstund Übersetzerprogrammen soll an dieser Stelle besonders hingewiesen werden, denn zusammen mit dem Anlagenpro-

⁴⁾ DIAKON = Diagramm-Konverter.

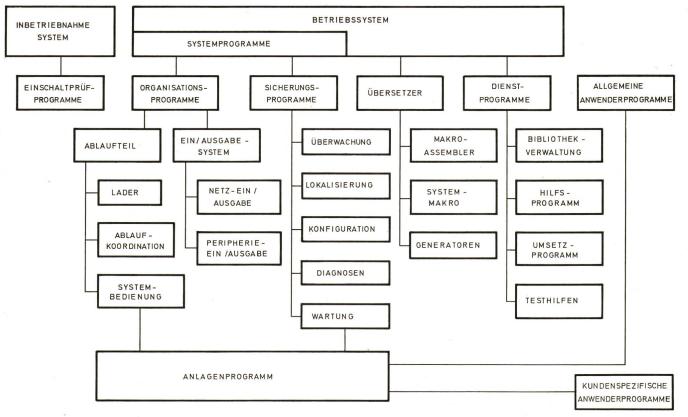
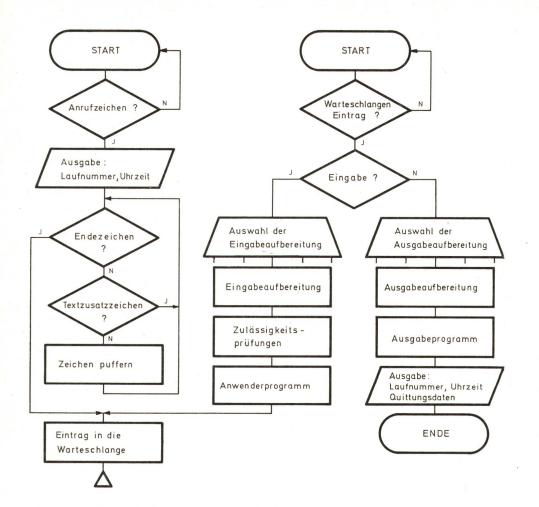



Fig. 3 Programme

³) Makro = Befehlselement, das einer modifizierbaren Folge von Maschinenbefehlen entspricht.

Fig. 4
Ablaufdiagramm

gramm, bei welchem die Effizienz weitgehend durch die Definition verbindlicher Leistungsmerkmale vorgeschrieben wird, bestimmen sie die Leistungsfähigkeit der Anlage.

3.3 Programmrealisierung am Beispiel der Systembedienung

Betrieblich wird zwischen vermittlungstechnischer und rechnertechnischer Bedienung unterschieden. Die vermittlungstechnische Bedienung beinhaltet die Änderung und Abfrage von Betriebszuständen auf Leitungen. Leitungen werden zu- oder abgeschaltet, gesperrt oder freigegeben. Leitwege, Rufnummern oder Anschlüsse werden geändert. Alle Eingaben werden protokolliert und auf Zulässigkeit geprüft. Dies ist besonders wichtig bei der rechnertechnischen Bedienung, welche die Inbetriebnahme, Erweiterung, Wartung und Änderungen in der Zusammenarbeit von Systemeinheiten umfasst.

Die programmtechnische Gliederung der Bedienung unterscheidet zwischen Ausführungsprogrammen und zentralen Programmen.

Am EDS können bis zu 32 Bedienungsgeräte angeschlossen werden. Mögliche Gerätearten sind Blattschreiber und Datensichtstationen. Die Einteilung der Geräte in Gruppen gestattet Kompetenzen festzulegen und gleichartige Vorgänge auf eine Gerätegruppe zusammenzuführen. Der Dialog über das Bediengerät wird sich im allgemeinen auf eine Eingabe mit Quittierung beschränken, da geleitete Dialoge in Form eines Frage – Antwortwechselspiels den praktischen Betrieb hemmen. Wichtige Zustandsänderungen im System werden automatisch als Meldung ausgegeben.

Anhand eines Beispiels soll gezeigt werden, wie ein Bedienungsvorgang in betrieblicher und programmtechnischer Hin-

sicht prinzipiell abläuft: Sperren von 3 Leitungen mit den Teilnehmer-Rufnummern 54321, 54213, 54123 (Fig. 4 und 5).

Zunächst wird dem System durch Eingabe eines vereinbarten Sonderzeichens mitgeteilt, dass ein Bedienvorgang gewünscht wird. Das System reagiert auf die Zustandsänderung am Anschluss des Bediengerätes durch Anstoss eines Programms zur Interpretation eintreffender Zeichen. Bei Erkennung des Anrufzeichens, wird eine Laufnummer und die Uhrzeit ausgegeben. Die Steuerung geht damit an den Operateur. Dieser trifft die Auswahl des Bedienvorganges durch Eingabe einer mnemotechnisch verschlüsselten Kennung. Die erforderlichen Zusatzangaben z.B. Anzahl Leitungen und Rufnummern werden als Variable eingegeben. Die Kennung und Darstellungsart der Variablen kann bei der Systemplanung festgelegt werden; zusätzliche erläuternde Texte können dagegen jederzeit beliebig hinzugefügt werden. Das Programm reagiert auf die Eingabe, indem es die Zeichen der Kennung und der Variablen sammelt, jene der Zusatztexte eliminiert (Formatanpassung). Der Empfang eines vereinbarten Endekriteriums veranlasst das Programm die Eingabedaten über eine Warteschlangenorganisation dem Eingabeaufbereitungsprogramm anzubieten. Dieses ermittelt sich aus der Kennung die Adresse eines speziellen Programmteils, der die eingabeindividuelle Anzahl von Variablen in eine für das Sperrprogramm optimale Darstellung umwandelt. Ausserdem wird geprüft, ob die Eingabe sowie Anzahl und Wert der Variablen zulässig sind. Bei einem negativen Prüfungsergebnis wird die Eingabe an den Operateur durch Ausgabe einer Fehlermeldung zurückgewiesen. Andernfalls wird das Sperrprogramm (Ausführungsprogramm) mit Übergabe der erforderlichen Daten gestartet.

Fig. 5 Protokoll

Dem Operateur wird durch Ausgabe einer Formalquittung «ok» mitgeteilt, dass seine Eingabe vom System angenommen wurde, worauf er mit weiteren Eingaben fortfahren kann. Nachdem das Sperrprogramm sämtliche geforderten Leitungen gesperrt hat, bietet es via Warteschlangenorganisation dem Ausgabeaufbereitungsprogramm die Quittungsdaten an. Durch Interpretation des Warteschlangeneintrages gelangt das Ausgabeaufbereitungsprogramm auf einen individuellen Programmteil, der die Quittungsdaten in die gewünschte Form der Ausgabedarstellung umwandelt und unter Einfügung von festen Texten aufbereitet. Die Ausgabe der aufbereiteten Quittungsdaten erfolgt unter Hinzufügung eines Quittungskopfes, der die Laufnummer der Eingabe sowie die Uhrzeit der Ausgabe enthält. Das Programm zur Ausgabe erstellt automatisch Betriebsbereitschaft mit dem Ausgabegerät, das im Normalfall dem Eingabegerät entspricht.

Das Konzept des EDS-Bedienungssystems wurde auf möglichst grosse Flexibilität bezüglich Gruppierung der Geräte und Gestaltung der Protokolle ausgelegt. Zur Festlegung des betrieblichen Ablaufs wurden die praktischen Erfahrungen in der Bedienung von programmgesteuerten Speichervermittlungen ausgewertet.

Literatur

- H. Gabler und W. Staudinger: Das deutsche Datennetz mit dem elektronischen Datenvermittlungssystem (EDS). Der Fernmelde-Ingenieur 26 (1972)5, S. 1...38 + Nr. 6, S. 1...40.
 K. Gosslau und A. Bacher: Das elektronische Datenvermittlungs-System EDS, ein System für den Datenverkehr. NTZ 22(1969)8, S. 444...463.
- [3] H. Steigenberger: Purpose and structure of a program-controlled data switched system. Conference Record of the IEEE international Conference on Communications 7(1971), p. 44-1...44-5.
- [4] B. Schaffer: Time division multiplex switching in modern data switching systems. Conference Record of the IEEE International Conference on Communications 8(1972), p. 5-13...5-18.
 [5] U. Altmann, A. Kammerl and B. Lampe: A special time division multiplex transmission method in a data switching system. Conference Record of the IEEE International Conference on Communications 7(1971), p. 44-6...44-9.

Adresse der Autoren:

F. Gehrig und R. Kurz, Siemens-Albis AG, Albisriederstr. 245, 8047 Zürich.