Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins

Herausgeber: Schweizerischer Elektrotechnischer Verein ; Verband Schweizerischer

Elektrizitätswerke

Band: 64 (1973)

Heft: 20a: Sondernummer des VSE über den UNIPEDE-Kongress in Den

Haag

Rubrik: Studienkomitee für thermische Produktion

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Studienkomitee für thermische Produktion

Schweizerisches Mitglied Y. de Haller Vizedirektor der EOS Lausanne

Das Komitee hat seine Arbeiten in erster Linie auf die aktuellen Probleme der thermischen Produktion konzentriert, wobei folgende Hauptgebiete besonders erwähnt seien.

Im Bericht 20.02 werden die Studien über die hauptsächlichsten Aspekte der vergangenen, gegenwärtigen und zukünftigen Entwicklungen der thermischen Energieproduktion zusammengefasst.

Das Subkomitee «Chemie der thermischen Kraftwerke» berichtet über seine Arbeiten in einem separaten Bericht 21, in welchem vor allem auf die chemischen Aspekte von leichtwassergekühlten Kraftwerken hingewiesen wird.

In einem separaten Bericht Nr. 20.1 sind die Betriebserfahrungen über Kernkraftwerke in den Mitgliedländern der UNI-PEDE zusammengefasst. Ein Auszug ist nachfolgend publiziert.

1. Allgemeines

Im Laufe des letzten Jahrzehntes hat sich die Anzahl der leichtwassergekühlten Kernkraftwerke in den UNIPEDE-Mitgliedländern ansehnlich vermehrt. Die dabei gewonnenen Erfahrungen haben die Kenntnisse über das Verhalten der Konstruktionsmaterialien, der Wasserqualitäten und den Transport von korrosionsverursachenden Produkten beträchtlich erweitert.

Eine Expertengruppe hat diese Kenntnisse und Erfahrungen in den Kraftwerken der UNIPEDE-Mitgliedländern bis Oktober 1971 durch eine Umfrage ermittelt.

Die Untersuchung wurde durchgeführt über die Bauart der Reinigungssysteme, Spezifikationen, Materialien, Beschaffenheiten, Verschmutzung, Anzahl und Resultate von Analysen, angewendete analytische Methoden, Organisation und spezielle Probleme.

Die allgemeine Zielsetzung richtet sich auf eine Standardisierung und eine damit verbundene Reduktion der Investitionskosten. Immer mehr Aufmerksamkeit muss dem Umweltschutz gewidmet werden, was zu einer Beschränkung der Handlungsfreiheit für die Abfallbeseitigung führen könnte, insbesondere könnten werkeigene Anlagen für die Behandlung fester und flüssiger Abfälle gefordert werden.

Diese vorauszusehenden Probleme könnten durch die Vergrösserung der Kapazität und der Abmessungen dieser Systeme, welche eine erhöhte Wahrscheinlichkeit von Leckagen

der Kondensatoren und Rohrschäden bei den Dampferzeugern zur Folge haben, noch schwieriger werden.

Ein erster Bericht über die Betriebserfahrungen in Kernkraftwerken, welcher am Kongress in Cannes im Jahre 1970 vorgelegt wurde, bezog sich auf 21 Kraftwerke von über 100 MW, welche Ende 1968 in Betrieb waren. Von diesen waren 13 mit Gas-Graphit-Reaktoren, 5 mit Druckwasser-Reaktoren und 3 mit Siedewasser-Reaktoren ausgerüstet. Die gegenwärtige Untersuchung umfasst 57 Kraftwerke (siehe Tabelle I). Ungefähr 50% der Kraftwerke waren schon Ende 1971 in Betrieb. Die kumulierte Energieproduktion betrug Ende 1972 358184 GWh (siehe Tabelle II).

Auf Grund der am Ende 1972 im Bau befindlichen Kraftwerke dürfte die in den UNIPEDE-Mitgliedstaaten in den Jahren 1975/76 installierte Nuklearleistung 30000 MW erreichen, was ungefähr 9% des totalen Leistungsbedarfs dieser Länder und etwa 28% der in der Welt installierten Nuklear-Leistung entspricht.

Was die Grösse der Kernkraftwerke anbetrifft, kann man feststellen, dass die Einheiten in den letzten 10 Jahren ungefähr 8mal grösser geworden sind und bisweilen 1300 MW erreichen, was die beträchtlichen Anstrengungen auf diesem Gebiete veranschaulicht.

2. Besonderheiten des Standortes

Mit Ausnahme der schwedischen sind alle mit wassergekühlten Reaktoren bestückten Kraftwerke an Flüssen gelegen. Die Temperaturerhöhung durch das Kondensatorwasser beträgt zwischen 7 und 12 °C. Kühltürme werden selten verwendet, ausgenommen bei der Kühlung in kritischen Perioden in Doel und Caorso, und während Zeiten von niedrigstem Wasserstand in Trino Vercellese, Würgassen und Tihange. In Deutschland ist das Kraftwerk Lingen mit einer Vorrichtung für gemischten Betrieb versehen, wobei die Kühltürme für zwei Drittel der Gesamtleistung ausgelegt sind.

Was die gasgekühlten Reaktoren anbelangt, sind in Frankreich sämtliche Kraftwerke an Wasserläufen, und in England im allgemeinen am Meer oder bei Flussmündungen, gelegen. Die Temperaturerhöhung des Kühlwassers am Ausgang des Kondensators beträgt ungefähr 7 bis 10 °C. Kein Kraftwerk besitzt Kühltürme, mit Ausnahme des deutschen THTR-Kraftwerkes in Ventrop.

In den Ländern der UNIPEDE am 31. Dezember 1972 im Betrieb oder im Bau befindliche Kernkraftwerke

Mahalla T

								Tabelle	
Ref.	Kraftwerk	Betreiber	Тур	Leistung MW	Datum des Baubeginns	Datum der Inbetrieb- setzung	Produzierte Energie GWh	Land	
1	Tullnerfeld	GKT	LWR-BWR	700		1977	-	Oesterreich	
2	Doel 1 - 11	Doel	LWR-PWR	2x410	Juni 69-Feb.71	1973-1975	-	Belgien	
3	Tihange	SEMO	LWR-PWR	920	Juni 70	1974	-	Belgien	
4	Chinon II	EdF	GCR	200	August 58	März 65	8 302	Frankreich	
5	Chinon III	EdF	GCR	480	Sept. 60	Okt. 66	5 055	Frankreich	
6	St. Laurent I-II	EdF	GCR	500+515	Sept. 63-Feb.66	März 65-Aug.71	3 497	Frankreich	
7	Bugey I	EdF	GCR	540	Feb. 66	1972	-	Frankreich	
8	Chooz	EdF-SENA	LWR-PWR	282	Jan. 62	April 67	3 887	Frankreich	
9	Fessenheim I-II	EdF	LWR-PWR	2x930	Okt. 71-72	April 76-Sept.76	Ī	Frankreich	
10	Gundremmingen	KRB	LWR-BWR	250	Nov, 62	Nov. 66	7 261	Deutschland	
11	Lingen	KWL	LWR-BWR	252	Okt. 64	Mai 68	5 258	Deutschland	
12	Obrigheim Würgassen	KWO PEA	LWR-PWR	345	März 65	Okt. 68	6 837	Deutschland	
13	wurgassen Stade	KKS	LWR-BWR LWR-PWR	670	Feb. 68	1972	_	Deutschland	
14 15	Brunsbüttel	KKB	LWR-BWR	662 805	März 68 März 70	1972 1974	_	Deutschland Deutschland	
16	Phillipsburg I	KKP	LWR-BWR	900	Nov. 70	1974		Deutschland	
17	Biblis A	RWE	LWR-PWR	1204	März 70	1974	_	Deutschland	
18	Niederaichbach	KKN	HWR-GCR	107	1966	1972	_	Deutschland	
19	Uentrop THTR	HKG	HTGR	325	Nov. 71	1976	_	Deutschland	
20	Bradwell	CEGB	GCR-Magnox	2x130	Jan. 57	Juni 62-Nov.62	21 216	Grossbritannien	
21	Berkelev	CEGB	GCR-Magnox	2x138	Jan. 57	Juni 62-Nov. 62	20 887	Grossbritannien	
22	Hinkley Point A	CEGB	GCR-Magnox	2x230	Dez. 57	Feb. 65-März 65	21 758	Grossbritannien	
23	Trawsfynnyd	CEGB	GCR-Magnox	2x205	Juli 58	Jan. 65-April 65	20 687	Grossbritannien	
24	Dungeness A	CEGB	GCR-Magnox	2x205	August 60	Jan. 66-Feb. 66	21 486	Grossbritannien	
25	Sizewell	CEGB	GCR-Magnox	2x210	April 61	Jan. 66-Feb. 66	19 088	Grossbritannien	
26	Oldbury	CEGB	GCR-Magnox	2x200	Mai 62	Nov. 67 -April 68	10 528	Grossbritannien	
27	Wylfa	CEGB	GCR-Magnox	2x420	Okt. 63	März 71-Aug.71	1 722	Grossbritannien	
28	Hunterston A	SSEB	GCR-Magnox	2x130	August 57	April 64	19 213	Grossbritannien	
29	Dungeness B	CEGB	GCR-AGR	2x660	Feb. 66	Nov. 74	-	Grossbritannien	
30	Hinkley Point B	CEGB	GCR-AGR	2x660	August 67	1972-1973	-	Grossbritannier	
31	Hartlepool	CEGB	GCR-AGR	2x660	Nov. 68	1975	-	Grossbritannier	
32	Heysham	CEGB	GCR-AGR	2x660	Dez. 70	1976	_	Grossbritannien	
33	Hunterston B Latina	SSEB	GCR-AGR	2x660	Nov. 67	1973	10 499	Grossbritannien	
34	Trino VC	ENEL ENEL	GCR-Magnox LWR-PWR	160	Nov. 58 Juli 61	Mai 63 Okt. 64	5 987	Italien Italien	
36	Garigliano	ENEL	LWR-BWR	257 160	Nov. 59	Mai 64	7 550	Italien Italien	
37	Caorso	ENEL	LWR-BWR	822	August 70	April 75	7 550	Italien	
38	Borssele	PZEM	LWR-PWR	470	Sept. 69	1973	_	Holland	
39	J. Cabrera	U.E.	LWR-PWR	160	April 65	August 69	2 817	Spanien	
40	S.M. de Garona	NUCLEONOR	LWR-BWR	460	Okt. 66	Juni 71	1 516	Spanien	
41	Vandellos	HIFRENSA	GCR	500	Juni 67	1972		Spanien	
42	Oskarshamn I	OKG	LWR-BWR	460	Sept. 66	1972	-	Schweden	
43	Ringhals I	SSPB	LWR-BWR	762	Febr. 69	1974	-	Schweden	
44	Ringhals II	SSPB	LWR-PWR	809	März 70	1974	-	Schweden	
45	Beznau I-II	NOK	LWR-PWR	2x350	Nov. 65-Mai 68	Jan.70-72	4 249	Schweiz	
46	Mühleberg	BKW	LWR-BWR	320	Mai 67	1973	-	Schweiz	
47	Lovisa I-II	IVO	LWR-PWR	2x440	1972	1977-1978	-	Finnland	
48	Bugey II	EdF	LWR-PWR	925	1972	1976	-	Frankreich	
49	Neckar	GKN	LWR-PWR	805	1972	1976	-	BR Deutschland	
50	Biblis B	RWE	LWR-PWR	1 300	1972	1976	-	BR Deutschland	
51	Isar	KKI	LWR-BWR	900	1972	1976	-	BR Deutschland	
52	Unterweser	KKU	LWR-PWR	1 300	1972	1976	-	BR Deutschland	
53	Almaraz I-II	Konsorium	LWR-PWR	2x930	1972	1977-1978	-	Spanien	
54	Oskarsham II	OKG	LWR-BWR	580	1971	1974	-	Schweden	
55	Ringhals III	SSPG	LWR-PWR	915 580	1972	1977		Schweden	
56	Barsebäck I	Sydkraft	LWR-BWR	900	1971	1975 1978	-	Schweden	
57	Foskmark I	SSPG	LWR-BWR	900	1972	1976	_	Schweden	

Maximal mögliche Leistung und kumulierte Erzeugung der Kernkraftwerke (Stand: 31. Dezember 1972)

Tabelle II

	Land	Maximal m	Erzeugte Energie		
		Total MWe	in Betrieb MWe	im Bau MWe	bis 31.12.72 GWh
Mitglieder der UNIPEDE	Belgien BR Deutschland Finnland Frankreich Grossbritannien Holland Italien Oesterreich Schweden Schweiz Spanien	1 751 9 990 880 5 643 11 226 522 1 417 700 4 732 1 020 2 980	11 2 330 - 2 705 4 246 52 577 - 452 1 020 1 120	1 740 7 660 880 2 938 6 980 470 840 700 4 280 - 1 860	29 236 46 148 232 737 1 442 27 671 2 500 9 366 9 084
	Japan Kanada USA	10 661 5 610 62 458	1 723 1 870 14 683	8 938 3 740 47 775	· 21 569 9 917 183 167

3. Technische Entwicklung

3.1 Kraftwerke mit Leichtwasserreaktoren

Die Prüfung der Angaben betreffend der Kraftwerke mit wassergekühlten Reaktoren lässt gewisse Richtungen in der Entwicklung des nuklearen Dampfproduktionssystems für die Erzeugung von elektrischer Energie erkennen.

3.1.1 Sicherheitsbehälter

Es besteht gegenwärtig die Tendenz, die Sicherheitsbehälter mit doppelter Ummantelung zu versehen, die erste Umhüllung ist immer mit Stahlblech ausgekleidet und die äussere besteht aus armiertem Beton. Die Abschirmung im Kraftwerk Oskarshamn, mit zwei Hüllen aus armiertem Beton, bildet die einzige Ausnahme.

tauschfläche erreicht, während der Temperaturabfall des Primärkühlmittels praktisch gleich geblieben ist, wie in den Kraftwerken der ersten Generation. In den Siedewasserreaktoren wurde der doppelte Kreislauf aufgegeben und die Installation von Einspritzdüsen im Innern des Gefässes hat die Abmessungen des Kreislaufes, trotz der grösseren Einheitsleistungen, in ansehnlicher Weise reduziert. Im Kraftwerk Garigliano wurde zum Beispiel eine Durchflussmenge der Umwälzpumpe von 5000 t/h für 160 MWe gewählt, und im Kraftwerk Caorso von 7800 t/h für 800 MWe; somit eine fünffache Leistung für eine nur 1,5mal grössere Umwälzmenge.

Die neuesten Siedewasserreaktoren deutscher Herkunft (Brunsbüttel und Philippsburg) haben 8 bis 9 Umwälzpumpen im Innern des Gefässes.

Leichtwasserreaktoren, Bauarten der Nukleardampferzeuger

Tabelle III

			Abschirmung		Reaktorgefäss		Primär-	Dampferzeuger			Kern	
Ref.	Werk	Typ-Leistung MWth / MWe	Anzahl der Abschirmungen	Normaldruck kg/cm2	Innerer Durchmesser m	Dicke cm	Umwälzpumpen, Anzahl x Kapazität t/h	Anzahl x MWth	Temperatu Primärküh Eintritt (°C)	lmittels	Anzahl der Brennelemente	Spez. Leistung kW/kg U
2 3 8 9 12 14 17 35 38 39 44 45	Doel I-II Tihange Chooz Fessenheim I-II Obrigheim Stade Biblis A Trino Vercellese Borssele José Cabrera Ringhals II Beznau I-II	PWR-1192/410 PWR-2652/920 PWR-1000/282 PWR-2660/930 PWR-1050/345 PWR-1900/660 PWR-3440/1200 PWR-825/257 PWR-1365/450 PWR-510/150 PWR-2440/809 PWR-1130/350	2 1 2 2 2 2 2 2 2 2 1 1 2	2,90 3,10 3,92 3,75 4,05 4,85 5,80 2,37 3,9 2,25 5,30 2,65	3,30 3,98 3,20 4,00 3,27 4,08 5,00 3,20 3,81 2,80 3,99 3,33	18,00 20,00 20,00 20,00 16,0+0,7 19,2+0,7 23,5+0,4 21,91 18,50 14,80 19,50 16,60	2 x 12 240 3 x 15 200 4 x 6 000 3 x 15 200 2 x 12 300 4 x 11 000 4 x 18 000 4 x 5 820 2 x 18 000 1 x 12 240 3 x 15 000 2 x 12 240	2 x 600 3 x 887 4 x 250 3 x 886 2 x 525 4 x 475 4 x 215 2 x 685 1 x 510 3 x 813 2 x 565	317,0 321,6 292,0 322,0 312,4 316,4 284,5 319,4 299,0 319,0 315,0	287,0 284,0 259,0 284,0 283,0 288,2 284,6 253,5 295,4 272,0 285,0	121 157 112 157 121 157 193 112 121 69 157	39,5 38,0 27,8 38,0 30,9 33,8 35,0 22,5 33,9 28,2 34,4 28,2
1 10 11 13 15 16 36 37 40 42 43 46	Tullnerfeld Gundremmingen Lingen Wurgassen Brunsbuttel Phillipsburg I Garigliano Caorso S.M. de Garona Oskarshamn I Ringhals I Mühleberg	BWR-2100/700 BWR-801/250 BWR-520/252 BWR-1912/642 BWR-2922/805 BWR-2575/900 BWR-506/160 BWR-2436/822 BWR-1389/460 BWR-1130/460 BWR-2270/762 BWR-9270/762	2 2 2 2 2 2 1 1 2 2 2 2	3,25 4,55 4,80 5,35 4,25 4,25 1,80 3,23 4,30 4,60 5,30 3,93		13,25 12,1+0,6 8,4+0,6 12,9+0,8 13,6+0,5 14,3+0,5 12,06 13,63 12,00 12,50 14,60 10,40	6 x 5 000 3 x 4 100 2 x 6 000 2 x 5 500 8 x 4 250 9 x 4 245 2 x 7 780 2 x 7 780 4 x 5 900 6 x 2 x 3 130	3 x 83 2 x 260 2 x 60	279,0 286,0 283,0	265,0 285,9 254,0	484 368 284 444 532 592 208 560 400 448 648 228	21,3 17,3 16,2 22,1 22,1 22,3 11,0 23,0 17,6 17,3 19,8 21,5

3.1.2 Reaktorgefässe

Man kann feststellen, dass die Gewichte für die Siedewasser-Reaktoren verhältnismässig grösser geworden sind, vor allem, weil die Wasserabscheider und Dampftrocknungssysteme innerhalb des Gefässes angeordnet sind. Das Gewicht und die Abmessungen haben zur Folge, dass Siedewasserreaktoren von mehr als 700 MW an Ort und Stelle zusammengebaut werden müssen.

3.1.3 Primärkreislauf

Bei den Druckwasserreaktoren besteht die Tendenz, die Anzahl der Kreisläufe zu verringern, was eine Vergrösserung ihrer Kapazitätseinheiten zur Folge hat. So bestehen jetzt Pumpen, welche 18000 t/h Wasser im Primärkreislauf fördern sowie Dampferzeuger mit U-förmigen Rohrbündeln mit Einheitskapazitäten von etwa 900 MW. Die Erhöhung der Leistung der Dampferzeuger wurde durch die Vergrösserung der Aus-

3.1.4 Spaltstoffe

Infolge der erzielten Verbesserungen der Brennstoffeigenschaften ist die spezifische Leistung allmählich von 11 auf 23 kW/kgU für Siedewasserreaktoren und von 22 auf 40 kW/kgU für Druckwasserreaktoren angestiegen.

Was das Umhüllungsmaterial der Brennstoffelemente anbelangt, ist der Übergang von rostfreiem Stahl auf Zircaloy in den Druckwasserreaktoren fast überall vollzogen, mit den entsprechenden wirtschaftlichen Vorteilen infolge geringerer Anreicherung für das Uran.

3.1.5 Systeme der Primärkühlmittelbehandlung

Die Systeme für die Behandlung des Primärkühlmittels, bestehend aus Anlagen für die Filtrierung und Entsalzung durch Anionenaustauscher, setzen im Mittel weniger als 1% des totalen Kühlmitteldurchflusses um. In den Druckwassertypen

wird als chemischer Zusatz gegen die Korrosion alkalisches Hydroxyd (LiOH) verwendet.

3.1.6 Sicherheitssysteme

Wie bekannt, werden die Sicherheitssysteme, infolge immer strenger werdender Sicherheitskriterien, dauernd verbessert. Die Energieversorgung dieser Systeme erfolgt durch Kombination von äusseren, unabhängigen Energiequellen und durch Diesel-Generatoren. Die Anzahl der letzteren kann zwischen 1 und 4 pro Kraftwerkanlage variieren.

In den Kraftwerken mit zwei Reaktoren hat gewöhnlich jede Einheit ihre eigene Notanspeisung.

Einrichtungen für die Produktion elektrischer Energie

3.1.7 Turbinen-Generatorgruppen

Die Turbinen-Generatorgruppen für gesättigten Dampf der wassergekühlten Kernkraftwerke haben Leistungen erreicht, die mit denjenigen von klassischen Einheiten verglichen werden können, oft mit einer Drehzahl von 3000 U/min. In gewissen Fällen werden von einem Reaktor zwei Gruppen gespiesen. Die Leistungszunahme hat auch eine Erhöhung der Generatorenspannung bis zu 27 kV zur Folge gehabt.

3.1.8 Thermische Kreisläufe

Die Charakteristik der thermischen Kreisläufe ist ziemlich einheitlich; nämlich Kondensatpumpen und Elektro-Speisewasserpumpen von je $3\times50\%$ der Kapazität.

Einzig die Kraftwerke von Caorso und Fessenheim sind mit Turbo-Speisewasserpumpen von 100% und 50% der Kapazität ausgerüstet. Ausserdem besitzen diese beiden Kraftwerke zwei zusätzliche Motor-Pumpen von 50% der Leistung.

3.1.9 Zirkulationskreislauf

Dieser Kreislauf ist durch verschiedene Anzahlen und Kapazitäten der Umwälzpumpen von $2\times50\%$ bis $6\times16,6\%$ mit zahlreichen Zwischenlösungen charakterisiert. Ein einziges Kraftwerk (Mühleberg) ist mit einer zusätzlichen Zirkulationspumpe ausgerüstet.

3.2 Kraftwerke mit gasgekühlten Reaktoren

Dieser Abschnitt behandelt den Gas-Graphit-Reaktor Magnox, den davon abgeleiteten AGR (Advanced Gas Cooled Reactor) mit angereichertem Uran in England und den THTR (Thorium High Temperature Reactor) mit heliumgekühlten Kugeln in Deutschland.

Nukleares Dampferzeugungssystem

3.2.1 Reaktorgefäss

Die Reaktorgefässe werden infolge des hohen Gasdruckes, welcher sich von 10 kg/cm² in den ersten Magnox-Typen auf ungefähr 50 kg/cm² in den AGR und den THTR erhöht hat, fast ausschliesslich aus vorgespanntem Beton anstelle von Stahl hergestellt.

3.2.2 Primärkreislauf

Was den Primärkreislauf anbelangt, so können die Dampferzeuger in das Innere der Reaktorgefässe aus vorgespanntem Beton verlegt werden (unter dem Reaktorkern im französischen System und um den Reaktorkern im englischen System und im THTR), was dem sogenannten integrierten System entspricht.

Die Einheitskapazität dieser Dampferzeuger hat sich von 67 MWth in Hunterston A bis zu 500 MW in Wylfa erhöht; die französischen Reaktoren von Saint-Laurent-des-Eaux und von Bugey sind mit einem einzigen Wärmeaustauscher für die gesamte Gasmenge ausgerüstet.

Der Temperatursprung des Gases im Dampferzeuger ist in allen Kraftwerken mit Natururan-Reaktoren ziemlich gleich (ungefähr 200 °C).

In den AGR hat die Temperaturerhöhung der Gasaustritte zu einem beträchtlichen Temperatursprung im Dampferzeuger geführt. Dieser Temperatursprung erreicht Werte in der Grössenordnung von 400 °C, im THTR sogar 500 °C.

Die Gebläse, gewöhnlich 4 bis 8 Stück pro Reaktor, werden durch Primärmotoren angetrieben, etwa je zur Hälfte von Gleich- oder Wechselstrommotoren und von Dampfturbinen. Alle französischen Reaktoren und der englische Reaktor Magnox sind mit Gebläsen variabler Drehzahl versehen; die AGR, mit Ausnahme der Zentrale Dungeness B und die THTR, enthalten Gebläse konstanter Drehzahl.

3.2.3 Spaltstoff

Die spezifische Leistung der Brennstoffstäbe in den Reaktoren mit natürlichem Uran ist praktisch bei 2,5 bis 3,5 kW/kgU geblieben.

Eine ansehnliche Erhöhung bis 8–10 kW/kgU wurde im Reaktor Bugey, durch die Verwendung von rohrförmigen, mit zentraler Kühlung versehenen Elementen, erreicht. In den Reaktoren mit angereichertem Uran wird die spezifische Leistung ebenfalls hohe Werte erreichen, wie 13 kW/kgU (Reaktor von Hartlepool), während im THTR 104 kW/kg (U + Th) erreicht werden.

Der Abbrand hat sich in allen englischen Reaktoren des Types Magnox von ungefähr 3600 MWd/t auf 4000 MWd/t erhöht, während die französischen Reaktoren dank der Verwendung von rohrförmigen Brennstäben 4800 MWd/t erreicht haben, mit Spitzenwerten von ungefähr 6000 MWd/t.

Für das Umhüllungsmaterial sind keinerlei wichtige Änderungen in Sicht; die Reaktoren der ersten Generation sind im allgemeinen mit Legierungen des Typs Magnox ausgerüstet, während die AGR rostfreien Stahl verwenden.

3.2.4 Sicherheitssysteme

Unter den Neuerungen bei den englischen Reaktoren verdient die Einspritzvorrichtung für Borkugeln zur Notabstellung des Reaktors besonders erwähnt zu werden. Dieses System ist gegenwärtig in Erprobung.

Die Energieversorgung der Hilfsbetriebe der Kraftwerke erfolgt durch 3 bis 4 Diesel- oder Gasturbinen-Gruppen, deren Leistung zwischen 0,75 bis 3,5 MW beträgt; in den englischen AGR Kraftwerken, in Hartlepool und Hinkley Point B, sind je 4 Gasturbinen von 17,5 MW installiert. In Frankreich und Italien wird auch Fremdstrom verwendet.

3.2.5 Behandlungssysteme für radioaktive Abfälle

Die Abgabe der im Falle eines Unfalles aus dem Primärkreislauf entweichenden Gase erfolgt im allgemeinen über eine absorbierende Substanz und über Aktivkohlefilter, deren Wirksamkeit gegenüber von I 131 über 99% erreicht. Die für die flüssigen Abfälle im allgemeinen gebräuchliche Behandlung besteht in der Entleerung der wenig aktiven Substanzen nach dem Verdünnen in ein Gewässer und der Lagerung der stark aktiven Abfälle nach dem Verdampfen.

Die englischen Kraftwerke sind mit Verbrennungsanlagen für die festen brennbaren Abfälle mit schwacher Aktivität ausgerüstet, während die nicht brennbaren festen Abfälle in zentralen Anlagen auf bewahrt oder in abgeschirmten Lagerbehältern innerhalb des Kraftwerkgeländes vergraben werden.

Schliesslich soll das Kraftwerk Chinon erwähnt werden, für welches das «Atelier des Matériaux Irradiés» (AMI) sämtliche radioaktiven Abfälle zur endgültigen Behandlung übernimmt.

4. Betriebserfahrungen

Die ausgewerteten Betriebserfahrungen beziehen sich auf 160 Reaktor-Betriebsjahre, wovon 134 für Gas-Graphit-Reaktoren und 26 für Leichtwasser-Reaktoren. Das Land mit den grössten Betriebserfahrungen ist England mit 111 Reaktor-Betriebsjahren, gefolgt von Italien mit 22 und Frankreich mit 20 Reaktor-Betriebsjahren.

Die nachfolgenden Betriebsergebnisse beziehen sich auf die totale Betriebsdauer der Kraftwerke, d.h. seit der Betriebsaufnahme bis zum 31. Dezember 1971.

4.1 Kraftwerke mit Leichtwasserreaktoren

4.1.1 Laständerungen

Die für einen Kaltstart benötigte Zeit ist praktisch gleich für Siedewasser- und Druckwasser-Reaktoren, und beträgt 16 bis 20 Stunden.

Was den Belastungsanstieg (bis zur Nennleistung) anbelangt, so liegt dieser zwischen 1 und 5% pro Minute.

Die technisch mögliche kleinste Belastung variiert zwischen 5 % und 15 %, die kleinere Zahl entspricht der Handsteuerung.

4.1.2 Spaltstoffe

Was den unterbruchslosen Betrieb anbelangt, so können die Leistungen der Brennstoffe in den Leichtwasser-Reaktoren als befriedigend bezeichnet werden. Es sind jedoch bei Brennstoff-Umhüllungen aus Zr aus verschiedenen Ursachen einige Störungen eingetreten.

4.1.3 Radioaktive Abfälle

Die Erfahrung hat gezeigt, dass die durch die flüssigen und gasförmigen Abfallstoffe hervorgerufene Reaktivität ausserhalb des Kraftwerkgeländes so gering gehalten werden kann, dass sie nur einige Prozente oder Promille der natürlichen Radioaktivität beträgt.

4.1.4 Nichtverfügbarkeit der Kraftwerke

Die Resultate der Nichtverfügbarkeit der Leichtwasser-Kernkraftwerke beziehen sich nur auf 9 Kraftwerke, wovon 5 mit Druckwasserreaktoren und 4 mit Siedewasserreaktoren ausgerüstet sind. Die beiden Kraftwerke Beznau und Santa Maria de Garona waren noch nicht lange genug im Betrieb, um verwertbare Resultate zu liefern. Der Nichtverfügbarkeitsfaktor der Leichtwasser-Kernkraftwerke variiert im Mittel zwischen 25 und 30%, mit Ausnahme des Kraftwerkes Trino Vercellese mit einem Nichtverfügbarkeitsfaktor von 60% (dieses Kraftwerk musste infolge von Störungen während 3 Jahren innerhalb einer Periode von 7 Jahren ausser Betrieb gesetzt werden). Aus dem gleichen Grunde beträgt der Nichtverfügbarkeitsfaktor des Kernkraftwerkes von Chooz 62%. In beiden Fällen sind die Störungen auf Ermüdungserscheinungen infolge Vibrationen, hervorgerufen durch das Kühlmedium, zurückzuführen.

Nichtverfügbarkeit von Kernkraftwerken

Ref.			Betrachtete				
	Kraftwerk	Total	Nuklear- Teil	Konventioneller Teil	Unterhalt	Divers	Zeitspanne Jahre
4	Chinon 11	39,60	6,40	23,00	10,20		7,00
5	Chinon 111	70,50	16,00	30,20	24,30		5,00
6	St. Laurent 1	72,00	40,00	28,00	4,00		2,75
6a)	St. Laurent 11	52,00	7,50	44,50			0,33
20	Bradwell	14,58	2,75	1,19	10,64	1 1	8,00
21	Berkeley	10,57	2,16	0,34	8,07	1 1	8,00
22	Hinkley Point A	34,83	4,24	27,10	3,49		7,00
23	Trawsfynnyd	31,17	10,25	9,91	11,01		7,00
24	Dungeness A	14,51	4,62	4,29	5,60		7,00
25	Sizewell	25,01	4,53	11,93	8,55		6,5
26	Oldbury	28,90	2,13	8,76	18,01		4,00
28	Hunterston A	14,96	4,41	3,58	6,97		8,00
34	Latina	26,63	12,71	3,99	7,60	2,33	8,00
8	Chooz	62,00	50,00	8,20	3,80		5,00
10	Gundremminghen	32,14	0,01	15,85	16,07	0,20	4,00
11	Lingen	16,51	1,32	4,35	10,32	0,52	2,5
12	Obrigheim	14,90	4,80	2,40	7,70		2,00
35	Trino Vercellesse	60.92	53,82	2,92	4,18		7,00
36	Garigliano	24,75	9,90	4,12	10,19	0,54	7,5
39	José Cabrera	24,27	1,59	9,45	12,21	1,02	3,00
40	S.M. de Garoña	24,99		15,63	4,28	5,08	0,67
45	Beznau	29,61	15,10	2,86	10,69	0,96	1,5

4.2.1 Laständerungen

Die Zeit für einen Kaltstart beträgt im Mittel für die französischen Kraftwerke 20 Stunden; sie konnte für die Reaktoren von Chinon III und Saint-Laurent-des-Eaux auf 5 bis 7 Stunden reduziert werden. Für die englischen Reaktoren des Typs Magnox beträgt die Zeit für den Kaltstart bis zur Synchronisierung der ersten Gruppe 28 Stunden in Trawsfynnyd und 96 Stunden in Dungeness A. Als Engpass ist die Kontrolle der Temperaturdifferenzen der internen Konstruktionen zu bezeichnen.

Die normale Anfahrzeit variiert zwischen 2 bis 6 Stunden. Die längsten Zeiten beziehen sich auf Kraftwerke, welche mit Turbogebläsen ausgerüstet sind.

Für die englischen Kraftwerke beträgt der Belastungsanstieg auf die Nennleistung bezogen bei Kaltstart 2%/Min., wenn warm, sind raschere Laständerungen möglich. In den französischen Kraftwerken erreicht der Gradient für die Lasterhöhung teilweise 10%/Min. der Nennlast, wie zum Beispiel im Kraftwerk Bugey.

Für die englischen Kraftwerke kann die technisch mögliche tiefste Belastung Null erreichen, unter der Voraussetzung, dass eine vorgängige Xenon-Konzentration vermieden werden kann. Nur das Kraftwerk von Oldbury kann mit der Last infolge Stabilitätsschwierigkeiten des Dampferzeugers nicht unter 20% hinuntergehen.

Für die französischen Kraftwerke variiert die technisch mögliche tiefste Last zwischen 5% (St-Laurent-des-Eaux) und 20% bei Chinon II, letzteres durch die Beschränkung der Dampftemperatur am Austritt der ND-Turbinen und der Betriebseigenschaften der Gebläse.

4.2.2 Spaltstoffe

Die Brennelemente aus natürlichem Uran der Gas-Graphit-Reaktoren haben gute Eigenschaften, der Ausfall betrug im Durchschnitt weniger als 0.1%.

Es soll daran erinnert werden, dass in den Gas-Graphit-Reaktoren das Brennelement nicht im Reaktor verbleibt, sondern sie werden bei Überschreitung einer gewissen Produktion herausgezogen.

4.2.3 Radioaktive Abfälle

Gleiche Situation, wie sie für die Kraftwerke mit Leichtwasserreaktoren angegeben wurde.

4.2.4 Nichtverfügbarkeit der Kraftwerke

Die Verfügbarkeit eines Kraftwerkes vom Typ Magnox kann im allgemeinen als zufriedenstellend bezeichnet werden.

Für die englischen Kernkraftwerke variiert der Nichtverfügbarkeitsfaktor zwischen 11% in Berkeley und 35% in Hinkley Point A, die meisten Werke weisen Werte um 15% auf.

Es muss hiezu aber erwähnt werden, dass die obigen Werte die Leistungsreduktionen nicht berücksichtigen, welche durch Oxydation der Eisenkonstruktionen des Reaktors entstehen. Unter der Berücksichtigung der Korrektur der Leistung infolge Oxydation variieren die Werte der englischen Kraftwerke für die Nichtverfügbarkeit von 16% in Berkeley bis 51% in Oldbury, mit einem Mittel von 38%. Was die Gründe der Ausserbetriebsetzung der Kraftwerke anbelangt (ausser der Lastverminderung durch Oxydation), so sind in fast allen Störungsfällen weniger als ein Fünftel der Störungen den Nuklearkomponenten zuzuschreiben.

In den französischen Kernkraftwerken sind am meisten Störungen an den Dampferzeugern (Chinon II–III) und an der Vorrichtung für die Erfassung von Umhüllungsbrüchen (Chinon III) aufgetreten. Eine Störung, hervorgerufen durch Schmelzen von Brennstäben, hat den Betrieb des Kraftwerkes Saint-Laurent-des-Eaux während dieses Jahres unterbrochen.

5. Zusammenfassung der Diskussion am Kongress

Die zweckmässige Eingliederung der Kernenergie in die heute bestehenden und sich weiterentwickelnden Strukturen wird zur Hauptaufgabe, die sich der gesamten Elektrizitätswirtschaft und damit auch der UNIPEDE stellt. Die Frage der zweckmässigen Erzeugung von Grundlast, Mittellast und Spitzenlast wird uns dauernd beschäftigen, und die Lösungen werden nicht überall und nicht jederzeit die gleichen sein. Diese Aufgabe ist gerade in der heutigen schnellebigen Zeit mit all ihrer Unruhe eine besonders schwierige. Die rasche Preisentwicklung auf dem Brennstoffmarkt, die inflationistischen Tendenzen in unserer Volkswirtschaft, sie alle beeinflussen die Ausgestaltung und den Bau unserer Kraftwerke ebenso wie das bisherige rasche Ansteigen der Einheitsleistungen nuklearer Kraftwerke.

Es herrscht Übereinstimmung, dass trotz der weiterhin vorhandenen Tendenz der Entwicklung in der angeführten Richtung, Phasen der Beruhigung und Konsolidierung der erreichten Technik nötig sind. Dies gilt ebenso für Kernkraftwerke wie auch für konventionell-thermische Einheiten. Erst durch Erfahrung im Betrieb und durch ausgereifte und erprobte Konstruktionen erreichen wir die notwendigen Verfügbarkeiten. Dies muss begleitet sein von einem weitgehenden Erfahrungsaustausch unter den Erzeugern und erfordert ebenso eine enge Zusammenarbeit zwischen Erzeugern und der Industrie.

Kosten und Verfügbarkeit unserer Anlagen stehen mit Recht neben den Umweltfragen immer im Vordergrund der planerischen, baulichen und betrieblichen Aspekte. Bei der Kraftwerkauslegung besteht daher die Tendenz zur Vereinfachung, zur weitgehenden Standardisierung zumindest der Komponenten und zu einer vernünftigen Automatisierung, die sich erstrecken kann von einer teilweisen Automatisierung von funktionellen Abläufen und Zusammenhängen bis hin zum vollautomatischen Kraftwerk, je nach Art und Einsatzweise des Kraftwerks.

Die Diskussionen haben ferner deutlich ergeben, dass bei all unseren Bestrebungen in Richtung auf eine perfekte Technik diese nie zum Selbstzweck werden darf, sondern ebenso auf die im Kraftwerk arbeitenden Menschen ausgerichtet werden muss. Nicht der Automat ist der Boss, sondern der Mensch bedient sich der Automatisation. Doch bedarf dies auch für alle Kraftwerke einer noch verbesserten

Ausbildung und einer fortwährenden Schulung des Personals.

So wird dann ein ebenso wesentlicher Beitrag zur Betriebssicherheit und damit auch zur Erhöhung der Verfügbarkeit geleistet werden wie durch eine als ebenso notwendig angesehene systematische Erforschung und statistische Erfassung der Fehler und Störquellen, und dies auch über den nationalen Rahmen hinaus.