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Calcul des champs électromagnétiques par la méthode des éléments finis

Par M. Decréton

La méthode approchée de calcul faisant usage des différences
finies est devenue classique dans I'étude des champs électro-
magnétiques. Plus récemment, toutefois, lintérét se porte de
plus en plus vers d’autres possibilités d’approximation numérique
et, en particulier, la méthode des éléments finis qui est une alter-
native extrémement prometteuse. Développée d’abord pour le
génie civil et le calcul de la résistance des matériaux, elle peut
s’appliquer avec succés da de nombreux problémes posés en
électromagnétisme, tant dans le domaine des hyperfréquences et
de la propagation des ondes que dans celui des machines élec-
triques. Elle s’adapte particuliérement bien aux cas présentant
des discontinuités de milieu ou des points singuliers aux fron-
tieres. Apreés une présentation théorique du fonctionnement de la
méthode, deux problémes caractéristiques sont traités a titre
d’exemple.

1. Introduction

La majorité des problémes qui se posent en électromagné-
tisme se rameéne au calcul de champs ou de potentiels, solu-
tions des équations de Maxwell. Ces grandeurs doivent satis-
faire a un systéme d’équations aux dérivées partielles, en pré-
sence des conditions aux limites imposées par la structure con-
sidérée. Or si dans certains cas particuliers ou les limites et les
équations ont des formes simples, une solution analytique est
possible, dans la majorité des cas posés en pratique, aucune
expression exacte, méme sous forme de somme infinie, ne peut
étre trouvée. Il faut donc dans ces cas recourir a des techniques
d’analyse numérique qui remplacent le probléme par un pro-
bléme approché et fournissent un algorithme de calcul adapté.
Certaines de ces méthodes sont utilisées depuis de nombreuses
années en électromagnétisme, comme celle des différences
finies [1]1). D’autres, employées originellement dans d’autres
disciplines, n’ont trouvé d’intérét que bien plus récemment.
C’est le cas des éléments finis, décrits d’abord pour des pro-
blémes de résistance des matériaux [2], mais qui se sont avérés
étre un outil extrémement utile dans un grand nombre de pro-
blémes électromagnétiques.

2. Probléme aux valeurs limites
On peut poser en général qu'un champ ou un potentiel @,
scalaire ou vectoriel, est dans un certain domaine D la solution
d’une équation aux dérivées partielles [3]

Lo=g (1)

ou L est un opérateur différentiel linéaire agissant sur @ et g
une fonction connue des coordonnées, appelée terme de
source. On aura par exemple

02 02
o P ol L B
L v 0 x2 oy 2
dans le cas de I’équation de Poisson a deux dimensions, et
L=—v2+k 3)

1) Voir la bibliographie a la fin de I’article.
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Die angendherte Rechnungsmethode mit endlichen Differen-
zen ist in der Untersuchung der elektromagnetischen Felder iib-
lich geworden. Seit kurzem jedoch erstreckt sich das Interesse
mehr und mehr auf weitere numerische Anndherungsmethoden,
insbesondere auf diejenige der begrenzten Elemente, welche eine
dusserst verheissungsvolle Alternative bedeutet. Diese Methode,
die vorerst fiir das Bauingenieurwesen und fiir die Berechnung
der Festigkeit der Materialien ausgearbeitet wurde, kann auch
mit Erfolg auf zahlreiche Probleme angewendet werden, die im
Elektromagnetismus sowie im Bereiche der Mikrowellen, der
Wellenausbreitung und der elektrischen Maschinen gestellt wer-
den. Sie passt sich besonders gut an Fille an, welche unstetige
Medien oder singulire Randpunkte aufweisen. Nach einer theo-
retischen Darstellung der Funktionsweise der erwidhnten Metho-
de werden zwei charakteristische Fille beispielsweise erortert.

pour I’équation de Helmholtz. Dans le premier cas, I’opérateur
est entiérement déterminé. Dans le deuxiéme, il dépend des
valeurs propres.

Pour spécifier entiérement le champ, il faut ajouter a
I’équation (1) des conditions limites sur la frontiére .S du
domaine D. Elles sont le plus souvent de la forme générale
suivante, dite de Cauchy,

oD |
Bs (¢)=f1(SJTn‘ +12(5) - D (s) =f(s) @)
8
ou f1, f2 et f sont des fonctions connues sur la frontiére et # la
normale extérieure.

Deux cas particuliers sont importants:

a) Sif,(s) = 0, on a une condition de Dirichlet imposant la valeur
de @.

b) Si f,(s) = 0, une condition de Neumann est imposée pour la
dérivée normale de @.

Ces conditions peuvent apparaitre simultanément, dans un
méme probléme, sur différentes parties de la frontiére. Un cas
général est illustré a la fig. 1.

La solution de (1) avec les conditions aux limites (4) devra,
en général, étre obtenue par une méthode numérique d’appro-
ximation. Deux voies sont ici possibles.

o _
P = h(s)

_Q_ﬁ @:f(s)

In +§ £, (s)=f(s)

Fig. 1
Cas général d’un probléme aux valeurs limites
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a) D’une part, approximer les opérateurs L et Bs eux-mémes

et chercher la solution d’un systéme
LY & ~ g dans D 5)
Bd® ~ f sur S 6)

ou L4 et Bs? sont des opérateurs simplifiés.

b) D’autre part, tout en conservant L et Bs de départ,
approximer le champ @ et chercher un algorithme donnant la
meilleure approximation possible. On a alors

L &1~ g

Bs @1 ~ f

dans D @)
sur S €]

La premiére voie méne aux méthodes de différences finies,
la¥deuxieme aux techniques variationnelles de Rayleigh-Ritz
auxquelles on joint souvent une méthode d’éléments finis 2).

3. Méthode des différences finies

La méthode des différences finies est certainement la plus
populaire en ce qui concerne le probléme des champs électro-
magnétiques. Elle comporte deux étapes [1]. D’abord ’opéra-
teur différentiel doit étre transformé en un opérateur aux dif-
férences ou chaque dérivée est remplacée par une différence de
valeurs en un certain nombre discret de points. En considérant
ces points a une distance /4 les uns des autres (fig. 2), on a par

exemple
9P ot W — @ — )2k ©
X
E;szf* SPGB — R 2@ @ik (10)

V2D ~fD(x,y+h) + P(x+hy)+ P(x—hy) +

- B (g — b Gy A

Ces formules sont en fait des séries de Taylor tronquées, ce
qui permet de connaitre trés rapidement I’ordre de grandeur
de 'approximation introduite. Ces équations aux différences
finies représentant 1’opérateur L? de (5) sont alors appliquées
en un certain nombre de points choisis dans le domaine D. On
a tout avantage a prendre ces points suivant un schéma le plus
régulier possible.

Un systéme d’équations linéaires en résulte. La deuxiéme
phase de la méthode consiste alors a trouver la solution de ce
systéme, qui en général aura des dimensions assez importantes
tout en étant peu dense (beaucoup de zéros dans la matrice du
systéme). Un systéme allant jusqu’a 1000 inconnues est cou-
rant. Pour des raisons de temps de calcul et surtout de réser-
vation de mémoire nécessaire, la solution ne peut étre obtenue
directement. Une méthode itérative s’impose. Un grand avan-
tage consiste ici dans le fait que les lignes du systéme peuvent
étre générées automatiquement sans difficulté. La matrice
totale ne doit donc pas étre mémorisée. La méthode itérative
la plus utilisée est la surrelaxation successive [5] qui a le mérite
de présenter de trés bonnes caractéristiques de convergence.

Le procédé ainsi décrit se préte donc bien a un calcul auto-
matique sur ordinateur. Pourtant, pour des géométries com-
plexes, elle requiert souvent une réservation de mémoire tres
importante et un temps de calcul parfois prohibitif. En effet, la

2) Il est possible de considérer ces deux techniques d’approxima-
tion comme deux cas particuliers de la méthode des moments [4]. Les

différences finies correspondent a l’emploi de fonctions de Dirac
comme fonctions test.
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précision obtenue est liée directement a la densité de points
choisis [6]. Toute frontiére au dessin compliqué, présentant par
exemple des points singuliers, nécessitera un reserrement
exagéré des mailles et augmentera donc sensiblement la taille
du systéme linéaire a résoudre. De plus, I'interdépendance des
points inhérente a la méthode et le caractére itératif de la
solution entrainent dans certains cas des phénoménes d’«in-
fection» [7]: un manque de précision en un endroit, dii par
exemple 4 un point singulier, influencera la région environ-
nante et méme parfois I’ensemble de la solution.

Ce manque de flexibilité a orienté I’attention ces derniéres
années vers d’autres méthodes numériques plus souples. Celle
des éléments finis s’est avérée étre tres utile dans de nombreux
cas.

4. Méthode des éléments finies

La méthode des éléments finis est liée a une formulation
variationnelle du probléme posé par les équations (1) et (4). Il
est donc important avant d’aborder la méthode proprement
dite de décrire ’obtention de ce principe variationnel, et la
technique de base utilisée pour le résoudre. La description se
fera, par souci de clarté, essentiellement pour le problémes a
deux dimensions. Une généralisation a trois dimensions ne pose
cependant aucune difficulté d’ordre théorique.

4.1 Principe variationnel

A Tintégration directe d’une équation différentielle, avec
des fonctions de Green par exemple, il existe souvent une
méthode alternative beaucoup plus commode a utiliser. Elle
consiste a remplacer le probléme original en celui de la mini-
misation d’une certaine expression intégrale. Cette expression
peut d’ailleurs souvent se rattacher a une grandeur physique du
probléme comme, par exemple, I’énergie.

Dans le cas déterministe ou ’opérateur L dans (1) est
entiérement connu, et en considérant des conditions aux
limites homogeénes, il est facile de vérifier que [3; 8]

F(@)=<{L®,®>—2{D,g> (12)

a une valeur stationnaire pour la solution de (1). Le produit
interne utilisé dans (12) représente une intégration sur le
domaine D telle que

<u,v>=fuv*d!2( 13)
D
x,y+h
x=h,y X,y x+h,y
h
x,y-h
h
————
Fig. 2

Répartition des points pour Papproximation par différences finies
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ou v* indique le complexe conjugé de v. La valeur stationnaire
obtenue par (12) est plus précisément un minimum si deux
conditions sont vérifiées:

a) Caractére auto-adjoint du probléme

{Lu,v) =<Lv,u» (14)
b) Caractére défini-positif de L
{Luyuy >0 pour tout u # 0 (15)

Ces conditions sont en fait satisfaites dans la plupart des
problémes pratiques. Pour I’opérateur laplacien, par exemple,
avec des conditions limites homogénes [c’est-a-dire pour
f(s) = 0 dans (4)], on voit rapidement que

KLuypy=— [v*V2udQ =
D

(16)
= f Vu-Vv*d.Q—fv* 8fu—dS
D 8 on
en utilisant I'identité de Green. On trouve de méme:
= ., ey
<Lv,u>;}£Vu VovdQ Sfu a0 ds a7

Avec des conditions limites homogénes et des fonctions u
et v réelles, les intégrales de surface s’éliminent dans (16) et (17)
et le caractére auto-adjoint est immédiat. De méme, pour la
condition (15), il suffit de remplacer » par u pour avoir

CLuyuy = [|Vu|2dQ (18)
D
et L = ¥/ 2 est donc défini-positif. On aura:
(19)

F(®)= [(Ve)2de—2 [ #gde
D D

Le cas des conditions non-homogénes [f(s) = 0] entraine
une expression plus générale de F(®). Sa dérivation en est
donnée a I’appendice A.

Pour les problémes a valeurs propres comme celui de
I’équation de Helmholtz (3), on peut réécrire (1) comme

Ko —IND=0 (20)

ou K et N sont deux opérateurs déterminés. On sait alors que
les valeurs propres peuvent étre obtenues par la minimisation
du quotient de Rayleigh

_ (KD, D)

AN, D)

(21)

La fonctionnelle F(®) correspondant a (20) peut donc
s’écrire

F(®)=<{KP, @) —A{(ND, D) 22)

qui doit étre minimale (nulle) pour @ et A solution de (20). On
voit que cette formulation est cohérente avec la formule (12).

Il est important de noter ici que la minimisation des fonc-
tionnelles (12) ou (22) donnera uniquement la solution de
I’équation différentielle. Les conditions aux limites doivent a
priori étre satisfaites par les fonctions @ utilisées pour mini-
miser F(®). Cependant pour certains opérateurs, comme celui
de Laplace ou de Helmholiz, les conditions de Neumann ou de
Cauchy sont naturelles, c’est-a-dire qu’elles sont satisfaites
automatiquement par le processus de minimisation de F(®).
Une rapide vérification en est donnée a I’appendice B. Dans
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ces cas-1a, les fonctions @ ne devront satisfaire a priori que les
conditions de Dirichlet.

4.2 Méthode de Rayleigh-Ritz

Pour arriver a trouver la fonction @ qui minimise la fonc-
tionnelle F(®), beaucoup d’algorithmes sont possibles. Le
calcul peut par exemple faire appel aux multiples techniques
d’optimisation. Dans la majorité des cas pratiques, on se con-
tente pourtant d’un processus simple, celui de Rayleigh-Ritz,
pour lequel il est assez facile d’établir des critéres rigoureux de
convergence [8].

Supposons un ensemble de fonctions fi, fa, f3, ... fir indé-
pendantes et exprimons le champ @4 approché comme une
combinaison linéaire de ces fonctions de base:

Pd= Y ci fi (23)
i=1
ou les c;i sont des coefficients a déterminer.
Pour que le probléme puisse étre approximé correctement,
il faut que @19 tende vers la solution exacte @ quant M tend vers
Iinfini, c’est-a-dire que ’ensemble des fonctions de base doit
étre complet par rapport a la solution. La minimisation de
F(®), ou @ a été remplacé par (23), conduit alors a annuler les
dérivées par rapport aux paramétres variationnels ¢; du pro-
bléme. On aura donc:
oF .
azﬁo =15 20 M (24)
Ces équations formeront un systéme d’équations linéaires

simultanées. Sous forme matricielle, il peut s’écrire:

Ac=0b (25)
pour I’opérateur déterministe (1) et
Ac=ABec (26)

pour I’opérateur aux valeurs propres.

A et B sont des matrices carrées et ¢ un vecteur contenant
les paramétres variationnels c;.

Ce systéme aura I’avantage d’étre de dimension réduite et
pourra étre résolu facilement par des méthodes directes clas-
siques comme celles de Gauss (triangularisation).

4.3 Division en éléments finis

Une combinaison de fonctions élémentaires (23) peut étre
définie sur tout le domaine D, mais il est parfois avantageux de
diviser ce domaine en éléments plus petits sur chacun desquels
on impose une combinaison particuliére. On s’assure évidem-
ment d’avoir une continuité satisfaisante entre éléments adja-
cents. Dans le cas de fonctions test polynomiales du premier
degré représentant des plans et en considérant le champ comme
une surface 2 approximer, cette division revient a remplacer la
surface par un certain nombre de petites facettes planes [2].
Cette approximation peut évidemment s’affiner si on prend des
polynomes de degré plus élevé ou d’autres fonctions mieux
adaptées au probléme. Une division en éléments finis permet en
général d’obtenir un degré de précision treés satisfaisant avec
des fonctions relativement simples et en nombre limité.

La fonctionelle F(®) sera ici remplacée par une somme de
termes correspondant a la contribution de chaque ¢lément. On
aura donc:

F@= Y Fi(@) @

Bull. ASE 64(1973)19, 15 septembre



ou K est le nombre total d’éléments considérés, Fi la contri-
bution particuliére de I’élément i et @ la combinaison qui est
définie. Ces termes F; sont évidemment de la forme décrite en
(12) et (22) ou les intégrales de surface portent sur I’élément
correspondant et les éventuelles intégrales curvilignes sur le
contour de I’élément.

Un avantage important de la méthode des éléments finis
apparait dés maintenant en considérant I’équation (27). La
fonctionnelle, et donc ’opérateur, peut varier d’un élément a
lautre. Cette facilité permet par exemple de traiter aisément
des cas de domaines inhomogeénes, ou les caractéristiques du
milieu (permittivité, perméabilité) varient brusquement [9].

La division du domaine D et I’application de I’équation (27)
n’est possible que si I’on est assuré d’un minimum de con-
tinuité aux frontiéres intérieures des éléments. La nécessité de
cette continuité peut étre mise en évidence par un exemple trés
simple. Supposons un domaine unidimensionnel (0 < x < 1)
sur lequel ’équation de Laplace

2D
S =0 (28)

doit étre résolue. Les conditions aux limites sont @ = 0 en
x=0et ® =1enx = 1. On divise le domaine en deux él¢-
ments 0 < x < 0,5et0,5 < x < 1 et ony définit des fonctions
test:

& =ay + as x + az x*2

@ =by + ba(x— 1)+ bz (x — 1)2

et

respectivement. Pour satisfaire au départ les conditions de
Dirichlet on doit poser a1 = 0 et by = 1. Si aucune condition
de continuité n’est imposée en x = 0,5, l1a minimisation de (19)
entrainera la solution:

az=az3=bs=b3=0 (29)
Par contre, si en impose la condition de continuité
2a: +az=1—2bs+ b3 (30)
le minimum de F(@®) sera atteint pour
az=>bz3=0; az=ba=1 31

ce qui est effectivement la solution exacte du probléeme. 1l est
donc clair que la minimisation de F(®), représentant ici
I’énergie, n’est pas suffisante pour garantir 1’exactitude de la
solution. On a en effet la méme énergie pour les deux solutions
(29) et (31).

En pratique, toutefois, les conditions de continuité ne
peuvent pas étre introduite comme on vient de le faire a I’équa-
tion (30): il en résulterait une complexité excessive de I’algo-
rithme de calcul. Pour garantir plus commodément cette con-
dition, on définit d’abord différemment la fonction test donnée
en (23). Supposons un certain nombre M de points appelés
points nodaux, choisis dans le domaine D ou dans 1’élément
considéré. Si @; représente la valeur de la fonction test @ au
point / on peut réécrire (23) comme

M
D (x,y)= i;] D i (x,p) (32)
pour autant que les ai (x, ¥) soient des fonctions d’interpolation
adaptées. Elles doivent avoir une valeur unité au point nodal i
et étre nulles en tout autre point nodal. Les @®; sont ici les nou-
veaux parameétres variationnels. En plagant un certain nombre

Bull. SEV 64(1973)19, 15. September

L

N=3

Fig. 3

Exemple de répartition de points nodaux dans des élements triangulaires
(fonctions polynominales d’ordre N)

N=2 N=4

de ces points sur les frontiéres entre éléments, on y fait coincider
le champ @. En toute généralité la continuité ne sera exacte que
pour ces points-1a, toutefois, dans le cas de fonctions test poly-
nomiales et pour des éléments a coté rectilignes, cette technique
permet d’assurer une continuité exacte en tous points des fron-
tieres (pour faire coincider deux polynomes d’ordre N sur une
droite, il suffit de les faire coincider en N -+ 1 points). Dans le
cas d’éléments triangulaires, on peut facilement se représenter
une répartition possible des points nodaux en fonction de
I’ordre N. Quelques exemples en sont donnés a la fig. 3.

Outre la continuité, cette maniére d’agir permet de satisfaire
aisément au départ aux conditions de Dirichler. 11 suffit en effet
d’imposer les valeurs de @ aux points nodaux situés sur la fron-
tiere extérieure correspondante.

La continuité de la fonction d’essai @ n’est cependant pas
suffisante pour garantir la convergence du processus. Il faut
aussi s’assurer que les dérivées premiéres soient continues a la
limite, c’est-a-dire pour un nombre trés élevé d’éléments ou de
fonctions de base fi. Pour les opérateurs de Laplace et de Helm-
holtz cette continuité des dérivées est heureusement satisfaite
automatiquement dans le processus de minimisation. C’est une
condition naturelle de la fonctionnelle utilisée, et aucune res-
triction sur les fonctions test ne doit étre imposée au départ. La
condition naturelle est d’ailleurs plus générale. Elle correspond
a I’égalité du flux ¢ d®/an a la frontiere commune entre deux
¢léments. Une preuve théorique en est donnée a I’appendice C.

La méthode des éléments finis se présente donc comme une
technique extrémement souple pour [’approximation de
champs. Une trés bonne convergence est obtenue, tout en limi-
tant le nombre de variables du systéme. De plus, par le fait que
I’on peut modifier non seulement la taille des éléments, mais
aussi leur forme et le degré d’approximation dans chacun d’eux,
la méthode permet de s’adapter a la plupart des problémes ren-
contrés en pratique. Elle permet en outre de tenir compte
rigoureusement des discontinuités de milieu.

4.4 Régions présentant des Points singuliers

Une des difficultés les plus importantes dans ’approxi-
mation de champs est la présence sous une forme ou une autre
de points singuliers, c’est-a-dire d’endroits ou la variation du
champ est trés forte ou méme infinie [10]. Une source ponc-
tuelle, un saut dans les conditions limites, une variation
brusque de direction sont des exemples de tels points. La plu-
part des méthodes d’approximation utilisent des représentations
simples du champ comme par exemple des formes poly-
nomiales [11]. Pourtant aux environs de points singuliers, le
champ ne peut plus étre représenté correctement par de telle
fonctions. Elles ne peuvent en effet jamais contenir la singu-
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g=0

Fig. 4
Guide a plaques paralléles avec aréte longitudinale

larité qu’il s’agit de simuler. Dans de tels cas, la convergence
peut étre considérablement ralentie, et méme parfois ne pas
tendre vers la solution exacte.

L’introduction d’une forme asymptotique du champ autour
d’un point singulier permet souvent une amélioration con-
sidérable, pour autant qu’elle soit compatible avec la méthode
numérique utilisée. Ce procédé présente de trés grandes diffi-
cultés avec les différences finies, par suite de la perturbation de
tout I’arrangement algorithmique [12; 13; 14]. Dans le cas des
éléments finis, par contre, cette maniére de faire est assez
directe. Ces fonctions asymptotiques peuvent en effet étre
ajoutées a la combinaison définie en (23) et subir le méme
traitement que les fonctions polynomiales simples [15]. En
dehors d’une plus grande complexité des intégrations numé-
riques a effectuer, I’adjonction d’autres fonctions ne perturbe
donc en rien le fonctionnement du calcul.

5. Exemples numériques

La méthode des éléments finis a été utilisée de plus en plus
ces derniéres années dans le domaine de I’électromagnétisme.
D’abord appliquée aux configurations fermées comme les pro-
blémes de guides d’ondes en hyperfréquences [9; 11; 16; 18],
elle a ensuite été étendue a des cas plus généraux comprenant
des géométries ouvertes comme celles des lignes & microbande
[17; 19].

Les problémes relatifs aux machines électriques ont été
abordés par Chari et Silvester [20] et plus recemment par
Wexler [21], pour le cas de matériaux anisotropes.

On présentera ici a titre d’exemple deux problémes. Choisis
en fonction de la disponibilité de solutions exactes, ils per-

A g=v B8
|
I
a—g-=0
an 7, HEY
i90n "
g=0
D d=0 c

Fig. 5
Probléme aux valeurs limites simplifiées
Division en 4 éléments
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mettent d’apprécier plus directement d’efficacité générale de la
méthode en comparant les résultats avec les solutions analy-
tiques. Les deux problémes présentent de plus des points sin-
guliers aux frontiéres. Ceci permettra de mettre en évidence la
souplesse d’utilisation de la méthode dans de tels cas.

Le premier exemple est la solution de I’équation de Laplace
dans un guide d’ondes a plaques paralléles présentant une dis-
continuité longitudinale. L’autre est la recherche des valeurs
propres de I’équation de Helmholtz pour une région en forme
de L.

5.1 Discontinuité longitudinale dans un guide d’ondes
a plaques paralléles
Considérons un guide a plaques paralléles propageant le
mode TEM (pas de composantes longitudinales des champs).
1l est partagé sur sa longueur par une aréte verticale (fig. 4).
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Fig. 6

Equipotentielles pour le guide d’ondes avec aréte longitudinale

Les équations de Maxwell sont séparables dans ce cas et le
probléme peut se traiter comme en électrostatique. Il faut donc
résoudre I’équation de Laplace dans la région considérée. En
utilisant la symétrie du probléme et en supposant que le champ
n’est pas perturbé a une certaine distance de la discontinuité,
on peut se ramener a la configuration fermée décrite a la fig. 5.
Comme on peut le constater, les conditions limites présentent
une singularité au point 0.

Pour résoudre le probléme par la méthode des éléments
finis, on divise la région en triangles. La fig. 5 donne une con-
figuration possible. Dans une premiére étape des fonctions test
polynomiales sont utilisées. Les résultats obtenus sont com-
parés avec la solution exacte donnée par une transformation
conforme [22]. On peut en déduire I’erreur introduite par la
méthode numérique sur I’ensemble de la région et aussi plus
particuliérement dans un petit voisinage du point singulier.
Cette erreur est calculée en intégrant la différence normalisée
des potentiels exact et approché sur le domaine envisagé. Les
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deux premiéres lignes du tableau I résument ces résultats pour
les polynomes d’ordre 2 et 3. On remarque que l'erreur est
surtout concentrée aux environs du point singulier, et il est
donc a prévoir que la précision puisse étre grandement amé-
liorée en ajoutant a I’ensemble des fonctions polynomiales cer-
tains termes du développement asymptotique de @ autour de 0.
Ces termes supplémentaires sont de la forme
r"fzsin—;—nﬁ =l 85 5

ou r et 0 sont les coordonnées cylindriques centrées au point 0.
Les résultats obtenus sont rassemblés au tableau I pour des
polynomes d’ordre 2 et 3 avec 1 ou 2 fonctions test supplémen-
taires. La fig. 6 représente les €quipotentielles données par
I’approximation d’ordre 3 avec deux fonctions asymptotiques.
L’amélioration introduite est trés significative, surtout aux
environs de la singularité. Cette précision est atteinte sans aug-
menter exagérément le temps de calcul ni la réservation de
mémoire, et surtout sans modifier profondément le programme
de calcul.

5.2 Région en forme de L. Equation de Helmholtz

La solution de I’équation de Helmholtz dans une région pré-
sentant des parties réentrantes fait apparaitre de grandes diffi-
cultés du point de vue analytique. Il faut presque toujours dans
ces cas recourir & une technique numérique. L’exemple choisi
est une région en forme de L ol @ est nul sur le contour (fig. 7).
Une méthode a éléments finis permet la résolution rapide et
précise du probléme malgré la présence de la singularité au
point 0.

On divise d’abord la région en triangles en isolant le point
singulier (fig. 5). Dans chaque triangle, un polynome d’ordre 2
ou 3 est défini et dans la zone hachurée autour du point O des

Solution par éléments finis du guide
d’ondes a plaques paralléles avec aréte longitudinale
(dla=0,77TetV=1)

Tableau I

Ordre des Erreur normalisée | Erreur normalisée
fonctions ?gxz‘;}ge h;‘;::ggfrg: intégrée sur toute sur une région
test poly- dsyptot \griationnels la région proche du point 0 ')
nomiales . % %

2 0 15 8,93 9,32

3 0 28 6,52 7,84

2 1 16 1,53 1,13

2 2 17 1,15 ‘ 0,91

3 1 29 1,11 0,87

3 2 J 30 0,92 0,61

1) Cette région correspond a 20 % de I'’ensemble de la surface.

Premiére valeur propre de I’équation de Helmholtz pour la région en L

Tableau II
Ordre d E
f orm:fteior‘:ss I\i‘gﬁ]::{gnies gzﬁ‘r:rggrgz Premiére valeur é_rlr: l\lfrali?; l;:laoprﬂﬁ;
po]yr:zsx:ﬁale s asymptot. variationnels propre k% =0 [‘,22 1%

2 0 39 1052312 | 9,150

3 “ 0 80 9,95136 ‘ 3,231

2 1 40 9,65012 | 0,108

2 2 41 9,64612 | 0,065

3 1 81 9,64281 ‘ 0,032

3 2 82 9,64182 ‘ 0,021

1) La valeur donnée en [23] est k2 = 9,639724
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Fig. 7

Région en forme de L
Division en 14 éléments

fonctions asymptotiques sont ajoutées a I’ensemble poly-
nomial. Ces fonctions sont du type

r2n/3sin2nf/3 n=1,2...

Pour garantir en plus leur caractére local, on les multiplie
par un facteur d’atténuation e—Pr (p = 2, par exemple).

Le tableau II donne les résultats obtenus pour le calcul de
la premieére valeur propre. Ils peuvent étre comparés avec ceux
obtenus par Fox, Henrici et Moler [23] utilisant une méthode
quasi analytique. On remarque que méme sans I’introduction
des fonctions supplémentaires, une trés bonne précision est
obtenue pour un nombre de variables réduit. L’addition des
fonctions asymptotiques toutefois apporte une amélioration
trés sensible sans élever notablement nile temps de calcul, nila
mémoire utilisée. Connaissant la valeur propre, le potentiel
peut étre calculé et les équipotentielles obtenues sont illustrées
ala fig. 8.

6. Conclusion

La méthode des éléments finis se révele étre une alternative
extrémement intéressante aux méthodes traditionnelles des dif-
férences finies dans le calcul des champs électromagnétiques.
Outre sa simplicité, sa souplesse d’utilisation et sa facilité a
tenir compte des milieux inhomogénes et anisotropes, elle pré-
sente de grands avantages dans le cas de champs singuliers. En
effet, I’adjonction de fonctions asymptotiques aux environs
de la singularité ne perturbe en rien I’arrangement du calcul.

La méthode a été présentée essentiellement pour des pro-
blémes a deux dimensions. Des cas plus généraux a trois
dimensions peuvent étre résolus de la méme maniére. 11 est
évident toutefois que la taille des systémes & résoudre sera
sensiblement plus élevée, ce qui augmentera le temps de calcul
nécessaire.

Appendice A

Conditions limites non-homogénes

Dans le cas de conditions non-homogénes aux frontiéres
Bs®d=f (33)

ou Bs est un opérateur linéaire, une fonctionnelle F(®) plus
générale que (12) doit étre envisagée. Au lieu de chercher la
solution de
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Ld=g (34)

on examine

LY=L(&®—yxy)=g¢g—Ly (35)

ou x est une fonction suffisamment différentiable et satisfaisant
aux conditions limites (33). Cette nouvelle équation porte donc
sur la fonction ¥ = @ — y qui satisfait a des conditions limites
homogeénes. On peut donc en déduire la fonctionnelle corres-
pondante:

F(W)=<LY,¥Y)>—2<{¥,g—Lyx> (36)
En introduisant dans (36) la forme de ¥, on a:
=<{L®, &>— 2P
F(?)=<LP, 9> <P, g>+ 37

+< P, Ly>—<KLP, x>+2<{x, g>— <Ly, x>

Les deux derniers termes sont indépendants de @ et peuvent
donc étre ignorés pendant le processus de minimisation. Il
reste alors a séparer les fonctions @ et ¥ dans les deux termes

LB Ly > = LD x> (38)

dans I’espoir de pouvoir garder en fin de compte une expres-
sion de la fonctionnelle ne dépendant plus de y.

Cela est possible par exemple pour les opérateurs de Laplace
et de Helmholtz. Pour des conditions de Cauchy,

R OR IO (39)

on trouve pour 1’opérateur laplacien

F@) = [(VP)2dQ + [(®>—2f®)dS  (40)
Q S

Des formes équivalentes peuvent se déduire facilement pour
lopérateur de Helmholtz ou pour des conditions de Neumann
et de Dirichlet.
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Appendice B
Caractére naturel des conditions de Neumann et de Cauchy
Soit la condition limite de Cauchy (de Neumann si f2(s) = 0)

od

a

on

RETOR S0 @1)

et la fonctionnelle

F@)=[(Ve)Rde + [0 —2f®)dS  (42)
B S

11 faut démontrer que le fait de minimiser (42) est équivalent
a chercher la solution de I’équation de Laplace avec la con-
dition limite (41). Cette condition serait donc naturelle pour la
fonctionnelle mentionnée.

Supposons une fonction @y qui minimise F (&) et une fonc-
tion arbitraire @;. Une fonction d’essai pourra alors s’écrire
sous la forme

b =@yt ads (43)

avec « comme parameétre. Le minimum de F(®) est atteint
lorsque @ = @y et donc:

PE(®) |  _
“Fe |a=t "

a=0

(44)

En introduisant (43) dans (42) et en dérivant par rapport a o
comme dans (44), on trouve:

[(Ve) (Ve dR + [ (f2 01— fP1)dS =0 (45)
D S

Appliquant ensuite I'identité de Green au premier terme,
cette équation devient:
2 ) 9P’ e
[(—V2d0)d@ + [ (fado— f+ ""a*") ®1dS =0 (46)
D $ L
La fonction @ étant arbitraire, I’équation (6) ne peut étre
satisfaite que si

—V2P)=0 sur D 47)
et
20 Lpdo=f surS (48)
n s

On a donc bien que la fonction qui minimise (2) satisfait
non seulement a ’équation de Laplace (47) mais aussi a la con-
dition limite de Cauchy. Un raisonnement identique peut se
faire pour I’équation de Helmholtz.

Appendice C
Conditions d’interface dans la méthode des éléments finis

Si une région présente une constante diélectrique inhomo-
géne, on peut choisir les éléments de telle fagon a ce qu’ils
suivent les interfaces diélectriques. Ces interfaces sont alors
approximées par une suite de segments de droite. Les con-
ditions a la frontiére sont données par
oD
on

. id
1 2 on

€1

(49)
2
a la limite de deux milieux homogeénes 1 et 2. Elles sont satis-
faites naturellement dans le processus de minimisation de la
fonctionnelle

F(®) = [ e(V)2dQ

2 (50)
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Fig. 9
Deux triangles de part et d’autre d’une discontinuité diélectrique

\

Par commodité, mais sans rien enlever a la généralité de la
démonstration, on considére une région divisée en deux élé-
ments seulement correspondant a deux diélectriques différents
e1 et &2 (fig. 9). Supposons de plus que les conditions aux limites
extérieures soient homogeénes. L’équation (50) peut alors
s’écrire

F(@) = [e1(V 0)2d2+ [e2(AD?dQ: (5
D1 D2

Soit @o une fonction test qui minimise (51), qu’on peut

écrire en général

D =P+ ad: (52)
ou @ est une fonction test quelconque. Il faut que
oF (®) .
oo a=0 0 53)

c’est-a-dire

fsl(vczio)(vqbl)dQlJeraz(wo)(vq&l) d2:=0 (s4)

En utilisant I’identité de Green, (54) se transforme en

— [ @1 V(1 VDo) dR1— [ D2V (62 V Po) dQ2 +
D D2 (55)

b oP
+ [a®— "dSi+ [e2d1—>dS2=0

7 an

Si Sz

ou S1 et S2 sont les contours des deux régions 1 et 2. Or les
conditions aux limites étant homogénes, les deux derniers
termes de (55) se résument a I’intégrale sur I'interface diélec-
trique Si. En rassemblant en outre les deux premiers termes en

un seul, (55) devient:

—f@lV(&V Do) d2 +
D

dDg (56)

— &2
1 on

)dS=O
2

oD
+f¢1(61 3 2
Si n

Cette égalité doit étre vérifiée pour toute fonction &; et se
réduit donc a

Bull. SEV 64(1973)19, 15. September

V(EV P)=0 7
oD oD
elTn— 1:828—'1*2 (58)

Une fonction @y qui minimise I’intégrale (50) satisfait donc
a I’équation de Laplace en milieu inhomogéne et les conditions
aux limites sur I’interface diélectriques.
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