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Calcul des champs électromagnétiques par la méthode des éléments finis
Par M. Decréton

La méthode approchée de calcul faisant usage des différences
finies est devenue classique dans l'étude des champs
électromagnétiques. Plus récemment, toutefois, l'intérêt se porte de
plus en plus vers d'autres possibilités d'approximation numérique
et, en particulier, la méthode des éléments finis qui est une
alternative extrêmement prometteuse. Développée d'abord pour le
génie civil et le calcul de la résistance des matériaux, elle peut
s'appliquer avec succès à de nombreux problèmes posés en
électromagnétisme, tant dans le domaine des hyperfréquences et
de la propagation des ondes que dans celui des machines
électriques. Elle s'adapte particulièrement bien aux cas présentant
des discontinuités de milieu ou des points singuliers aux
frontières. Après une présentation théorique du fonctionnement de la
méthode, deux problèmes caractéristiques sont traités à titre
d'exempte.

537.811.001.24 : 519.34

Die angenäherte Rechnungsmethode mit endlichen Differenzen
ist in der Untersuchung der elektromagnetischen Felder

üblich geworden. Seit kurzem jedoch erstreckt sich das Interesse
mehr und mehr auf weitere numerische Annäherungsmethoden,
insbesondere auf diejenige der begrenzten Elemente, welche eine
äusserst verheissungsvolle Alternative bedeutet. Diese Methode,
die vorerst für das Bauingenieurwesen und für die Berechnung
der Festigkeit der Materialien ausgearbeitet wurde, kann auch
mit Erfolg auf zahlreiche Probleme angewendet werden, die im
Elektromagnetismus sowie im Bereiche der Mikrowellen, der
Wellenausbreitung und der elektrischen Maschinen gestellt werden.

Sie passt sich besonders gut an Fälle an, welche unstetige
Medien oder singulare Randpunkte aufweisen. Nach einer
theoretischen Darstellung der Funktionsweise der erwähnten Methode

werden zwei charakteristische Fälle beispielsweise erörtert.

1. Introduction
La majorité des problèmes qui se posent en électromagnétisme

se ramène au calcul de champs ou de potentiels,
solutions des équations de Maxwell. Ces grandeurs doivent satisfaire

à un système d'équations aux dérivées partielles, en
présence des conditions aux limites imposées par la structure
considérée. Or si dans certains cas particuliers où les limites et les

équations ont des formes simples, une solution analytique est

possible, dans la majorité des cas posés en pratique, aucune
expression exacte, même sous forme de somme infinie, ne peut
être trouvée. Il faut donc dans ces cas recourir à des techniques
d'analyse numérique qui remplacent le problème par un
problème approché et fournissent un algorithme de calcul adapté.
Certaines de ces méthodes sont utilisées depuis de nombreuses
années en électromagnétisme, comme celle des différences
finies [l]1). D'autres, employées originellement dans d'autres
disciplines, n'ont trouvé d'intérêt que bien plus récemment.
C'est le cas des éléments finis, décrits d'abord pour des

problèmes de résistance des matériaux [2], mais qui se sont avérés

être un outil extrêmement utile dans un grand nombre de

problèmes électromagnétiques.

2. Problème aux valeurs limites

On peut poser en général qu'un champ ou un potentiel <t>,

scalaire ou vectoriel, est dans un certain domaine D la solution
d'une équation aux dérivées partielles [3]

L0 g

L — V 2
82

8 x2
_8^_
8 y2

pour l'équation de Helmholtz. Dans le premier cas, l'opérateur
est entièrement déterminé. Dans le deuxième, il dépend des

valeurs propres.
Pour spécifier entièrement le champ, il faut ajouter à

l'équation (1) des conditions limites sur la frontière S du
domaine D. Elles sont le plus souvent de la forme générale
suivante, dite de Cauchy,

Bs (<P) fr 0) 80
8 n

h(s)-0(s) î(s) (4)

où fr, f2 et f sont des fonctions connues sur la frontière et n la
normale extérieure.

Deux cas particuliers sont importants:

a) Si f, (j) 0, on a une condition de Dirichlet imposant la valeur
de 0.

b) Si f2(j) 0, une condition de Neumann est imposée pour la
dérivée normale de 0.

Ces conditions peuvent apparaître simultanément, dans un
même problème, sur différentes parties de la frontière. Un cas

général est illustré à la fig. 1.

La solution de (1) avec les conditions aux limites (4) devra,

en général, être obtenue par une méthode numérique
d'approximation. Deux voies sont ici possibles.

(D

où L est un opérateur différentiel linéaire agissant sur 0 et g
une fonction connue des coordonnées, appelée terme de

source. On aura par exemple

(2)

dans le cas de l'équation de Poisson à deux dimensions, et

L — V 2 + £2 (3)

m-'"'dn

fis)

') Voir la bibliographie à la fin de l'article.
Fig. 1

Cas général d'un problème aux valeurs limites

<s) fis)
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a) D'une part, approximer les opérateurs L et Bs eux-mêmes

et chercher la solution d'un système

La <P & g dans D (5)

Bsa 0 m f sur S (6)

où Ld et Bs'1 sont des opérateurs simplifiés.
b) D'autre part, tout en conservant L et Bs de départ,

approximer le champ 0 et chercher un algorithme donnant la
meilleure approximation possible. On a alors

L 0d «f g dans D (7)

Bs 0d «j / sur S (8)

La première voie mène aux méthodes de différences finies,
la'deuxième aux techniques variationnelles de Rayleigh-Ritz
auxquelles on joint souvent une méthode d'éléments finis 2).

3. Méthode des différences finies

La méthode des différences finies est certainement la plus
populaire en ce qui concerne le problème des champs
électromagnétiques. Elle comporte deux étapes [1]. D'abord l'opérateur

différentiel doit être transformé en un opérateur aux
différences où chaque dérivée est remplacée par une différence de

valeurs en un certain nombre discret de points. En considérant

ces points à une distance h les uns des autres (fig. 2), on a par
exemple

^~\&(x + h)-<P(x-h)}l2h (9)

-ÇJf- w {0 (x + h) - 0 (x- h) - 2 0 (*)}/A2 (10)

V2 0 [{0(x,y + h) + 0 {x + h,y) + 0 (x — h, y) +
+ 0 (x, y — h) — 4 0 (x, y))/h2

Ces formules sont en fait des séries de Taylor tronquées, ce

qui permet de connaître très rapidement l'ordre de grandeur
de l'approximation introduite. Ces équations aux différences
finies représentant l'opérateur Ld de (5) sont alors appliquées
en un certain nombre de points choisis dans le domaine D. On
a tout avantage à prendre ces points suivant un schéma le plus
régulier possible.

Un système d'équations linéaires en résulte. La deuxième

phase de la méthode consiste alors à trouver la solution de ce

système, qui en général aura des dimensions assez importantes
tout en étant peu dense (beaucoup de zéros dans la matrice du

système). Un système allant jusqu'à 1000 inconnues est

courant. Pour des raisons de temps de calcul et surtout de

réservation de mémoire nécessaire, la solution ne peut être obtenue
directement. Une méthode itérative s'impose. Un grand avantage

consiste ici dans le fait que les lignes du système peuvent
être générées automatiquement sans difficulté. La matrice
totale ne doit donc pas être mémorisée. La méthode itérative
la plus utilisée est la surrelaxation successive [5] qui a le mérite
de présenter de très bonnes caractéristiques de convergence.

Le procédé ainsi décrit se prête donc bien à un calcul
automatique sur ordinateur. Pourtant, pour des géométries
complexes, elle requiert souvent une réservation de mémoire très

importante et un temps de calcul parfois prohibitif. En effet, la

2) Il est possible de considérer ces deux techniques d'approximation

comme deux cas particuliers de la méthode des moments [4], Les
différences finies correspondent à l'emploi de fonctions de Dirac
comme fonctions test.

précision obtenue est liée directement à la densité de points
choisis [6], Toute frontière au dessin compliqué, présentant par
exemple des points singuliers, nécessitera un reserrement
exagéré des mailles et augmentera donc sensiblement la taille
du système linéaire à résoudre. De plus, l'interdépendance des

points inhérente à la méthode et le caractère itératif de la
solution entraînent dans certains cas des phénomènes d'«
infection» [7]: un manque de précision en un endroit, dû par
exemple à un point singulier, influencera la région environnante

et même parfois l'ensemble de la solution.
Ce manque de flexibilité a orienté l'attention ces dernières

années vers d'autres méthodes numériques plus souples. Celle
des éléments finis s'est avérée être très utile dans de nombreux
cas.

4. Méthode des éléments finies

La méthode des éléments finis est liée à une formulation
variationnelle du problème posé par les équations (1) et (4). Il
est donc important avant d'aborder la méthode proprement
dite de décrire l'obtention de ce principe variationnel, et la
technique de base utilisée pour le résoudre. La description se

fera, par souci de clarté, essentiellement pour le problèmes à

deux dimensions. Une généralisation à trois dimensions ne pose
cependant aucune difficulté d'ordre théorique.

4.1 Principe variationnel

A l'intégration directe d'une équation différentielle, avec
des fonctions de Green par exemple, il existe souvent une
méthode alternative beaucoup plus commode à utiliser. Elle
consiste à remplacer le problème original en celui de la
minimisation d'une certaine expression intégrale. Cette expression

peut d'ailleurs souvent se rattacher à une grandeur physique du

problème comme, par exemple, l'énergie.
Dans le cas déterministe où l'opérateur L dans (1) est

entièrement connu, et en considérant des conditions aux
limites homogènes, il est facile de vérifier que (3 ; 8]

F(0) <L0,0}-2<0,g> (12)

a une valeur stationnaire pour la solution de (1). Le produit
interne utilisé dans (12) représente une intégration sur le

domaine D telle que
< u, v > J u v* dßt

x,y+h

x-h,y x.y x+h,y

h

x,y-h

h

Fig. 2
Répartition des points pour l'approximation par différences finies

Bull. SEV 64(1973)19,15. September (A 831) 1197



où v* indique le complexe conjugé de v. La valeur stationnaire
obtenue par (12) est plus précisément un minimum si deux
conditions sont vérifiées:

a) Caractère auto-adjoint du problème

<£,«,«> <Lr,K> (14)

b) Caractère défini-positif de L

<Lu, «> > 0 pour tout «=t=0 (15)

Ces conditions sont en fait satisfaites dans la plupart des

problèmes pratiques. Pour l'opérateur laplacien, par exemple,
avec des conditions limites homogènes [c'est-à-dire pour
f(s) 0 dans (4)], on voit rapidement que

< Lu, v) — f v* V 2 u dß
D

du
f Vu Vv* dQ — f v* jn dS

(16)

D S

en utilisant l'identité de Green. On trouve de même :

<Lv, u) f Vu* Vv dß — J u
d s

*irASon

K0~AN0=0

A <.K0,&y
< N0, 0}

ces cas-là, les fonctions 0 ne devront satisfaire a priori que les

conditions de Dirichlet.

4.2 Méthode de Rayleigh-Ritz

Pour arriver à trouver la fonction 0 qui minimise la
fonctionnelle F (0), beaucoup d'algorithmes sont possibles. Le
calcul peut par exemple faire appel aux multiples techniques
d'optimisation. Dans la majorité des cas pratiques, on se
contente pourtant d'un processus simple, celui de Rayleigh-Ritz,
pour lequel il est assez facile d'établir des critères rigoureux de

convergence [8].

Supposons un ensemble de fonctions fi, f2, f3, fit
indépendantes et exprimons le champ 0d approché comme une
combinaison linéaire de ces fonctions de base:

0A E ci fi
i 1

(23)

(17)

Avec des conditions limites homogènes et des fonctions u

et v réelles, les intégrales de surface s'éliminent dans (16) et (17)
et le caractère auto-adjoint est immédiat. De même, pour la
condition (15), il suffît de remplacer v par u pour avoir

<Lu, «> / | Vu\2dß (18)
D

et L V2 est donc défini-positif. On aura :

F (0) f (V 0)2 dß — 2 f 0g dß (19)
D D

Le cas des conditions non-homogènes [f(s) 4= 0] entraine

une expression plus générale de F(0). Sa dérivation en est

donnée à l'appendice A.
Pour les problèmes à valeurs propres comme celui de

l'équation de Helmholtz (3), on peut réécrire (1) comme

ou les ci sont des coefficients à déterminer.
Pour que le problème puisse être approximé correctement,

il faut que 0a tende vers la solution exacte 0 quant M tend vers

l'infini, c'est-à-dire que l'ensemble des fonctions de base doit
être complet par rapport à la solution. La minimisation de

F (0), où 0 a été remplacé par (23), conduit alors à annuler les

dérivées par rapport aux paramètres variationnels ci du
problème. On aura donc:

8 F
8 a

0 i l,2, ...M (24)

Ces équations formeront un système d'équations linéaires
simultanées. Sous forme matricielle, il peut s'écrire:

Ac b

pour l'opérateur déterministe (1) et

Ac A B c

pour l'opérateur aux valeurs propres.

(25)

(26)

(20)

où K et N sont deux opérateurs déterminés. On sait alors que
les valeurs propres peuvent être obtenues par la minimisation
du quotient de Rayleigh

(21)

La fonctionnelle F(0) correspondant à (20) peut donc
s'écrire

F(0) <AT0,0> — 2<A0,0> (22)

qui doit être minimale (nulle) pour 0 et A solution de (20). On
voit que cette formulation est cohérente avec la formule (12).

11 est important de noter ici que la minimisation des

fonctionnelles (12) ou (22) donnera uniquement la solution de

l'équation différentielle. Les conditions aux limites doivent a

priori être satisfaites par les fonctions 0 utilisées pour
minimiser F(0). Cependant pour certains opérateurs, comme celui
de Laplace ou de Helmholtz, les conditions de Neumann ou de

Cauchy sont naturelles, c'est-à-dire qu'elles sont satisfaites

automatiquement par le processus de minimisation de F(0).
Une rapide vérification en est donnée à l'appendice B. Dans

A et B sont des matrices carrées et c un vecteur contenant
les paramètres variationnels a.

Ce système aura l'avantage d'être de dimension réduite et

pourra être résolu facilement par des méthodes directes
classiques comme celles de Gauss (triangularisation).

4.3 Division en éléments finis
Une combinaison de fonctions élémentaires (23) peut être

définie sur tout le domaine D, mais il est parfois avantageux de

diviser ce domaine en éléments plus petits sur chacun desquels

on impose une combinaison particulière. On s'assure évidemment

d'avoir une continuité satisfaisante entre éléments
adjacents. Dans le cas de fonctions test polynomials du premier
degré représentant des plans et en considérant le champ comme
une surface à approximer, cette division revient à remplacer la

surface par un certain nombre de petites facettes planes [2],

Cette approximation peut évidemment s'affiner si on prend des

polynômes de degré plus élevé ou d'autres fonctions mieux

adaptées au problème. Une division en éléments finis permet en

général d'obtenir un degré de précision très satisfaisant avec

des fonctions relativement simples et en nombre limité.
La fonctionelle F (0) sera ici remplacée par une somme de

termes correspondant à la contribution de chaque élément. On

aura donc :

F (0) E Fi(0)
i i

(27)
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où K est le nombre total d'éléments considérés, Fi la contribution

particulière de l'élément i et 0 la combinaison qui est

définie. Ces termes Fi sont évidemment de la forme décrite en

(12) et (22) où les intégrales de surface portent sur l'élément

correspondant et les éventuelles intégrales curvilignes sur le

contour de l'élément.
Un avantage important de la méthode des éléments finis

apparaît dès maintenant en considérant l'équation (27). La
fonctionnelle, et donc l'opérateur, peut varier d'un élément à

l'autre. Cette facilité permet par exemple de traiter aisément
des cas de domaines inhomogènes, où les caractéristiques du
milieu (permittivité, perméabilité) varient brusquement [9],

La division du domaine D et l'application de l'équation (27)
n'est possible que si l'on est assuré d'un minimum de

continuité aux frontières intérieures des éléments. La nécessité de

cette continuité peut être mise en évidence par un exemple très

simple. Supposons un domaine unidimensionnel (0 si x 5Î 1)

sur lequel l'équation de Laplace

8*0
8 x2

0

et
0 bi + b2 (x - 1) + bs (x - l)2

0(x,y)= Y, 0i«i(x,y) (32)

pour autant que les ai (x, y) soient des fonctions d'interpolation
adaptées. Elles doivent avoir une valeur unité au point nodal i
et être nulles en tout autre point nodal. Les 0\ sont ici les

nouveaux paramètres variationnels. En plaçant un certain nombre

A/= 2 N= 3 N= 4

(28)

doit être résolue. Les conditions aux limites sont 0 0 en

x 0 et $ 1 en a 1. On divise le domaine en deux
éléments 0 ^ x ^ 0,5 et 0,5 ^ x ^ 1 et on y définit des fonctions
test:

0 01 + X + Û3 x2

respectivement. Pour satisfaire au départ les conditions de

Dirichlet on doit poser ai 0 et b\ 1. Si aucune condition
de continuité n'est imposée enx 0,5, la minimisation de (19)
entraînera la solution:

ai as 62 bz 0 (29)

Par contre, si en impose la condition de continuité

2 ai + as 1 — 2 bi + 63 (30)

le minimum de F(0) sera atteint pour

as bs 0 ; as bs 1 (31)

ce qui est effectivement la solution exacte du problème. 11 est

donc clair que la minimisation de F(tP), représentant ici
l'énergie, n'est pas suffisante pour garantir l'exactitude de la
solution. On a en effet la même énergie pour les deux solutions
(29) et (31).

En pratique, toutefois, les conditions de continuité ne

peuvent pas être introduite comme on vient de le faire à l'équation

(30): il en résulterait une complexité excessive de
l'algorithme de calcul. Pour garantir plus commodément cette
condition, on définit d'abord différemment la fonction test donnée

en (23). Supposons un certain nombre M de points appelés

points nodaux, choisis dans le domaine D ou dans l'élément
considéré. Si 0i représente la valeur de la fonction test 0 au

point i on peut réécrire (23) comme

Fig. 3
Exemple de répartition de points nodaux dans des éléments triangulaires

(fonctions polynominales d'ordre N)

de ces points sur les frontières entre éléments, on y fait coïncider
le champ 0. En toute généralité la continuité ne sera exacte que
pour ces points-là, toutefois, dans le cas de fonctions test poly-
nomiales et pour des éléments à côté rectilignes, cette technique
permet d'assurer une continuité exacte en tous points des
frontières (pour faire coïncider deux polynômes d'ordre N sur une
droite, il suffit de les faire coïncider en ÎV + 1 points). Dans le

cas d'éléments triangulaires, on peut facilement se représenter
une répartition possible des points nodaux en fonction de

l'ordre N. Quelques exemples en sont donnés à la fig. 3.

Outre la continuité, cette manière d'agir permet de satisfaire
aisément au départ aux conditions de Dirichlet. Il suffit en effet
d'imposer les valeurs de 0 aux points nodaux situés sur la frontière

extérieure correspondante.
La continuité de la fonction d'essai 0 n'est cependant pas

suffisante pour garantir la convergence du processus. Il faut
aussi s'assurer que les dérivées premières soient continues à la
limite, c'est-à-dire pour un nombre très élevé d'éléments ou de
fonctions de base/i. Pour les opérateurs de Laplace et de Hehn-
holtz cette continuité des dérivées est heureusement satisfaite
automatiquement dans le processus de minimisation. C'est une
condition naturelle de la fonctionnelle utilisée, et aucune
restriction sur les fonctions test ne doit être imposée au départ. La
condition naturelle est d'ailleurs plus générale. Elle correspond
à l'égalité du flux e 80l8n à la frontière commune entre deux
éléments. Une preuve théorique en est donnée à l'appendice C.

La méthode des éléments finis se présente donc comme une
technique extrêmement souple pour l'approximation de

champs. Une très bonne convergence est obtenue, tout en limitant

le nombre de variables du système. De plus, par le fait que
l'on peut modifier non seulement la taille des éléments, mais
aussi leur forme et le degré d'approximation dans chacun d'eux,
la méthode permet de s'adapter à la plupart des problèmes
rencontrés en pratique. Elle permet en outre de tenir compte
rigoureusement des discontinuités de milieu.

4.4 Régions présentant des Points singuliers

Une des difficultés les plus importantes dans l'approximation

de champs est la présence sous une forme ou une autre
de points singuliers, c'est-à-dire d'endroits où la variation du
champ est très forte ou même infinie [10]. Une source
ponctuelle, un saut dans les conditions limites, une variation
brusque de direction sont des exemples de tels points. La
plupart des méthodes d'approximation utilisent des représentations
simples du champ comme par exemple des formes
polynomials [11]. Pourtant aux environs de points singuliers, le

champ ne peut plus être représenté correctement par de telle
fonctions. Elles ne peuvent en effet jamais contenir la singu-

Bull. SEV 64(1973)19,15. September (A 833) 1199



)=v

# 0

Fig. 4
Guide à plaques parallèles avec arête longitudinale

larité qu'il s'agit de simuler. Dans de tels cas, la convergence
peut être considérablement ralentie, et même parfois ne pas
tendre vers la solution exacte.

L'introduction d'une forme asymptotique du champ autour
d'un point singulier permet souvent une amélioration
considérable, pour autant qu'elle soit compatible avec la méthode

numérique utilisée. Ce procédé présente de très grandes
difficultés avec les différences finies, par suite de la perturbation de

tout l'arrangement algorithmique [12; 13; 14], Dans le cas des

éléments finis, par contre, cette manière de faire est assez

directe. Ces fonctions asymptotiques peuvent en effet être

ajoutées à la combinaison définie en (23) et subir le même

traitement que les fonctions polynomiales simples [15]. En
dehors d'une plus grande complexité des intégrations numériques

à effectuer, l'adjonction d'autres fonctions ne perturbe
donc en rien le fonctionnement du calcul.

5. Exemples numériques

La méthode des éléments finis a été utilisée de plus en plus
ces dernières années dans le domaine de l'électromagnétisme.
D'abord appliquée aux configurations fermées comme les

problèmes de guides d'ondes en hyperfréquences [9; 11; 16; 18],

elle a ensuite été étendue à des cas plus généraux comprenant
des géométries ouvertes comme celles des lignes à microbande
[17; 19].

Les problèmes relatifs aux machines électriques ont été

abordés par Chari et Silvester [20] et plus récemment par
Wexler [21], pour le cas de matériaux anisotropes.

On présentera ici à titre d'exemple deux problèmes. Choisis

en fonction de la disponibilité de solutions exactes, ils per¬

mettent d'apprécier plus directement d'efficacité générale de la
méthode en comparant les résultats avec les solutions
analytiques. Les deux problèmes présentent de plus des points
singuliers aux frontières. Ceci permettra de mettre en évidence la
souplesse d'utilisation de la méthode dans de tels cas.

Le premier exemple est la solution de l'équation de Laplace
dans un guide d'ondes à plaques parallèles présentant une
discontinuité longitudinale. L'autre est la recherche des valeurs

propres de l'équation de Helmholtz pour une région en forme
de L.

5.1 Discontinuité longitudinale dans un guide d'ondes
à plaques parallèles

Considérons un guide à plaques parallèles propageant le

mode TEM (pas de composantes longitudinales des champs).
Il est partagé sur sa longueur par une arête verticale (fig. 4).

Fig. 5

Problème aux valeurs limites simplifiées

Division en 4 éléments

Fig. 6
Equipotentielles pour le guide d'ondes avec arête longitudinale

Les équations de Maxwell sont séparables dans ce cas et le

problème peut se traiter comme en électrostatique. Il faut donc
résoudre l'équation de Laplace dans la région considérée. En
utilisant la symétrie du problème et en supposant que le champ
n'est pas perturbé à une certaine distance de la discontinuité,
on peut se ramener à la configuration fermée décrite à la fig. 5.

Comme on peut le constater, les conditions limites présentent
une singularité au point 0.

Pour résoudre le problème par la méthode des éléments

finis, on divise la région en triangles. La fig. 5 donne une
configuration possible. Dans une première étape des fonctions test
polynomiales sont utilisées. Les résultats obtenus sont
comparés avec la solution exacte donnée par une transformation
conforme [22]. On peut en déduire l'erreur introduite par la
méthode numérique sur l'ensemble de la région et aussi plus
particulièrement dans un petit voisinage du point singulier.
Cette erreur est calculée en intégrant la différence normalisée
des potentiels exact et approché sur le domaine envisagé. Les
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deux premières lignes du tableau I résument ces résultats pour
les polynômes d'ordre 2 et 3. On remarque que l'erreur est

surtout concentrée aux environs du point singulier, et il est

donc à prévoir que la précision puisse être grandement
améliorée en ajoutant à l'ensemble des fonctions polynomiales
certains termes du développement asymptotique de <P autour de 0.

Ces termes supplémentaires sont de la forme

rn/2sin~«0 «=1,3,5...

où r et 0 sont les coordonnées cylindriques centrées au point 0.

Les résultats obtenus sont rassemblés au tableau I pour des

polynômes d'ordre 2 et 3 avec 1 ou 2 fonctions test supplémentaires.

La fig. 6 représente les équipotentielles données par
l'approximation d'ordre 3 avec deux fonctions asymptotiques.
L'amélioration introduite est très significative, surtout aux
environs de la singularité. Cette précision est atteinte sans
augmenter exagérément le temps de calcul ni la réservation de

mémoire, et surtout sans modifier profondément le programme
de calcul.

5.2 Région en forme de L. Equation de Helmholtz

La solution de l'équation de Helmholtz dans une région
présentant des parties réentrantes fait apparaître de grandes
difficultés du point de vue analytique. Il faut presque toujours dans

ces cas recourir à une technique numérique. L'exemple choisi
est une région en forme de L où <fi est nul sur le contour (fig. 7).

Une méthode à éléments finis permet la résolution rapide et

précise du problème malgré la présence de la singularité au

point 0.

On divise d'abord la région en triangles en isolant le point
singulier (fig. 5). Dans chaque triangle, un polynome d'ordre 2

ou 3 est défini et dans la zone hachurée autour du point 0 des

Solution par éléments finis du guide
d'ondes à plaques parallèles avec arête longitudinale

(d/a 0,77 et V 1)
Tableau I

Ordre des
fonctions
test
polynomiales

Nombre de
fonctions
asymptot.

Nombre de
paramètres
variationnels

Erreur normalisée
intégrée sur toute

la région
%

Erreur normalisée
sur une région

proche du point 0 1)
%

2

3

2

2
3

3

>) Cette

Première va

0

0
î
2
1

2

région corr

leur propre

15

28

16

17

29

30

espond à 20

de l'équatio

8,93
6.52

1.53

1,15

1,11

0,92

% de l'ensemble

n de Helmholtz p

9,32
7,84
1,13

0,91

0,87
0,61

de la surface.

jur ta région en L
Tableau II

Ordre des
fonctions

test
polynomiales

Nombre des
fonctions
asymptot.

Nombre de
paramètres

variationnels

Première valeur
propre k21

Erreur par rapport
à la valeur donnée

en [23] •)
%

2

3

2

2

3

3

0
0
1

2
1

2

39

80

40
41

81

82

10,52312

9,95136
9,65012

9,64612
9,64281

9,64182

9,150

3,231

0,108
0,065

0,032
0,021

') La valeur donnée en [23] est 9,639724

Région en forme de L
Division en 14 éléments

fonctions asymptotiques sont ajoutées à l'ensemble
polynomial. Ces fonctions sont du type

r2"/3 sin 2 n 9 / 3 »=1,2...
Pour garantir en plus leur caractère local, on les multiplie

par un facteur d'atténuation e i"' (p 2, par exemple).
Le tableau II donne les résultats obtenus pour le calcul de

la première valeur propre. Ils peuvent être comparés avec ceux
obtenus par Fox, Henrici et Moler [23] utilisant une méthode
quasi analytique. On remarque que même sans l'introduction
des fonctions supplémentaires, une très bonne précision est
obtenue pour un nombre de variables réduit. L'addition des

fonctions asymptotiques toutefois apporte une amélioration
très sensible sans élever notablement ni le temps de calcul, ni la
mémoire utilisée. Connaissant la valeur propre, le potentiel
peut être calculé et les équipotentielles obtenues sont illustrées
à la fig. 8.

6. Conclusion

La méthode des éléments finis se révèle être une alternative
extrêmement intéressante aux méthodes traditionnelles des

différences finies dans le calcul des champs électromagnétiques.
Outre sa simplicité, sa souplesse d'utilisation et sa facilité à

tenir compte des milieux inhomogènes et anisotropes, elle
présente de grands avantages dans le cas de champs singuliers. En
effet, l'adjonction de fonctions asymptotiques aux environs
de la singularité ne perturbe en rien l'arrangement du calcul.

La méthode a été présentée essentiellement pour des
problèmes à deux dimensions. Des cas plus généraux à trois
dimensions peuvent être résolus de la même manière. Il est
évident toutefois que la taille des systèmes à résoudre sera
sensiblement plus élevée, ce qui augmentera le temps de calcul
nécessaire.

Appendice A
Conditions limites non-homogènes

Dans le cas de conditions non-homogènes aux frontières

Bs<P=f (33)

où Bs est un opérateur linéaire, une fonctionnelle F(tP) plus
générale que (12) doit être envisagée. Au lieu de chercher la
solution de
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on examine

L<P g

L*F L(& — x) g — Lx

(34)

(35)

où x est une fonction suffisamment différentiable et satisfaisant

aux conditions limites (33). Cette nouvelle équation porte donc

sur la fonction V 0 — x Qui satisfait à des conditions limites
homogènes. On peut donc en déduire la fonctionnelle
correspondante :

F(¥) <.L<F, ¥>-2<>F,g-Lx> (36)

En introduisant dans (36) la forme de ÎE, on a :

F($) <!$, 0>-2<0, g> +
+ <0, Lx} — <L<P, x> + 2<X, g> — <Lx,X>

(37)

<0,LX>-<L0,x>

00
ën +Ms)-0(s) f(s)

on trouve pour l'opérateur Iaplacien

//>
/ /
/ / /

/ /

N\ \
\ \ \
AW
w \ \ \

i i
i i

l

Fig. 8

Equipotentielles correspondant
à la première fonction propre
de l'équation de Helmholtz

\ \ \ s ^
v \\ S ^

Appendice B

Caractère naturel des conditions de Neumann et de Cauchy

Soit la condition limite de Cauchy (de Neumann si fa (F) 0)

00
ën

Les deux derniers termes sont indépendants de 0 et peuvent
donc être ignorés pendant le processus de minimisation. Il
reste alors à séparer les fonctions 0 et x dans les deux termes

(38)

dans l'espoir de pouvoir garder en fin de compte une expression

de la fonctionnelle ne dépendant plus de x-
Cela est possible par exemple pour les opérateurs de Laplace

et de Helmholtz. Pour des conditions de Cauchy,

+ f8(j).0 f(j) (41)
v ri s

et la fonctionnelle

F (0) / (V 0)2 dß + J (f2 02 — 2 f 0) d,S (42)
d s

II faut démontrer que le fait de minimiser (42) est équivalent
à chercher la solution de l'équation de Laplace avec la
condition limite (41). Cette condition serait donc naturelle pour la
fonctionnelle mentionnée.

Supposons une fonction 0o qui minimise F (0) et une fonction

arbitraire 0i. Une fonction d'essai pourra alors s'écrire

sous la forme
0 0o + a 0i (43)

avec a comme paramètre. Le minimum de F(0) est atteint
lorsque 0 0o et donc:

0L(0)
8 a

0 (44)

(39)

F(0) J(V0)2dß+ [(f2 02 —2f0)dS (40)
q s

Des formes équivalentes peuvent se déduire facilement pour
l'opérateur de Helmholtz ou pour des conditions de Neumann
et de Dirichlet.

En introduisant (43) dans (42) et en dérivant par rapport à a

comme dans (44), on trouve:

/ V 0o) (V 0i) dß + / (f2 0o 0i - f 0i) dS 0 (45)

Appliquant ensuite l'identité de Green au premier terme,
cette équation devient:

/ (- V2 0o) dß + / (f2 0o — /+ -j°) 0i dS 0 (46)

La fonction 0i étant arbitraire, l'équation (6) ne peut être
satisfaite que si

et
0 00
ën

V 2 0o 0

F/a 0o=/

sur D

sur S

(47)

(48)

On a donc bien que la fonction qui minimise (2) satisfait

non seulement à l'équation de Laplace (47) mais aussi a la
condition limite de Cauchy. Un raisonnement identique peut se

faire pour l'équation de Helmholtz.

Appendice C

Conditions d'interface dans la méthode des éléments finis
Si une région présente une constante diélectrique inhomogène,

on peut choisir les éléments de telle façon à ce qu'ils
suivent les interfaces diélectriques. Ces interfaces sont alors

approximées par une suite de segments de droite. Les
conditions à la frontière sont données par

fii
00
ën e2-

00
ën (49)

à la limite de deux milieux homogènes 1 et 2. Elles sont
satisfaites naturellement dans le processus de minimisation de la
fonctionnelle

F(0) /e(V0)2dß (50)
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V (s v 0o) o (57)

où 01 est une fonction test quelconque. Il faut que

8 F (0)
8 a

0

c'est-à-dire

/ er (V 0o) (V 0i) dßi + / e2 (V 0a) (V 0i) dß2 0
Di D2

En utilisant l'identité de Green, (54) se transforme en

- J 01 V(ei V 0o) d&i — f 02 V (e2 V 0o) dß2 +
Di Ü2

+ / er 01 dSi + f £2 01 Ap- dSs 0
8 0o

8n 8 n

où Sr et S2 sont les contours des deux régions 1 et 2. Or les

conditions aux limites étant homogènes, les deux derniers
termes de (55) se résument à l'intégrale sur l'interface diélectrique

Su En rassemblant en outre les deux premiers termes en

un seul, (55) devient:

f 0i V (s V 0o) dß
D

+ f 0i (fir-
Si ^

8 0o
8 n

e2-
8 0o dS 0

(56)

Cette égalité doit être vérifiée pour toute fonction 0i et se

réduit donc à

si
80
8 n

(58)

Fig. 9
Deux triangles de part et d'autre d'une discontinuité diélectrique

Par commodité, mais sans rien enlever à la généralité de la
démonstration, on considère une région divisée en deux
éléments seulement correspondant à deux diélectriques différents

ci et £2 (fig. 9). Supposons de plus que les conditions aux limites
extérieures soient homogènes. L'équation (50) peut alors
s'écrire

F (0) f si (V 0)2 dßi + f £2 (A 0)2 dß2 (51)
Dl Ü2

Soit 0o une fonction test qui minimise (51), qu'on peut
écrire en général

0 0o + a 0i (52)

(53)

(54)

(55)

Une fonction 0o qui minimise l'intégrale (50) satisfait donc
à l'équation de Laplace en milieu inhomogène et les conditions
aux limites sur l'interface diélectriques.

L'auteur tient à remercier le Professeur A. Wexler de

l'Université du Manitoba (Canada) pour l'intérêt et les
nombreux conseils prodigués tout au long de son travail de maîtrise.
Il adresse aussi toute sa gratitude au Professeur F. Gardiol de

l'EPF-L pour l'aide apportée à la rédaction de cet article.
Tous les calculs ont été effectués au Centre de Calcul de

l'EPF-L. La compétence de son personnel a été très appréciée.
Le travail a été en partie soutenu par le Fonds National (Crédit
No 2.647.72) et par la Fondation Hasler (Projet AGEN No 16).

Bibliographie
[1] G. E. Forsythe and W. R. Wasow: Finite difference methods for par¬

tial differential equations. New York, John Wiley, 1960.
[2] O. C. Zienkiewicz: La méthode des éléments finis appliquée à l'art de

l'ingénieur. Paris, Ediscience, 1973.
[3] A. Wexler: Computation of electromagnetic fields. Trans.. IEEE MTT

17(1969)8, p. 416...439.
[4] R. F. Harrington: Field computation by moment method. New York,

Macmillan, 1968.
[5] R. S. Varga: Matrix iterative analysis. Englewood Cliffs, N. J., Prentice

Hall, 1962.
[6] P. Laasonen: On the truncation error discrete approximation to the

solutions of Dirichlet problems in a domain with corners. Journal of the
Association for Computing Machinery 5(1958)1, p. 32...38.

[7] J. Milne: Numerical solution of differential equations. New York, John
Wiley, 1953.

[8] S. G. Mikhlin: Variational methods in mathematical physics. Oxford/
New York, Pergamon Press, 1964.

[9] P. Silvester: A general high-order finite-element waveguide analysis pro¬
gram. Trans. IEEE MTT 17(1969)4, p. 204...210.

[10] D. A. MacDonald: Solution of the incompressible boundary layer equa¬
tions via the Galerkin Kantorovitch technique. Journal of the Institute
of Mathematics and its applications 6(1970)2, p. 115...130.

[11] R. M. Bulley: Analysis of the arbitrarly shaped waveguide by polyno¬
mial approximation. Trans. IEEE MTT 18(1970)12, p. 1022... 1028.

[12] H. Motz: The treatment of singularities of partial differential equations
by relaxation methods. Quarterly of Applied Mathematics 4(1946)1,
p. 371...377.

[13] L. Fox: Numerical solution of ordinary and partial differential equa¬
tions. Oxford a. o., Pergamon Press, 1962.

[14] L. Fox and R. Sankar: Boundary singularities in linear elliptic differen¬
tial equations. Journal of the Institute of Mathematics and its
Applications 5(1969)3, p. 340...350.

[15] M. C. Decréton: Treatment of singularities in the finite-element method.
Thesis of the University of Manitoba, Canada, 1972.

[16] D. J. Richards and A. Wexler: Finite-element solutions within curves
boundaries. Trans. IEEE MTT 20(1972)10, p. 650...657.

[17] P. Daly: Hybrid-mode analysis of microstrip by finite-element methods.
Trans. IEEE MTT 19(1971)1, p. 19...25.

[18] P. Silvester: Finite-element programs for the scalar Helmholtz equation.
IEEE International Convention Digest -(1971), p. 618...619.

[19] B. M. MacDonald and A. Wexler: Finite-element solution of unbounded
field problems. Trans. IEEE MTT 20(1972)12, p. 841...847.

[20] M. V. K. Chari and P. Silvester: Finite-element analysis of magnetically
saturated D-C machines. Trans. IEEE PAS 90(1971)5, p. 2362...2372.

[21] A. Wexler: Finite-element field analysis of an inhomogeneous, aniso¬
tropic, reluctance machine rotor. Trans. IEEE PAS 92(1973)1, p. 145
...149.

[22] G. G. MacFarlane: Quasi-stationary field theory and its application to
diagrams and junctions in transmission lines and wave guides: J. IEE
Part IIIA 93(1946)4, p. 703...719.

[23] L. Fox, P. Henrici and C. Moler: Approximation and bounds for eigen¬
values of elliptic operators. SIAM Journal of Numerical Analysis
4(1967)-, p. 89...102.

Adresse de Fauteur:
Marc C. Decréton, Chaire d'Electromagnétisme et d'Hyperfréquences,
EPF-L, chemin de Bellerive, 16, 1007 Lausanne.

Bull. SEV 64(1973)19,15. September (A 837) 1203


	Calcul des champs éléctromagnétiques par la méthode des éléments finis

