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Theorie der Streuung in Dauermagnetkreisen
Von C. Schick

Es wird eine neue elementare Theorie der Streuung behandelt, die
bei der Berechnung der Streuung von Magnetkreisen mit Dauermagne-
ten von sehr unterschiedlichen Abmessungen unter bestimmten Bedin-
gungen eine gute Niherung ermoglicht.

1. Einleitung

Der Entwickler von Dauermagnetkreisen wird immer mit
den gleichen typischen Schwierigkeiten bei der Berechnung der
Streufliisse konfrontiert. Wegen der mathematischen Kompli-
ziertheit der Maxwellschen Gleichungen [1...5]1) hat man nach
Niherungsformeln fiir typische Magnetkreise gesucht [5...7]
oder numerische Methoden fiir Berechnungen mittels Compu-
ter entwickelt [8].

Zweck der vorliegenden Arbeit ist es, eine neue Theorie der
Streuung vorzustellen, die auf einer als Postulat angenomme-
nen Formel beruht. Diese Grundgleichung bezieht sich auf
zwei Magnetscheiben D; und D2 in einer Anordnung entspre-
chend Fig. 1. Es wird zunéchst versucht, die Definitionsglei-
chung anhand eines einfachen zweidimensionalen Modells zu
begriinden, um sie nachher fiir den praktischen Fall eines Ma-
gnetsystems mit Kurzschlussjoch und Luftspalt zu verallgemei-
nern (Fig. 2).

2. Einige Definitionen

Fig. 2 zeigt einen typischen Magnetkreis, bestehend aus
zwei gleichen Dauermagneten (/) und (2) mit dem Querschnitt
Ag und Umfang Ua, aus einem verdnderlichen Luftspalt der
Linge ¢ und aus einem Kurzschlussjoch (3), dessen Permeabi-
litdt unendlich (uuo = o) angenommen wird; Fig. 3 zeigt das
entsprechende Ersatzschaltbild [9]. Zur Vereinfachung wird
der magnetische Widerstand zwischen dem Kurzschlussjoch
und den Magneten vernachléssigt. In dieser Figur sind ri, ra
und R die magnetischen Widerstinde der Magnete, des Streu-
flusses bzw. des Kurzschlussjoches, und 1/r ist der «totale»
magnetische Leitwert des Luftspaltes, der dem Volumen
AmA'C'nCA entspricht. Selbstverstdndlich besitzen die Ma-
gnete eine magnetomotorische Kraft F [9], welche die Fliisse
@, &4 und P, in den magnetischen Widerstianden ri, rq und r
erzeugen.

Zweckmaissigerweise wird nun der totale Streufaktor o wie

folgt definiert
.o
T D
Mit Hilfe der Kirchhoffschen Sitze lésst sich leicht aus dem
Ersatzschaltbild von Fig. 3 [9] folgender Ausdruck fiir den

Streufaktor o fiir R = 0 ableiten

r
g — ] + Ti’d

Durch Einfiihrung des Verhiltnisses ¢ zwischen der Energie,
die dem gemeinsamen Fluss E. = % @.2r entspricht, und der

1) Siehe Literatur am Schluss des Aufsatzes.
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621.3.042.7 : 621.318.2

On propose une nouvelle théorie élémentaire de la dispersion
magnétique, qui, dans certaines conditions, donne une bonne approxi-
mation dans le calcul de la dispersion des circuits magnétiques a
aimants permanents de dimensions trés diff érentes.

Energie des Streuflusses Eq = Eq, + E4, = @42 ra ergibt sich
aus Fig. 3 fiur R = 0, dass

- =0 —1 1)

Ganz allgemein kann das Verhiltnis ¢ vom Ausdruck (1)
auch fiir ein Magnetsystem wie das in Fig. 1 angewandt wer-
den. Dabei ist aber zu bedenken, dass zur Berechnung von Eq
und E. in GI. (1) die Integration der Energiedichte iiber den
ganzen Raum, d.h. bis ins Unendliche, auszufiihren ist, jedoch
mit Ausnahme des Raumes, der von den Magneten selbst aus-
gefullt ist.

3. Grundgleichung der Streuung

In Fig. 1 ist eine symmetrische Anordnung von zwei Dauer-
magnetscheiben D; und D2 (mit der Magnetisierung M1 bzw.
= . . .o, . . .
M>) dargestellt. Fiir eine bestimmte Position der Scheiben im

Fig. 1
Offener Magnetkreis

Dy und Dy Dauermagnetscheiben;
Dy’ Magnetscheibe Dy nach einer infinitesimalen Bewegung;
@41 und P9 Streufliissse von Dy bzw. Dy;
¢q und cp Aussenlinien von D bzw. Dy;
@, gemeinsamer Fluss durch D{ und Dy
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Fig.2
Magnetkreis mit Luftspalt und Kurzschlussjoch

1, 2 Dauermagnete;
3 Kurzschlussjoch;
m, n Grenzen der Streuzone;

S
M Magnetisierungsvektor;
@ Streufluss;
@, gemeinsamer Fluss durch die Magnete / und 2

Raum erhélt man einen eindeutig definierten Wert fiir ¢ nach
Gl. (1). Man betrachte jetzt eine infinitesimale Bewegung der
Scheibe Dz in Richtung P (Symmetrieachse), bis Position Ds’
erreicht wird. Bevor die Bewegung beginnt, bilden die Kurven
Ci und Cz zusammen mit der Richtung von © eine Mantel-
fliche S. Nach der infinitesimalen Bewegung bilden ebenso die
Kurven Ci und C2’ zusammen mit der Richtung v eine neue
Mantelflache § + dS. Unter diesen Bedingungen kann nun
folgende Definition des «idealen» Magnetkreises eingefiihrt
werden: Zwei Scheiben D; und D2 (Fig. 1) bilden dann einen
idealen Magnetkreis, wenn sie die Bedingung

d2g  de

dsz T dS 2)
erfiillen, die auch wegen GI. (1) zu

d?o do

ast ~ Pas @)

umgeschrieben werden kann; hierin ist D eine Konstante, die
nur von den Abmessungen der Scheiben abhidngt, nicht aber
von ihrer relativen Position zueinander. Diese Definition der
idealen Streuung ist rein intuitiv und muss daher als eine Ni-
herungshypothese betrachtet werden, deren Geltungsbereich
fiir wirkliche Magnete nur durch Vergleich mit Erfahrungs-
werten ermittelt werden kann.

In den ndchsten Abschnitten [Gl. (10)] wird ein Beweis fiir
die Giiltigkeit der eben eingefiihrten Definition anhand eines
zweidimensionalen Modells abgeleitet, da fiir den dreidimen-
sionalen Fall die mathematischen Schwierigkeiten gewaltig an-
steigen.

4. Ableitung der Grundgleichung

Auf Grund der Aquivalenz zwischen Magneten und Spulen
soll nun GI. (2) fiir einen einfachen Fall (Fig. 4 und 5) begriin-
det werden. Dieser besteht aus vier unendlich langen Dréhten,
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durch die paarweise stationdre Strome in entgegengesetzter
Richtung fliessen. Wie iiblich werden die Drihte in Fig. 4
senkrecht zur Papierebene dargestellt, wobei z.B. Q1 und Q2
die Punkte sind, durch die die Stréme in die Papierebene ein-
fliessen. Die Drihte P1, Q1 konnen zusammen als eine unend-
lich lange rechteckige Spule von einer einzigen Windung ge-
dacht werden, die vom Strom I1 durchflossen wird; das gleiche
gilt fiir P2 Q2 und lo. Ist aber I> ~ 0, so bilden die von I; er-
zeugten Feldlinien eine Schar von Kreisen Cr mit P; und Q; als
Grenzpunkte. Diese Kreise schneiden die Abszissenachse OP;
in den Punkten X und X" der Koordinaten OX = x und OX’ =
x’, so dass

—1

Es ist nun leicht, aus Fig. 4 folgenden Ausdruck zu finden:

a(a— x)?

R=@@—x)(x"—a) = N

Durch Differentiation dieses Ausdrucks erhdlt man:

dx ij X V; @)

d ~ (a+xla

Offensichtlich bilden die zwei Drihtepaare P1 Q1 und P2Q2
(deren Radien sehr klein gegeniiber J, jedoch nicht Null sind)
je eine Induktivitit L1 bzw. Lo sowie eine Gegeninduktivitit
M. Unter Beriicksichtigung, dass die elektromagnetische Ener-
gie als Funktion von L1, L2 und M ausgedriickt werden kann,
erhélt man fur ¢

Edlvjlj Eds B (Li — M) 1127t(1,2 — M) 12 K Ko
$=" B M (I + I)? M
(%)

worin K7 und Kj als Konstanten angenommen werden konnen,
weil man annehmen kann, dass Li, L2, I» und Iz konstante
Werte haben. Durch Differentiation von Gl. (5) ergibt sich:
Ki-dM
dg = ~ 1]‘4—2 (6
Man beachte, dass die Gegeninduktivitdit M auch als das
Verhiltnis @/l angegeben werden kann, worin @. der von

Ty iy
ﬁd ﬁd a
hi r T
—_—
"R g g
R
Fig. 3

Elektrisches Ersatzschaltbild

R magnetischer Widerstand des Kurzschlussjoches;

r magnetischer Widerstand des Luftspaltes;

rq magnetischer Streuwiderstand;
r; innerer magnetischer Widerstand des Magneten;
@, Nutzfluss im Luftspalt;
@, Streufluss;
@; Fluss im Magneten;
F magnetomotorische Kraft des Magneten
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Fig. 4
Feldkurvenverlauf bei der Zweidrahtleitung PlQ1
C, Aquipotentialkreis;
C; beliebiger Kreis des Feldlinienbildes;

P>Q5 bewegliche Zweidrahtleitung;
X, X’ Schnittpunkte von C; mit der Abszissenachse;

0 Abstand zwischen P{Q¢ und P3Qs

dem Drihtepaar P;Q: erzeugte magnetische Teilfluss ist, der
durch das Drihtepaar P2Q» hindurchtritt. Auf der anderen
Seite ist der Fluss zwischen O2P2 fiir I: = 0 (Fig. 4) gleich
dem Fluss zwischen O und X. Daraus folgt

_aix_)

Fodx
L = L @)

und
dx
Aot g ®

Durch Addition eines konstanten Parameters Q zu beiden
Gliedern von GI. (5) erhilt man

p+o=LtOM ©)

Das Einsetzen von Gl. (4), (7), (8) und (9) in Gl. (6) ergibt

K2 (p + Q) x Vax

Y @D+ M) @+ )] (5 i
a2 — x 1 1 a + x)In
a—Xx
was umgeschrieben werden kann in die Form
dp =n(p + Q) dd 11)

worin zur Abkiirzung ein neuer Ausdruck # eingefiihrt wurde

n = Ks n_ ks 73 12)
72
mit

1Vt

nm =

(1+t)(lft2)ln(ij;)
und aus Gl. (7)
- 141t
’72—1 +Qzln(1—_—t)

worin ¢ = x/a als neue normierte Variable eingefiihrt wurde.
Fig. 6 stellt die Kurven #1 und #» fiir Qs = 0,75 dar. Man
merkt sofort, dass diese Kurven eine ziemlich gerade Zone auf-
weisen, welche es erlaubt, folgende Nidherungen zu machen:
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m ~ 03¢+ 0,14 (13)

(14)

und
2 ~1+ Q22,5¢t— 0,15)

Aus dem Verhéltnis

By 0,14 B
250s 1-—-01505 2

ergibt sich unter Beriicksichtigung von GI. (12), (13) und (14)
der Wert Q2 = 0,75, woraus folgt:

n~ Kzq = 0,16 K3

Dies bedeutet, dass fiir einen bestimmten Bereich von ¢ der
Wert 7 als konstant betrachtet werden kann. Fig. 7 zeigt die
Kurve 53, die dem Wert Q2 = 0,75 entspricht. Fiir t = 0 (d.h.
fiir 6 = oo) oder wenn 7 sich dem Wert 1 ndhert (d.h. fiir 6 = 0)
darf GI. (10) nicht mehr angewandt werden. In solchen Fillen
ist jedoch die Aquivalenz zwischen dem Magnetstreifen und
der einwindigen Spule nicht mehr haltbar, weil die Magnetisie-
rung des Magnetstreifens inhomogen ist. Dieser Effekt wirkt
zugunsten der Konstanz von #, was qualitativ leicht einzusehen
ist. Wire ndmlich die Magnetisierung vollkommen homogen,
so miisste fiir # = 1 die Induktion unendlich sein, was physika-
lisch unmdglich ist. Ausserdem kann man fiir # = 0 experi-
mentell nachweisen, dass die Induktion des Magnetstreifens
kleiner ist als der entsprechende Wert vom #dquivalenten Mo-
dell mit vier Driahten, d.h. von einem Modell mit einer voll-
kommen homogenen Magnetisierung.

In einer ersten allgemeinen Néherung darf man daher die
Konstanz von 7 fiir den ganzen Bereich von # annehmen. Das
fithrt zu folgendem Ausdruck fiir die Beschreibung der idealen
Streuung

dp = K (p + Q) dd (15)
oder in einer anderen Form nach Differentiation
dzp . de
doz do (16

Es bereitet nun keine Miihe mehr, aus GI. (5) zu zeigen, dass
Gl. (16) nicht nur fiir L1 = Lo, I1 = I'und Iz = 0 gilt, sondern
auch fiir I1 = Is = I oder, wegen der Aquivalenz zwischen den
Drihten von Fig. 4 und dem Magnetstreifen von Fig. 5, auch
fiir M 1= ]\72 — M. Auf der anderen Seite ist ¢ ein Formfaktor
der Dimension 1, der sowohl fiir Magnetscheiben als auch fiir
den unendlich langen Magnetstreifen endliche Werte ergibt.
Aus diesem Grunde steht nichts mehr im Wege, die Definition
(2) auch fiir scheibenformige Magnete anzuwenden. Diese Re-
sultate konnen als ein Beweis fiir die Giiltigkeit der postulierten
Gl. (2) fiir den Fall D1 = D2 (Fig. 1) gelten, weil dann dé pro-
portional zu dS ist.

5. Magnetkreis mit Kurzschlussjoch

Die Magnete eines wirklichen Magnetsystems sind in der
Praxis nicht diinn genug im Vergleich zu ihrem Durchmesser,
um die vorausgegangene Theorie ohne weiteres anwenden zu
konnen. Ausserdem besitzen sie in der Regel noch ein Kurz-
schlussjoch. Um diese Umstédnde zu beriicksichtigen, kann of-
fenbar die Analogie des fiktiven magnetischen Kondensators
[10] zu Hilfe genommen werden. Durch diese Analogie wird
ein Magnetsystem mit verdnderlichem Luftspalt 6 in Beziehung
zu einem fiktiven magnetischen Kondensator gebracht, dessen
Klemmenspannung sich mit der Zeit dndert, weil er sich z. B.

(A 440) 627
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Fig. 5
Potential des Magnetstreifens PlQ 1

P5Qy beweglicher Magnetstreifen;

—
M Magnetisierungsvektor;
o0 Abstand zwischen beiden Magnetstreifen

entlddt. Im Bildraum dieser Analogie entspricht also die Luft-
spaltlinge & des Magnetsystems einem Zeitintervall 7 eines fik-
tiven magnetischen Kondensators. Ebenso transformiert sich
eine magnetische Energie E2/E: zwischen zwei Energiewerten
in eine Potentialdifferenz V> — ¥ und ein Volumen v in eine
Fliche S. Nun aber verdndert sich die Klemmenspannung
eines Kondensators mit initialer Ladung, der durch einen Wi-
derstand mit einer Spannungsquelle verbunden wird, geméss
einer exponentiellen Funktion der Zeit in der Form:
t

(Ve — Vii=(Va— V)a + (Va — V)z-e RC (17)

Dasselbe muss mit dem transformierten fiktiven magneti-
schen Kondensator in der erwihnten Analogie geschehen.
Durch Anwendung der postulierten Transformationsregeln re-
sultiert unmittelbar

(Eh - @+ @k

oder umgeschrieben

a8

)

9 = oA+ pB-€ 19)

worin ¢, ¢ und A Konstanten sind. Durch Differentiation des
letzten Ausdrucks erhdlt man nach kurzer Umformung wieder
Gl. (16), wodurch die Analogie begriindet wird. Die zwei Ma-
gnetscheiben in Fig. 1 ergeben im «Bildraum» dieser Analogie
einen Kugelkondensator C zum Potential V1, der durch einen
Widerstand R mit der Erde (Potential V2) verbunden ist. Auf
der anderen Seite kann man sich jeden Magnet eines Systems
wie das in Fig. 2 so vorstellen, als wiirde er aus einer Reihe
verschiedener in Serie geschalteter Magnetscheiben D1, Ds ...
Dq [Magnet (1)] und Dy’, D2’... Dy’ [Magnet (2)] bestehen, so
dass alle zusammen wie ein einziger Magnet wirken. Es sei @,
der «gemeinsame» magnetische Fluss fiir alle Scheiben. Im
Bildraum dieser Anordnung wird wiederum ein fiktiver ma-
gnetischer Kondensator betrachtet werden miissen, der ebenfalls
aus einer Reihe Kugelkondensatoren Ci, Cs ... Cn bestehen
muss, die sich kurzgeschlossen auf einem gemeinsamen Poten-
tial befinden und durch einen Widerstand mit der Erde ver-
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bunden sind. Sie werden zusammen eine dquivalente Kapazitit
C aufweisen, und ihr Verhalten kann durch genau denselben
Ausdruck (17) beschrieben werden. Fiir ein solches System
werden daher die vorher eingefiihrten Transformationsregeln
nochmals dieselbe GI. (18) ergeben, worin E: jetzt die Energie
ist, die dem gemeinsamen Fluss @. entspricht, und E:z die
Streuenergie. Das «gemeinsame» elektrostatische Potential der
Kugelkondensatoren Ci, Cs ... Cq entspricht daher in dieser
Analogie der «gemeinsamen» Energie durch alle Magnetschei-
ben D1, Ds... Dun, D1’, Do’ ... Dn’. Offensichtlich sollte diese Vor-
stellung auch fiir magnetisierte Magnetpaare mit den gleichen
Abmessungen, aber mit unterschiedlicher Magnetisierung gel-
ten. Diese Analogie legt die Annahme nahe, dass die Gleichung
des idealen Magnetkreises (2) nicht nur fiir den Fall der Ma-
gnetscheiben (Fig.1) brauchbar ist, sondern auch fiir ein Ma-
gnetsystem mit dickeren Magneten und mit Kurzschlussjoch
entsprechend Fig. 2.

6. Praktisches Beispiel

Unter Beriicksichtigung von Gl. (1) ergibt sich nach Inte-
gration von GI. (16) Fig. 2

=1+ CQOQ—e 0L (20)

worin C und n Konstanten sind, die nur von den Abmessungen
der Magnete abhiangen; L ist die Linge der Magnete. Wenn
die Magnete nicht zylindrisch, sondern rechteckig oder viel-
eckig sind, ist es zweckmassig, folgende Abkiirzungen einzu-

fithren \
_ 2 T Da
Ag |5 RA -—"—r
und

Us =27 Ry = 1t Dy

worin Ry und R die Radien zweier,Kreise sind, die denselben
Umfang U, bzw. dieselbe Querschnittsfliche 4, wie die Ma-
gnete aufweisen.

In anderen Arbeiten wurden bereits Formeln fiir die Be-
rechnung der Konstanten C und n hergeleitet, die nachstehend
in Funktion von Dy, D und L wie folgt umgeschrieben werden :

4 4
3 o 5
I n,
2 3z
<
=1 7
057 n
0 02 04 06 08
f————
Fig. 6

Werte von 71 und 75 in Funktion von ¢

Bull. ASE 64(1973)10, 12 mai



aDu+ L +)YDuL

= 21
C 22 D 21
und
. 2L 5.k nt Dy
n=copr 3Dt + I D) @
gliltig fir
Du/L > 1

Mit den Werten Ag = 560 mm, Uy = 156 mm und L =
15 mm fiir ein System (mit Magnetblockchen von 8 x 70 mm),
wie es in [6] beschrieben wurde, ergibt sich aus Gl. (20...22):

=1+ 07524 [1 — exp (— 4,732 §/L)] (23)
TabelleI
mém ’ 9o ’ om
1 1,204 1,24
3 1,460 1,46
5 1,597 1,61

Tabelle I zeigt einen Vergleich zwischen den gemessenen
Werten om [6] und den mittels Gl. (23) berechneten Werten oe.

Die etwas grossere Abweichung fiir 6 = 1 mm kann viel-
leicht vom magnetischen Widerstand des Kurzschlussjoches
herriihren, dessen Effekt, wie erwartet, fiir diesen kleinen Wert
von J/L nicht vernachlissigt werden sollte. Andere praktische
Falle wurden bereits in [11] beschrieben.

7. Ein unsymmetrischer Fall

Das Resultat von Gl. (16) kann fiir den Fall verallgemeinert
werden, bei dem die Breite der zwei Spulen (Fig. 8) nicht gleich
ist, d.h. wenn P; Q1 = P2 Q2. Aus dieser Figur ist jedoch leicht
ersichtlich, dass der Fluss in P3Qs gleich ist wie in P2Qs.
So besteht das Problem einfach darin, eine Beziehung zwischen
0 und J1 zu finden. Aus geometrischen Betrachtungen in Fig. 8
erhdlt man folgende Ausdriicke

2 =(@—x)(x"—a
und
0 = (a@a — x — o) (x’ — a + o)

Durch Elimination von x’ und x aus diesen Gleichungen
und unter Beriicksichtigung, dass xx’ = a2, ergibt sich:

0,25}
0,201
0,151

010+
gl

005+

0 02 04 06 ' 08
t

Fig.7
Werte von 74 in Funktion von ¢

Bull. SEV 64(1973)10, 12. Mai

Fig. 8
Spezialfall von Windungen mit unterschiedlicher Breite

P{Q; ruhende Zweidrahtleitung;
PyQq bewegliche Zweidrahtleitung mit kleinerer Breite;
P3Qj fiktive Zweidrahtleitung mit gleicher Breite wie P1Q

pt =t + a5 =00 (1 -2 @9
In dieser Gleichung ist jedoch /1 — do/a eine Konstante,
so dass man schliesslich

dp~ dé ~ dS

schreiben kann, worin dS das Differential der Mantelfliche
(Fig. 8 und 1b) bedeutet, die sich aus einer differentiellen Be-
wegung zwischen den zwei Scheiben D; und D3 ergibt. Das ist
die Begriindung fiir die Definition (2), die eingangs in einer
allgemeineren Form angegeben wurde.

8. Schlussfolgerungen

Aus praktischer Erfahrung wurde bereits gezeigt [9...11],
dass man mit Hilfe der Gl. (20)...(22) ausreichend genaue Er-
gebnisse erzielen kann. Dariiber hinaus fithrt die Annahme,
dass fiir den idealen Magnetkreis # [Gl. (11)] konstant ist, zu
besseren Resultaten [11], als man von Fig. 7 erwarten konnte.
Nachfolgend wird versucht, eine mogliche Erkldrung fiir diese
Tatsache zu finden.

Magnete und Spulen konnen nur dann als dquivalent ange-
nommen werden, wenn die Magnetisierung der Magnete abso-
lut homogen ist. Am Rande der Magnete ist dies jedoch nicht
gegeben, weil dort die Induktion B theoretisch einen unendlich
grossen Wert annehmen miisste, was der Erfahrung wider-
spricht. Eine andere Erfahrungstatsache ist, dass in der Mitte
eines Scheibenmagnets die Induktion kleiner ist als der ent-
sprechende Wert der dquivalenten Spule. Durch die inhomo-
gene Magnetisierung hat jeder Elementarmagnet einen eigenen
Arbeitspunkt in der Hysteresefliche. Diese ist jedoch eine labile
Arbeitszone, so dass sich im Prinzip die Elementarmagnete bis
zu einem gewissen Grad umordnen konnen. Die Praktiker be-
schreiben diesen Sachverhalt mit der Aussage, dass die Feld-
linien ihren «eigenen Weg» und die Elementarmagnete ihre
«eigene Position» suchen. In der Vorstellung des idealen Ma-
gnetkreises ordnen sich die Elementarmagnete derart, dass
GI. (2) erfiillt wird. Fiir den Fall, dass sich die Elementarma-

(A 442) 629



gnete nicht mit voller Freiheit umordnen konnen, wire es mog-
lich, die Gleichung der idealen Streuung in diesem Sinne, z.B.
wie folgt, neu zu formulieren

dz e dp \2 .
(35 — 2 g&) =min
Von einem rein formalen Standpunkt aus betrachtet gibt es

eine Analogie zwischen letzterer Gleichung und der Gleichung
der Wirmediffusion (z.B. [12]),
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P =0

wenn man ¢ = x = § identifiziert. Die ideale Streuung kann
deshalb auch formal als jene definiert werden, die den mini-
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ANYOS JEDLIK
1800-1895

Dafiir, dass der Name Jedlik praktisch unbekannt blieb, ist der grenzenlos bescheidene
Benediktiner-Priester selber verantwortlich, Er nahm an, seine in Tat und Wahrheit be-
deutenden Entdeckungen und Erfindungen seien nichts Besonderes, weshalb er nie etwas
dariiber veroffentlichte.

Jedlik kam am 11. Januar 1800 als Kind eines armen ungarischen Bauern in Szémo
zur Welt. Um den intelligenten Jungen schulen zu konnen, bestimmten ihn seine Eltern
fiir den geistlichen Beruf. Mit 17 Jahren trat er dem Orden bei, schloss 1822 seine Mathe-
matik- und Physikstudien mit dem Doktorgrad ab und erhielt 1825 die Priesterweihe.
Seiner Neigung entsprechend, betitigte er sich aber als Physiker; zuerst an Klosterschulen,
bis er 1840 an die Universitdat von Pest berufen wurde, wo er bis 1877 wirkte.

Die Arbeiten von Oersted, Ampére und Faraday hatten den jungen Gelehrten so fas-
ziniert, dass er sich ebenfalls mit der Elektrizitdt zu beschiftigen begann. 1828 schuf er
einen «rotierenden elektromagnetischen Apparat», d.h. einen Motor, bei dem er bereits
nicht Stahlmagnete, sondern Elektromagnete beniitzte. Erst drei Jahre spiter traten Dal
Negro in Italien und Joseph Henry in den USA mit ihren «Motor-Modellen» auf den Plan,
die als die iltesten gelten.

1861 erfand Jedlik den «Unipolar-Induktor». Das war eine ausgekliigelt gebaute Uni-
polarmaschine — die Gleichstrom erzeugte — und bei der bereits das elektrodynamische
Prinzip zur Anwendung kam, mit dem Siemens im Januar 1867 die Fachwelt in Staunen
versetzte.

Zwei Jahre spiter baute Jedlik einen Apparat, bei dem er eine grossere Zahl von
Leidener-Flaschen in Parallelschaltung auflud, die Kondensatoren dann in Serie schaltete
und so «kréftige Funken» erzeugen konnte. 1867 verwendete er rohrenférmige Konden-
satoren, mit denen es ihm gelang, an der Wiener Weltausstellung von 1873 Funken von
90 cm Lénge vorzufithren. Heute wiirden wir sagen, er habe einen Stossgenerator von
500 kV gebaut.

Die Ungarn verehren Jedlik als ihren grossen Entdecker und Erfinder, und seine Appa-
raturen werden an der Budapester Universitidt sorgfiltig gehiitet.

Als kurz vor seinem am 12. Dezember 1895 erfolgten Tod ein junger Kleriker ihn fragte, warum er sich der Physik und nicht der Theologie
gewidmet habe, antwortete ihm Jedlik: «Ich lernte Gott viel besser kennen durch die Physik als Sie durch die Theologie.»

H. Wiiger

630 (A 443) Bull. ASE 64(1973)10, 12 mai



	Theorie der Streuung in Dauermagnetkreisen

