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Theorie der Streuung in Dauermagnetkreisen
Von C. Schick

Es wird eine neue elementare Theorie der Streuung behandelt, die
bei der Berechnung der Streuung von Magnetkreisen mit Dauermagneten

von sehr unterschiedlichen Abmessungen unter bestimmten
Bedingungen eine gute Näherung ermöglicht.

621.3.042.7 : 621.318.2

On propose une nouvelle théorie élémentaire de ta dispersion
magnétique, qui, dans certaines conditions, donne une bonne approximation

dans le calcul de la dispersion des circuits magnétiques à
aimants permanents de dimensions très différentes.

1. Einleitung
Der Entwickler von Dauermagnetkreisen wird immer mit

den gleichen typischen Schwierigkeiten bei der Berechnung der
Streuflüsse konfrontiert. Wegen der mathematischen Kompliziertheit

der Maxwellschen Gleichungen [1...5]1) hat man nach

Näherungsformeln für typische Magnetkreise gesucht [5...7]
oder numerische Methoden für Berechnungen mittels Computer

entwickelt [8].
Zweck der vorliegenden Arbeit ist es, eine neue Theorie der

Streuung vorzustellen, die auf einer als Postulat angenommenen

Formel beruht. Diese Grundgleichung bezieht sich auf
zwei Magnetscheiben Di und D2 in einer Anordnung entsprechend

Fig. 1. Es wird zunächst versucht, die Definitionsgleichung

anhand eines einfachen zweidimensionalen Modells zu

begründen, um sie nachher für den praktischen Fall eines

Magnetsystems mit Kurzschlussjoch und Luftspalt zu verallgemeinern

(Fig. 2).

2. Einige Definitionen

Fig. 2 zeigt einen typischen Magnetkreis, bestehend aus

zwei gleichen Dauermagneten (1) und (2) mit dem Querschnitt
A g und Umfang C/a, aus einem veränderlichen Luftspalt der

Länge ô und aus einem Kurzschlussjoch (J), dessen Permeabilität

unendlich (ji/io 00) angenommen wird; Fig. 3 zeigt das

entsprechende Ersatzschaltbild [9]. Zur Vereinfachung wird
der magnetische Widerstand zwischen dem Kurzschlussjoch
und den Magneten vernachlässigt. In dieser Figur sind n, n
und R die magnetischen Widerstände der Magnete, des

Streuflusses bzw. des Kurzschlussjoches, und 1/r ist der «totale»

magnetische Leitwert des Luftspaltes, der dem Volumen
AmA'C'nCA entspricht. Selbstverständlich besitzen die

Magnete eine magnetomotorische Kraft F [9], welche die Flüsse

<Pi, 0,\ und 0c in den magnetischen Widerständen n, r<-, und r
erzeugen.

Zweckmässigerweise wird nun der totale Streufaktor a wie

folgt definiert
0i

G ZiT0c

Mit Hilfe der Kirchhoffschen Sätze lässt sich leicht aus dem

Ersatzschaltbild von Fig. 3 [9] folgender Ausdruck für den

Streufaktor a für R 0 ableiten

Durch Einführung des Verhältnisses tp zwischen der Energie,

die dem gemeinsamen Fluss Ec — ^ ^Jc2r entspricht, und der

0 Siehe Literatur am Schluss des Aufsatzes.

Energie des Streuflusses Ea Ed, + £Vi2 0a2 i\i ergibt sich

aus Fig. 3 für R 0, dass

9 fi <7 - 1 (1)
zip

Ganz allgemein kann das Verhältnis tp vom Ausdruck (1)
auch für ein Magnetsystem wie das in Fig. 1 angewandt werden.

Dabei ist aber zu bedenken, dass zur Berechnung von Ed

und Ec in Gl. (1) die Integration der Energiedichte über den

ganzen Raum, d.h. bis ins Unendliche, auszuführen ist, jedoch
mit Ausnahme des Raumes, der von den Magneten selbst
ausgefüllt ist.

3. Grundgleichung der Streuung

In Fig. 1 ist eine symmetrische Anordnung von zwei
Dauermagnetscheiben Di und Do, (mit der Magnetisierung Mi bzw.

Mf) dargestellt. Für eine bestimmte Position der Scheiben im

Offener Magnetkreis

Di und Dg Dauermagnetscheiben;
Dg' Magnetscheibe Dg nach einer infinitesimalen Bewegung;

<P^l und 0d2 Streuflüsse von Dj bzw. Dg;
ci und Cg Aussenlinien von D| bzw. Dg;
<PC gemeinsamer Fluss durch Dj und Dg

Bull. SEV 64(1973)10, 12. Mai (A 438) 625



d2 <p

dS2
D dtp

dS

erfüllen, die auch wegen Gl. (1) zu

d2 a
dS2^ D

da
dS

(2)

(3)

umgeschrieben werden kann; hierin ist D eine Konstante, die

nur von den Abmessungen der Scheiben abhängt, nicht aber

von ihrer relativen Position zueinander. Diese Definition der
idealen Streuung ist rein intuitiv und muss daher als eine

Näherungshypothese betrachtet werden, deren Geltungsbereich
für wirkliche Magnete nur durch Vergleich mit Erfahrungswerten

ermittelt werden kann.
In den nächsten Abschnitten [Gl. (10)] wird ein Beweis für

die Gültigkeit der eben eingeführten Definition anhand eines

zweidimensionalen Modells abgeleitet, da für den dreidimensionalen

Fall die mathematischen Schwierigkeiten gewaltig
ansteigen.

4. Ableitung der Grundgleichung

Auf Grund der Äquivalenz zwischen Magneten und Spulen
soll nun Gl. (2) für einen einfachen Fall (Fig. 4 und 5) begründet

werden. Dieser besteht aus vier unendlich langen Drähten,

durch die paarweise stationäre Ströme in entgegengesetzter
Richtung fliessen. Wie üblich werden die Drähte in Fig. 4

senkrecht zur Papierebene dargestellt, wobei z.B. Qi und Qz
die Punkte sind, durch die die Ströme in die Papierebene ein-
fliessen. Die Drähte Pi, Qi können zusammen als eine unendlich

lange rechteckige Spule von einer einzigen Windung
gedacht werden, die vom Strom h durchflössen wird ; das gleiche
gilt für Pz Qz und h. Ist aber h *> 0, so bilden die von h
erzeugten Feldlinien eine Schar von Kreisen Ci mit P\ und Qt als

Grenzpunkte. Diese Kreise schneiden die Abszissenachse OPi
in den Punkten Xund X' der Koordinaten OX x und OX'
x', so dass

xx' CT2

Es ist nun leicht, aus Fig. 4 folgenden Ausdruck zu finden :

,52 (fl - X) (X' - CT) "("
v

A)2

Durch Differentiation dieses Ausdrucks erhält man:

Fig. 2
Magnetkreis mit Luftspalt und Kurzschlussjoch

1, 2 Dauermagnete;
3 Kurzschlussjoch;

m, n Grenzen der Streuzone;

M Magnetisierungsvektor;
0,1 Streufluss;

0L, gemeinsamer Fluss durch die Magnete 1 und 2

Raum erhält man einen eindeutig definierten Wert für <p nach
Gl. (1). Man betrachte jetzt eine infinitesimale Bewegung der
Scheibe Dz in Richtung v (Symmetrieachse), bis Position Dz'
erreicht wird. Bevor die Bewegung beginnt, bilden die Kurven
Cr und C2 zusammen mit der Richtung von v eine Mantelfläche

S. Nach der infinitesimalen Bewegung bilden ebenso die
Kurven Ci und C2' zusammen mit der Richtung v eine neue
Mantelfläche S + d.S'. Unter diesen Bedingungen kann nun
folgende Definition des «idealen» Magnetkreises eingeführt
werden: Zwei Scheiben Di und Dz (Fig. 1) bilden dann einen
idealen Magnetkreis, wenn sie die Bedingung

dx
d<5

+ 2 x ]/x

(a + x)\'a
(4)

Offensichtlich bilden die zwei Drähtepaare PiQ\ und PzQz
(deren Radien sehr klein gegenüber ö, jedoch nicht Null sind)
je eine Induktivität Li bzw. Lz sowie eine Gegeninduktivität
M. Unter Berücksichtigung, dass die elektromagnetische Energie

als Funktion von Li, Lz und M ausgedrückt werden kann,
erhält man für <p

<P

Edi + £02 (Li M) /12 + (L2 - M) lz2
_ Ki

M (Ii + h)2 ~ M -KO

(5)

worin Ki und Ko als Konstanten angenommen werden können,
weil man annehmen kann, dass Li, Lz, h und h konstante
Werte haben. Durch Differentiation von Gl. (5) ergibt sich:

dtp - Ki • dM
M2 (6)

Man beachte, dass die Gegeninduktivität M auch als das

Verhältnis <Z>c//i angegeben werden kann, worin <P, der von

Fig. 3

Elektrisches Ersatzschaltbild

R magnetischer Widerstand des Kurzschlussjoches;
r magnetischer Widerstand des Luftspaltes;

r,j magnetischer Streuwiderstand;
rj innerer magnetischer Widerstand des Magneten;

0(, Nutzfluss im Luftspalt;
0(1 Streufluss;

0j Fluss im Magneten;
F magnetomotorische Kraft des Magneten
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* X

M~ <P -
f dx

J a2 — xz
In (A±iL)\ a — x 1

und

dM '
dx

<P + Q
Kx +_Qi M

M

di'p

{a2 - x2) (Kx + QiM) (a + x) In (~^)
d<5 (10)

mit

71

und aus Gl. (7)

n Ks Ks m
72

tft_
(l + o (1 - fi) in (-[urf)

72 1 + 02 In

und
771 « 0,3 < + 0,14

72 « 1 + 02 (2,5 t - 0,15)

(13)

(14)

Aus dem Verhältnis

0,3 0,14
2,5 ß2 1 - 0,15 02 *

ergibt sich unter Berücksichtigung von Gl. (12), (13) und (14)
der Wert Qs 0,75, woraus folgt:

7 Ks q 0,16 Ks

Fig. 4

Feldkurvenverlauf bei der Zwcidrahtleitung /'.(>,
C0 Äquipotentialkreis;

Cf beliebiger Kreis des Feldlinienbildes;

/>2Ö2 bewegliche Zweidrahtleitung;
X, X' Schnittpunkte von Cf mit der Abszissenachse;

S Abstand zwischen P\Q\ und A>02

dem Drähtepaar P1Q1 erzeugte magnetische Teilfluss ist, der
durch das Drähtepaar P2Q2 hindurchtritt. Auf der anderen
Seite ist der Fluss zwischen O2P2 für Is 0 (Fig. 4) gleich
dem Fluss zwischen O und X. Daraus folgt

(7)

(8)

Dies bedeutet, dass für einen bestimmten Bereich von t der

Wert 7/ als konstant betrachtet werden kann. Fig. 7 zeigt die
Kurve 773, die dem Wert Q2 0,75 entspricht. Für t 0 (d.h.
für ö oo) oder wenn t sich dem Wert 1 nähert (d.h. für ô 0)
darf Gl. (10) nicht mehr angewandt werden. In solchen Fällen
ist jedoch die Äquivalenz zwischen dem Magnetstreifen und
der einwindigen Spule nicht mehr haltbar, weil die Magnetisierung

des Magnetstreifens inhomogen ist. Dieser Effekt wirkt
zugunsten der Konstanz von 77, was qualitativ leicht einzusehen

ist. Wäre nämlich die Magnetisierung vollkommen homogen,
so müsste für t 1 die Induktion unendlich sein, was physikalisch

unmöglich ist. Ausserdem kann man für t 0
experimentell nachweisen, dass die Induktion des Magnetstreifens
kleiner ist als der entsprechende Wert vom äquivalenten Modell

mit vier Drähten, d.h. von einem Modell mit einer
vollkommen homogenen Magnetisierung.

In einer ersten allgemeinen Näherung darf man daher die
Konstanz von 77 für den ganzen Bereich von t annehmen. Das
führt zu folgendem Ausdruck für die Beschreibung der idealen

Streuung
dtp — K (cp + Q) d<5 (15)

Durch Addition eines konstanten Parameters Q zu beiden

Gliedern von Gl. (5) erhält man

oder in einer anderen Form nach Differentiation

d2 y „ dcp

de)2 d<5
(16)

(9)

Das Einsetzen von Gl. (4), (7), (8) und (9) in Gl. (6) ergibt

K2 (<p + Q) x j/<wc

was umgeschrieben werden kann in die Form

dcp 77 Up + Q) d(5 (11)

worin zur Abkürzung ein neuer Ausdruck 77 eingeführt wurde

(12)

worin t xja als neue normierte Variable eingeführt wurde.

Fig. 6 stellt die Kurven 771 und 772 für Qs 0,75 dar. Man
merkt sofort, dass diese Kurven eine ziemlich gerade Zone
aufweisen, welche es erlaubt, folgende Näherungen zu machen:

Es bereitet nun keine Mühe mehr, aus Gl. (5) zu zeigen, dass

Gl. (16) nicht nur für Li Li, h I und Is 0 gilt, sondern
auch für /1 Is I oder, wegen der Äquivalenz zwischen den

Drähten von Fig. 4 und dem Magnetstreifen von Fig. 5, auch
—F —> —>

für Mi Ms M. Auf der anderen Seite ist cp ein Formfaktor
der Dimension 1, der sowohl für Magnetscheiben als auch für
den unendlich langen Magnetstreifen endliche Werte ergibt.
Aus diesem Grunde steht nichts mehr im Wege, die Definition
(2) auch für scheibenförmige Magnete anzuwenden. Diese
Resultate können als ein Beweis für die Gültigkeit der postulierten
Gl. (2) für den Fall Dx Ds (Fig. 1) gelten, weil dann d<5

proportional zu dS ist.

5. Magnetkreis mit Kurzschlussjoch
Die Magnete eines wirklichen Magnetsystems sind in der

Praxis nicht dünn genug im Vergleich zu ihrem Durchmesser,
um die vorausgegangene Theorie ohne weiteres anwenden zu
können. Ausserdem besitzen sie in der Regel noch ein
Kurzschlussjoch. Um diese Umstände zu berücksichtigen, kann
offenbar die Analogie des fiktiven magnetischen Kondensators
[10] zu Hilfe genommen werden. Durch diese Analogie wird
ein Magnetsystem mit veränderlichem Luftspalt S in Beziehung
zu einem fiktiven magnetischen Kondensator gebracht, dessen

Klemmenspannung sich mit der Zeit ändert, weil er sich z. B.

Bull. SEV 64(1973)10, 12. Mai (A 440) 627
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Potential des Magnetstreifens I' O

P0Q2 beweglicher Magnetstreifen;

M Magnetisierungsvektor;
ö Abstand zwischen beiden Magnetstreifen

entlädt. Im Bildraum dieser Analogie entspricht also die
Luftspaltlänge <5 des Magnetsystems einem Zeitintervall t eines

fiktiven magnetischen Kondensators. Ebenso transformiert sich
eine magnetische Energie Ei/Ei zwischen zwei Energiewerten
in eine Potentialdifferenz Vi — Vi und ein Volumen v in eine

Fläche S. Nun aber verändert sich die Klemmenspannung
eines Kondensators mit initialer Ladung, der durch einen
Widerstand mit einer Spannungsquelle verbunden wird, gemäss

einer exponentiellen Funktion der Zeit in der Form;

(V2 - Fi)t (V2 - Vi)a + (Vi - Fi)b • e

t
RC

W (*&)\Eih \Ei)t
oder umgeschrieben

V <Pa ~f~ (Pb ' e (19)

bunden sind. Sie werden zusammen eine äquivalente Kapazität
C aufweisen, und ihr Verhalten kann durch genau denselben

Ausdruck (17) beschrieben werden. Für ein solches System
werden daher die vorher eingeführten Transformationsregeln
nochmals dieselbe Gl. (18) ergeben, worin Ei jetzt die Energie
ist, die dem gemeinsamen Fluss </>, entspricht, und Ei die

Streuenergie. Das «gemeinsame» elektrostatische Potential der

Kugelkondensatoren Ci, Ci Cn entspricht daher in dieser

Analogie der «gemeinsamen» Energie durch alle Magnetscheiben

Di, Di... Dn, Di', Di ZV. Offensichtlich sollte dieseVor-
stellung auch für magnetisierte Magnetpaare mit den gleichen
Abmessungen, aber mit unterschiedlicher Magnetisierung gelten.

Diese Analogie legt die Annahme nahe, dass die Gleichung
des idealen Magnetkreises (2) nicht nur für den Fall der
Magnetscheiben (Fig. 1) brauchbar ist, sondern auch für ein
Magnetsystem mit dickeren Magneten und mit Kurzschlussjoch
entsprechend Fig. 2.

6. Praktisches Beispiel

Unter Berücksichtigung von Gl. (1) ergibt sich nach

Integration von Gl. (16) Fig. 2

1 + c (1 - e~ n 8/L) (20)

worin C und n Konstanten sind, die nur von den Abmessungen
der Magnete abhängen; L ist die Länge der Magnete. Wenn
die Magnete nicht zylindrisch, sondern rechteckig oder
vieleckig sind, ist es zweckmässig, folgende Abkürzungen
einzuführen

7t DA2

und
La

7t RA2

2 TT Ru 7t Du
(17)

Dasselbe muss mit dem transformierten fiktiven magnetischen

Kondensator in der erwähnten Analogie geschehen.

Durch Anwendung der postulierten Transformationsregeln
resultiert unmittelbar

(#) 'e^
/ A \E1 / B

(18)

worin Ru und R \ die Radien zweier'/Kreise sind, die denselben

Umfang £/a bzw. dieselbe Querschnittsfläche Ag wie die
Magnete aufweisen.

In anderen Arbeiten wurden bereits Formeln für die
Berechnung der Konstanten C und n hergeleitet, die nachstehend
in Funktion von Dn, DA und L wie folgt umgeschrieben werden :

worin <pA, <pi>, und X Konstanten sind. Durch Differentiation des

letzten Ausdrucks erhält man nach kurzer Umformung wieder
Gl. (16), wodurch die Analogie begründet wird. Die zwei
Magnetscheiben in Fig. 1 ergeben im «Bildraum» dieser Analogie
einen Kugelkondensator C zum Potential Vi, der durch einen

Widerstand R mit der Erde (Potential Vi) verbunden ist. Auf
der anderen Seite kann man sich jeden Magnet eines Systems
wie das in Fig. 2 so vorstellen, als würde er aus einer Reihe
verschiedener in Serie geschalteter Magnetscheiben Di, Di
Dn [Magnet (1)] und ZV, Di '...ZV [Magnet (2)] bestehen, so
dass alle zusammen wie ein einziger Magnet wirken. Es sei <PC

der «gemeinsame» magnetische Fluss für alle Scheiben. Im
Bildraum dieser Anordnung wird wiederum ein fiktiver
magnetischer Kondensator betrachtetwerden müssen, der ebenfalls

aus einer Reihe Kugelkondensatoren Ci, Ci Cn bestehen

muss, die sich kurzgeschlossen auf einem gemeinsamen Potential

befinden und durch einen Widerstand mit der Erde ver-
Fig. 6

Werte von und 7/2 *n Funktion von t

628 (A 441) Bull. ASE 64(1973)10, 12 mai



und

C

2 L
C n Da2

TC Du

3 Du

VDu L
n2 Da

5 L
n

n^Du
2

(21)

(22)

gültig für
DA\L > 1

Mit den Werten Ag 560 mm, t/a 156 mm und L
15 mm für ein System (mit Magnetblöckchen von 8 x70 mm),
wie es in [6] beschrieben wurde, ergibt sich aus Gl. (20...22):

ff l+ 0,7524 [1 - exp (- 4,732 Ô/L)] (23)

Tabelle I
6

mm
Gm

1 1,204 1,24
3 1,460 1,46
5 1,597 1,61

Tabelle I zeigt einen Vergleich zwischen den gemessenen
Werten am [6] und den mittels Gl. (23) berechneten Werten ac.

Die etwas grössere Abweichung für <5 1 mm kann
vielleicht vom magnetischen Widerstand des Kurzschlussjoches
herrühren, dessen Effekt, wie erwartet, für diesen kleinen Wert
von S/L nicht vernachlässigt werden sollte. Andere praktische
Fälle wurden bereits in [11] beschrieben.

7. Ein unsymmetrischer Fall
Das Resultat von Gl. (16) kann für den Fall verallgemeinert

werden, bei dem die Breite der zwei Spulen (Fig. 8) nicht gleich
ist, d.h. wenn PiQi + P2Q2. Aus dieser Figur ist jedoch leicht
ersichtlich, dass der Fluss in P3Q3 gleich ist wie in P>Q>>.

So besteht das Problem einfach darin, eine Beziehung zwischen
<5 und <5i zu finden. Aus geometrischen Betrachtungen in Fig. 8

erhält man folgende Ausdrücke

ö2 (a — x) (jc' — a)
und

Jf (a — x — <5o) (x' — a + Jo)

Durch Elimination von x' und x aus diesen Gleichungen
und unter Berücksichtigung, dass xx' a2, ergibt sich:

0,25

0,20

0,15

0,10 -

CO

fr
0,05

0 0,2 0,4 0,6 0,8
t -

Fig. 7

Werte von ^ *n Funktion von t

Bull. SEV 64(1973)10, 12. Mai
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Fig. 8

Spezialfall von Windungen mit unterschiedlicher Breite

P\Q{ ruhende Zweidrahtleitung;

P-iQs bewegliche Zweidrahtleitung mit kleinerer Breite;

P3Q3 fiktive Zweidrahtleitung mit gleicher Breite wie P\Q\

p2 <5? + öl Ô2 (l - (24)

In dieser Gleichung ist jedoch ]/\ — Sola eine Konstante,
so dass man schliesslich

d/t ~ d<5 ~ dS

schreiben kann, worin dS das Differential der Mantelfläche
(Fig. 8 und 1 b) bedeutet, die sich aus einer differentiellen
Bewegung zwischen den zwei Scheiben Di und D-i ergibt. Das ist
die Begründung für die Definition (2), die eingangs in einer
allgemeineren Form angegeben wurde.

8. Schlussfolgerungen

Aus praktischer Erfahrung wurde bereits gezeigt [9...11],
dass man mit Hilfe der Gl. (20)...(22) ausreichend genaue
Ergebnisse erzielen kann. Darüber hinaus führt die Annahme,
dass für den idealen Magnetkreis t] [Gl. (11)] konstant ist, zu
besseren Resultaten [11], als man von Fig. 7 erwarten könnte.
Nachfolgend wird versucht, eine mögliche Erklärung für diese

Tatsache zu finden.

Magnete und Spulen können nur dann als äquivalent
angenommen werden, wenn die Magnetisierung der Magnete absolut

homogen ist. Am Rande der Magnete ist dies jedoch nicht
gegeben, weil dort die Induktion B theoretisch einen unendlich

grossen Wert annehmen müsste, was der Erfahrung
widerspricht. Eine andere Erfahrungstatsache ist, dass in der Mitte
eines Scheibenmagnets die Induktion kleiner ist als der
entsprechende Wert der äquivalenten Spule. Durch die inhomogene

Magnetisierung hat jeder Elementarmagnet einen eigenen

Arbeitspunkt in der Hysteresefläche. Diese ist jedoch eine labile
Arbeitszone, so dass sich im Prinzip die Elementarmagnete bis

zu einem gewissen Grad umordnen können. Die Praktiker
beschreiben diesen Sachverhalt mit der Aussage, dass die
Feldlinien ihren «eigenen Weg» und die Elementarmagnete ihre
«eigene Position» suchen. In der Vorstellung des idealen
Magnetkreises ordnen sich die Elementarmagnete derart, dass

Gl. (2) erfüllt wird. Für den Fall, dass sich die Elementarma-

(A 442) 629



gnete nicht mit voller Freiheit umordnen können, wäre es möglich,

die Gleichung der idealen Streuung in diesem Sinne, z.B.
wie folgt, neu zu formulieren

/ d2 (p

ld5ä" - D
d<p \2
ds) =min

Von einem rein formalen Standpunkt aus betrachtet gibt es

eine Analogie zwischen letzterer Gleichung und der Gleichung
der Wärmediffusion (z.B. [12]),

82U

dx2 - D
du

~8t
0
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ANYOS JEDLIK
1800-1895

Dafür, dass der Name Jedlik praktisch unbekannt blieb, ist der grenzenlos bescheidene
Benediktiner-Priester selber verantwortlich. Er nahm an, seine in Tat und Wahrheit
bedeutenden Entdeckungen und Erfindungen seien nichts Besonderes, weshalb er nie etwas
darüber veröffentlichte.

Jedlik kam am 11. Januar 1800 als Kind eines armen ungarischen Bauern in Szémo

zur Welt. Um den intelligenten Jungen schulen zu können, bestimmten ihn seine Eltern
für den geistlichen Beruf. Mit 17 Jahren trat er dem Orden bei, schloss 1822 seine Mathematik-

und Physikstudien mit dem Doktorgrad ab und erhielt 1825 die Priesterweihe.
Seiner Neigung entsprechend, betätigte er sich aber als Physiker; zuerst an Klosterschulen,
bis er 1840 an die Universität von Pest berufen wurde, wo er bis 1877 wirkte.

Die Arbeiten von Oersted, Ampère und Faraday hatten den jungen Gelehrten so
fasziniert, dass er sich ebenfalls mit der Elektrizität zu beschäftigen begann. 1828 schuf er
einen «rotierenden elektromagnetischen Apparat», d.h. einen Motor, bei dem er bereits
nicht Stahlmagnete, sondern Elektromagnete benützte. Erst drei Jahre später traten Dal
Negro in Italien und Joseph Henry in den USA mit ihren «Motor-Modellen» auf den Plan,
die als die ältesten gelten.

1861 erfand Jedlik den «Unipolar-Induktor». Das war eine ausgeklügelt gebaute
Unipolarmaschine - die Gleichstrom erzeugte - und bei der bereits das elektrodynamische
Prinzip zur Anwendung kam, mit dem Siemens im Januar 1867 die Fachwelt in Staunen
versetzte.

Zwei Jahre später baute Jedlik einen Apparat, bei dem er eine grössere Zahl von
Leidener-Flaschen in Parallelschaltung auflud, die Kondensatoren dann in Serie schaltete
und so «kräftige Funken» erzeugen konnte. 1867 verwendete er röhrenförmige Kondensatoren,

mit denen es ihm gelang, an der Wiener Weltausstellung von 1873 Funken von
90 cm Länge vorzuführen. Heute würden wir sagen, er habe einen Stossgenerator von
500 kV gebaut.

Die Ungarn verehren Jedlik als ihren grossen Entdecker und Erfinder, und seine
Apparaturen werden an der Budapester Universität sorgfältig gehütet.

Als kurz vor seinem am 12. Dezember 1895 erfolgten Tod ein junger Kleriker ihn fragte, warum er sich der Physik und nicht der Theologie
gewidmet habe, antwortete ihm Jedlik; «Ich lernte Gott viel besser kennen durch die Physik als Sie durch die Theologie.»

H. Wäger
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