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Die Anwendung von Galoiskörpern in der Codierungstheorie ')
Von H. Ohnsorge

1. Einleitung
Die vorliegende Arbeit soll eine Nutzanwendung für die

Theorie algebraischer Strukturen beschreiben und zeigen, in
welcher Weise moderne Algebra praktische Anwendung bei
gesicherter Datenübertragung findet.

Die Grundkenntnisse über Mengen, Gruppen, Körper und
Vektorräume sowie die Matrizenrechnung werden vorausgesetzt.

Zur Vorbereitung werden die Bücher von Kochendörfer,
Van der Waerden und Peterson [1; 2; 3]2), empfohlen. Sätze

aus der Algebra, die zur Erklärung der redundanten Codierung
notwendig sind, werden ohne Beweis gegeben; alle Beweise

können den zitierten Büchern entnommen werden. Dieser Aufsatz

ist als Querschnitt aus der Theorie der Codierung zu
betrachten.

2. Begriffe und Definitionen
Eine Code ist die eineindeutige3) Abbildung der Elemente

einer Menge A in die Bildmenge C mit Hilfe der Zuordnung
oder Funktion <p, die man als Codiervorschrift bezeichnet.

a E A wird Buchstabe des Quellenalphabets,
c E C wird Codewort genannt.

Ist C C M, dann handelt es sich um eine redundante
Codierung. Entsteht durch eine Störung aus einem Codewort
c EC ein Element m E M, das nicht zur Untermenge C gehört,
dann liegt ein erkennbarer Fehler vor. Wird durch eine Funktion

y/3 jedes Element m E M in die Untermenge C eindeutig
abgebildet, dann ist 1//3 die Fehlerkorrekturvorschrift (häufig
auch Decodiervorschrift genannt, obgleich das leicht zur
Verwechslung mit der Umkehrfunktion bzw. der inversen Abbildung

von (p (a) führt, die ebenfalls Decodiervorschrift heisst).
Entsteht durch die Störung des Elementes a ein Element cj,
das auch der Menge C angehört, dann kann mit Hilfe des

Codes dieser Fehler nicht erkannt werden, denn einem Codewort

lässt sich natürlich nicht ansehen, dass es durch Störungen
aus einem anderen entstanden ist. Nicht erkennbare Fehler
lassen sich selbstverständlich auch nicht korrigieren. Entsteht
durch eine Störung aus dem Element ci E C ein falsches
Element m F (ci) E M, das nicht zu C gehört und bei der De-
codierung c\ 1//3 (ni) H= ci, dann liegt in diesem Fall eine

fehlerhafte Korrektur vor: Der aufgetretene Fehler ist erkennbar

aber nicht korrigierbar. Mit anderen Worten:
Die Decodiervorschrift 1//3 bildet Teilmengen T von M in

ein einziges Element aus C ab und ist daher nicht umkehrbar
eindeutig. Entsteht bei der Störung aus a ein Element der

Teilmenge 7j, die durch 1//3 in Cj abgebildet wird, dann haben die

681.3.053

Störungen ein nichtkorrigierbares Fehlermuster erzeugt. Ein
optimaler fehlerkorrigierender Code liegt dann vor, wenn 1//3

so gewählt wird, dass die Wahrscheinlichkeit für nicht
korrigierbare Fehler minimal wird. Daraus folgt sofort, dass 1//3

nicht unabhängig von der zu erwartenden Stör- oder
Fehlerstruktur optimal gewählt werden kann.

Die vorangegangenen Definitionen oder Begriffe seien im
folgenden an einem Beispiel erklärt.

Das Quellenalphabet A bestehe aus der Menge der
Dezimalziffern und den Symbolen für die elementaren Verknüpfungen

also

T=(0;l;2;3;4;5;6;7;8;9; x;
Die q 16 Alphabetbuchstaben können durch /c-Tupel aus

Binärzahlen 0 und 1 dargestellt werden, wenn k — Idq 4
gewählt wird, z. B.

0 -> 0 0 0 0
1 -> 0 0 0 1

2 ->0010
3 ->0011

Zuordnung oder
Codiertabelle
(Codebuch)

(1)

1) Vortrag, gehalten am 10. Februar 1972 an der Universität Bern.
-) Siehe Literatur am Schluss des Aufsatzes.
*) In dieser Arbeit werden nur eineindeutige Codes betrachtet.

Stellt man z. B. Analogsignale durch Digitalsignale dar, dann liegt
eine nicht umkehrbar eindeutige Codierung vor.

Dieser nichtredundante Code benutzt als Codiervorschrift
et einfach eine Zuordnungstabelle.

Weitere in der Codierungstheorie definierte Begriffe werden
im folgenden Text kursiv gesetzt und es empfiehlt sich - soweit
keine Erklärungen im Text dafür gegeben sind - die Definitionen

z.B. aus [3] zu entnehmen.

3. Matrixdarstellung der redundanten Codes

3.1 Darstellung der Codes durch die Basismatrix

Die von 0 verschiedenen k-Tupel eines nichtredundanten
Codes lassen sich als Linearkombinationen der Zeilenvektoren
einer Einheitsmatrix [/1] darstellen:

(2)

Die Komponenten dieser Matrix sind Elemente des Galois-
Feldes GF(2), die Addition entspricht dabei der modulo 2-
Arithmetik. Die Menge der linear unabhängigen Vektoren deren
Gesamtheit von Linearkombinationen die Menge Ci mit
Ausnahme des Nullvektors liefert, nennt man Basis G des Code.

1. 1 0 0 0" II £3 II §
2. 0 10 0

3. 0 0 10
4. 0 0 0 1
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Den Nullvektor [0 0 0 0] könnte man als Kombination 0-ter
Klasse auffassen.

Wählt man als Codewörter eines Codes C2 «-Tupel mit z.B.
n — 7, dann besteht die Menge M aller binären 7-Tupel aus
27 128 Elementen. Da aber A und damit Ci und C2 nur
2k 24 16 Elemente enthält, sind in Ml28 — 16 112

Elemente, die nicht zum Code gehören. Das heisst jedes Codewort

enthält 3 überflüssige bzw. redundante Binärzeichen oder

Prüfzeichen. Die Basis dieses redundanten Codes C2 muss
zunächst einmal wieder die Einheitsmatrix enthalten, da dann die

k 4 für die Information (Elemente aus A) erforderlichen
Positionen, wie bei dem nichtredundanten Code gebildet werden
können. Die Besetzung der n — k m Positionen für die

Prüfzeichen geschieht mit Hilfe der Codiervorschrift (pi (Ci)
und ist eine Problemstellung der Codierungstheorie. Wählt man
in unserem Beispiel als Basis die Matrix

1.

2.

3.

(k 4.)

1 0 0 0 1 1 0

0 1 0 0 0 1 1

0 0 10 111
0 0 0 1 1 0 1

p

[G] [h, P]

(3)

2(7) 2k

i 0

10 1110 0

1110 0 10
0 1110 0 1

IB]

z.B. C2i 1 0 0 0 1 1 0 [siehe Gl. (3)]
C24 0 0 0 1 1 0 1

d+ 1+1+1+1=4

dann bildet Ca eine additive Abelsche Gruppe mit dem 0-Vektor

[0000000] als Identitäts- oder Einselement, wie in Abschn.
3.2 gezeigt wird. Derartige Codes heissen Gruppen-Codes. [G]
besteht also aus der Basis [/1] des nichtredundanten Codes

ergänzt um eine geeignet ausgewählte Matrix [P], die Redundanz-

oder Prüfzeichenmatrix genannt sei. Die Zeilen von [G]
sind wegen [7i] linear unabhängig, daher existieren, wie gefordert,

2k 24 16 Elemente bzw. Vektoren in C2, denn die
Summe der Kombinationen über alle Klassen von k Elementen

beträgt
k

k\

Eine Störung kann nur dann ein Codewort in ein anderes
Codewort verfälschen, wenn von der Störung d+ Binärfehler
erzeugt werden. Die kleinste Hammingdistanz, die in einem
Code C auftritt, wird Minimumdistanz d genannt. Es ist nach
dem vorhergehenden Satz leicht einzusehen, dass ein Code mit
der Minimumdistanz d in der Lage ist, alle Kombinationen
mit i <d — 1 Binärfehlern in einem Codewort zu erkennen.
Die Zahl der «1 »-en in einem binären Codewort nennt man das

Gewicht W des Codewortes.
Haben die n-Tupel der Teilmenge 7+ die durch die Deco-

diervorschrift 1//3 in ein Codewort C2i abgebildet werden, die
kleinstmögliche Distanz von C2i, und besitzen alle Codewörter
in Co, Teilmengen T mit gleichviel Elementen, dann liegt ein

dichtgepackter Code vor. Diese Codes sind optimal für
statistisch unabhängig auftretende Binärfehler. In unserem Beispiel
ist Co, ein derartiger Code (Hamming-Code). Der Raum aller
«-Tupel ist, durch die Codewörter eines dichtgepackten Codes

homogen ausgefüllt, d.h. die Distanzverteilung der
Codewörter gegenüber einem Codewort C2i ist für jedes Codewort
gleich. Diese Eigenschaft haben alle Gruppencodes, was aber
nicht heisst, dass alle Gruppencodes dichtgepackte Codes sind.
Im Gegenteil: es existieren kaum dichtgepackte Codes
(bekannt sind z.B. Hamming-Codes und der Golay-Code).
Existiert für gegebenes n und k [(», k)-Codes] kein dichtgepackter
Code, dann ist der Code optimal für statistisch unabhängige
Fehler, welcher der «dichten Packung» am nächsten kommt
(z.B. quasidichtgepackte Codes).

Der Vektorraum V aus «-Tupeln mit Komponenten aus
GF (2) besitzt 2n Elemente. Für den Code C2 werden aber
davon nur 2k Elemente benötigt, also bleiben bei gleichmässiger
Verteilung pro Codewort Teilmengen T mit (2n/2k) — 1

2m — 1 nicht benötigten Elementen. Im Abstand <7 1 von

C2i liegen in V insgesamt ^j n Elemente, im Abstand d~ i

liegen \ \ Elemente. Wählt man also Tso aus, dass ein dicht-

Zu den Vektoren aus C2 existiert eine Menge O von
Vektoren, die orthogonal zu den Elementen aus C2 sind: d.h. das

innere oder Skalarprodukt beliebiger Elemente C2i £ C2 und
0j E O ist gleich null, also C2i • 0j O.

In unserem Beispiel hat O eine Basis der Form

gepackter Code entsteht, dann ist

1 20 (5.1)
i l

Falls diese Gleichung nicht existiert, d.h. dass bei gegebenem

(», <?), (n, m) oder (m, e) kein dichtgepackter Code
konstruiert werden kann, dann muss

(4)
2m — 1 >

î l
(5.2)

Zur Vervollständigung der Begriffe, die im Weiteren benutzt

werden, sei noch ohne Erläuterung folgendes bemerkt:
In unserem Beispiel ist C2 mit der Basis [G] ein P-dimen-

sionaler Vektorraum über dem Körper bzw. dem Galoisfeld
GF (2) und die Menge O ist der zugehörige Orthogonalraum
mit der Dimension n — k m. C2 und O sind Unterräume der

Menge M bzw. des Raumes aller »-Tupel mit binären Komponenten.

Die Zahl der Komponenten, um die sich zwei Vektoren oder

Codewörter C2i, C2j unterscheiden, nennt man Hammingdistanz

d+ also

gewählt werden.
Aus Gl. (5.1) und (5.2) folgt die sogenannte Hamminggrenze

»s"20
i — 0

(5.3)

(5)

die aussagt, dass ein Code der Codewort- oder Blocklänge n
e

mindestensld ^ Prüfzeichen besitzen muss, wenn alle Mu-
i 0

ster mit i — 1 bis e Binärfehlern korrigierbar sein sollen. Wählt
man m Prüfzeichen, dann hat der zugehörige nichtredundante
Code Ci k n — m Informationsstellen. Beim e Fehler
korrigierenden Code beträgt die Minimumdistanz d 2e + 1,

bzw. ist e —„—
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3.2 Darstellung linearer systematischer Codes durch

die Codier- und Decodiermatrix

Unterscheiden wir q Elemente, wobei q eine Primzahlpotenz
ist, dann bilden diese Elemente einen endlichen Körper F. Die
Menge aller «-Tupel aus diesen Körperelementen bilden einen

Vektorraum, die Elemente eines Unterraumes im Rahmen aller
«-Tupel über F bilden einen linearen Code. Über jedem Körper
aus p Elementen, bei dem p eine Primzahl ist, bildet eine Menge

von Vektoren, die eine Gruppe darstellen, einen linearen Raum.
Binäre Linearcodes werden daher auch Gruppencodes genannt.
Bildet man aus einem nichtredundanten Code Ci einen
redundanten Code C2, der nur durch Anhängen von Prüfzeichen an
die Codewörter Ci (an die Informationsstellen) entsteht, dann
heisst dieser Code systematisch. Werden durch lineare

Verknüpfung von Informationselementen die einem Körper F
angehören, Prüfzeichen abgeleitet und im Anschluss an die
unveränderten Informationsstellen gesendet Codiervorschrift
(32), dann liegt ein linearer systematischer Code vor.

Die Informationsstellen, also die Komponenten der
Codewörter von Ci, seien xi X2...Xk aus GF (2). Zur linearen
Verknüpfung benutzt man die Matrix [A] mit Koeffizienten aus

GF (2), so dass der Prüfzeichenvektor oder die Priifzeichen-
matrix [yi y2-..ym] sich aus

[A] pf]i* [KF (6)
ergibt.
wobei Mi Di, X2...Xk] die Informationszeichenmatrix und

Mit die transponierte Matrix Mi ist. Nennen wir yi Xk+i,
dann wird aus Gl. (6) ein homogenes Gleichungssystem, bei

dem [A] durch die Einheitsmatrix h ergänzt ist und [X] die

Codewörter bilden, also :

[A, h] MT [O] [B] MT
M Di X2...XH x\l+i yi Xk+2 yz.-Xk+m ym] (7)

[X] E C2

[A] wird Codier- und [B] Decodiermatrix genannt. Die
Linearkombinationen von [B] bilden den Orthogonalraum zum Code
C2. Wir benutzen wieder unser Beispiel und entnehmen aus
Gl. (4)

"1 0 1 1" "1 0 1 1 1 0 0"

1 1 1 0 [A] 1 1 1 0 0 1 0 [ß] (8)
0 1 1 1 0 1 1 1 0 0 1

(9)

Zur Decodierung wird zunächst

[B\ MeT [ß] MT + Lß] • MF [5]

0

OD

gebildet.
[S] das sog. Syndrom ist eine einspaltige Matrix mit m

Komponenten aus GF (2) und hängt nur von dem Fehlerwort Mr]
ab, da per Definition bzw. Codiervorschrift jedes Codewort
orthogonal zu [B] ist. [ß] • Mt]T-> [5] ist eine eindeutige aber
nicht umkehrbar eindeutige Abbildung von [Xt] in [S], da
Mi] 2n — 1 von [O] verschiedene Elemente besitzt, [5]
dagegen nur 2m — 1 von [O] verschiedene Elemente hat. Erhalten
wir [ß] • MiP= [O] [5] dann ist Mi] entweder [O] oder ein
Codewort [X], im letzteren Fall liegt also ein nicht erkennbares
Fehlermuster vor. Bei [V] =f= [O] ist ein Fehlermuster erkannt.
Fordert man, dass der Code eine Menge F~- von Fehlermustern
korrigieren können soll; dann muss F+ durch [ß] eineindeutig
in die Menge [S] abgebildet werden. Ist/£ F+; ti E Ti und
gehört Ti zu C21, dann gilt ti C2i + / für alle Elemente aus Tu
Sollen z.B. alle Fehlermuster mit FiFe Binärfehlern
korrigierbar sein, dann muss die Zahl der von [O] verschiedenen

Syndrome Z 2m — 1 mindestens gleich ^ d.h. gleich
i=l

der Summe von Kombinationen /-ter Klasse von « Elementen
e

sein; ist Z> ^ dann sind auch noch einige Muster mit
i=i

mehr als e Fehlern korrigierbar. Aus dieser Betrachtung folgt
ebenfalls die Hamminggrenze :

2»-ü SP
i =1

«tMd

(12)

Mit [ß] lässt sich nun zu jedem Fehlermuster Mf]i das
korrigierbar sein soll, das zugehörige Syndrom [S]i berechnen.
Tritt beim Decodierprozess ein [ß]i 4= O auf, dann wird das

zugehörige Fehlermuster Mf]i vom Empfangswort subtrahiert
und man erhält das korrigierte Codewort

und wir erhalten

[A] [FF (FF mit [/]* [/]
bzw.

[A, h] [Fi, P]T [O] [ß] • [GF

In Worten: Die Codiermatrix [A] multipliziert mit der
Einheitsmatrix [Fi], die immer die Basismatrix der Informationsstellen

bzw. des nichtredundanten Codes Ci ist, liefert die

transponierte Redundanzmatrix [F] der Basis [G] des Codes C2.

[zl] um [F] ergänzt liefert [ß] ; [Fi] um [F] ergänzt liefert [G] ;

und [G] ist orthogonal zu [ß].
Durch Störungen wird das Codewort [X] in ein Empfangswort

Me] verfälscht, dies kann man sich durch Addition eines

Fehlerwortes [Xi] zu [X] vorstellen, also

Me] [X] + [Xt]
z.B. C21 M] 1 0 0 0 1 1 0

[Xt] =0101100 (10)

Me] 1 1 0 1 0 1 0

t t t
Fehler

[X] [M] " Mf]i (13)

solange Mtfi —fi E F+, andernfalls erfolgt fehlerhafte Korrektur
erkennbarer aber nicht korrigierbarer Fehler).

Als nächstes wenden wir uns der Frage zu, wie muss [A]
gewählt werden, damit ein optimaler (dichtgepackter oder
möglichst dichtgepackter) Code gegen statistisch unabhängige
Fehler entsteht.

Zur Vereinfachung schreiben wir [ß] Mf]T [5] in die
anschauliche Form:

[ Xtl Xt2 Xtn ]

bn b\2 bin 1 Sl
bzi S2

S3

bml
_

Sm

(14)

[b] 1 Dm]
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Z.B. sei entsprechend Gl. (10) und (8):

[Xt]

[B]

[0101100]
1 II

10 1110 0

1110 0 10
0 1110 0 1

0 1 1 0 il
1 + 0 + 0 1 S2

1 1 0 0 S3

Man erkennt also, dass das Syndrom gleich der Summe der
Spaltenvektoren [b\i ist, die zu einer «1» im Fehlerwort bzw.

zu einem Fehler im Codewort gehören :

lS] X M' (16)
Xfi l

Ist die Zahl e der korrigierbaren Einzelfehler in den
Codewörtern der Länge n vorgegeben, dann ergibt sich aus Gl. (5,1)
die Mindestkomponentenzahl m. Aus der Menge aller w-Tupel
über GF (2) müssen die Spalten von [ß] nun so ausgewählt
werden, dass mindestens d — 1 2e beliebige Spaltenvektoren

von [ß] linearunabhängig sind, denn erst bei d Fehlern
im Codewort darf [ß] [O] - also ein nicht erkennbarer Fehler

- entstehen, d.h. erst eine Linearkombination aus d — 1

Spalten [/>], darf eine weitere Spalte entstehen lassen, die bei d
Fehlern im Codewort zu [ß] [O] führen kann. Gelingt diese

dann ist ein dichtge-Spaltenauswahl bei m Id
î o

packter Code gefunden, andernfalls muss man m um 1, 2...i
vergrössern bis [ß] die Forderung bezüglich der linearen
Unabhängigkeit seiner Spalten erfüllt, m Spalten sind durch die
Einheitsmatrix vorweggenommen. Ausserdem bilden d — 1

Spalten der Einheitsmatrix als Linearkombination immer eine

Spalte mit d — 1 «l»-en; die Spalten der Matrix [A] müssen

also mindestens d — 1 «l»-en aufweisen. Mehr Anhaltspunkte
für die Konstruktion der Codier- und Decodiermatrix zur
Erzeugung möglichst dichtgepackter Codes existieren nicht, so
dass [ß] nur mit Hilfe eines Computers durch das «trial and

error»-Verfahren bestimmt werden kann.
Wesentlich weiter kommt man bei dem Problem der

Codekonstruktion durch die Polynomdarstellung linearer Codes.

4. Polynomdarstellung der linearen Codes

Die Menge aller rc-Tupel mit den Komponenten xi aus
einem Körper F z.B. aus GF(p) können als Koeffizientenmatrix

von Polynomen der Form

f(X) X0 + XlW + X2X2 + ...Xn-lX" (17)

aufgefasst werden mit X als Operator (auch Verschiebeoperator

genannt).
Es ist also

/ (X) E M Menge aller Polynome vom Grad < n über F ^ gj

M entsteht aus der Menge aller Polynome F(X) über F
modulo einem Polynom f* (X) mit Koeffizienten aus Fais
Repräsentanten der Restklassen [f(X)}; d.h. f(X) ist jeweils das

Polynom vom kleinsten Grade in der Restklasse {/(X)).
Man erhält f(X) aus F(X) durch den Euklidischen

Divisionsalgorithmus.

F(X) ,v. f{X)
f*(X) q(X) f*(X) (19)

[ß]
05)

Die Menge der Restklassen [f(X)) bildet eine kommuta-
tive, lineare assoziative Algebra A und erfüllt damit alle Axiome
der algebraischen Strukturen: Gruppe, Ring und Vektorraum.
Wählt man ausserdem für f* (X) ein über F irreduzibles Polynom

p (X) vom Grade K, dann ist die Algebra der Polynome
über F modulo p(X) auch ein Körper und zwar der
Erweiterungskörper vom Grade K über dem Grundkörper F bzw. ein
Galoisfeld GF (pK wenn F GF (p), also ein Primzahlkörper
ist.

Ein Ideal I ist definiert als Untermenge von Elementen eines

Ringes R, die Untergruppe der additiven Gruppe von R ist und
für die gilt : a £ I; rE R => ar und ra EI. Besteht das Ideal aus
allen Vielfachen eines Ringelementes r, dann heisst es Hauptideal.

Eine Menge von Polynomen bildet dann und nur dann
ein Ideal, wenn sie aus allen Vielfachen eines Polynoms g(X)
besteht.

Wählen wir
MX) qAX) g(X) E C2 C M (20)

wobei qi (V) ein beliebiges Polynom vom Grade ^ k — 1

n — m — 1 und g(X) ein normiertes Polynom vom Grade m
ist - mit Koeffizienten aus F bei allen Polynomen - dann bildet
die Menge Ci der Polynome fi(X) ein Hauptideal I in der
Algebra A, das von g(X) erzeugt wird, wenn g(X) Teiler von
f*(X) ist.

(Mit Hilfe des Nebenklassenschemas kann man durch dieses

Ideal / einen Restklassenring bilden, dieser heisst Polynomring
modulo f* (X). I bildet den Code C2 bzw. die Restklasse (O);
die Repräsentanten f(X) der weiteren Restklassen (f(X)) sind
Elemente der Mengen T, in denen die für den Code Ci nicht
verwendeten w-Tupel liegen).

/ stellt in A einen Unterraum dar mit den Basisvektoren

[g{X)\ \X-g(X)}...{X*-i-g(X)) (21)

da nach Gl. (20) jedes Codewort als Linear-Kombination dieser

Vektoren gebildet werden kann, denn es ist

C2i =fi(X) (qo + qiX + q2X2...qk-i V"1) • g(X)
mit

g(X) £0 + giX + g2X2...gmXn

Als Beispiel wählen wir

(22)

f*(X) 1

g(X) 1

(*(*))
[x-gVO)

\X2-g(X))
(*»•*(*)]

+ V7

+ 0 + X2 + X3
10 110 0 0

0 10 110 0

0 0 10 110
0 0 0 1 0 1 1

(23)

[G]

Gemäss obiger Forderung für I wurde g(X) als Teiler von

f* (X) gewählt. Tn unserem Beispiel ist

f*(X)
g(X) h(X) + 0 (24)
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V7 + 1

x3 + x2 + 1
1 + 0 + x2 + x3 + x4 h(X) (25)

Es gilt natürlich wieder

In der Algebra A der Polynome über F modulof* (X) ist das

Ideal, das von h(X) gebildet wird, orthogonal zu dem von g(X)
gebildeten Ideal, da

{a(X)h(X)-q(X)g(X)) (.a(X) q(X)) \h(X) g(X))
(26)

\a{X) 9(Z))-fO)=0

Polynome gelten als orthogonal, wenn deren Produkt in der

Algebra A null ist, also z. B. :

g(X) h(X) modulo f*(X) 0 (27)

[§0, gl, g"2...^ra] '

hk

hk-i

ho

\h{X) 1

[X-h{X)\
[X*-h(X))

10 1110 0

0 7 0 1 1 1 0

0 0 10 111
[H]*

Vertauschen wir die Komponenten von Gl. (29) zu

0 0 1110 1"

0 1110 10 [H]
1110 10 0

dann gilt mit [G] nach Gl. (23):

[G] [HF 0

[H] • [G]T 0
bzw.

mit

1 0 1 0 0 0 1

110 10 0 0

0 0 110 10
1 0 0 0 1 1 0

10 1110 0

1110 0 10
0 1110 0 1

[G]=>

[#]* m
und [B] • [G]* 0

(32)

Durch elementare Zeilenoperationen lässt sich aus [G]*

1 0 0 0 1 1 0

0 1 0 0 0 1 1

0 0 10 111
0 0 0 1 1 0 1

[G] nach Gl. (3) bilden (33)

[B] [G]T 0 (34)

Bildet man das Produkt der Koeffizientenmatrizen [g] • [/;)T,
dann ist dieses nur dann 0, wenn man eine Umkehrung der
Indizes von h oder g vornimmt, also

(28)

bei f*(X) + 1.

Die Basis H* des von h(X) gebildeten Ideals hat folgende
Form bei

f*(X) l +x7
h{X) 1 + 0 + x2 + Xs + x4

(29)

entsprechend Gl. (9). g(X) und f*(X) beschreiben den Code
C2 genauso vollständig wie [A] und n bei der Matrixdarstellung.

g(X) wird Basis- oder Generatorpolynom genannt.
Für f*(X) Xn — 1 bildet das von g(X) erzeugte Ideal /

einen zyklischen Unterraum in der Algebra A; der Code C2

mit dem Generatorpolynom g(X) das f*(X) Xn —1 teilt,
heisst daher zyklischer Code. Jede zyklische Verschiebung der

Komponenten eines Codeworts liefert wieder ein zum Code C2

gehöriges n-Tupel, z.B.

[X]i [X3g(X)} [0 0 0 1 0 1 1] Codewort a
(35)

[X]2i \X*g(X)I [1 0 0 0 1 0 1] Codewort cj

Binärcodes, die von einem Polynom g(X) erzeugt werden,
lassen sich sehr einfach durch rückgekoppelte Schieberegister

erzeugen. Die zyklischen Codes dieser Klasse eignen sich
besonders zur Korrektur von Fehlerbündeln (error bursts), das

sind ganz allgemein kurze Zeitintervalle hoher Störungsintensi-
tät bzw. Sequenzen mit hoher Binärfehlerwahrscheinlichkeit.
In einem Codewort oder Block ist ein Burst definiert als die
Folge von Zeichen, gezählt vom ersten bis zum letzten Fehler
im Block. Entsprechend Gl. (15) und (16) wird ein Fehlerburst,
der allein Prüfstellen umfasst, direkt im Syndrom, gespiegelt an
der Einheitsmatrix, abgebildet. Jeder Fehlerburst B(X) der
Länge b ^ m kann also durch zyklische Vertauschung der

Komponenten eines Empfangswortes [Ve] so verschoben werden,

dass ein [Ve]Zj entsteht, dessen letzte m Positionen den
Burst enthalten. Das Produkt

[«] [VeFzj [B] [V]zF + [B] [AUF [B] [XfFzj

0
[S] B(X)

(36)

(30)

(31)

Gl. (31) bleibt gültig, wenn in [H] und [G] die gleichen
Spaltenvertauschungen vorgenommen werden. Bilden wir aus

[H] nach Gl. (30) die Decodiermatrix [ß] nach Gl. (15), dann
erhält [G] die Form [G]*

liefert dann ein Syndrom, dessen Komponenten die Koeffizienten

des Polynoms sind, das den Burst B(X) beschreibt. Benützt
man zur Lokalisierung des Burst z.B. eine Störungsmessung
(,Stördetektor), dann ist es möglich, entsprechend Gl. (13) und
(36) Bursts bis zur Länge m zu korrigieren. Ohne Stördetektor
wird mindestens die Hälfte der Redundanz zur Burstlokali-
sierung benötigt, so dass bei günstigen Codes nur Bursts der
Länge b X m/2 korrigiert werden können. Verfahren zur
Fehlerkorrektur können in diesem Rahmen nicht eingehend
diskutiert werden, es sei daher auf die zusammenfassende
Arbeit [4] hingewiesen, die hinreichende Literaturangaben zum
Weiterstudium enthält.

Mit Gl. (20) ist bereits ein Bildungsgesetz für Codewörter
eines zyklischen Codes gegeben:

Die Koeffizienten von qi(X) können als die Informationszeichen

eines Codewortes entsprechend [V]i nach Gl. (6)
angesehen werden, das Codewort

« =/i(V) =qi(X)-g(X) (37)

enthält dann aber die Informationsstellen nicht mehr in
unveränderter Folge; der Code ist nicht systematisch.

Mit Hilfe des Euklidischen Divisionsalgorithmus lässt sich
aber auch durch g(X) ein Ideal erzeugen, dass einem systematischen

Code entspricht: Es sei fi(X) ein Polynom der Form

fi(X) xn-i X*-1 + x„-2 Vn"2...+ + 0 + 0...+ 0 (38)
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dessen Koeffizienten den Komponenten von [V]n entsprechen.
Bilden wir

bzw.
M - a(X) + iVQ.
g(X) - q{X) + g{X)

MX) - KD q(X) g(X) =f(X)
(39)

dann ist f(X) ein Codewort entsprechend Gl. (20) oder (37),
das in den ersten k Positionen die unveränderten Informationszeichen

enthält ; die letzten m Positionen - also die Koeffizienten

von r(X) - bilden die Prüfzeichen. Der euklidische
Divisionsalgorithmus kann auch zur Berechnung des Syndroms
[5] S(X) benutzt werden, indem man

MX) f(X) +MX)
g(X) g(X)

q(X)g(X) MX)+ g(X)gm
q(X) + qt(x) + -^- (40)

bzw.
g(X)

MX) mod. g(X) n(X) S(X)

ergeben, dass Xn — 1 teilt und die die Forderung nach linearer

Unabhängigkeit der Spalten von [H~[ erfüllen.
Bose und Chaudhuri haben gezeigt (mit Hilfe Vandermon-

deschen Determinanten), dass man aus [H] mindestens d — 1

beliebige Spalten auswählen kann, die linear unabhängig sind,

wenn die Codewörter f(X) über GF(q) als Wurzeln die
Elemente

amo, ßmo+1, amo+2...amo+d~2 (47)

enthalten, wobei a ein Element aus dem Erweiterungskörper
GF(qm) und mo eine beliebige ganze Zahl (vorzugsweise mo=
0 oder 1) ist. Die Länge n der Codewörter ist gleich dem kleinsten

gemeinsamen Vielfachen (KGV) der Ordnung t der Wurzeln
ß cd (d.h. jS» «!« 1).

Für Binärcodes erhält man als wichtigsten Fall:
a primitives Element Element der Ordnung t — 2m — 1)

aus GF(2m),

mo — 1 und d 2 e + 1. Die Codewörter f(X) und damit g(X)
müssen dann die Wurzeln

bildet, wobei MX) das Fehlerwort repräsentiert. Benutzen wir
Beispiel Gl. (10) mit enthalten.

(48)

[X] =[1 0001 1 0] V6 + 0+ 0 + 0 + X2 + X + 0 =f{X)
[Xt] [0 1 0 1 1 0 0] 0+X5 + 0 + A3+A2+0+0 MX) (41)

[Xe] [1 1 0 1 0 0 0] I6+I5+0+I3 + 0+I+0=/e(D
dann erhalten wir nach Gl. (15) [5] [0 10] und mit Gl. (40) :

MX) : g(X) (X« + X3 + 0 + X3 + 0 + X + 0) : (X3 + X2 + 0 + 1) A3 +^
X6 + Xs + 0 + Xs (42)

0+0+0+0+0+W+0
also MX) 0 + X + 0 S(JF) [S] [0 10]

5. Die Ermittlung des Generatorpolynoms g(X)
Die Codewörter haben die Gestalt

f(X) q(X) g(X) xo + xiX + X2X*...+ xa il»-1 (43)

Jedes Codewort hat also auch die Wurzeln ai, a2...am
des Generatorpolynoms als Wurzeln und damit gilt

/(aO 0 xo + xi ai + *2 ai2...+ xn-i aF"1, (44)

oder in Matrixform geschrieben:

[1 ai ai2...ain_1] [xo xi...xn-i]T 0 (45)

Die Codevektoren [X] f(X) sind also orthogonal zur
Matrix H, die als Elemente die Wurzeln ai von g (X) enthalten :

H

1 ai ai2...ain_1
1 a2 a22...a2n_1

1 am am2...am"-1

(46)

Da aus [H] entsprechend Gl. (30) die Decodiermatrix [ß]
folgt, müssen infolge Gl. (16) d — 1 =2e beliebige
Spaltenvektoren von [H] linear unabhängig sein. Das Problem der
Konstruktion von Codier- bzw. Decodiermatrizen ist also auf
das Auffinden der Wurzeln ai verlagert worden, die ein g(X)

Es existiert zu jedem m und e ein binärer Bose-Chaudhuri-
Code der Länge n 2m — 1, der ^ e beliebig verteilte Fehler
im Codewort korrigiert und nicht mehr als m e r
Prüfstellen benötigt.

Aus den Wurzeln ß\ a' erhält man das Generatorpolynom
g(X) als kleinstes gemeinsames Vielfaches der Minimalpolynome

mi(X), das sind die normierten Polynome [d.h. der
Koeffizient der höchsten Potenz in tm(X) ist gleich 1] kleinsten
Grades, für die m\(ßi) 0 gilt.

A2" 1 — 1 XD — 1 besitzt alle 2m — 1 von 0 verschiedenen

Elemente aus GF(2m) als Wurzeln. g(X), nach vorheriger
Vorschrift bestimmt, ist also immer Teiler von Xn — 1, da die

Wurzeln von g(X) Elemente aus GF(2m) sind.
Bilden wir z.B. den Erweiterungskörper GF(2m) durch

p{X) x3+0 + x + l über GF{2) (irreduzible Polynome
können [3] entnommen werden), a sei die Restklasse, die (A|
enthält und ist damit Wurzel von p(X) sowie gleichzeitig
primitives Körperelement aus GF(2m). Die von 0 verschiedenen

Körperelemente ergeben sich als Potenzen von a zu

(49)
: X3 mod p(X) X + 1

A4 mod p (X) — X2 + X
X5 mod p(X) x2 4- x + 1

a° 1 -40 + 0 [10 0]
a1 0 -h a + 0 [011]
a2 0 -b 0 + a2 [0 01]
a3 1 - b a + 0 [110]
a4 0 -b a + a2 [011]
a5 1 -b a + a2 [111]
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0 + a2 [1 0 1] : X6 mod p(X) x2 + 1

a7 1 + 0 + 0 ot° [1 0 0] : X7 mod p(X) 1

a hat also die Ordnung 23 — 1 7.

Ein BCH-Code, der e 1 Fehler korrigiert mit der Blocklänge

n 2m — 1 =7, hat als Wurzeln der Codewörter f(X)
bzw. von g(X)

ßi a jh dA (50)
nach Gl. (48).

Die Minimalpolynome m\(X) und mi (X) [m\ (ßi) 0;
W2G82) 0] sind irreduzibel über GF(2), daher sind z.B. alle
Wurzeln von mi (X) enthalten in der Folge

ßx ß2 ßi2 /?23.../?2r- (51)

wenn mi(X) vom Grade r ist. Wählen wir z.B. für a a3,

dann hat mi(X) die Wurzeln

ßi ßi2 ßi4 I ß&

as a6 ai2 as (a24 a3 ist schon vorhanden)
(52)

und ist damit vom Grade r 3. Da a2 a6, die Wurzel von
mo(X), bereits in mi (X) enthalten ist, folgt

g(X) my(X) (X — a3) (X - ar>) (X - a3) (53)

Dies ausmultipliziert liefert

g(X) X3 - (a3 + a5 + a8) X2 + (a + a2 + a4) X - a14 (54)

Aus der Tabelle der Elemente von GF(2S) entnehmen wir

a3 1

a5 1

+ a8 1

0 a =0
a2 0

a4 0

a

0

a

0

(55)

1+0+0 1 0+0+0=0

Also ist

g(X) 2f3 — W2 + 0 — 1 X3 + X2 + 0 + 1 über GF{2)

Damit zeigte sich, dass das in diesem ganzen Referat verfolgte
Beispiel :

1. ein linearer systematischer Code (Gruppencode)
2. ein zyklischer Code
3. ein Hamming Code (dichtgepackter Code)
4. ein BCH-Cade

ist.
Dieser Querschnitt aus der Codierungstheorie sollte zeigen,

in welcher Weise Galois-Felder und überhaupt die moderne

Algebra Anwendung in der Codierungstheorie findet.
Verständlicherweise ist gerade das letzte Kapitel nur eine sehr

grobe Übersicht, da diese Arbeit sonst zu umfangreich
geworden wäre. Zur Vertiefung dieses Kapitels sei auf [3]
verwiesen.

Einen Zugang zu den Korrekturverfahren bietet [4] und
eine Beurteilung der Fehlerkorrektur aus wirtschaftlicher Sicht
wird in [5] versucht.
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