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Die Anwendung von Galoiskorpern in der Codierungstheorie *)
Von H. Ohnsorge

1. Einleitung

Die vorliegende Arbeit soll eine Nutzanwendung fiir die
Theorie algebraischer Strukturen beschreiben und zeigen, in
welcher Weise moderne Algebra praktische Anwendung bei
gesicherter Dateniibertragung findet.

Die Grundkenntnisse tiber Mengen, Gruppen, Korper und
Vektorrdume sowie die Matrizenrechnung werden voraus-
gesetzt. Zur Vorbereitung werden die Biicher von Kochenddrfer,
Van der Waerden und Peterson [1; 2; 3]2), empfohlen. Sitze
aus der Algebra, die zur Erklirung der redundanten Codierung
notwendig sind, werden ohne Beweis gegeben; alle Beweise
konnen den zitierten Biichern entnommen werden. Dieser Auf-
satz ist als Querschnitt aus der Theorie der Codierung zu be-
trachten.

2. Begriffe und Definitionen

Eine Code ist die eineindeutige3) Abbildung der Elemente
einer Menge A in die Bildmenge C mit Hilfe der Zuordnung
oder Funktion ¢, die man als Codiervorschrift bezeichnet.

a € A wird Buchstabe des Quellenalphabets,
¢ € C wird Codewort genannt.

Ist C C M, dann handelt es sich um eine redundante Co-
dierung. Entsteht durch eine Storung aus einem Codewort
¢ € Cein Element m € M, das nicht zur Untermenge C gehort,
dann liegt ein erkennbarer Fehler vor. Wird durch eine Funk-
tion w3 jedes Element m € M in die Untermenge C eindeutig
abgebildet, dann ist w3 die Fehlerkorrekturvorschrift (hdufig
auch Decodiervorschrift genannt, obgleich das leicht zur Ver-
wechslung mit der Umkehrfunktion bzw. der inversen Abbil-
dung von ¢ (a) fihrt, die ebenfalls Decodiervorschrift heisst).
Entsteht durch die Storung des Elementes ¢; ein Element c;,
das auch der Menge C angehort, dann kann mit Hilfe des
Codes dieser Fehler nicht erkannt werden, denn einem Code-
wort ldsst sich natiirlich nicht ansehen, dass es durch Storungen
aus einem anderen entstanden ist. Nicht erkennbare Fehler
lassen sich selbstverstindlich auch nicht korrigieren. Entsteht
durch eine Storung aus dem Element ¢; € C ein falsches Ele-
ment m = F (ci) € M, das nicht zu C gehort und bei der De-
codierung ¢; = w3 (m) = ci, dann liegt in diesem Fall eine
fehlerhafte Korrektur vor: Der aufgetretene Fehler ist erkenn-
bar aber nicht korrigierbar. Mit anderen Worten:

Die Decodiervorschrift ys bildet Teilmengen 7" von M in
ein einziges Element aus C ab und ist daher nicht umkehrbar
eindeutig. Entsteht bei der Stérung aus ¢; ein Element der Teil-
menge Tj, die durch w3 in ¢; abgebildet wird, dann haben die

1) Vortrag, gehalten am 10. Februar 1972 an der Universitit Bern.

?) Siehe Literatur am Schluss des Aufsatzes.

%) In dieser Arbeit werden nur eineindeutige Codes betrachtet.
Stellt man z. B. Analogsignale durch Digitalsignale dar, dann liegt
eine nicht umkehrbar eindeutige Codierung vor.
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Storungen ein nichtkorrigierbares Fehlermuster erzeugt. Ein

optimaler fehlerkorrigierender Code liegt dann vor, wenn 3
so gewihlt wird, dass die Wahrscheinlichkeit fiir nicht korri-
gierbare Fehler minimal wird. Daraus folgt sofort, dass w3
nicht unabhingig von der zu erwartenden Stdr- oder Fehler-
struktur optimal gewdhlt werden kann.

Die vorangegangenen Definitionen oder Begriffe seien im
folgenden an einem Beispiel erklirt.

Das Quellenalphabet 4 bestehe aus der Menge der Dezi-
malziffern und den Symbolen fiir die elementaren Verkniip-
fungen also

A=051;2;3;4,5,6,7,8,9; +; —; X; 15,5 =)

Die g = 16 Alphabetbuchstaben kénnen durch k-Tupel aus
Binirzahlen 0 und 1 dargestellt werden, wenn k = ldg = 4 ge-
wihlt wird, z.B.

0 - 0000
- 0001
2 - 0010
3 - 0011
Zuordnung oder ()]
Codiertabelle
(Codebuch)

s, > 1110
= > 1111

A C1

Dieser nichtredundante Code benutzt als Codiervorschrift
o1 einfach eine Zuordnungstabelle.

Weitere in der Codierungstheorie definierte Begriffe werden
im folgenden Text kursiv gesetzt und es empfiehlt sich — soweit
keine Erkliarungen im Text dafiir gegeben sind — die Defini-
tionen z.B. aus [3] zu entnehmen.

3. Matrixdarstellung der redundanten Codes
3.1 Darstellung der Codes durch die Basismatrix

Die von 0 verschiedenen k-Tupel eines nichtredundanten
Codes lassen sich als Linearkombinationen der Zeilenvektoren
einer Einheitsmatrix [I1] darstellen:

1. |100 0| =[L] =IG]

2.10100

3.]00O10 @
4. ]0001

Die Komponenten dieser Matrix sind Elemente des Galois-
Feldes GF(2), die Addition entspricht dabei der modulo 2-
Arithmetik. Die Menge der linear unabhdngigen Vektoren deren
Gesamtheit von Linearkombinationen die Menge C: mit Aus-
nahme des Nullvektors liefert, nennt man Basis G des Code.
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Den Nullvektor [0 00 0] konnte man als Kombination O-ter
Klasse auffassen.

Wihlt man als Codeworter eines Codes Cz n-Tupel mit z. B.
n = 7, dann besteht die Menge M aller bindren 7-Tupel aus
27 = 128 Elementen. Da aber 4 und damit C1 und Cs nur
2k = 24 = 16 Elemente enthélt, sind in M 128 — 16 = 112
Elemente, die nicht zum Code gehoren. Das heisst jedes Code-
wort enthilt 3 tiberfliissige bzw. redundante Bindrzeichen oder
Priifzeichen. Die Basis dieses redundanten Codes C2 muss zu-
nichst einmal wieder die Einheitsmatrix enthalten, da dann die
k = 4 fiir die Information (Elemente aus A4) erforderlichen Po-
sitionen, wie bei dem nichtredundanten Code gebildet werden
konnen. Die Besetzung der n — k = m Positionen fiir die
Priifzeichen geschieht mit Hilfe der Codiervorschrift g2 (Cr)
und ist eine Problemstellung der Codierungstheorie. Wahlt man
in unserem Beispiel als Basis die Matrix

1. =11000110| =I[G] = [h,P]
2.=10100011
3)
3.=10010111
(k=4)=10001101
P

dann bildet C: eine additive Abelsche Gruppe mit dem 0-Vektor
[000000O0] als Identitiits- oder Einselement, wie in Abschn.
3.2 gezeigt wird. Derartige Codes heissen Gruppen-Codes. [G]
besteht also aus der Basis [11] des nichtredundanten Codes er-
ginzt um eine geeignet ausgewihlte Matrix [P], die Redun-
danz- oder Priifzeichenmatrix genannt sei. Die Zeilen von [G]
sind wegen [/1] linear unabhingig, daher existieren, wie gefor-
dert, 2k = 24 = 16 Elemente bzw. Vektoren in Cz, denn die
Summe der Kombinationen iiber alle Klassen von k Elementen

betrigt i
Y (5) -
i=0

Zu den Vektoren aus C: existiert eine Menge O von Vek-
toren, die orthogonal zu den Elementen aus Cs sind: d.h. das
innere oder Skalarprodukt beliebiger Elemente c2i € C2 und
0; £ O ist gleich null, also c2i * 05 = O.

In unserem Beispiel hat O eine Basis der Form

1011100]|=[B]
1110010 4
0111001

Zur Vervollstindigung der Begriffe, die im Weiteren benutzt
werden, sei noch ohne Erlduterung folgendes bemerkt:

In unserem Beispiel ist C2 mit der Basis [G] ein k-dimen-
sionaler Vektorraum iiber dem Korper bzw. dem Galoisfeld
GF (2) und die Menge O ist der zugehorige Orthogonalraum
mit der Dimension n — k = m. C2 und O sind Unterrdume der
Menge M bzw. des Raumes aller n-Tupel mit bindren Kompo-
nenten.

Die Zahl der Komponenten, um die sich zwei Vektoren oder
Codeworter c21, co; unterscheiden, nennt man Hamming-
distanz d+ also

zB.czi — 1000110  [siche GL (3)]
s = 0001101 ©)
dt = 1+1+1+1=4
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Eine Storung kann nur dann ein Codewort in ein anderes
Codewort verfélschen, wenn von der Storung d+ Binidrfehler
erzeugt werden. Die kleinste Hammingdistanz, die in einem
Code C auftritt, wird Minimumdistanz d genannt. Es ist nach
dem vorhergehenden Satz leicht einzusehen, dass ein Code mit
der Minimumdistanz d in der Lage ist, alle Kombinationen
mit i <d — 1 Binédrfehlern in einem Codewort zu erkennen.
Die Zahl der «1»-en in einem bindren Codewort nennt man das
Gewicht W des Codewortes.

Haben die #-Tupel der Teilmenge T, die durch die Deco-
diervorschrift w3 in ein Codewort ce; abgebildet werden, die
kleinstmogliche Distanz von c2i, und besitzen alle Codeworter
in Cg Teilmengen 7 mit gleichviel Elementen, dann liegt ein
dichtgepackter Code vor. Diese Codes sind optimal fiir stati-
stisch unabhéngig auftretende Bindrfehler. In unserem Beispiel
ist C2 ein derartiger Code (Hamming-Code). Der Raum aller
n-Tupel ist, durch die Codewdrter eines dichtgepackten Codes
homogen ausgefiillt, d.h. die Distanzverteilung der Code-
worter gegeniiber einem Codewort cs; ist fiir jedes Codewort
gleich. Diese Eigenschaft haben alle Gruppencodes, was aber
nicht heisst, dass alle Gruppencodes dichtgepackte Codes sind.
Im Gegenteil: es existieren kaum dichtgepackte Codes (be-
kannt sind z.B. Hamming-Codes und der Golay-Code). Exi-
stiert fiir gegebenes # und k [(n, k)-Codes] kein dichtgepackter
Code, dann ist der Code optimal fiir statistisch unabhingige
Fehler, welcher der «dichten Packung» am nichsten kommt
(z.B. quasidichtgepackte Codes).

Der Vektorraum ¥V aus n-Tupeln mit Komponenten aus
GF (2) besitzt 2* Elemente. Fiir den Code C2 werden aber da-
von nur 2¥ Elemente bendtigt, also bleiben bei gleichmissiger
Verteilung pro Codewort Teilmengen 7 mit (27/2k) — 1 =
2m — 1 nicht benétigten Elementen. Im Abstand d+ = 1 von

n
1

liegen (’:) Elemente. Wihlt man also 7' so aus, dass ein dicht-

co; liegen in ¥V insgesamt ( ) = n Elemente, im Abstand d+ =i

gepackter Code entsteht, dann ist

€

(5.1)

Falls diese Gleichung nicht existiert, d.h. dass bei gegebe-
nem (n, e), (n, m) oder (m, ¢) kein dichtgepackter Code kon-
struiert werden kann, dann muss

€
m _ ")
m_ 1> ; ( :
gewihlt werden.

Aus GI.(5.1) und (5.2) folgt die sogenannte Hamminggrenze

e
n
mgldigo(i)

die aussagt, dass ein Code der Codewort- oder Blocklinge n

(5.2)

(5.3)

€
. n S . .
mindestens 1d Z (1) Priifzeichen besitzen muss, wennalle Mu-
i=0

ster mit / = 1 bis e Bindrfehlern korrigierbar sein sollen. Wihlt

man m Priifzeichen, dann hat der zugehorige nichtredundante

Code C1 k = n — m Informationsstellen. Beim e Fehler korri-

gierenden Code betrdgt die Minimumdistanz d = 2e¢ + 1,
d—1

bzw. ist e = 5 -
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3.2 Darstellung linearer systematischer Codes durch
die Codier- und Decodiermatrix

Unterscheiden wir ¢ Elemente, wobei g eine Primzahlpotenz
ist, dann bilden diese Elemente einen endlichen Korper F. Die
Menge aller n-Tupel aus diesen Korperelementen bilden einen
Vektorraum, die Elemente eines Unterraumes im Rahmen aller
n-Tupel iiber F bilden einen linearen Code. Uber jedem Kérper
aus p Elementen, bei dem p eine Primzahl ist, bildet eine Menge
von Vektoren, die eine Gruppe darstellen, einen linearen Raum.
Bindgre Linearcodes werden daher auch Gruppencodes genannt.
Bildet man aus einem nichtredundanten Code Ci einen redun-
danten Code Cs, der nur durch Anhingen von Priifzeichen an
die Codeworter Ci (an die Informationsstellen) entsteht, dann
heisst dieser Code systematisch. Werden durch lineare Ver-
kniipfung von Informationselementen die einem Korper F an-
gehoren, Priifzeichen abgeleitet und im Anschluss an die un-
verinderten Informationsstellen gesendet (= Codiervorschrift
@2), dann liegt ein linearer systematischer Code vor.

Die Informationsstellen, also die Komponenten der Code-
worter von Ci, seien x1 xo..xx aus GF (2). Zur linearen
Verkniipfung benutzt man die Matrix [4] mit Koeffizienten aus
GF (2), so dass der Priifzeichenvektor oder die Priifzeichen-
matrix [y1 y2...ym] sich aus

[4] - [XIiT = [Y]* (O]
ergibt.
wobei [XTt = [x1, x2...xx] die Informationszeichenmatrix und
[X1:T die transponierte Matrix [X]; ist. Nennen wir y; = Xi+i,
dann wird aus Gl. (6) ein homogenes Gleichungssystem, bei
dem [A4] durch die Einheitsmatrix > erginzt ist und [X] die
Codewdorter bilden, also:
[4, I2] - [X]* = [0] = [B]- [X]*
[X] = [x1 X2...Xx Xk41 = Y1 Xk+2 = Y2..Xktm = Ym] (7)
[X]E C2

[A] wird Codier- und [B] Decodiermatrix genannt. Die Linear-
kombinationen von [B] bilden den Orthogonalraum zum Code
Co. Wir benutzen wieder unser Beispiel und entnehmen aus
Gl. (4)

011 1011100
110/ =041 (1110010 =[81 (8
i d 4 0111001

[~

und wir erhalten

[A4] - [L]* = [P]* mit [1]* = [{]
bzw. )]
[A, I5] - [, PIT = [0] = [B]: [G]T

In Worten: Die Codiermatrix [4] multipliziert mit der Ein-
heitsmatrix [/1], die immer die Basismatrix der Informations-
stellen bzw. des nichtredundanten Codes Cip ist, liefert die
transponierte Redundanzmatrix [P] der Basis [G] des Codes Ca.
[A] um [I2] ergénzt liefert [B]; [/1] um [P] ergédnzt liefert [G];
und [G] ist orthogonal zu [B].

Durch Storungen wird das Codewort [X] in ein Empfangs-
wort [Xe] verfilscht, dies kann man sich durch Addition eines
Fehlerwortes [X;] zu [X] vorstellen, also

[Xe] = [X]+ [Xi]
ea1 = [X] =1000110
[X©1 =0101100

[X] =1101010

ot
Fehler

Z.B.
10)
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Zur Decodierung wird zunichst

[B] - [X]eT = [B] - [X]T + [B]- [X:]* = [S] 11)

0
gebildet,

[S] das sog. Syndrom ist eine einspaltige Matrix mit m Kom-
ponenten aus GF (2) und hingt nur von dem Fehlerwort [Xt]
ab, da per Definition bzw. Codiervorschrift jedes Codewort
orthogonal zu [B] ist. [B] - [X:]T - [S] ist eine eindeutige aber
nicht umkehrbar eindeutige Abbildung von [X:] in [S], da
[Xt] 22 — 1 von [O] verschiedene Flemente besitzt, [S] da-
gegen nur 2™ — 1 von [O] verschiedene Elemente hat. Erhalten
wir [B] - [X:]T= [O] = [S] dann ist [X;] entweder [O] oder ein
Codewort [X], im letzteren Fall liegt also ein nicht erkennbares
Fehlermuster vor. Bei [S] & [O] ist ein Fehlermuster erkannt.
Fordert man, dass der Code eine Menge F+von Fehlermustern
korrigieren kénnen soll; dann muss F+ durch [B] eineindeutig
in die Menge [S] abgebildet werden. Ist f € F+; ¢; € T; und ge-
hort T'i zu cei, dann gilt #; = ca; + f fiir alle Elemente aus 7.
Sollen z.B. alle Fehlermuster mit 1 < i < e Binérfehlern kor-
rigierbar sein, dann muss die Zahl der von [O] verschiedenen

[
Syndrome Z = 2™ —1 mindestens gleich Y, ('}) d.h. gleich
i=1
der Summe von Kombinationen i-ter Klasse von # Elementen

€
sein; ist Z > 2 (l) , dann sind auch noch einige Muster mit
i=1

mehr als e Fehlern korrigierbar. Aus dieser Betrachtung folgt
ebenfalls die Hamminggrenze :
> ()
i
i=1

2m —1

v

(12)

m

1\

a3

Mit [B] lasst sich nun zu jedem Fehlermuster [X:]; das kor-
rigierbar sein soll, das zugehorige Syndrom [S]i berechnen.
Tritt beim Decodierprozess ein [S]i &= O auf, dann wird das
zugehérige Fehlermuster [X;]; vom Empfangswort subtrahiert
und man erhélt das korrigierte Codewort

[X] = [Xe] — [Xe]s (13)

solange [Xt]i =fi € F*, andernfalls erfolgt fehlerhafte Korrek-
tur (= erkennbarer aber nicht korrigierbarer Fehler).

Als nichstes wenden wir uns der Frage zu, wie muss [A4]
gewihlt werden, damit ein optimaler (dichtgepackter oder
moglichst dichtgepackter) Code gegen statistisch unabhingige
Fehler entsteht.

Zur Vereinfachung schreiben wir [B]: [X:]T = [S] in die an-
schauliche Form:

[ xt1xe2 ...... Xtn ]
b11 b1z ... ... bin S1
b .
21 - S92 (14)
. 53
bml ........ bmn Sm
b1 [bm]
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Z.B. sei entsprechend Gl. (10) und (8):

[Xs] - [0101100]

v

[B] ={1011100 0 1 1 0 S1
1110010 =|1[+[O0]+|O0Of=]1]=]s2
0111001 1 1 0 0 $3

(15)

Man erkennt also, dass das Syndrom gleich der Summe der
Spaltenvektoren [b]; ist, die zu einer «1» im Fehlerwort bzw.
zu einem Fehler im Codewort gehoren:

[s1= D, [bl (16)

xp=1

Ist die Zahl e der korrigierbaren Einzelfehler in den Code-
wortern der Lange n vorgegeben, dann ergibt sich aus GlI. (5,1)
die Mindestkomponentenzahl . Aus der Menge aller m-Tupel
tiber GF (2) miissen die Spalten von [B] nun so ausgew#hlt
werden, dass mindestens d — 1 = 2e beliebige Spaltenvek-
toren von [B] linearunabhingig sind, denn erst bei d Fehlern
im Codewort darf [S] = [Q] - also ein nicht erkennbarer Feh-
ler — entstehen, d.h. erst eine Linearkombination aus d — 1
Spalten [b]; darf eine weitere Spalte entstehen lassen, die bei d
Fehlern im Codewort zu [S] = [O] fiihren kann. Gelingt diese

5]
Spaltenauswahl bei m = 1d 2 (7), dann ist ein dichtge-
i=0

packter Code gefunden, andernfalls muss man m um 1, 2...7
vergrossern bis [B] die Forderung beziiglich der linearen Un-
abhéngigkeit seiner Spalten erfiillt. m Spalten sind durch die
Einheitsmatrix vorweggenommen. Ausserdem bilden 4 — 1
Spalten der Einheitsmatrix als Linearkombination immer eine
Spalte mit d — 1 «1»-en; die Spalten der Matrix [4] miissen
also mindestens d — 1 «1»-en aufweisen. Mehr Anhaltspunkte
fiir die Konstruktion der Codier- und Decodiermatrix zur Er-
zeugung moglichst dichtgepackter Codes existieren nicht, so
dass [B] nur mit Hilfe eines Computers durch das «trial and
errory-Verfahren bestimmt werden kann.

Wesentlich weiter kommt man bei dem Problem der Code-
konstruktion durch die Polynomdarstellung linearer Codes.

4. Polynomdarstellung der linearen Codes

Die Menge aller n-Tupel mit den Komponenten xi aus
einem Korper F z.B. aus GF (p) konnen als Koeffizienten-
matrix von Polynomen der Form

f(X) = X0 + x1X + x2X2 + ...Xn—an"l (17)

aufgefasst werden mit X als Operator (auch Verschiebeoperator
genannt).
Es ist also

f(X)€E M = Menge aller Polynome vom Grad < # liber F (18)

M entsteht aus der Menge aller Polynome F(X) iiber F
modulo einem Polynom f* (X) mit Koeffizienten aus F als Re-
priasentanten der Restklassen (f(X)); d.h. f(X) ist jeweils das
Polynom vom kleinsten Grade in der Restklasse {f(X)).

Man erhélt f(X) aus F(X) durch den Euklidischen Divisions-

algorithmus.
F(X)
f*X)

f(X)

q(X) +W 19)

496 (A 361)

Die Menge der Restklassen {f(X)) bildet eine kommuta-
tive, lineare assoziative Algebra A und erfiillt damit alle Axiome
der algebraischen Strukturen: Gruppe, Ring und Vektorraum.
Wihlt man ausserdem fiir f*(X) ein iiber F irreduzibles Poly-
nom p (X) vom Grade K, dann ist die Algebra der Polynome
iiber F modulo p(X) auch ein Korper und zwar der Erweite-
rungskorper vom Grade K iiber dem Grundkérper F bzw. ein
Galoisfeld GF (pX), wenn F = GF (p), also ein Primzahlkorper
ist.

Ein Ideal I ist definiert als Untermenge von Elementen eines
Ringes R, die Untergruppe der additiven Gruppe von R ist und
fiir die gilt: a& I; r € R =) ar und ra € I. Besteht das Ideal aus
allen Vielfachen eines Ringelementes r, dann heisst es Haupt-
ideal. Eine Menge von Polynomen bildet dann und nur dann
ein Ideal, wenn sie aus allen Vielfachen eines Polynoms g(X)
besteht.

Wiéhlen wir

filX) =q(X)-g(X)EC2C M (20)

wobei gi(X) ein beliebiges Polynom vom Grade < k —1 =
n —m — 1 und g(X) ein normiertes Polynom vom Grade m
ist — mit Koeffizienten aus F bei allen Polynomen — dann bildet
die Menge Cz der Polynome fi(X) ein Hauptideal 7 in der Al-
gebra A4, das von g(X) erzeugt wird, wenn g(X) Teiler von
f*(X) ist.

(Mit Hilfe des Nebenklassenschemas kann man durch dieses
Ideal 7 einen Restklassenring bilden, dieser heisst Polynomring
modulo f* (X). I bildet den Code Cz bzw. die Restklasse {O);
die Reprisentanten f(X) der weiteren Restklassen {f(X)) sind
Elemente der Mengen 7, in denen die fiir den Code C2 nicht
verwendeten n-Tupel liegen).

1 stellt in A4 einen Unterraum dar mit den Basisvektoren

(g(X)) (X - g(X))..[ X1 g(X))

da nach GI. (20) jedes Codewort als Linear-Kombination die-
ser Vektoren gebildet werden kann, denn es ist

coi = fi(X) = (go + @1.X + q2X2...qxc-1 X¥71) - g(X)

(21)

mit (22)
g(X) =go + g1X + g2X2..gnX™
Als Beispiel wihlen wir
ffx) =14+ x7
glX) =140+ X2 4 X3
(g(X)) =[1011000° 23)
(Xg(X)) =]1]0101100 6]
(X2-¢(X)) =]10010110|
(X3 ¢g(X)) =]1]0001011

Gemiss obiger Forderung fiir 7 wurde g(X) als Teiler von
S*(X) gewihlt. In unserem Beispiel ist

f*(X)
gX)

=h(X)+0 (24)
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In der Algebra A der Polynome iiber FF modulo f* (X) ist das
Ideal, das von /(X)) gebildet wird, orthogonal zu dem von g(X)
gebildeten Ideal, da

(a(X) h(X) - q(X) g(X)) =

= (a(X) ¢q(X)}-(0)=0

(a(X) q(X)}-(h(X) g(X))
(26)

Polynome gelten als orthogonal, wenn deren Produkt in der
Algebra A4 null ist, also z.B.:

g(X) h(X) modulo f*(X) =0 27

Bildet man das Produkt der Koeffizientenmatrizen [¢] - [4)7,
dann ist dieses nur dann 0, wenn man eine Umkehrung der In-
dizes von h oder g vornimmt, also

hk
It

[g0, 81, 82...4m]" | ~ =0 (28)

ho

bei f*(X) = X1 4 1.
Die Basis H* des von h(X) gebildeten Ideals hat folgende
Form bei
£HX) =147
A(X) =140+ x2 + x3 4 x4

(h(X))=11011100 29)
(X-h(X))=10101110]|=[H]*
(X2-h(X))=]0010111

Vertauschen wir die Komponenten von Gl. (29) zu
0011101
0111010]|=[H] (30)
1110100
dann gilt mit [G] nach Gl. (23):
[G]- [H]* =0
bzw. (€29)
[H]: [G]T =

Gl. (31) bleibt gultig, wenn in [H] und [G] die gleichen
Spaltenvertauschungen vorgenommen werden. Bilden wir aus
[H] nach Gl. (30) die Decodiermatrix [B] nach Gl. (15), dann
erhilt [G] die Form [G]*

1010001
1101000
— *
0011010 M
1000110
mit -
(1011100
=1 *
1110010 —(EHIJ} -—[G[Ii]—()
0111001 | " [B]- [G]* =
Durch elementare Zeilenoperationen lasst sich aus [G]*
1000110
0100011 _
0010111 |=[0] nach GL.(3) bilden  (33)
0001101
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Es gilt natiirlich wieder
[B]-[G]* =0

entsprechend GI1. (9). g(X) und f*(X) beschreiben den Code
C2 genauso vollstindig wie [4] und » bei der Matrixdarstel-
lung. g(X) wird Basis- oder Generatorpolynom genannt.

Fiir f*(X) = X —1 bildet das von g(X) erzeugte Ideal /
einen zyklischen Unterraum in der Algebra A; der Code C2
mit dem Generatorpolynom g(X) das f*(X) = X0 —1 teilt,
heisst daher zyklischer Code. Jede zyklische Verschiebung der
Komponenten eines Codeworts liefert wieder ein zum Code Cz
gehoriges n-Tupel, z.B.

(34)

[XIi =(X3¢(X)}] =[0001 01 1] = Codewort ci

[XIoj = {X4g(X)) =[1 0001 0 1] = Codewort c; =)

Binidrcodes, die von einem Polynom g(X) erzeugt werden,
lassen sich sehr einfach durch riickgekoppelte Schieberegister
erzeugen. Die zyklischen Codes dieser Klasse eignen sich be-
sonders zur Korrektur von Fehlerbiindeln (error bursts), das
sind ganz allgemein kurze Zeitintervalle hoher Storungsintensi-
tdt bzw. Sequenzen mit hoher Bindrfehlerwahrscheinlichkeit.
In einem Codewort oder Block ist ein Burst definiert als die
Folge von Zeichen, gezéhlt vom ersten bis zum letzten Fehler
im Block. Entsprechend Gl. (15) und (16) wird ein Fehlerburst,
der allein Priifstellen umfasst, direkt im Syndrom, gespiegelt an
der Einheitsmatrix, abgebildet. Jeder Fehlerburst B(X) der
Linge b < m kann also durch zyklische Vertauschung der
Komponenten eines Empfangswortes [Xe] so verschoben wer-
den, dass ein [Xe]z entsteht, dessen letzte m Positionen den
Burst enthalten. Das Produkt

[B] [Xel's = [B] - [X1" + [B] [Xil™ = [B]- [Xi]Ts =

0 (36)
=[S]2 B(X)

liefert dann ein Syndrom, dessen Komponenten die Koeffizien-
ten des Polynoms sind, das den Burst B(X) beschreibt. Beniitzt
man zur Lokalisierung des Burst z.B. eine Storungsmessung
(Stordetektor), dann ist es moglich, entsprechend Gl. (13) und
(36) Bursts bis zur Lange m zu korrigieren. Ohne Stordetektor
wird mindestens die Hilfte der Redundanz zur Burstlokali-
sierung benotigt, so dass bei ginstigen Codes nur Bursts der
Linge b < m/2 korrigiert werden koOnnen. Verfahren zur
Fehlerkorrektur konnen in diessm Rahmen nicht eingehend
diskutiert werden, es sei daher auf die zusammenfassende Ar-
beit [4] hingewiesen, die hinreichende Literaturangaben zum
Weiterstudium enthilt.

Mit Gl. (20) ist bereits ein Bildungsgesetz fiir Codeworter
eines zyklischen Codes gegeben:

Die Koeffizienten von ¢;(X) konnen als die Informations-
zeichen eines Codewortes entsprechend [X]r nach GI. (6) ange-
sehen werden, das Codewort

ci = fi(X) = qi(X) - g(X) 37

enthélt dann aber die Informationsstellen nicht mehr in unver-
dnderter Folge; der Code ist nicht systematisch.

Mit Hilfe des Euklidischen Divisionsalgorithmus ldsst sich
aber auch durch g(X) ein Ideal erzeugen, dass einem systema-
tischen Code entspricht: Es sei f1(X) ein Polynom der Form

fI(X) = Xn-1 Xll—l + Xn-2 Xn—2.__+ Xm Xm + 0 + 0+ 0 (38)
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dessen Koeffizienten den Komponenten von [X]u entsprechen.
Bilden wir

A r(X)
e ~ 10+
bzw. 39)
AX) — r(X) = g(X) - g(X) = FX)

dann ist f(X) ein Codewort entsprechend GI. (20) oder (37),
das in den ersten k Positionen die unverinderten Informations-
zeichen enthilt; die letzten m Positionen — also die Koeffizien-
ten von r(X) — bilden die Priifzeichen. Der euklidische Divi-
sionsalgorithmus kann auch zur Berechnung des Syndroms
[S] = S(X) benutzt werden, indem man

fe(X) _ fX) +AX) _ q(X)g(X) n fX)

g(Xx) g(X) g(Xx) g(x)
=ﬂm+mu%%§§ (40)

bzw.

fe(X) mod. g(X) = ri(X) = S(X)

bildet, wobei f;(X) das Fehlerwort reprisentiert. Benutzen wir
Beispiel GI. (10) mit

ergeben, dass X — 1 teilt und die die Forderung nach linearer
Unabhiingigkeit der Spalten von [H] erfiillen.

Bose und Chaudhuri haben gezeigt (mit Hilfe Vandermon-
deschen Determinanten), dass man aus [H] mindestens d — 1
beliebige Spalten auswihlen kann, die linear unabhéngig sind,
wenn die Codewdrter f(X) iiber GF(q) als Wurzeln die Ele-

mente
@7

amo, am0+1, amyt2, gmytd-2

enthalten, wobei a ein Element aus dem Erweiterungskorper
GF(g™) und my eine beliebige ganze Zahl (vorzugsweise mo=
0 oder 1) ist. Die Linge n der Codeworter ist gleich dem klein-
sten gemeinsamen Vielfachen (KGV) der Ordnung t der Wurzeln
B =al (d.h. fti = ol-ti =1).
Fiir Binidrcodes erhilt man als wichtigsten Fall:
a = primitives Element (= Element der Ordnung ¢t = 2™ — 1)
aus GF(2m),

mo = 1und d = 2e + 1. Die Codewdrter f(X) und damit g(X)
miissen dann die Wurzeln

[X] =[1000110]=X¢+04+04+0+X2+X+0

[X;] =[0101100]=0+X5+0-+X3+X24+0+0=r(X)

[Xe] =[1101000]=X64+X°404+X340+4+X+0 =fe(X)

dann erhalten wir nach GI1. (15) [S] = [0 1 0] und mit GI. (40):

FoX): g(X) = (XS + X5+ 0+ X5 +0+X+0):(X? + X2 +0+1) = X>+

X6+ X540+ X°
04+0+0+0+0+X+0
also n1(X) =0+ X + 0 =S(X) =[S]=1[0 1 0]

a, a2, ad...,a2%¢ (48)
enthalten.
= f(X)
41)
X
g(X
42)

5. Die Ermittlung des Generatorpolynoms g(X)
Die Codeworter haben die Gestalt

f(X) =q(X)g(X) = x0 + x1X + x2X2...+ xpn1X2-1(43)

Jedes Codewort hat also auch die Wurzeln «1, «2...0m
des Generatorpolynoms als Wurzeln und damit gilt

flx) =0 =x0 + x10i + x2 %:2...+ Xn-1 &i®1, (44)
oder in Matrixform geschrieben:
[1 o ai2...ai®1] [x0 x1...x0-1]T = O (45)

Die Codevektoren [X] = f(X) sind also orthogonal zur
Matrix H, die als Elemente die Wurzeln «; von g (X) enthalten:

1 o1 2.2
1 o2 ao2..ao™ 1

(46)

1 om amz.. .“mn_l

Da aus [H] entsprechend Gl. (30) die Decodiermatrix [B]
folgt, miissen infolge Gl. (16) d — 1 = 2e beliebige Spalten-
vektoren von [H] linear unabhingig sein. Das Problem der
Konstruktion von Codier- bzw. Decodiermatrizen ist also auf
das Auffinden der Wurzeln o; verlagert worden, die ein g(X)
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Es existiert zu jedem m und e ein bindrer Bose-Chaudhuri-
Code der Linge n = 2™ — 1, der < e beliebig verteilte Fehler
im Codewort korrigiert und nicht mehr als m - e = r Priif-
stellen benotigt.

Aus den Wurzeln fi = a! erhidlt man das Generatorpolynom
g(X) als kleinstes gemeinsames Vielfaches der Minimalpoly-
nome mi(X), das sind die normierten Polynome [d.h. der Koef-
fizient der hochsten Potenz in mi(X) ist gleich 1] kleinsten
Grades, fiir die mi(f;) = 0 gilt.

Xem-1 1 = Xn — 1 besitzt alle 2m — 1 von 0 verschie-
denen Elemente aus GF(2™) als Wurzeln. g(X), nach vorheriger
Vorschrift bestimmt, ist also immer Teiler von X® — 1, da die
Wurzeln von g(X) Elemente aus GF(2™) sind.

Bilden wir z.B. den Erweiterungskorper GF(2™) durch
p(X)=x3+0 -+ x + 1 liber GF(2) (irreduzible Polynome
konnen [3] entnommen werden). « sei die Restklasse, die ( X)
enthilt und ist damit Wurzel von p(X) sowie gleichzeitig pri-
mitives Korperelement aus GF(2™). Die von 0 verschiedenen
Korperelemente ergeben sich als Potenzen von « zu

«9=1+0+0 =[100]

al=0+4+a+0 =[011]

a2 =040+ a2 =[001] (49)
d=14+a+0 =[110]: X3modp(X) = X + 1

0t =04 a + a2 =[011]: X4modp(X) = X2+ X
=14+ a + a2 =[111]: Xmodp(X) =x2 4+ x +1
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ab=1+0 + a2 =[101]: X®mod p(X) = x2 + 1
¢7"=1+04+0=a2=[100]: X"modp(X) =1

« hat also die Ordnung 23 — 1 = 7.

Ein BCH-Code, der ¢ =1 Fehler korrigiert mit der Block-
linge n = 2m — 1 = 7, hat als Wurzeln der Codeworter f(X)
bzw. von g(X)

pfL=a
nach Gl. (48).
Die Minimalpolynome mi(X) und m:z (X) [m1(p1) =0;
ma(f2) = 0] sind irreduzibel iiber GF(2), daher sind z.B. alle
Waurzeln von m; (X) enthalten in der Folge

B B p2? B2d... g2t (51)

wenn m1(X) vom Grade r ist. Wahlen wir z.B. fir a = a3,
dann hat m (X) die Wurzeln

B p12 prt B8

ad ab ol?2 = ab | (a2* = a3 ist schon vorhanden

B2 = a? (50)

) (52)
und ist damit vom Grade ¥ = 3. Da a2 = a6, die Wurzel von
m2(X), bereits in mi(X) enthalten ist, folgt
gX)=mX) =X - X —a®) (X —a® (53)
Dies ausmultipliziert liefert
g(X) = X3 — (6 + 05 + a9 X2 + (o + o2 + o) X — alt (54)

Aus der Tabelle der Elemente von GF(2%) entnehmen wir

w=1+a+0 « =0+a+0
ab=1+4+a + a2 a? =0+ 0 + «? (55)
+ab =140+ a2 +at =0+ a + a2
1+04+0=1 04+040=0
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Also ist
e(X)=X3 - X24+0—-1=X34 X240 +1 iiber GFQQ)

Damit zeigte sich, dass das in diesem ganzen Referat verfolgte
Beispiel:

1. ein linearer systematischer Code (Gruppencode)

2. ein zyklischer Code

3. ein Hamming Code (dichtgepackter Code)

4. ein BCH-Code

ist.

Dieser Querschnitt aus der Codierungstheorie sollte zeigen,
in welcher Weise Galois-Felder und iiberhaupt die moderne
Algebra Anwendung in der Codierungstheorie findet. Ver-
standlicherweise ist gerade das letzte Kapitel nur eine sehr
grobe Ubersicht, da diese Arbeit sonst zu umfangreich ge-
worden wire. Zur Vertiefung dieses Kapitels sei auf [3] ver-
wiesen.

Einen Zugang zu den Korrekturverfahren bietet [4] und
eine Beurteilung der Fehlerkorrektur aus wirtschaftlicher Sicht
wird in [5] versucht.
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