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Mechanische Schwingungen von Rohrsammeischienen in Freiluftschaltanlagen
Von L. Möcks

Rohrsammeischienen von Freiluftschaltanlagen können vom
Wind zu mechanischen Schwingungen mit beträchtlichen
Amplituden angeregt werden. Der Mechanismus des Windantriebes
wird erläutert. Nach Lösung der Differentialgleichung für freie
und erzwungene Stabschwingungen werden Eigenwerte und
Schwingungsformen auch für das mehrfach gelagerte Rohr
abgeleitet.

Über das Problem der Rohrschwingungsdämpfung bzw.
Tilgung wird in einer später erscheinenden Arbeit berichtet.

621.316.35 : 621.311.47-742 : 62-752

Sous l'action du vent, des jeux de barres tubulaires de postes
de couplage en plein air peuvent vibrer avec des amplitudes
considérables. Le mécanisme de l'action du vent est expliqué. Après
solution de l'équation différentielle pour vibrations libres et
forcées des barres, on en déduit les valeurs propres et les formes de
vibration, également pour un tube supporté à plusieurs endroits.

Dans un autre article, publié ultérieurement, l'auteur
s'occupera de l'amortissement ou de la suppression des vibrations des
barres tubulaires.

Verwendete Buchstabensymbole
/?w Breite der Wirbelstrasse
/w Entfernung zweier benachbarter Wirbel einer

Wirbelreihe
/w Frequenz der Wirbelablösung
5 Strouhal-Zahl
V Strömungsgeschwindigkeit
D Durchmesser des zylindrischen Körpers
Pa Windantriebskraft
CA Auftriebsbeiwert
E Elastizitätsmodul des Stabes
1 Flächenträgheitsmoment des Stabes
Q spezifische Dichte des Stabes
Q-L spezifische Dichte der Luft
F Querschnittsfläche des Stabes
P Massenbelag des Stabes
t Zeit
Ô Abklingkonstante
P (X, t) orts- und zeitabhängige Störkraft
COn Eigenkreisfrequenzen des Stabes
et Phasenwinkel bei freier Schwingung
X Verschiebung
À charakteristische Wurzel der Ortsgleichung 7
1 Feldlänge
£e Phasenwinkel bei erzwungener Schwingung
¥ Neigung
M Moment
Q Querkraft
y Vektor
V, A, B Matrix

1. Einführung
In Freiluftschaltanlagen werden ausser Seilsammelschienen

auch Rohrsammeischienen eingesetzt. Besondere Bedeutung
hat das Rohr aus Aluminiumlegierung. Der Rohrdurchmesser
liegt je nach Stützweite, Strombelastung und Nennspannung
zwischen 80 und 400 mm.

An den Tragpunkten werden die Rohre entsprechend
Anordnung und Aufteilung der Anlage auf Stützenisolatoren
gelenkig gelagert oder fest eingespannt. Zur Vermeidung von
unerwünschten Längskräften durch Wärmedehnungen ist
jeweils ein Rohrende eines Teilfeldes in Rohrachsrichtung
verschiebbar. An Stützstellen mit ungeschnittenem durchlaufendem

Rohr hat die statische Biegebeanspruchung die gleiche
Grösse wie bei der festen Einspannung, obwohl das Rohr
drehbeweglich und längsverschiebbar gelagert ist (Fig. 1).

Die Art der Lagerung ist massgebend für die Rohr- und
Stützerbeanspruchung. Dies gilt sowohl für innere
(Eigengewicht) als auch äussere (Schaltstoss, Kurzschlußstrom)
Kräfte.

Die in Fig. 1 dargestellten Lagerarten bzw.
Beanspruchungsfälle gelten in erster Linie für gleichmässig über dio

Längeneinheit verteilt angreifende Kräfte. Mit gewissen

Einschränkungen gelten diese Beanspruchungsfälle auch für das

horizontal oder vertikal schwingende Rohr (Grundschwingung).

Die mechanische Beanspruchung von Rohr und Stützer
wird nahezu, unabhängig von der Art der angreifenden Kräfte,
ein Minimum, wenn das Sammelschienenrohr an jedem
Stützpunkt geschnitten und gelenkig gelagert wird. Eine solche
Bauweise erfordert erhöhte Kosten und ist deshalb
unwirtschaftlich. Die geschnittenen Rohrenden müssen durch relativ
teuere, allseitig elastisch arbeitende Strombrücken verbunden
werden, damit die Rohrschiene ihre Aufgabe als Energiestrasse

zuverlässig erfüllen kann (Fig. 2). In der Praxis
überwiegen Lösungen gemäss Fig. 1, Stützpunkte B, C, D.

2. Ziel der Arbeit
Sammelschienen-Schwingungen können durch Schaltstösse

sowie Betriebs- und Kurzschlußströme angeregt werden. Die
im ersten Fall angestossenen freien Schwingungen haben, da sie

nur unregelmässig in weiten Zeitabständen auftreten und
geringe Intensität besitzen, für die Beanspruchung von Rohr
und Stützer kaum Bedeutung. Die Schwingungen klingen durch
die vorhandene Eigendämpfung schnell ab.

Erzwungene Schwingungen durch magnetische Felder sind
wesentlich gefährlicher. Ihre Auswirkungen wurden deshalb in

zahlreichen Untersuchungen studiert [1; 2]1).
Die vorliegende Arbeit befasst sich ausschliesslich mit

winderregten Schwingungen, die über längere Zeitabschnitte
ständig auftreten und deshalb die Gefahr von Ermüdungsbrüchen

am Leiter oder Stützer einschliessen. Die Schwingungen

gefährden ausserdem das sichere Zuschalten von Greifer-
trennern.

Zunächst sei der eigentliche Antriebsmechanismus erläutert
und anschliessend die Theorie der Rohr- bzw. Stabschwingung
behandelt.

3. Windantrieb

Wird ein langgestreckter zylindrischer Körper von einem

flüssigen oder gasförmigen Medium quer angeströmt, so lösen
sich innerhalb eines bestimmten Bandes der Strömungsgeschwindigkeit

auf der Leeseite Wirbel ab. Über die ersten

experimentellen Beobachtungen dieser Art berichtet V. Strou-
hal [3]. Theodor von Karman [4] entwickelte die Stabilitäts-

') Siehe Literatur am Schluss des Aufsatzes.
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theorie der Wirbelstrasse mit einem konstanten Verhältnis
zwischen Breite hw und Teilung /w der Wirbelstrasse (Fig. 3).

4--= 0,281 (1)
/ W

Die Frequenz /w der Kârmân-Wirbel folgt bei ruhendem

Körper dem Gesetz:

/w =S-% (2)

Die Strouhal-Zahl S ist entgegen früherer Annahmen nicht
konstant, sondern eine Funktion der Reynold-Zahl [5]. Im
Bereich der Reynold-Zahlen von 102... 105 schwankt S etwa
zwischen 0,17 und 0,2.

Mit der Wirbelablösung vom Zylinder ist ein Quertrieb
verbunden, der versucht, den Zylinder zu rhythmischen
Bewegungen quer zur Strömung anzuregen. Gerät der Zylinder in
der Strömung in Schwingungen, so wird die Strouhal-Zahl S

kleiner als bei ruhendem Zylinder [6],

Den Zusammenhang zwischen Strömungsgeschwindigkeit,
Schwingfrequenz und Schwingamplitude hat Meier-Windhorst
[7] in Versuchen geklärt und übersichtlich dargestellt (Fig. 4).

Nach den Untersuchungsergebnissen von Meier-Windhorst
schwingt der zylindrische Stab unterhalb seiner System-Eigen-
frequenz mit recht kleinen Amplituden. Die Schwingfrequenz
deckt sich mit der Kârmânschen-Wirbelfrequenz. In der Nähe
der Eigenfrequenz springt die Schwingfrequenz des Stabes auf
die System-Eigenfrequenz. Die Schwingamplitude steigt steil

an. Trotz Erhöhung der Strömungsgeschwindigkeit bleibt
Amplitude und Frequenz im «kritischen Bereich» nahezu

konstant.
Beobachtungen ähnlicher Art wurden auch von Maas [8]

festgehalten und als «Mitnahmeerscheinung» im Bereich der

System-Eigenfrequenz bezeichnet.
Diese Erkenntnisse sind für die Praxis von entscheidender

Bedeutung. Sie besagen allgemein, dass bei annähernder
Übereinstimmung zwischen Wirbelfrequenz und System-

Fig.2
Leitungsträger mit Reibdämpfer

Eigenfrequenz der schwingende Körper in einem relativ
breiten Toleranzbereich der Strömungsgeschwindigkeit (kritischer

Bereich) die Wirbelablösung selbst steuert. Damit gibt es

für jedes kreiszylindrische, schwingungsfähige System, das

einer Strömung ausgesetzt wird, nicht nur eine definierte
kritische Strömungsgeschwindigkeit, sondern einen relativ breiten
Bereich von Strömungsgeschwindigkeiten, innerhalb dessen

Resonanz mit grossen Schwingamplituden auftritt.
Die Windantriebskraft pro Längseinheit (Quertriebs- oder

Auftriebskraft) ergibt sich aus [9] zu :

P*=~qv*DCA (3)

Die Antriebskraft nimmt demnach linear mit dem Durchmesser

D und quadratisch mit der Windgeschwindigkeit v zu.

ca ist ein instationärer Auftriebswert, dessen Betrag abhängig

Fig. 1

Arten der Rolirlagerung (a), Biegelinie (b), Momentenlinie (c)
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ist von der Reynold-Zahl, der Strouhal-Zabl und der Zeit. Für
Überschlagsrechnungen kann am langgestreckten Zylinder
etwa ca 1,7 angesetzt werden [6],

Die Praxis hat inzwischen gezeigt, dass die kräftigsten
Schwingungen von Windgeschwindigkeiten im Bereich

0,3...2 m/s angeregt werden. Bei Geschwindigkeiten oberhalb
5 m/s wird aus aerodynamischen Gründen die Regelmässigkeit
der Kärmänschen Wirbel gestört, so dass der harmonische
Verlauf des Quertriebes bzw. der Antriebskraft verlorengeht.

Neben der Anregung durch Quertriebskräfte als Folge der
Kärmänschen Wirbelbildung hat das instabile Verhalten von
schwingungsfähigen Körpern im Luftstrom noch eine gewisse

Bedeutung. Schwingungen, ausgelöst durch aerodynamische
Instabilität, können recht energiereich werden. Voraussetzung
für aerodynamische Instabilität sind in der Regel Profile mit
vorgegebenen Kanten, an denen die Strömung abreisst. Die
Instabilität selbst ist nahezu unabhängig von der
Strömungsgeschwindigkeit bzw. der Reynold-Zahl, während die
Schwingamplitude mit zunehmender Strömungsgeschwindigkei wächst.

Schwingungen durch aerodynamische Instabilität haben in
Freiluftschaltanlagen nur Bedeutung, wenn als Sammelschiene

ein kantiges Profil eingesetzt wird oder das Rundprofil

durch Eis- bzw. Rauhreifansatz scharfe Kanten erhält.

Wind
-T^r

Fig. 3

Kârmânsche Wirbelstrasse

Bezeichnungen siehe im Text

Beide Möglichkeiten sind in Freiluftschaltanlagen nur mit
geringer Wahrscheinlichkeit gegeben, so dass das Problem der
Schwingungen, ausgelöst durch aerodynamische Instabilität,
hier nicht berücksichtigt wird.

4. Theorie der Rohr- bzw. Stabschwingung (Fig. 5)

4.1 Differentialgleichung des schwingenden Stabes

Die Biegesteife EI sowie die Massenbelegung q F= ß
sollen konstant sein. Die Schwingungsamplituden sollen klein
bleiben, die Rotationsträgheit des Stabelementes kann dann
unberücksichtigt bleiben. Die Stabeigendämpfung soll
geschwindigkeitsproportional sein.

Mit diesen Annahmen bzw. Vereinfachungen lautet die

Differentialgleichung der erzwungenen gedämpften
Biegeschwingung des Stabes:

EI
84 y
8x4 ß

82 y
dt2

2 ß S — P{X, t) (4)

System-
Eigenfrequenz

Frequenz der
Kârmân-Wirbel

Stab-
Frequenzen

lunter- /
kritischer Bereich

Stab-Amplituden

überkritischer Bereich

Fig. 4
Qualitative Darstellungen der Schwingungen eines elastisch gelagerten,

zylindrischen Stabes in strömendem Wasser

Amplitude und Frequenz in Abhängigkeit von der
Strömungsgeschwindigkeit

und für die Ortsgleichung

d4X
d*4 -x«»'irr- o (7)

Die Lösung der Zeitgleichung schreibt sich mit den Wurzeln

«i,2 jô± VW -Ô2 (8)

Ti= A e—8t cos ((/con2 — <52 t - er)

mit

und
A ]/Ai2 + A22

A2
tg et -r-

(9)

(10)

(11)

Die Lösung der Ortsgleichung (7) lautet mit dem Lösungsansatz

Xt C" e
(12)

A AAAXi Ci cos h -j- x + C2sin h
-y- x + C3 cos -j x + C4 sin -y- x

(13)

Die Konstanten der Ortsfunktion werden unter Einschaltung

der Randbedingungen bzw. Lagerbedingungen ermittelt.
Die Lösung der Gl. (4) mit Störkraft geht erneut von dem

Bernoullischen Lösungsansatz aus. Mit Gl. (4) und (6) erhält
man zunächst

00
1

Y ßXi(x)\ d2Te +20 + ®„2 Fe) P ix, t) (14)dt2

Entwickelt man jetzt die längenbezogene harmonische
Antriebskraft P (x, t) nach den Eigenschwingungsformen, so gilt

Pix,t)= Yj Pn(t)Xt(x)
n 1

(15)

Die Lösung der Gl. (4) ohne Störkraft erfolgt mit Hilfe des

Bernoullischen Lösungsansatzes [10]

yi{x,t)= Y ün (t) Xm (x)
n 1

und lautet für die Zeitgleichung

d2r dT
—1 O V 2.0 —zdt2 dt

Tw2

(5)

(6)

7^%
1
y

Pfx.t)

Fig. 5
Stab mit Koordinaten und Erregerkraft

P Kraft; t Zeit
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Stelle Stelle
1

Fig. 6
Feldbezeichnungen am Stababschnitt

mit

PnO)--

J P (x, t) Xr (x) dx
o

l

f Xi2 (x) dx

(16)

Im Falle des beiderseits gestützten Stabes gemäss Fig. 5 lautet
die Lösung der Gl. (14), wenn die freien Schwingungen
vernachlässigt werden

?p (1 - cos An) sin x
A^cos {cot-Be) £ (17)Leimt

tg £e —

n )/(mn2 - CO2)2 + 4 ta2 Ô2 An

2œô
(flna

(18)

Die Amplitude Ye der erzwungenen gedämpften Schwingung

wird im Resonanzfall con co ein Maximum. Sie wird im
Resonanzfall um so kleiner, je höher die Harmonische n liegt.
Gefährlich für die Praxis ist deshalb nur die Grundschwingung.
Für die weiteren Betrachtungen ist diese Erkenntnis von
Bedeutung.

4.2 Eigenwert und Schwingungsform

Die Bestimmung von Eigenwert und Schwingungsform
gestaltet sich für mehrfach gestützte, ungeschnittene Stäbe
besonders übersichtlich und einfach unter Einschaltung der

Matrizenrechnung [11].

Da in der Anlagenpraxis mehrfach gestützte Stäbe, d.h.
Stäbe bzw. Rohre, die über wenigstens eine Stützstelle
ungeschnitten durchlaufen, die Regel bilden, wird dieser Lösungsweg

beschritten.
Die Aufstellung der Feldmatrix geht von Gl. (13) aus.

Führt man anstelle der mechanisch bedeutungslosen
Integrationskonstanten Ci, C2, C3 und Ci die sinnvollen Konstanten

X= X(x)
y/ ig (x)
M M (x)

ß=ß(x)= -

- X" (x)

- EIX" (x)
EIX'" (x)

Verschiebung
Neigung
Moment
Querkraft

ein, so erhält man nach Einsetzen der Werte in Gl. (13) die
gesuchte Übertragungs- oder Feldmatrix für x / (Fig. 6):

Die vollständige Matrizengleichung lautet dann

~An

A 44

X
V

M
Q

_ 1

X
V

M

_Q_

(20)

mit An, A12..., entsprechend den Elementen aus Gl. (19), mit
den Konstanten:

C ~ (cos h X + cos 2)

5 -^ (sin h 2 + sin X)

c (cos h A — cos A)

s — (sin h A — sin A)

(21)

Symbolisch lässt sich Gl. (20) auch in folgender Form
schreiben

Y U • Yo (22)

Für die hier nur am Rande interessierenden Fälle des

Stabes gestützt—gestützt und gestützt—eingespannt lauten die

Eigenwertgleichungen bzw. die Eigenwerte, deren explizite
Herleitung aus Platzgründen nicht durchgeführt wird :

mh ./rrh
I r

Fig. 7
Stab, dreifach gestützt

Bezeichnungen siehe im Text

Hh

3 X

£
Fig. I

IEI

Iii %
Asymmetrische und symmetrische Schwingungsform beim dreifach

gestützten Stab

Bezeichnungen siehe im Text

U(i)

c

El(*)'s
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mit den Lösungen

sin An 0
77 1 1 1 2 3 4

An 1 7t 2k 1 3ît 1 4TT
(23)

I
mit den Lösungen

tg An th An

V

77 1 1 2 3 4

An 1 3,93 7,07 10,2 13,4
(24)

Im Falle des dreifach gestützten Stabes ist die Herleitung
der Eigenwertgleichung etwas schwieriger und soll deshalb

ausführlich dargestellt werden (Fig. 7).

Mit der Übertragungsmatrix A für den linken Abschnitt
der Figur lautet der Zustandsvektor hart links von der Stützstelle

1

Yi1 A Yo

mit

Yo={o, w, 0,ß}02)

Yi1 wo

Aïs A14

Ass As4
+ ßo

A32 A34

1
<N<d< A 44

(25)

(26)

(27)

Anderseits gilt für den Zustandsvektor hart links von 1 in
Fig. 6:

Yi1 {O, y/, M, ß^1 (28)

hieraus folgt

Ai1 w o Ais + ßo An 0

oder
Ais

ßo Wo (29)

Damit lautet der Zustandsvektor nach Gl. (27)

Yi1 wo

Für die Stelle hart rechts vom Stützpunkt 1 gilt:

Yir Yi1 + A ß

0 0

A 22
<MI(M1 £72

Ass A ^12
— A34-Z

A14

—
£73

<N

1

A ^12
— A 44-1—A14

£74

(30)

"O" 0 "O"

0 £72 0
W0 + A ß

00 £73

1 £74 1

(31)

2) Aus Platzgründen wird der Spaltenvektor als Zeilenvektor
geschrieben und mit geschweiften Klammern versehen.

In Gl. (31) wurde berücksichtigt, dass an der Stützstelle 1

die Querkraft um den Betrag Aß springt. Für das rechte Feldende

2 gilt mit der Übertragungsmatrix B

Y2 B Y

oder Y2

At

B44

0

£72 Wo

as wo

£74 WO + Aß

(32)

(33)

mit dem Zustandsvektor

Y2= {0, w, 0, ß)2

erhält man die Null-Forderung

WO £72 Bis + wo as Bis + (tfo £74 + A ß) Bn 0

Wo £72 B32 + WOl as Bss + (wo £74 + A ß) B34 0

und daraus die Koeffizientendeterminante

£72 B12 + £73 Bis + £74 B14 B14

£72 -B32 + £73 Bss + £74 B34 • Bsi

Schliesslich lautet damit die Eigenwertgleichung

(£72 Bis + as Bis + £74 Bli) B34 —

— (£72 B32 + £73 B33 + £74 B34) B14 0

(34)

(35)

(36)

(37)

Führt man in Gl. (37) die Werte nach Gl. (19) und (21) ein
und berücksichtigt, dass die Stabkennwerte in beiden Feldern
gleich sind, so nimmt die Eigenwertgleichung folgende Form
an

sin h Xs sin Xs (sin h Xi cos Xi — cos h Xi sin Ai) —

I2 /Li
7- sin h Ai sin Ai (cos h A2 sin Xs — (38)
71 /2

— sin h Xs cos Xs) 0

Im Falle h h vereinfacht sich Gl. (38) zu

sin h A sin A (sin h A cos A — cos h A sin A) 0 (39)

Gl. (39) wird erfüllt für:

a) sin h A sin A 0 (40)

b) sin h A cos A cos h A sin A (41)
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Es existieren zwei Eigenschwingungsformen : Eine,
bezogen auf die Mittelstütze, asymmetrische Schwingungsform
mit den Eigenwerten

n 1 2 3

An 7t | 2 71 3 71

und eine symmetrische Schwingungsform mit den Eigenwerten
(Fig. 8):

n 1 2 3

An
5

4*
9

~4 K
13

T71

Die Gleichung für die Eigenfrequenz lautet :

Fig. 9
Stab zweifach gestützt und eingespannt

Bezeichnungen siehe im Text

Im Falle des zweifach gestützten und eingespannten Stabes

gemäss Fig. 9 lautet die Eigenwertgleichung

(sin h Ai cos Ai — cos h Ai sin Ai) (cos h A2 sin A2 —

/
— sin h A2 cos A2) — 2 ~ sin h Ai sin Ai (1 — (45)

h /t2

— cos h A2 cos A2) 0

Für /1 I2 wird aus Gl. (45):

cos h A sin A — sin h A cos A
_ 2 sin h A sin A „

cos h A cos A — 1 cos h A sin A — sin h A cos A

Die Eigenwerte lauten dann :

" \ 1 2 3

An 3,39 4,46 6,54

Bei Übereinstimmung zwischen Rohreigenfrequenz und
Windantriebsfrequenz kommt es zu gefährlich grossen
Schwingamplituden, die bei fehlender Dämpfungsvorrichtung nur
durch die Rohreigendämpfung begrenzt werden. Während des

Schwingungsvorganges kann sich die Windgeschwindigkeit in
einem relativ weiten Bereich verändern, ohne dass damit die

Resonanzbedingung verlorengeht. Dieser aerodynamisch
bedingte Effekt wird als Mitnahmeerscheinung bezeichnet und
kann zu anhaltenden kräftigen Dauerschwingungen führen.

Die Lösung der Differentialgleichung des schwingenden
Stabes wird sowohl für freie als auch erzwungene Schwingungen

angegeben.

Eigenwert und Schwingungsform werden mit Hilfe der

Matrizenrechnung für einige gängige Lagerbedingungen
abgeleitet. Für das dreifach gestützte, ungeschnitten über die

Mittelstütze laufende Rohr wird eine zur Mittelstütze
asymmetrische und symmetrische Schwingungsform nachgewiesen.
Im Falle der symmetrischen Schwingungsform wird das Rohr
an der Mittelstütze so beansprucht, als sei es hier fest

eingespannt.

Das Problem der Rohrschwingungsdämpfung bzw. -tilgung
wird zur Zeit untersucht. Hierüber wird in absehbarer Zeit eine

selbständige Arbeit vorgelegt.
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5. Zusammenfassung

In Freiluftschaltanlagen können Sammelschienenrohre vom
Wind zu Biegeschwingungen angeregt werden. Der Mechanis- Adresse des Autors:

L. Möcks, Richard Bergner Elektroarmaturen, Postfach, D-8540 Schwa-
mus des Windantriebes wird erläutert. bach.

Berichtigung. In der Tabelle II des Artikels «Das Système
International d'Unités» vom Eidg. Amt für Mass und Gewicht (Bull.
SEV 63 (1972) 23, S. 1378), ist ein sinnstörender Fehler enthalten.
Die Grösse «Leitwert» (5) sollte richtigerweise heissen:

m-2 kg-1 s3 A2

142 (A 111) Bull. ASE 64(1973)3, 3 février


	Mechanische Schwingungen von Rohrsammelschienen in Freiluftschaltanlagen

