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Das Bändermodell von Halbleiterdioden
Von W. Henne, Augsburg

Es wird die Theorie der Sperrschicht von Halbleiterdioden
soweit erläutert, wie sie für das Verständnis der in den folgenden
Heften geplanten Aufsätze über Tunneldioden, Step-recovery-
Dioden, Schottky-Dioden, Kapazitätsdioden mit parametrischem
Verstärker und die Impatt-Dioden benötigt wird. Dabei wird
besonderer Wert auf quantitative Angaben der für die Sperrschicht
wichtigen Grössen, wie Diffusionsspannung, Fermi-Niveau,
Sperrschichtweiten u. a. gelegt.

621.382.2:621.382(-192.2)

La théorie de la couche de blocage de diodes semi-conductrices

est expliquée, dans le but de faciliter la compréhension des
articles qui paraîtront dans les prochains numéros au sujet des
diodes tunnel, diodes à reconversion rapide, diodes Schottky,
diodes à capacité variable avec amplificateur paramétrique et
diodes Impatt. On attache une importance particulière aux
indications quantitatives des grandeurs essentielles pour la couche de
blocage, telles que tension de diffusion, niveau de Fermi, étendues
de la couche, etc.

1. Einleitung
Für das Verständnis der Wirkungsweise moderner

Halbleiterdioden, wie Kapazitäts-, Tunnel-, Step-recovery-, PIN-,
Schottky-, Impatt- oder Gunn-Dioden, ist die Kenntnis des

Bändermodells unerlässlich. Da diese in der Mikrowellentechnik

immer grössere Bedeutung erlangenden Bauelemente in
den folgenden Aufsätzen besprochen werden sollen, seien an
dieser Stelle deren gemeinsame Grundlagen zusammengefasst.

Das Bändermodell lässt sich auf zwei Wegen unabhängig
voneinander ableiten; und zwar erstens mit Hilfe der dem

Elektron zugeordneten DeBroglie-Wellenlänge und der Bragg-
schen Reflexionsbedingung [I]1), zweitens mit Hilfe des

Energieschemas eines Einzelatoms.
Während sich die mit Hilfe der Wellenvorstellung vom

Elektron abgeleitete Erklärung des Bändermodells recht an-

Darin bedeuten :

rn Radius der Elektronenbahn ;

h 6,624 • 10~34 Ws2 (Plancksches Wirkungsquantum);
Z Kernladungszahl;
e 1,6 • lO-19 As (Elementarladung);
m 0,91 • 10"27 g 0,91 • 10"34 Ws3/cm2.

Auf diesen durch die Hauptquantenzahl n gegebenen
Bahnen besitzt das Elektron, wie sich mit Hilfe der Laplace-
Gleichung Atp 0 berechnen lässt, die Energie:

E„ - Z ea

8 k eo

1

r n
7,15 f eV

rn/cm
(2)

Damit ergeben sich z. B. für die drei Hauptquantenzahlen
n 1, 2, 3 folgende Bahnen für das Elektron eines Wasserstoff-
atoms mit den dazugehörigen Energiewerten :

n 1 : n 0,529 • 10~8 cm -

n 2: rz 2,124 • 10~8 cm-

n 3: rz 4,779 10~8 cm-

- Ei =-13,5 eV — 2,15 • ÎO"18 Ws

E% - 3,37 eV - 0,535 • 10"18 Ws

-E3=- 1,59 eV= -0,239 10"18 Ws

schaulich zur Erklärung der Vorgänge innerhalb einer Gunn-
Diode verwenden liess2), ist zur Beschreibung aller auf einen

pn-Übergang basierenden Dioden die Kenntnis der
Feinstruktur des Bändermodells nicht erforderlich. Es kann daher

an dieser Stelle von der Teilchennatur des Elektrons
ausgegangen werden.

Eine wichtige Rolle bei der Beschreibung des Bändermodells

spielt das sog. Fermi-Niveau. Lassen sich doch mit Hilfe dieses

Fermi-Niveaus die Lage der gegenüberliegenden Bänder an
Grenzschichten, z. B. an pn-Übergängen oder am Metall-Halb-
leiter-Übergang, recht anschaulich beschreiben.

2. Das Einzelatom

2.1 Energieschema beim Einzelatom

Aus der Deutung der Lichtemission führte Bohr im Jahre
1913 folgendes Postulat in die Physik ein: Elektronen können
sich nur auf ganz bestimmten Bahnen um den Atomkern
bewegen. Der Radius dieser Elektronenbahnen ergibt sich in
Abhängigkeit von der Hauptquantenzahl n zu [2] :

Aa "2

2.3 Quantenzahlen

Bei der folgenden Ableitung des Bändermodells genügt nicht
nur die Kenntnis der Hauptquantenzahl n, sondern es müssen

noch die Nebenquantenzahl /, die magnetische Quantenzahl m\
und die Spinquantenzahl ms herangezogen werden. Besagt doch
das für den Aufbau des Atoms grundlegende Pauli-Prinzip:
Innerhalb eines Atoms dürfen keine Elektronen in allen vier
Quantenzahlen übereinstimmen.

Die Hauptquantenzahl n bestimmt den Radius der nach
Bohr angenommenen kreisförmigen Elektronenbahn und damit
deren Energie. Mit anderen Worten: Die Hauptquantenzahl n
bestimmt die Schale, auf der sich ein Elektron bewegt. Für
diese Schalen haben sich bestimmte Bezeichnungen ergeben:

Hauptquantenzahl n 1 2 3 4 5 6 7

Bezeichnung der Schale KL M N O P Q

rn 4 7t2 Z me'£
«2 0,529 10"8 cm (1)

9 Siehe Literatur am Schluss des Aufsatzes.
2) Siehe Bull. SEV 63(1972)9, S. 447...454.

Die Nebenquantenzahl / beschreibt die spezielle Bahnform,
z. B. das Verhältnis von Haupt- und Nebenachse der Ellipsenbahn.

Dabei besteht zwischen Hauptquantenzahl n und
Nebenquantenzahl l die einfache Beziehung:

/ < n - 1
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Verteilung der Elektronen
Tabelle I

Germanium (Z 32) Silizium (Z 14)

Hauptschale K L M N K L M
Hauptquantenzahl n 1 2 3 4 1 2 3

Unterschalen ls 2s 2p 3s 3p 3d 4s 4p ls 2s 2p 3s 3p

Nebenquantenzahl l 0 0 1 0 1 2 0 1 0 0 1 0 1

Elektronenzahl 2 2 6 2 6 10 2 2 2 2 6 2 2

Elektronen, die die Nebenquantenzahlen / 0, 1, 2, 3

besitzen, heissen s-, p-, d-, f-Elektronen. Damit ergibt sich

folgender Zusammenhang:

Nebenquantenzahl / 0 1 2 3 4 5

Bezeichnung der Elektronen s p d f g h

In jeder durch die Nebenquantenzahl / gekennzeichneten
Unterschale können insgesamt 2(2/+ 1) Elektronen
untergebracht werden, damit sie sich in der magnetischen und
Spinquantenzahl noch unterscheiden können.

2.4 Atomaufbau

Mit Hilfe der Quantenzahlen lässt sich nun einfach die

Anordnung der Elektronen innerhalb eines Atoms angeben:
Die K-Schale besitzt gemäss ihrer Hauptquantenzahl n 1

nach der Gleichung / ^ « — 1 nur Elektronen mit der

Nebenquantenzahl / 0, d. h. nur s-Elektronen. Ihre Anzahl beträgt
mit 2 (2/ + 1) 2 (2 • 0 + 1) 2.

Die L-Schale besitzt gemäss ihrer Hauptquantenzahl n 2

nach der Gleichung / ^ « — 1 nur Elektronen mit den

Nebenquantenzahlen 1 0 und / 1, d. h. nur s- und p-Elektronen.
Die Anzahl der s-Elektronen beträgt wieder 2, während die der

p-Elektronen mit 2(2/+l) 2 (2 • 1 + 1) 6 beträgt.
Die M-Schale besitzt gemäss ihrer Hauptquantenzahl n 3

nach der Gleichung l ^ n — 1 Elektronen mit den

Nebenquantenzahlen / 0, 1 und 2, d. h. s-, p- und d-Elektronen.
Die Anzahl der s- bzw. p-Elektronen ist wieder 2 bzw. 6, die

der d-Elektronen mit 2 (2/ + 1) 2 (2 • 2 + 1) 10.

Grundsätzlich besitzt jedes Atom seine K-, L-, M-,
Schalen. Dabei werden diese Schalen, von der K-Schale an

beginnend, mit Elektronen aufgefüllt, wobei das Wasserstoffatom

im thermischen Gleichgewicht nur 1 s-Elektron in der

K-Schale besitzt. Durch Hinzufügen von Energie kann dieses

Elektron aber auch in höhere Schalen gelangen.

Berücksichtigt man die relativistische Massenänderung der

auf Ellipsenbahnen mit wechselnden Geschwindigkeiten
umlaufenden Elektronen, so unterscheiden sich die Energien auch

2p

2s

1s

Fig. 1

Aufspaltung der Energieniveaus bei vier Atomen
E Energie; x Ortskoordinate

s, p Elektronen

dann, wenn die Bahnen zu gleichen Hauptquantenzahlen n

gehören. Die Nebenquantenzahlen erhalten damit die Aufgabe,
die «Feinstruktur» der durch die Hauptquantenzahlen gekenn-
zeichrleten Energieniveaus zu beschreiben.

Für die in der Halbleitertechnik wichtigen Elemente
Germanium und Silizium erhält man nun die Verteilung der
Elektronen auf die einzelnen Schalen gemäss Tabelle I.

3. Das Bändermodell

3.1 Die Entstehung des Bändermodells

Bringt man Einzelatome in einen Abstand von der Grössen-

ordnung der Gitterkonstanten a, die bei Germanium a

5,65 10~8 cm und bei Silizium a 5,42 10~8 cm beträgt,
zusammen, d. h. in einen Abstand, der in der Grössenordnung
der Bahnradien liegt, so werden sich die Potentialfelder bzw.
die Energiewerte der Einzelatome beeinflussen. Und zwar wird
jedes Energieniveau des Einzelatoms in so viele Teilenergien
aufgespalten, wie die Anzahl der zusammengebrachten Atome
beträgt.

Fig. 1 zeigt die Aufspaltung der Energieniveaus eines

C-Atoms, wenn vier Einzelatome bis auf die Gitterkonstante a

angenähert werden.

Fügt man schliesslich sehr viele Atome zu einem Kristallgitter

zusammen, so lässt sich die Aufspaltung der durch die

Nebenquantenzahlen beschriebenen Unterschalen, d. h. der

ls-, 2s-, 2p-, 3s-, 3p-, 3d-, 4s-, usw. Unterschalen in diskrete
Energieniveaus nicht mehr erkennen ; es entstehen sog. Energiebänder.

Fig. 2 zeigt am Beispiel des Siliziums die Aufspaltung der
diskreten Energiebänder, wenn der Abstand der Einzelatome
in die Grössenordnung der Gitterkonstanten a kommt.

0 Elektronen und
4 freie Zustände Leitungsband

2 Elektronen und
4 freie Zustände

2 Elektronen und
0 freie Zustände

4 Elektronen und
0 freie Zustände (Valenzband

Fig. 2
Aufspaltung diskreter Energieniveaus in Energiebänder

a Gitterkonstante
Weitere Bezeichnungen siehe Fig. 1
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Ist der Abstand der Einzelatome zunächst viel grösser als

die Gitterkonstante a, so besitzt die hier interessierende oberste
Schale des Siliziums, die M-Schale ein 3s-Band mit zwei

Plätzen, die beide mit Elektronen besetzt sind, und ein 3p-Band
mit 6 Plätzen, von denen nur zwei Plätze mit Elektronen gefüllt
sind. Bei kontinuierlicher Verkleinerung der Gitterabstände
spalten nun das 3s- und 3p-Band auf. Und zwar besitzt links
vom Überkreuzungspunkt das untere Band 4 Plätze pro Atom,
das darüberliegende Band ebenfalls 4 Plätze pro Atom. Die
unteren vier Plätze werden von den zwei 3s-Elektronen und den

zwei 3p-Elektronen gerade voll ausgefüllt. (Vollbesetztes
Band!) Das obere Band enthält ebenfalls vier Plätze pro Atom,
ist aber leer. Zwischen beiden Bändern liegt die sog. Isolatorlücke.

Da das untere Band mit den vier Valenzelektronen des

Siliziumatoms gefüllt ist, heisst es «Valenzband».

3.2 Leitfähigkeitsband — Valenzband

Der Stromfluss im Kristall ist durch die Bewegung einzelner

Ladungsträger gekennzeichnet. Und zwar erhält man für die
Stromdichte S bekanntlich die Gleichung

S=nev neßK=xK (3)
Hierin sind:

S Stromdichte
n Ladungsträgeranzahl
v Geschwindigkeit
ß Beweglichkeit
y. Leitfähigkeit
K elektrische Feldstärke
Die Beweglichkeit ß ist temperaturabhängig. Bei T 300 °K

erhält man die Werte gemäss Tabelle II.

Temperaturabhängigkeit der Beweglichkeit Tabelle Ii

Material
Elektronenbeweglichkeit

ßn
cm2/Vs

Löcherbeweglichkeit
ßb

cm2/Vs

Ge 3900 1900

Si 1350 480

Ga As 8500 420

Metalle or-~o

Die Stromdichte S ist an eine aus dem Feld K herrührenden
Geschwindigkeit v gebunden. Innerhalb eines vollbesetzten
Bandes ist eine Erhöhung der Energie einzelner Elektronen
nicht mehr möglich, da eben keine Plätze mit erhöhter Energie
mehr vorhanden sind. Damit ist ein Material, gekennzeichnet
durch ein mit Valenzelektronen vollbesetztes oberstes Band
(Valenzband), ein Isolator. Ist dagegen das oberste Band nicht
vollbesetzt, so liegt mit diesem Leitfähigkeitsband ein Leiter
vor.

Nun unterscheiden sich die Materialien mit vollbesetzten
obersten Energiebändern durch die Breite AE zwischen Oberkante

des Valenzbandes und Unterkante des Leitungsbandes.
Ist diese Energielücke so klein, dass sie leicht durch äussere

Energiezufuhr von einigen Elektronen überwunden werden
kann, so spricht man von Eigenhalbleitern. Bei den Isolatoren
kann diese Energielücke, das sog. verbotene Band, erst durch
Zuführung einer so hohen Energie von den Elektronen des

Valenzbandes überwunden werden, dass das Material in der

Regel hierdurch bereits zerstört wird.
In Zahlenwerten erhält man für die gebräuchlichen

Halbleitermaterialien die Breite des verbotenen Bandes gemäss
Tabelle III.

Breite des verbotenen Bandes verschiedener Halbleitermaterialien
Tabelle III

Material AE (eV) bei T 300 °K

Silizium 1,08

Germanium 0,65

Galliumarsenid 1,38

Isolator > 3

4. Fermi-Niveau

Für die folgenden Berechnungen wird die Kenntnis über die

Elektronenverteilung innerhalb des Leitungs- und Valenzbandes

wichtig. Aufschluss hierüber gibt die sog. Fermi-
statistik.

4.1 Fermistatistik in Eigenhalbleitern

Als Eigenhalbleiter wurden bekanntlich Materialien
gekennzeichnet, bei denen das verbotene Band so eng war, dass

Elektronen durch Aufnahme geringer thermischer Energie
leicht vom vollbesetzten Valenzband in das Leitungsband
gelangen konnten. Die Anzahl dn von Ladungsträgern, die
sich innerhalb des Energieintervalls dE befindet, wird durch
die Gleichung

An f(E) AE (3a)

angegeben. Hierin ist die Funktion /(F) die sog. Verteilungsfunktion

von Fermi-Dirac bzw. die Besetzungswahrscheinlichkeit.

Und zwar ist die Wahrscheinlichkeit f{E), mit der ein
Elektron in einem Energieniveau E zu finden ist, unabhängig
vom Vorhandensein einer verbotenen oder erlaubten Zone
durch die Besetzungswahrscheinlichkeit f (E) gegeben [3; 4]:

f(£) KEEp (4)

l+e kT
Hierin sind :

E Energie des Elektrons
Et- Energie des Fermi-Niveaus
k Boltzmann-Konstante 1,38 • IO~23Ws/°K
T absolute Temperatur

Für die Raumtemperatur T To 300 °K wird :

4 1 • 10~21
k To 4,1 • 10~21 Ws 10 26 • 10"3 eV

1,6 • 10~la

Fig. 3 zeigt die graphische Darstellung der Funktion f (E)
für die beiden Temperaturen T To 300 °K und T 0 °K.
Nach dieser Figur ist das Fermi-Niveau Ff dasjenige Energieniveau,

für das die Besetzungswahrscheinlichkeit f (E) den

Wert 0,5 hat, was sich leicht nachweisen lässt:

f (Ff) ËE~ËiT TTe°~ 2 ^
l+e "

Die genauere Theorie zeigt [4], dass das Fermi-Niveau Ff
in Festkörpern, die sich im thermischen Gleichgewicht
befinden, an denen also z. B. keine äussere Spannung angelegt ist,
konstant ist. Bei der Kontaktierung zweier Stoffe, z. B. bei

pn-Übergängen oder bei Metall-Halbleiter-Übergängen, gibt
das Fermi-Niveau an, wie die jedem Material eigentümlichen
Energiediagramme aneinanderzureihen sind: Die Fermi-
Niveaus beider Stoffe müssen auf gleicher Höhe liegen!

Es lässt sich nun beweisen (siehe Anhang), dass das Fermi-
Niveau bei Eigenhalbleitern in der Mitte des verbotenen
Bandes, also zwischen Leitungs- und Valenzband, liegt (Fig. 4).

634 (A 429) Bull. ASE 63(1972)12, 10 juin



Fig. 3

Besetzung*Wahrscheinlichkeit f(E) für die beiden
Temperaturen T 0 °K und T 300 °K

0 -

Leitungsband

Efd. Efi + k T In rin

m
Ec-kT\n Nc

nQ

und bei p-dotierten Halbleitern durch

£f Efi- k Tin P-p- Ev + k Tin
ni Pp

Material («i/cm"3) («i/cra 3)2

Germanium 2,5 • 1013 6,25 • 1026

Silizium 6,8 • 1013 4,64 • 1021

Metalle 1Q23 1046

Über die Bedeutung der Konstanten Nc und PY siehe den
Anhang.

Valenzband

Fig. 4
Lage des Fermi-Niveaus in einem Eigenhalbleiter

Ec untere Kante des Leitungsbandes
Ev obere Kante des Valenzbandes

Ey Fermi-Niveau

Als Beispiel sei das Fermi-Niveau für einen n-dotierten
Halbleiter (Germanium) berechnet. Die Donatorendichte
betrage Hn 1015 cm-3, die Temperatur T 300 °K:

E¥n EFi + 26 IQ"3 eV In
1015

2,5 1013

EFn - Em 0,096 eV

HE)

4.2 Fermistatistik in Störstellenhalbleitern

Bei Störstellenhalbleitern, bei denen zur Erzielung bestimmter

Effekte in den Eigenhalbleitern drei- oder fünfwertige
Elemente eingebracht wurden, verschiebt sich das Fermi-
Niveau je nach Dotierung zum Valenz- oder Leitungsband hin.
Find zwar ist das Fermi-Niveau bei n-dotierten Halbleitern
durch die Gleichung [3]

Fig. 5 gibt die Lage dieses Fermi-Niveaus an im Vergleich
zu der oberen Bandkante Ev des Valenzbandes, der unteren
Kante Ec des Leitungsbandes und dem Fermi-Niveau Efi des

Eigenhalbleiters.
Das Fermi-Niveau eines p-dotierten Halbleiters £fp liegt

naturgemäss unterhalb von EH, wie Fig. 6 qualitativ zeigt.

(6)

(7)

Fig. 5

Lage des Fermi-Niveaus für ein gegebenes Beispiel
E
ey
EFi
EFn

Energie
obere Kante des Valenzbandes
Fermi-Niveau des Intrinsic-Halbleiters
Fermi-Niveau des n-dotierten Halbleiters
untere Kante des Leitungsbandes

gegeben. In obigen Gleichungen sind
fÎFn Fermi-Niveau im n-dotierten Halbleiter
Efp Fermi-Niveau im p-dotierten Halbleiter
Efi Fermi-Niveau im Eigenhalbleiter (Intrinsic-Halbleiter)
nn Anzahl der Donatoren pro cm3

Pp Anzahl der Akzeptoren pro cm3

«i Intrinsiczahl (siehe auch Tabelle IV)

Intrinsiczahlen verschiedener Materialien

5. Die Sperrschicht
Ohne eine Beschreibung der in der Sperrschicht herrschenden

Potential- bzw. Energieverteilung ist ein Verständnis der
in den folgenden Aufsätzen zu beschreibenden modernen

Halbleiter-Dioden, wie Tunnel-Dioden, Step-recovery-Dioden,
Schottky-Dioden, PIN-Dioden, Kapazitäts-Dioden unmöglich.

Die Physik dieser Sperrschicht sei deshalb an dieser Stelle,

so weit sie zum Verständnis dieser Dioden notwendig ist,
zusammengefasst.

5.1 Die Diffusionsspannung <P

Die Diffusionsspanung <!> ist diejenige Spannung, die sich

aufgrund der Ladungsträgerdiffusion in der Sperrschicht
einstellt und somit einer unaufhörlichen Ladungsträgertrennung
entgegenwirkt.

Bull. SEV 63(1972)12, 10. Juni (A 430) 635



-Ec

-^F„

-fp,
-E,

Ec

-EFi

En

Fig. 6
Lage des Fermi-Nlveaus Eyn bzw. ijpp in einem n- bzw. p-dotierten

Halbleiter
Weitere Bezeichnungen siehe Fig. 5

Die Konzentrationen m und pi der freien Elektronen und
Löcher in einem reinen und störstellenfreien Kristall sind
immer gleich gross. Und zwar ist bei T 300 °K in

Germanium :

Silizium:

pi — ni — 2,5 1013 cm 3

Pi «i 6,8 • 1010 cm-3

Bei thermodynamischem Gleichgewicht gilt für den dotierten

Halbleiter das sog. Massenwirkungsgesetz:

Wn pn — Pp ttp : (8)

Das Produkt aus der durch die Dotierung hervorgerufenen
Majoritäts- und Minoritätsträgerdichte ist unabhängig vom
Dotierungsgrad, konstant gleich dem Quadrat der Intrinsic-
zahl. In der obigen Gleichung sind demnach :

«n Elektronenkonzentration im n-Halbleiter
(Majoritätsträgerdichte)

pn Löcherkonzentration im n-Halbleiter
(Minoritätsträgerdichte)

Pp Löcherkonzentration im p-Halbleiter
(Majoritätsträgerdichte)

nv Elektronenkonzentration im p-Halbleiter
(Minoritätsträgerdichte)

Damit existiert zur Paarbildung Loch-Elektron immer ein
inverser Prozess, nämlich die Rekombination. Beide Effekte
sind im thermischen Gleichgewicht gleich gross.

Das Massenwirkungsgesetz sei an einer Germaniumdiode
mit der Akzeptorendichte pv 1017 cm-3 und der Donatorendichte

nn 1016 cm 3 erläutert: Die sich aus diesen

Majoritätsträgerdichten ergebenden Minoritätsträgerdichten ergeben
sich mit obigem Gesetz zu

np mzlpp 6,25 • 1026/1017 cm"3 6,25 • 109 cm"3

Pn m2/«n 6,25 1026/1016 cm~3 6,25 • 1010 cm3

Mit der Dotierung ist also in der n-Zone des ursprünglichen
reinen Germaniums die Löcherkonzentration p„ von der
Intrinsiczahl m 2,5 1013 pro cm3 auf 6,25 • 1010 pro cm3

zurückgegangen.
Erfolgt nun der Übergang vom p-Gebiet zum n-Gebiet

plötzlich, so spricht man von Dioden mit abruptem Übergang
oder von «abrupt junction diodes». Sie ist der Berechnung
besonders gut zugänglich und soll daher an dieser Stelle weiter
betrachtet werden.

Infolge ihrer immer vorhandenen Wärmebewegung diffundieren

die Elektronen in das p-Gebiet und die Löcher in das

n-Gebiet. Mit Hilfe der Boltzmann-Statistik ergibt sich nun für
die Löcher- und Elektronenkonzentration in Anwesenheit
einer äusseren Spannung La in Abhängigkeit vom Abstand x:

e [<p (x) -q>] cp (x) — $
n(x) tin e k T nn e ut (9)

_
e [cp (x) - Ud]

p(x)=pve kT - Pp e

<p (x) — Ud
UT

X

|PP:"P 1n;P„ j

T]t

pp
«p
Pn

"n
x
Ui

Fig. 7

p- und n-Gebiet einer Halbleiterdiode
Löcherkonzentration im p-Halbleiter
Elektronenkonzentration im p-Halbleiter
Löcherkonzentration im n-Halbleiter
Elektronenkonzentration im n-Halbleiter
laufende Koordinate
Diodenspannung

In diesen beiden Gleichungen sind :

0 Diffusionsspannung (die im folgenden noch näher
erklärt werden soll)

ç (x) laufendes Potential
Ud von aussen angelegte Diodenspannung
Ut kTle 26 mV (Temperaturspannung)

0 ist die Diffusionsspannung, die sich aufgrund der Ladungs-
trägerdiffusion einstellt und gleichzeitig einer unaufhörlichen
Ladungsträgertrennung entgegenwirkt. Man erhält diese

Diffusionsspannung 0, wenn man für den Ort x — oo,
d. h. nach Fig. 7 im p-Gebiet, das Potential (p (x — oo)
willkürlich gleich Null setzt. Am Orte x — oo kann natürlich
auch n (x — oo) «p gesetzt werden, denn bis zu diesem

Ort sind keine zusätzlichen Elektronen aus dem n-Gebiet
diffundiert. Damit erhält man aus Gl. (10):

nT1 - n„ e - oiuT

0=Ut In — 2,3 Ut lg —
tip «p

(11)

Mit Hilfe des Massenwirkungsgesetzes nach Gl. (8) lässt
sich Gl. (11) auch in folgende Form bringen:

0 2,3 UTlg — 2,3 Ut Ig^ 2,3 UT lg —f-5-
«p Pn n\

0 Ut In nn

tip
Ut In uT In Pp

Pn m"
(12)

Beträgt z. B. die Störstellenkonzentration einer Germanium-
Diode tin 1017 cm-3 und pv 1016 cm~3, so erhält man für
die Diffusionsspannung 0 bei der Temperatur T 300 °K :

1017 loi«0 2,3- 26 !g 372 mV

5.2 Potentialverlauf innerhalb der Sperrschicht

Der Potentialverlauf (p (x) errechnet sich mit Hilfe der

Poisson-Gleichung :

A q>= 5—
eo £r

(o Raumladungsdichte)

(13)

Im Donatorengebiet, d. h. im Bereich x > 0 (vgl. dazu

Fig. 7), befindet sich unter Berücksichtigung von
<p (x:) — 0

a) der abgewanderten Elektronen n (x) na exp

b) der zugewanderten Löcher p (x) — pv exp

(10) c) der ursprünglichen Elektronen nn

Ut
<p(x) — Ud

Ut
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folgende Raumladungsdichte

<p (x) — 0
« lx>0 ' e «n — »n exp t/T +

p (x) — Ua 1

+ (—0p) exp 'Üt j

<p (x) — Cd
S lx<0 +e\Pv -PPexP JJT +

+ (— Hn) exp
<p (X) — 0

Ut

Um die Sperrschichtweite w und daraus die Sperrschichtkapazität

Cj nach der Gleichung

Ct
£0 £r A

@ I

x> 0

ölx<0=+fPe

xp < x <0: Atp —

0 < x < xn: A tp

dx2

d2 <p

(hc*
"n e

s

dip

dx Xp

dip

dx
0

HXp =Ua

<p \

x o const

a) Lösung von Gl. (19) : d.h. tp (x) für xp < x < 0

d2 <p

dx3
Pp g

e

dip P P e
x 4- Cldx e

dcp I

dx
0

0 Pv e
xp + ci

e

(14)
Cl

Pv e
xP

Die in Gl. (14) stehende Grösse (— pP) berücksichtigt, dass

die Löcher im Gegensatz zu den Elektronen eine positive
Raumladung erzeugen. Entsprechend Gl. (14) erhält man für
das Akzeptorengebiet, d. h. für x < 0, folgende Raumladungsdichte

:

d<p

dx
P P e

(x - Xp) (25)

Pp e /x2 \
I
~2 Xp X 1 + C2

cp (Xp) Ud
C2 — Ud. ~f"

pp e xPz

<p
pv e ix-

2 -XpX+ 2 Ui (26)

(15) b) Lösung von Gl. (20), d.h. tp (x) für 0 < x < xn :

(17)

(18)

d2 (p _ «n e
dx2 e

(16)

dtp

dx
«n e

ca

dcp I

dx
o - tin i

- Xn + C3

tin e
C 3 ~ Xn

berechnen zu können, müsste die Poisson-Gleichung (13) mit
der potentialabhängigen Raumladung nach den Gl. (14) und
(15) gelöst werden. Eine Durchführung dieser Operation ist
aber elementar nicht mehr möglich. Deshalb sei hier eine von
Schottky vorgeschlagene «vereinfachte Ladungsträgerverteilung»

in der Sperrschicht angenommen: Und zwar reiche die

Sperrschicht innerhalb des p-Gebietes bis zu der noch
unbekannten Grenze xp, innerhalb des n-Gebietes bis zur ebenfalls
noch unbekannten Grenze xn. Beide Grenzen sind aber
dadurch gekennzeichnet, dass an ihnen die Feldstärke d<p/dx 0

ist. Ansonsten würde ja eine weitere Ladungstrennung
erfolgen, womit wieder eine Veränderung der Sperrschichtweite
w eintreten würde. — Das hier zu lösende Problem sei noch
weiter vereinfacht, indem eine abrupt verlaufende
Raumladungsdichte in der Grenzschicht angenommen werde und
somit die Exponentialanteile der Gl. (14) und (15) vernachlässigt

werden. Aus den Gl. (14) und (15) wird jetzt also

dx e

tin e

(xn — x)

I Xn X y

(27)

c4

Mit Gl. (26) für den Ort x 0 und der Randbedingung
<p(x 0) const.

ip (x 0) pp e x^p + UA CA
e 2

erhält man schliesslich für das Potential

<P
tin e X2 \- (xnX-^J Pp e Xp2

Un (28)

c) Wichtig wird später das Potential am Orte x 0:
Sowohl aus Gl. (26) als auch aus (28) ergibt sich hiefür

»(* - 0) - », - V, +ffv + vl'-Sr (M V
1,1 • 10® £r \cm/

(29)

Mit diesen Vereinfachungen wird jetzt aus der Poisson-Gleichung

(13)
d2 <p _ Pp e

e
(19)

(20)

Stoff Cr

Germanium 16,1

Silizium 12

d) Diffusionsspannung <2> nach der Schottkyschen Näherung
Diese erhält man aus Gl. (28), wenn Un 0 gesetzt wird,

für x xn :

Die 4 Konstanten dieser beiden Differentialgleichungen
2. Ordnung werden durch folgende 4 Randbedingungen
bestimmt:

0 2 s
(tin Xn2 + Pp Xp2) _

0,91 • 10"6 (" tin
Er [ cm-3

Pp

(21)

(22)

(23)

(24)

_3-(xn/cm)2 -

(xp/cm)2j
(30)

Liegt an der Diode noch die äussere Spannung Un, so wird
aus Gl. (30):

0 — Ua= 2 e
("n Xn2 + Pp Xp2) (31)

e) Sperrschichtweite w

Diese ist gegeben durch w xn + xp [ xn — xp (32)
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Die Entfernung Xn kann, wie gezeigt wird, durch x„
ausgedrückt werden und xp aus Gl. (31) ermittelt werden.

Wegen der Stetigkeit der elektrischen Feldstärke am Orte
x 0 ist mit den Gl. (25) und (27) :

d<p

dx x 0

PP e "n e
xp • .V,,

s e

xn — Xp
Pp

tin

Eingesetzt in Gl. (31) ergibt:

0—Uä= «nXp2 P-\2e L «n2

aufgelöst nach xp :

- PP xP< I2| -e- Xp2

2 _ «P - £/<.) 2 8
Xp — -- „Pp2

2s

e
2 s

1

e l/rtn+T/pp

PP!+ PPI] __

nn Pp
1

>41 +
1

L tin Pp

xp
Pp2

1,1 106fir

1 2 s 1

e 1 1

tin Pp

0 - Ua
V

Po (i ,|. M
cm-3 \ Tin)

(35)

Für Xn erhält man entsprechend

i (0 - Ua) 2 s

fin"

1

— + ~^
tin p p

1,1 ' 106 £r "

0-Ua

V
tin IIn

Po

(36)

Mit Gl. (32) wird schliesslich die Sperrschichtweite :

(iW — Xn — Xp I / (0 — Ud)
2 £

1

Un

V(0-Ud)
2 s

1

Pp

tin P P

1

Pp
(37)

Als Beispiel sei der Potentialverlauf innerhalb einer
unterschiedlich dotierten Germanium-Grenzschicht berechnet. Und
zwar sei bei T 300 °K und der äusseren Spannung U,i 0
die Donatorendichte tin 1018 cm-3 und die Akzeptorendichte

pp 1017 cm 3. Gesucht seien

1. die Diffusionsspannung 0,
2. die Sperrschichtweiten xv und ,Yn,
3. das Potential am Orte x 0,
4. der Potentialverlauf innerhalb der Grenzschicht und
5. die Minoritätsträgerdichte pa und «p.

1. Mit Gl. (12):

0 2,3 t/Tlg n-^ 2,3 • 26 lg [Jg 0,493 V

2. Mit Gl. (35):

xp - j/l,l • 10« • 16,1

Mit Gl. (36)

xn= |/l,l • 106-16,1

0,493
1017(1 +0,1)

0,493

8,9 • 10"6

(33) 3. Mit Gl. (29):
10"

<p o :

1,1 -106 - 16,1

4. Siehe Fig. 8.

1018(1 + 10)

79,5- 10-" 0,45 V

8,9 • 10-7

5. Mit Gl. (8)
m2 _ 6,25 IQ26

tin 18

n? 6,25 1026

Pp ~ 10"

Pn

Ilp

cm-3 6,25 108 cm-3

cm-3 6,25 • 109 cm-3

(34)

Für xp erhält man unter der Berücksichtigung, dass definitions-
gemäss xp < 0 :

In einem weiteren Beispiel sei untersucht, wie sich die

Potentialverteilung innerhalb der Grenzschicht durch Anlegen
einer äusseren Spannung Ua ändert. Und zwar sei auch hier die

Dotierung zu tin 1018 cm-3 und pv 10" cm-3 angenommen;

als äussere Spannung sei Ua + 0,2 V und Ua

— 0,2 V gewählt. Die Diffusionsspannung 0 ist nach Gl. (12)

unabhängig von der an der Sperrschicht liegenden äusseren

Spannung Ua', sie beträgt nach dem letzten Beispiel 0
0.493 V. Die Sperrschichtweiten xp und xn und damit auch das

Potential <po am Orte x 0 ist nach den Gl. (35, (36) und (29)
dagegen abhängig von der Spannung Ua, so dass man mit
Hilfe der Werte des vorigen Beispiels folgende Werte für xp,
xn und ipo erhält :

1. Berechnung von xp :

xP - 8,9 MO-6 ,/0,493 + 0,2
\ 0,493

Uä + 0,2 V : xp - 6.85 10-6 cm
Ua~ — 0,2 Y : xp - 10,6-10-« cm

0,493

0,4
l

0,3

i

0,2

0,1

-8,9 -5
-3

cm

0,89
x —

5 KT4cm

Po 10,7cm3
o

Oi n„ 1018 cm

î
c

- io10

np 6,25 109 cm
3

1 1 1
Ii
i
P
1

CJ1

1
q,

1

Fig. 8

Potentialverlauf in der Grenzschicht für ein gegebenes Beispiel
Bezeichnungen siehe im Text
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2. Berechnung von xn :

Xn 8,9 • 10"7 ,/0,493 T 0,2
F 0,493

cm

£/d + 0,2 V: xn 6,85 • 10~7 cm
Uä= — 0,2 V: Xn 10,6 10~7 cm

3. Berechnung von <po'-

UA= 4-0,2V: <p0 0,2 V
1017

1,1 • 106-16,1

Ua -0,2 V: ç>o= — 0,2 V +
112- 10-12V 0,435 V

1017

UH=+0,2 V

Oh 0

-8.9

10 cm

V

0.45 a
c',

1

1

1

<

(X)t

1

1

1

1

1

1

1

0,89
x >

10 'cm

5.5 Sperrschichtkapazität

Diese erhält man nun in einfacher Weise mit Gl. (37) und
Gl. (16):

e A s A
Ci

i'(0 - Ua)
2 g 1

«n Pp

47- 10~12V 0,466V I/ 2*£ 1/
2 F 0 - C/d F

tlnPv
«n + Pp

(38)

'

1,1 - 106 • 16,1

4. Darstellung des Potentialverlaufes innerhalb der
Sperrschicht: Siehe Fig. 9.

Da die Kapazitätsdiode praktisch nur im Sperrgebiet, d. h.

bei Ua < 0, betrieben wird, ist oft folgende Schreibweise
anzutreffen :

At! 2ee
Cj (M, i rtnPv^

«n + PP
(39)

wobei jetzt Ua die Sperrspannung der Diode ist. Fasst man die

für eine gegebene Diode vorgegebenen Konstanten zusammen
und normiert die Kapazität Cj auf einen Kapazitätswert Co

bei der Spannung Ua nach der Gleichung

Co V 2 e £0 fir "n Pp

0 + Ua np 4~ Pp
(40)

so erhält man die einfache, für Dioden mit abruptem pn-
bei Übergang gültige Gleichung:

„ _ / 0+ Uo\0'5fi (41)

Für die diffundierte Diode mit dem Störstellengradienten a,
bei der also kein abrupter Übergang von p-Gebiet und n-Ge-
biet zu verzeichnen ist, ergibt die Theorie [5] für die
Sperrschichtkapazität :

^ A £0 Sr
f 3

'J/12Ë^(0 + Ua)

(42)

Durch Zusammenfassen der Konstanten erhält man wieder:

(43)(0+ uo\y3
Ci~C°\<li+Ua)

Praktische Dioden haben weder den Exponenten (slope
factor) t/2 oder t/3, sondern einen dazwischen liegenden Wert,
so dass man im allgemeinen angibt

Cj Co
0 4- Ua \« mit q 0,33...0,5 (44)

1 V

V 1 0,435 -f\
1

1

1

Xp I / v"

1

1

1

1 xn

/ S"

1

1

-10,6 / 1.06
10-

1

X >

1 -0,2

Fig. 9
Potentialverlauf $ in der Grenzschicht für ein gegebenes Beispiel

5.4 Das Fermi-Niveau in Sperrschicht-Dioden

Die elektrische Energie E ergibt sich bekanntlich als
Produkt aus Ladung und Spannung. In dem hier vorliegenden
Fall wird demnach die Energieverteilung innerhalb der
Sperrschicht gegeben durch die Gleichung

E(x) — e <p (x) (45)

Mit Gl. (45) hat bei entsprechender Berücksichtigung des

Minuszeichens (negative Ladung des Elektrons!) die Energie
E (x) den gleichen Verlauf wie das unter Abschnitt 5.2
berechnete Potential <p (x). Üblich ist es, als Bezugspunkt dieser

Energie die untere Kante des Leitungsbandes zu wählen.

Bull. SEV 63(1972)12, 10. Juni (A 434) 639



Angaben für die Energieverteilung für eine Sperrschichtdiode
Tabelle V

Pp 1017 cm-3
«n 1018 cm-3

T= 300°K
er 16,1 (Ge) Uä + 0,2 V ua o Ua= - 0,2 v

0 2,3 Ut ig ri^rm*
V Gl. (12) 0,493 0,493 0,493

Xp cm Gl. (35) -6,85 • 1O-0 -8,9 • 10~6 -10,6 • 10-6

Xn cm Gl. (36) 0,685 10"6 0,89 • 10-6 1,06 • 10-6

<p (x 0) V Gl. (29) 0,466 0,45 0,435

E (x 0) — e <p (x 0) eV Gl. (45) -0,466 -0,45 -0,435

Fpp — Ev k Tin —
Pv

eV Gl. (7) 0,143 0,143 0,143

Fe - FPn £ Tin —nn
eV Gl. (6) 0,084 0,084 0,084

Ui +0,2 V cm

Als Zahlenbeispiel sei die Energieverteilung für eine
Sperrschichtdiode mit den in früheren Beispielen und in Tabelle V
angeführten Dotierungen in Fig. 10 angeführt:

Wie man anhand der Fig. 10 recht deutlich erkennt, liegt
das Fermi-Niveau in Abwesenheit einer äusseren Spannung
Ua in der gesamten Sperrschicht auf gleicher Höhe. Das gleiche
konstante Fermi-Niveau wird sich im spannungslosen Zustand
später auch beim Metall-Halbleiter-Übergang der Schottky-
Diode (Hot Carrier Diode) ergeben. Das Fermi-Niveau ist
damit sozusagen der gemeinsame Pegel, der sich beim
Zusammenführen zweier Materialien oder Dotierungszonen einstellt.

Bei Anlegen einer äusseren Spannung U& in Durchlassrichtung

senkt sich das Fermi-Niveau des p-Gebietes, wie
Fig. 10 zeigt, um den Betrag E e Ua ab. Die Elektronen des

n-Gebietes können jetzt «den Energieberg herunterfallen».
Zudem zeigt Fig. 10 deutlich, dass die Sperrschicht mit dem

Anlegen einer positiven Spannung kleiner wird, womit natürlich

der Sperrschichtwiderstand abnehmen muss.
Bei Anlegen einer negativen äusseren Spannung wird das

Fermi-Niveau des p-Gebietes um den Betrag E — eUa

angehoben. Die Elektronen des n-Gebietes können nun nicht mehr
«den Energieberg herauflaufen». Zudem wird die
Sperrschichtweite nach Fig. 10 vergrössert, womit bei steigender
negativer Spannung die Kapazität der Sperrschicht abnehmen

muss.

6. Anhang
Durch den Beweis der aufgestellten Behauptung, dass

nämlich bei Eigenhalbleitern das Fermi-Niveau in der Mitte
zwischen Leitungsband und Valenzband liegt, erhält man einen
tieferen Einblick in die bei Störstellenhalbleitern und bei pn-
Übergängen liegenden Zusammenhänge. Er sei deshalb hier
angetreten :

a) Anzahl der freien Plätze innerhalb eines Energiebereiches
dE. Hierfür ergibt die Theorie [3] :

dN 4 re
2 m
~W

'
(F - Fe)1/2 dE -- A (F - Fe)/2 dF (A. 1)

0.493

0.084

Dabei ist Fc nach Fig. 4 die untere Grenze des Leitungsbandes.

Fig. 10
Energieverteilung und Fermi-Niveau in der Grenzschicht für 4

gegebenes Beispiel

Bezeichnungen siehe im Text
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b) Elektronenzahl im Leitungsband. Nach der Gl. (3a) war

dn f (E) dN (A.2)

wobei jetzt f (EJ durch Gl. (4) und dN durch Gl. (A. 1) gegeben

sind. Die Funktion f (E) lässt sich bei der hier vorliegenden
Problemstellung, nämlich der Berechnung der Elektronenzahl

im Leitungsband, vereinfachen, da hier

ist.
Ec - E¥ > k T= 26 • 10"3eV(r= 300°K)

Stoff Temperatur (Ec - Ev) (Ec - Ef)
°K eV ' eV

Germanium 300 0,65...0,73 0,325

Silizium 300 1,08...1,12 0,54

Germanium 0 0,73 0,365

Silizium 0 1,14 0,57

Es war nach Gl. (4):

f (E)
1

1 +e(E-EF/kT
e - (E - EF)/k T

Damit ist aus der Fermi-Dirac-Statistik die Maxwell-
Boltzmann-Verteilungsfunktion geworden. Die Gl. (A.l) und
(A.3) werden jetzt in Gl. (A.2) eingesetzt. Die Gesamtzahl der

Elektronen im Leitungsband erhält man dann, wenn von Ec
bis oo integriert wird :

n A(k T)3k Jy- e-(E0 — EF)/kt (A.6)

Die Konstanten der Gl. (A.6) werden zusammengefasst :

j/jl
TNc A(k T)3h - 4 n

Tabelle VI

Nc 2,5 • 101» (TITofh cm-3 (A.7)

Damit erhält man jetzt für die Anzahl der Elektronen im
Leitungsband eines Eigenhalbleiters

„ Nce-Vc-BAikT (A.8)

Die Anzahl der Elektronen im Leitungsband eines
Eigenhalbleiters ist bei konstanter Temperatur nur abhängig von der

Energie der unteren Leitungsbandkante Ee zur Energie des

Fermi-Niveaus.

c) Löcherzahl im Valenzband. Für diese erhält man analog

(A.3)

p Pv e — (Ef — Ev)/k T

Pv 2,5 • 1019 (T/Tofh cm 3

Das Symbol Pv bzw. Nc soll andeuten:
P positive Ladungsträger Löcher
v Valenzband
Pv Löcher im Valenzband

N negative Ladungsträger Elektronen
c Leitungsband
Nc Elektronen im Leitungsband

(A.9)

(A.10)

n= / f (E) dN J A(E — Ec)^2 e - (E - EF)/k t dE
Ec Ec

oo

A f (E- Ec)K e - E/kT eEF/kT dEeEc/kT e - Ec/kT
Ec

oo

A f (E — Ec)^ B — (Ec — EF)/kT ^ — (E — Ec)/kT dE
Ec

OO

A e - (Ec - EF)/kT J (E — £c)'/! e - (E - E0)/kT dE
Ec

A k T(lc TfA e - (Ec - EF)/k T J e~ ^ ~ Ec)/kT d (j^f

Die Grenzen des Integrals können erweitert werden von d) Lage des Fermi-Niveaus in Eigenhalbleitern: In Eigenhalb-
00 °° leitern ist die Anzahl der Löcher p gleich der Anzahl der

/ auf / wenn über d((E - Ec)/k T) statt über d(E/k T) inte- E|ektronen n [7], (Tabelle VII) :

(A.ll)
Ec 0

griert wird. p n m

(«i» von intrinsic rein)

77 A {k Tfh e - (Ec - Er)/k tJ "e~(E-Ec)/k t d
E — Ec ] M>

kT

Das Integral in Gl. (A.4) ist bekannt

J e~x dx:

und es wird aus Gl. (A.4)

(A.5)

E-Ec
kT (A.4)

Tabelle VII

Stoff »i2 n\
cm 6

Germanium 6,25 • 1026 2,5 • 1013

Silizium 4,64 • 1021 6,8 • 1010

Metalle 1046 1023
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Mit GL (A. 11) wird jetzt

p n Pve-(Ef - Ev)/k t j\fc g — (ec — EF)/k t (A. 12)

— (£f — Ev) — — (Ec — £f)
t-. Ec -b EvEf

(A.13)

Das Fermi-Niveau eines Eigenhalbleiters liegt also in der

Mitte zwischen Leitungsband und Valenzband.
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Commission Internationale de Réglementation

en vue de l'Approbation de l'Equipement Electrique (CEE)
Sitzungen des TC 032, Committee of Testing Stations, vom 8. bis 10.März 1972 in Paris

Am 8. und 9. März fand im Konferenzsaal des Laboratoire
centrale des Industries électriques in Fontenay-aux-Roses und
am 10. März in Paris bei der UTE die 4. Sitzung des TC 032
statt. Es waren 15 CEE-Länder durch 27 Prüfstellen-, 2
Industrieangehörige und 3 Beobachter (USA, BSI und ETVA) vertreten.

Nach Genehmigung des Protokolls der Sitzung vom 10. und
12. März 1971 in Offenbach wurde die eingegangene Liste der
von verschiedenen Prüfstationen empfohlenen Prüfeinrichtungen
behandelt. Von 5 Ländern (F, D, NL, N und UK) sind entsprechende

Angaben gemacht worden. Die Liste ist noch nicht
vollständig, und das Komitee beschloss deshalb, dass vom Sekretariat
für das weitere Vorgehen ein entsprechendes Dokument an die
Nationalkomitees versandt werden soll. Diese Liste soll nur
empfohlene CEE-Prüfeinrichtungen enthalten und bedeute keinesfalls
die Übernahme einer Verantwortung für die Lieferqualität.

Die von einer Arbeitsgruppe vorgeschlagene Messmethode
zur Prüfung von Unterbrechern mit Induktivität im Stromkreis
wurde nach einiger Diskussion angenommen. Als Grenzwert für
den Faktor der zulässigen Überschwingung der Spannung bei
eisenhaltigem Prüfkreis wurde 1,3 ± 0,1 von der Mehrheit der
Mitglieder als richtig beurteilt. In einer weiteren Arbeit soll das
gleiche Problem mit eisenloser Induktivität im Prüfkreis behandelt

werden. Ob das Dokument als Publikation oder Empfehlung
der CEE herausgegeben werden soll, soll durch die Plenarver-
sammlung entschieden werden. Für die Prüfung der Dauerhaftigkeit

von Aufschriften wurde der von England eingereichte
Entwurf, mit einer relativ grossen Einrichtung, heftig diskutiert.
Deutschland machte hierzu einen neuen Vorschlag mit einer
handlichen kleinen Reibeinrichtung. Um, die beiden Vorschläge
besser beurteilen zu können, beschloss das Komitee, dass unter
Berücksichtigung der Versuche aus den sich von England
ergebenden charakteristischen Kennwerten wie Reibradius, Druck
und angewendete Flüssigkeit von D. UK, S und NL Versuche
gemacht werden sollen. Das Ergebnis soll an der nächsten
Sitzung behandelt werden. Der schweizerische Vorschlag über die
Genauigkeit von Temperaturmessungen wurde prinzipiell ange¬

nommen; England machte jedoch dazu den Vorschlag, die
Ausführungen über die Messung mit Thermoelementen ausführlicher
zu gestalten, indem die Anordnung der Elemente am Objekt noch
zusätzlich berücksichtigt wird. Jedes Mitglied wird dem
schweizerischen Vertreter seine entsprechenden Erfahrungen zustellen,
damit dieser den Vorschlag ergänzen kann.

Das Komitee behandelte ferner das von Dänemark aufgeworfene

Problem der Messung des Spannungsabfalles an den
Kontakten von konfektionierten Kabeln mit Stecker und Steckbuchse.
Nach längerer Diskussion wurde der Beschluss der letzten
Sitzung bestätigt, dass für die Prüfung gemäss § 15 b der CEE-
Publikation 22 drei zusätzliche Muster zu verwenden sind. Nachdem

in früheren Sitzungen die Eichung der Einrichtungen zur
Prüfung der mechanischen Festigkeit abschliessend behandelt
worden war, konnte an dieser Sitzung die Anwendung dieser
Einrichtungen besprochen werden. Nach reger Diskussion über
die Auswirkung der Unterlage (auf welche das zu prüfende Objekt

gestellt wird), auf das Resultat der Härteprüfung mit dem
Springhammer, beschloss das Komitee, nach einem neuen
holländischen Entwurf dieses Problem an der nächsten Sitzung weiter
zu behandeln. Die Bestimmung der zur Prüfung notwendigen
Anzahl Apparateschalter entsprechend CEE-Publikation 24
wurde auf Grund des englischen Vorschlages CEE(032)UK 153/
71 festgelegt. Entsprechend dem Anwendungsbereich, der
Konstruktion und den Prüfbedingungen muss die notwendige Zahl
Muster zur Verfügung stehen. England wird hierzu einen
bereinigten Entwurf für die nächste Sitzung ausarbeiten.

Nachdem die an der nächsten Sitzung zu behandelnden
Traktanden festgelegt waren, behandelte das Komitee noch die Frage,
in welcher Form die Ergebnisse der Sitzungen des TC 032 anderen

CEE-Mitgliedern als nur den Prüfstellenteilnehmern zur
Kenntnis gebracht werden könnten. Da kein diesbezüglicher
Beschluss gefasst werden konnte, erhielt das Sekretariat den Auftrag,

zu dieser Frage für die nächste Sitzung einen Vorschlag
auszuarbeiten. K. von Angern
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