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Das Finite-EIemente-Verfahren, angewandt auf die Analyse magnetischer Kreise

Vortrag, gehalten an der Diskussionsversammlung des SEV vom 22. Juni 1971 in Zürich,

von K. Reichert und W. Vogt, Baden

1. Das Finite-EIemente-Verfahren

1.1 Allgemeines

Mit dem Verfahren der Finiten-Elemente können Temperaturfelder,

elektrische oder magnetische Felder, mechanische

Spannungsfelder usw. numerisch, d. h. mittels programmierbarer

Rechenanlage, ermittelt werden.

Das Verfahren besteht aus den folgenden Schritten (Fig. 1) :

a) Einteilung des Raumes, als Träger des Feldes, in finite
Elemente (Dreieck, Rechteck usw. [Fig. 2]).

b) Zuordnung der Feldgrössen zu den finiten Elementen. Im
allgemeinen ändern sich die Eigenschaftswerte in einem Element nicht;
den Eckpunkten der finiten Elemente werden diskrete Systemgrössen-

Fig. 1

Das Verfahren der Finiten Elemente

681.3:538.26

werte zugeordnet. Innerhalb eines Elementes wird der Verlauf der
Systemgrössen approximiert.

c) Herleitung von Beziehungen zwischen den Systemgrössen
eines Elementes und benachbarter Elemente auf Grund der
Feldgleichungen mit Hilfe von Taylorreihenentwicklung, Variationsmethoden

und Integralapproximationen.
d) Lösung und Auswertung der Systemgleichungen.

Das Finite-EIemente-Verfahren liefert eine angenäherte
Lösung für ein Feldproblem. Die Genauigkeit der Lösung
hängt ab;

a) von der Anordnung der finiten Elemente;
b) von der Approximation der Systemgrössen.

Das Verfahren erfordert einen gewissen Einblick in das zu
lösende Problem, und das Verhältnis Aufwand zu Erfolg hängt
nicht zuletzt von der Geschicklichkeit des Anwenders ab. Im
folgenden wird zunächst über einige Besonderheiten des

Verfahrens berichtet. Es wird dann gezeigt, wie es zur Analyse
magnetischer Kreise verwendet werden kann.

1.2 Über die Verteilung der finiten Elemente

(Gitternetzeinteilung)
Die finiten Elemente sind im Feldraum bzw. in der

Feldfläche so anzuordnen, dass :

a) die Umrisse von Teilgebieten möglichst gut nachgebildet
werden ;

b) der Diskretisierungsfehler F, d. h. der Unterschied
zwischen der exakten Lösung und der Lösung der Systemgleichungen

eine bestimmte räumliche Verteilung hat;
c) die Zahl der Elemente nicht zu gross wird.
Die Erfüllung dieser Forderungen ist problematisch, da der

Diskretisierungsfehler von der Verteilung der finiten Elemente
und vom Feldverlauf abhängig ist und dementsprechend bei
der Anordnung der finiten Elemente noch nicht bekannt ist.

Es hat sich als zweckmässig erwiesen, in Bereichen inhomogener

Feldverhältnisse die Elemente sehr dicht anzuordnen,
aus dem Ergebnis einer ersten Berechnung den Diskretisierungsfehler

abzuschätzen und dann schrittweise die Anordnung
der Elemente abzuändern. Dieser Vorgang lässt sich auch in
das Feldberechnungsprogramm aufnehmen (automatische
Generierung des Gitternetzes).

1.3 Über die Herleitung der Systemgleichungen

Das System der Feldgleichungen, Rand- und
Nebenbedingungen legt die Beziehungen zwischen den diskretisierten
Systemgrössen nicht eindeutig fest, da das kontinuierliche Feld
unendlich viele, das diskretisierte Feld dagegen nur endlich
viele Freiheitsgrade hat. In jedem Fall sind Beziehungen
anzustreben, die im Grenzfall beliebig kleiner Elemente auf eine

Lösung führen, die gegen die korrekte Lösung des Feldproblems

konvergiert.
Drei Verfahren zur Transformation der Feldgleichungen in

Systemgleichungen sind bis jetzt bekannt ;
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Fig. 2
Finite Elemente

a zweidimensional, geometrisch; b dreidimensional,
geometrisch; c physikalische Finite Elemente

1+1,K+1

1+1,K

I.K.L

C o_[

Das Verfahren, die in den Feldgleichungen

auftretenden Differentialquotienten mit
Hilfe von Taylorreihenentwicklungen zu
berechnen [1 ; 6]1), ist im allgemeinsten Fall
(finite Elemente mit unterschiedlichen
Eigenschaftswerten) sehr unübersichtlich.

Bei der Variationsmethode [2; 6] werden

die Ansätze für die Teilfelder in den finiten
Elementen zur Bildung eines Funktionais
verwendet. Das Volumintegral dieses

Funktionais wird zu einem Minimum gemacht.
Da dabei auch die Randbedingungen eingeschlossen werden

können, ist dieses Verfahren sehr allgemein. Es setzt allerdings
die Kenntnis des zu einer Feldgleichung gehörenden
Funktionais voraus.

Bei der Integralmethode werden Integralformen der
Feldgleichungen approximiert [1 ; 6], Dieses Verfahren ist sehr

übersichtlich, führt jedoch zu unübersichtlichen
Transformationsprozessen, wenn die Anordnung sehr unregelmässige
Elemente enthält.

1.4 Über die Systemgleichungen und deren Lösung

Taylorreihenentwicklung, Variationsmethode und Integralmethode

führen unter Berücksichtigung von Rand- und
Nebenbedingungen auf ein Gleichungssystem :

1+1,K,L

I.K + 1.L

H

DU —R (1)

wenn man mit D die Koeffizientenmatrix des Gleichungssystems,

mit U den Vektor der unbekannten Systemgrössen
und mit R den Vektor der bekannten Einflussgrössen (inhomogene

Glieder der Feldgleichungen, Rand- und Nebenbedingungen)

bezeichnet.

Für die Lösung der Systemgleichungen (1) werden je nach
der Form verschiedene Methoden verwendet;

Ist das System positiv-definit, symmetrisch und linear, so

sind iterative Verfahren (Einzelschritt- oder Blockiteration
nach Gauss-Seidel, Zeileniteration) mit Überrelaxation vorteilhaft.

Nichtlineare Systemgleichungen können mit modifizierten
Newtonschen Verfahren [4] und mit dem Zweischrittverfahren
[8] gelöst werden. Neben den iterativen Verfahren werden auch
direkte Verfahren (Gaußsche Elimination, Elimination mit
Partitionierung, Hypermatrix) für die Lösung der
Systemgleichungen verwendet.

Ein Lösungsverfahren ist im allgemeinen jedoch nur dann

brauchbar, wenn es zu konvergenten, stabilen und genauen
Lösungen führt und mit einer Rechenanlage bearbeitbar ist.

1.4 Die Auswertung

Mit Hilfe der Systemgleichungen (1) kann eine diskrete,
räumliche und zeitliche Verteilung der Systemgrössen ermittelt
werden. Damit ist man in der Lage, einerseits besonders

interessierende Eigenschaften des Feldes berechnen zu können
und anderseits ein Modell der Anordnung erstellen zu können.

Die Auswertung der Lösung verlangt besondere Aufmerksamkeit,

wenn lokale oder intensive Feldgrössen wie
Feldstärken, Stromdichten interessieren. Für die Ermittlung dieser

Grössen sind daher Interpolationsverfahren anzuwenden,
deren Stützstellen die diskrete Verteilung der Systemgrössen
bilden.

1.5 Über die Modellbildung mit Hilfe des Verfahrens
der finiten Elemente

Die Modellbildung ermöglicht es, den Einfluss eines Feldes

auf ein übergeordnetes System zu erfassen. Dabei können die

Komponenten des übergeordneten Systems ebenfalls finite
Elemente sein. Das Modell bzw. das entsprechende finite
Element ist so zu ermitteln, dass es das für das übergeordnete
System wesentliche Verhalten zeigt.

Es gibt grundsätzlich zwei Möglichkeiten der Modellbildung;

Die Systemreduktion und die Systemtransformation.

Bei der Systemreduktion werden unwesentliche Systemgrössen

aus der Systemgleichung (I) eliminiert. Man erhält so

die reduzierten Systemgleichungen

D* U* R* (2)

(Beispiel: Ermittlung eines Wärmequellennetzes aus einer

Temperaturfeldberechnung.)

Bei der Systemtransformation wird der Zusammenhang
A= TE zwischen einer Eingangsgrösse E und einer Aus-
gangsgrösse A ermittelt. Dabei hängt E nur von der rechten
Seite R der Gleichung (1) und A nur von den Systemgrössen
U ab:

R Ci E (3)

a c2u (4)

Ci und Co sind im allgemeinen rechteckige Transformationsmatrizen.

a) Siehe Literatur am Schluss des Aufsatzes.

Wegen Gl. (3) und (4) folgt aus Gl. (1):

A C2 D'1 Ci E
Daraus folgt

T= C2 D 1 Ci

(5)

(6)
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die gesuchte Koppelmatrix T des Modells. Z. B. beschreibt die

Induktivitätsmatrix L(=T) den Zusammenhang zwischen
den Strömen i E) und den Flüssen 0 A

Selbstverständlich sind diese Verfahren nur auf lineare oder
linearisierbare Systeme anwendbar.

Mit Hilfe des Ähnlichkeitsprinzips können die so gewonnenen

Modelle auch auf physikalisch ähnliche Felder übertragen
werden. Physikalische Ähnlichkeit zweier Felder setzt
geometrische Ähnlichkeit voraus und besteht dann, wenn jeder
Feldgrösse (Systemgrösse, Eigenschaftswert) ein Maßstabfaktor

zugeordnet werden kann, der dem Verhältnis der
zugeordneten Feldgrösse an geometrisch ähnlich gelegenen Punkten
entspricht.

Bei linearen Feldern kann die Kopplungsmatrix T aus der
Matrix 7m des Modelles des Feldes über die Gleichung

7m k — T (7)

berechnet werden (Index M bezieht sich auf das Modell).
Die Konstante k ist eine Funktion der Maßstabfaktoren /ce

und &a, definiert durch:

Ek^ Ein A kA AM (8)

Für das Modell gilt die Übertragungsgleichung:

Am 7m EM (9)

Für die Kopplungsmatrix T folgt aus

AkA TuEkE (10)
die Gleichung

A 7m E nebst
ka

T=^Tm (11)

Die Maßstabfaktoren sind im allgemeinen voneinander
abhängig [5],

Bei nichtlinearen Feldern ist der Zusammenhang A (E)
vom Zustand des Feldes abhängig. Jedem Zustand kann
eindeutig eine Serie von Kennzahlen (Reynoldsche Zahlen,

Prantlsche Zahlen usw.) zugeordnet werden. Über eine

grosse Anzahl Feldberechnungen von Modellfeldern wird der

Zusammenhang Am (Em) in Funktion der Kennzahlen berechnet

und tabelliert. Die Kennzahlen gewährleisten, dass zwei
Felder dann physikalisch ähnlich sind, wenn sie in allen
Kennzahlen übereinstimmen. Besteht diese Übereinstimmung
zwischen dem Feld des Modelles und dem Feld im übergeordneten
System, so kann der Zusammenhang Am (Em) auf Grund der
Kennzahlen der Tabelle entnommen werden. Für E und A des

Elementes gelten die Beziehungen :

E ke Ei/ Akx Ai (12)

nur indirekt, iterativ über Entwurf und Analyse gelöst werden.
Sie ist daher eine typische Aufgabe für Computer-aided-
design.

Bei der Analyse magnetischer Kreise sind das magnetische

Feld, d. h. der Verlauf der Induktion B und die magnetische
Feldstärke H sowie die Sekundärgrössen, wie Kräfte, Flüsse,

Induktivitäten usw., zu ermitteln.
Im folgenden soll beschrieben werden, wie die Analyse

magnetischer Kreise mit dem Verfahren der finiten Elemente

durchgeführt wird.

2.2 Die Grundgleichungen
Das stationäre Magnetfeld einer Anordnung mit Luft-,

Eisen-, permanentmagnetischen und stromdurchflossenen
Teilgebieten wird von den Gleichungen

rot H S (13)

div B 0 (14)

div S 0 (15)

und der materialabhängigen Vektorbeziehung

B B(H) (16)

beschrieben. Dabei ist H die magnetische Feldstärke, B die

Induktion und S die Stromdichte. Die Beziehung (16) ist in der

Regel nicht exakt bekannt. Die Näherungen

B ju(B)- H + Mr (17)

B no H + M (H) (18)

(19)

haben sich als nützlich erwiesen. Im Abschnitt 2.2.3 wird näher
auf diese Näherungen eingegangen.

Es bedeuten:

Mr Remanenzmagnetisierung
M Magnetisierung

fto Permeabilität des leeren Raumes

ß (B) Permeabilität (abhängig vom Betrag der Induktion)
X Suszeptibilität

Die Beziehung (17) ist geeignet für:
a) Luft: ß go, Mr, 0,
b) weichmagnetische Werkstoffe (unter Vernachlässigung der

Hysteresis): fi > uo; Mr 0,
c) Dauermagnetwerkstoffe: ß, Mr 4= 0

Mittels Gl. (18) und (19) kann die von der Stromdichte S
und der Magnetisierung M des Volumenelementes d Kin einem

Punkt P hervorgerufene Feldstärke Hv bzw. das entsprechende

Vektorpotential Ap mit den Integralen der Grundgleichungen
berechnet werden, wenn r von Punkt P zum Volumenelement
d V weist :

und

mit

2. Die Analyse magnetischer Kreise mit dem

Finite-EIemente-Verfahren
2.1 Die Aufgabenstellung

Magnetische Kreise, d. h. Anordnungen mit stromdurchflossenen

(Wicklungen), weichmagnetischen (Eisenteile, Anker,
Joche), permanentmagnetischen und unmagnetischen Teilgebieten,

sind Bestandteile elektrischer Maschinen und Apparate.
Sie haben die Aufgabe, magnetische Flüsse zu führen.

Die Auslegung eines magnetischen Kreises ist eine

Optimierungsaufgabe :

Mit möglichst kleinem Aufwand sollen die gestellten
Anforderungen erfüllt werden. Diese Aufgabe kann jedoch meist

MP
1

471
V

/Sx r 3 (M r) r M \
I r3 ßor5 ßor31/(

AP
1

4n /(- ßo > Mx

dK

dK

(20)

(21)

Die Gl. (20) und (21) gelten für Luft und alle magnetischen
Werkstoffe.

2.3 Das Berechnungsverfahren
2.3.1 Allgemeines

Numerische Verfahren zur Lösung der Gleichungen (13)...
(16) lassen sich in die folgenden Abschnitte unterteilen:

1076 (A 780) Bull. ASE 62(1971)22, 30 octobre



a) Wahl geeigneter Ausgangsgleichungen;
b) Approximation der Abhängigkeiten 1 Iß f(B) und M

f(B);
c) Wahl geeigneter finiter Elemente, Festlegung der

Teilgebietseigenschaften ;

d) Aufstellung der Systemgleichungen (Differentialgleichungssystem
oder Summengleichung) für das Gitternetz und für den Rand ;

e) Iterative Berechnung der Induktionsverteilung durch Lösen
der Systemgleichungen unter Berücksichtigung der Abhängigkeiten
1//Z f(B) und M f(B);

f) Auswertung der Ergebnisse.

2.3.2 Wahl der Ausgangsgleichungen

Bei zweidimensionalen Feldverhältnissen ist die Abhängigkeit

des Feldes von nur zwei Ortskoordinaten zu berechnen.

Die Abhängigkeit von der dritten räumlichen Koordinate wird
als bekannt vorausgesetzt. In der Regel definieren diese beiden

Ortskoordinaten eine Schnittebene. Sie wird im kartesischen

Koordinatensystem z. B. durch die x- und y-Koordinate, im
Zylinderkoordinatensystem durch die r- und z-Koordinate
oder durch die r- und p-Koordinate vermessen.

Steht S senkrecht auf der Schnittebene und/oder liegt Mr
in der Schnittebene, so ist die Verwendung des Vektorpotentials

A zweckmässig

B rot A, div A 0 (22)

Wegen div rot A 0 ist Gl. (14) erfüllt.
Mit A wird aus Gl. (13) und (17):

rot — rot A S + rot ^— (23)
ß M

Diese Ausgangsgleichung hat den Vorteil, dass sie sich oft
auf eine skalare Gleichung für die zur Schnittebene senkrecht
stehende Komponente von A reduziert, weil die beiden anderen

Komponenten von A gleich Null gesetzt werden dürfen.

Liegt S in der Schnittebene und/oder steht Mr senkrecht

auf dieser Ebene und ist für H nur die zur Ebene senkrecht
stehende Komponente Hs von Null verschieden, so ist Hs die

geeignete Unbekannte. Für sie gilt
b

Hsb —11 -;t f (k x S) dl (24)
a

B ßH + Mr (25)

k Einheitsvektor, senkrecht zur Schnittebene

a, b Endpunkte des Linienintegrals
dl Linienelement
Zum Beweis benützt man Gl. (13) in der Form:

S cos [<£(», S)] (26)

n Normale (zum Integrationsweg) in der Schnittebene.

Es folgt

dHs dl S cos <£ (n, S)) (k X S) • dZ (27)

Wegen Gl. (15) ist

rot (Ze x S) 0 (28)

und das Linienintegral von Gl. (27) ist vom Integrationsweg
unabhängig.

Sind die Feldverhältnisse dreidimensional, kann das Feld
mit Hilfe von Gl. (20)...(21) oder (23) berechnet werden. Eine
weitere Berechnungsmethode [9] setzt voraus, dass eine Lösung
der Gleichung

S rot U (29)

für das Hilfspotential U bekannt ist.

Wegen Gl. (13) und (17) folgt

rot
B —_ rQt u _ g ^30)

[X

und daraus

B ~ Mu- -U grad W (31)
fX

Wegen Gl. (14) lautet die Ausgangsgleichung für W:

div ß grad W — div (ß U + Mr) (32)

Wegen Gl. (31) berechnet sich B zu:

B ß (grad W + U) + Mr (33)

Hat die Anordnung nur Strombeläge, so kann ein Skalar-
potential iß definiert durch

H — grad iß (34)

angewendet werden. Wegen Gl. (14) und (17) lautet die
Ausgangsgleichung für iß :

div ß grad iß div Mr (35)

2.3.3 Die Approximation der materialabhängigen
Beziehung B (H)

Die Materialien magnetischer Kreise zeigen sehr
unterschiedliches Verhalten im magnetischen Feld. Die Abhängigkeit

B (ff) dient als Mittel zur Klassifizierung dieser Materialien.

Im wesentlichen wird unterschieden zwischen unmagnetischen

(ß ?» ßo), weichmagnetischen und permanentmagnetischen

Materialien, die zudem strukturell isotrop oder anisotrop
(z. B. kornorientierte Bleche) sein können.

Für technisch wichtige Materialien ist die B (ff) Abhängigkeit

fast nur experimentell erfassbar und in der Regel
unvollständig bekannt. Für Feldberechnungen sucht man deshalb
nach Modellen, welche im Rahmen der geforderten Genauigkeit

a) die B(B)-Abhängigkeit genügend genau wiedergeben,
b) die B(B>Beziehung in einer für Berechnungen geeigneten Form

angeben.

Im folgenden seien einige Modelle behandelt.

a) Mit Hilfe der Kommutierungskurve [9] wird für weichmagnetisches,

isotropes Material (z. B. Statorbleche) ß(B2) nach Gl. (17)
oder M(B2) nach Gl. (18) ermittelt. Beide Abhängigkeiten lassen sich
durch skalare Funktionen, z. B. abschnittsweise durch Geraden oder
Polynome, durch rationale gebrochene Funktionen, durch Kreisbögen

oder Hyperbeln annähern («curve fitting»).
b) Bei Oxydmagneten ist Mr durch den Magnetisierungsvorgang

eingeprägt und im Betriebsbereich praktisch induktionsunabhängig.
Für diese Materialien ist Gl. (17) geeignet, wobei ß(B2) mit Hilfe der
Magnetisierungskurve berechnet werden kann. Dieses Vorgehen
geht von der Annahme aus, dass ß nicht vom Winkel zwischen B
und Mr abhängt.

c) Bei Dauermagnetwerkstoffen, wie AINiCo, hängt der Zustand
der Magnetisierung stark von der Vorgeschichte (Einbau, Um-
magnetisierung) ab. Unter diesen Umständen ist es zweckmässig, mit
Hilfe einer inneren Magnetisierungsschlaufe Mr und u(B2) nach
Gl. (17) zu ermitteln, wenn das magnetische Feld für veränderliche
geometrische Abmessungen (z. B. veränderliche Ankerstellung) zu
berechnen ist.

d) Für kornorientierte Bleche lassen sich Kommutierungskurven
B{H), abhängig vom Winkel a zwischen H und der Vorzugsrichtung
des Bleches, messen. Entsprechend Gl. (17) (mit Mr O) kann also
ß(B2, a) ermiteltt werden. Diese Abhängigkeit kann durch eine
Kurvenschar mit o: als Parameter dargestellt werden.

2.3.4 Anordnung der finiten Elemente (Gitternetzeinteilung)
Die Gl. (23) kann für die von Null verschiedene Komponente

A von A numerisch mit dem Verfahren der finiten Ele-
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mente gelöst werden. Dieses legt den Zusammenhang zwischen

dem Vektorpotential Ai, k eines Punktes I, K der Anordnung
und den Vektorpotentialen Ai+i, k, Ai, k+i usw. der Punkte der

Umgebung fest. Diese Punkte müssen daher zunächst definiert,
d. h. die Anordnung muss mit finiten Elementen überzogen
werden. Dabei können rechteckige, kreisförmige oder
dreieckige Elemente verwendet werden. Dasselbe gilt für eine

numerische Auswertung der Gl. (20) oder (21).
Die Fig. 3 und 4 zeigen ebene und räumliche Rechteckgitterelemente

und die Zuordnung der Eigenschaftswerte. Dabei
sollen sich die Eigenschaftswerte innerhalb eines Gitterteilgebietes

gi,K nicht, die Vektorpotentiale längs der Gitterlinien
linear ändern.

2.3.5 Systemgleichungen (Differenzengleichung) für die

Berechnung der Vektorpotentialverteilung in
zweidimensionalen Anordnungen

Bei der Ableitung geht man zweckmässigerweise von einer

Tntegralform der Gl. (23) aus:

^ rot ^4 • ds J S Af+

1+1, K

ds (36)

Berücksichtigt man dabei nur die Vektorpotentiale der vier
Punkte / — 1, K; I + 1, K; I, K — 1 und I, K+ 1, die in Fig. 2

den Punkt I, K unmittelbar umgeben, so erhält man [1]

folgende Näherungsbeziehung für Gl. (23) :

Fig. 3

Ebenes Rechteckgitter
1 Integrationsweg; 2 Flächenelement d/

Die Vektorpotentiale der Randpunkte müssen jedoch
entsprechend den Rand- und Symmetriebedingungen definiert
werden :

Ist der Rand eine Feld- oder Symmetrielinie, so ist auf
diesem das Vektorpotential gleich Null. Steht das Magnetfeld auf
dem Rand senkrecht (Symmetrielinie), so muss das

Vektorpotential am Rand gespiegelt werden.

Aus der mit Hilfe von Gl. (37) und (38) ermittelten
Vektorpotentialverteilung kann nach Gl. (22) die Induktionsverteilung
berechnet werden: Es ist

A I,K
Oi, kAI, K+i + U\, K Ai, K-I + Ri, K Ai+i, K + Li, K A\I-I, K + Di, K

Kl, K
(37)

Dabei sind: Ki, k Oi, k + Ui, k + Ri, k + Li, k ß- Ai, K+I + /4i+nv+i — Ai, K — Ai+i, K
X, k i ~ h

Ol,K — (-
ÎX7K \

Pl Pl
Hi-—)

1, K /2qK \ yWi,K

Rl,K=
1 (-^+ q^-)2Pi \ fii, ix jUi.K-I /

Ui, k Or. k-i
Li, tv Ri-i, K

Di, k ^ ^iSi, k qn Pi + >Sj-i, k Pi-i qn + Ä, k-i Pi qn-i +

+ Ä-i Pi-i gii-ij +

+j

2qn

Ai, K n + i, K — A11 i, K — Ai n, K
2pi

(39)

wenn ein Rechteckgitternetz vorliegt.

2.3.6 Summengleichungen für die Berechnung der Feldstärke-
und Induktionsverteilung in dreidimensionalen Anordnungen

Bei der Umwandlung der Integrale (20) oder (21) in
Summengleichungen ist insbesondere dann, wenn das Volumen-

I.K.L

+ 2H( Myi, K Myi-l, k \
1, K /Ml, K

qk

/ Myi, k-I
\ Mi, K—l

Mxi, K

Ml, k

Mi,

—1, K—1 \— 1 qK-i + I

1, K—1 /

Pl + (Mxi-i.k-1 _ A/v -.K \ Pi
1

/ \ yMl-l,K-l /XI—1, K / J

Myi-1,k-i\ MxI.K-l\q k-i +
/XI—1, K—1 / V /XI, K-l I,K,L+ 1

wenn ein zweidimensionales Rechteckgitternetz (Fig. 1)

vorliegt.

Gl. (37) ist im allgemeinen Fall eine nichtlineare Beziehung,
da die Teilgebietseigenschaften fii,k, Mr, k, /xi-i,k, Mi-i,k,...
von den Teilgebietsinduktionen Bi,k, ßr i,k,... und damit
nach Gl. (22) auch von den Vektorpotentialen Ai, k, Au i k,...
abhängen. Da die Teilgebietseigenschaften nur die Koeffizienten

der Gl. (38) beeinflussen, kann mit Hilfe von Gl. (37) für
jeden Punkt innerhalb des Gitters eine Differenzengleichung
aufgestellt werden.

I,K,L

1+1,K,L

Fig. 4
Räumliches Gitternetz
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(beginn)
I

EINGABE : Abmessungendes magnetischen Kreises, Lage und Eigenschaften Strom -
durchflossener, weichmagnetischer und permanentmagnetischer Teilgebiete.
Näherungsgleichungen für 1/pr f B und M f B). Relative Gitter -
elnteilung. Anzahl der Iterationen Y

Berechnung : Laufzahlenkoordinaten der Gitteranordnung, Gitterweiten. Erforderliche
Speicherplatzkapazität.

nein /Korrektur der
pitfereinteilung /

Einspeicherung : Gitterweiten, Gitterkoordinaten, Stomdichte-, Permeabilitäts -, Magnetisierungs -,
Vektorpotentialwerte. 7

j AUSGABE : Eingabedaten Gitternetzteilung
|

< N : R : 0 >

(2) | Berechnung : Koeffizienten der Differenzengleichungen für A [l,K]

N : » N+ 1

(3) | Berechnung : Einmalige Iteration der Vektorpotentiale in wechselnden Richtungen"

JaN < 2

Berechnung : Teilgebietspermeabilitäten und Magnetisierungen, unterrelaxiert. Res. Durch¬
flutung 6rzs Konvergenzbeschleunigungsfaktor C. Luftspaltinduktion B0

<R:=R*N;N:=0)
I

^
/AUSGABE : R C, Zeit Luftspaltinduktion B0 /

ja

(c*=nyic -P) c *:= c >

I

(3)\ Konvergenzbeschleunigung mit C*: A Çl,K] ; C*'Ap,K]

ja

®E Auswertung : Induktion - und Kräfteverteilung,Flüsse, Leitwerte, Feldlinien u sw.
I

/AUSGABE : Ergebnisse /

(ende)
Flg. 5

Rechenmaschinenprogramm für numerische Magnetfeldberechnungen

element d V in der Nähe des Punktes P liegt, in welchem die
Feldstärke Hv berechnet werden soll, darauf zu achten, dass

diese möglichst gut angenähert werden. Dies wird dadurch
erreicht, dass das Volumenelement si.k.l (Fig. 4) je nach der

Grösse des Abstandes r in rfi Unterelemente unterteilt wird und
dass bei der Umwandlung Interpolationsregeln, wie z. B. die

dreidimensionale Simpsonregel, angewandt werden.

Setzt man :

SI. K, I. — i Sx j Sy ] h Sz

Mi, k, l i Mx +jMy + k Mz

wobei

(40)

I.K.L Fi, K, l + (« + -y) + qn (V + ~) +

+ Sxjw + y)] -
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Fig. 6

Gleichstrommotor mit
Permanentmagneterregung,
Gitternetz, numerisch berechnetes

Magnetfeld im Leerlauf

und bei Belastung

Dauermagnet

Dauermagnet'
Dauermagnet

ist — der Vektor r" l geht vom Punkt P zu dem mit den

Laufzahlen u, v, w gekennzeichneten Unterlement des

Volumenelementes gi, k, l —, so kann man z. B. für die x-Komponente

/xucx des Integranten von Gl. (20) folgende

Gleichung angeben:

rU,V,W
xI,K,L

»S'y r" Sz r"
(,.u,v,w\3
VI.K.L)

3(Mx r"'v,w + My r"'v'w + Mz rzu'v'w) r/,,u,v,w\5
V I.K.IJ

(41)
Mx

/„u,v,w\3
\ I,K,L/

Mit Hilfe der dreidimensionalen Simpsonregel erhält man
dann den vom Teilgebiet gi, k, l verursachten Beitrag AjF/PXj K L

der x-Komponente von AHP, K T zur magnetischen

Feldstärke Hp :

A#PXJ, K, L — J * -Pl^3Slj + 4^/4u 2^.
n—1 n—2 \

/lu
u=l,3... u=2,4...

(42)

n—1 n—2

Am — Bo,m ~h Bn,m H~ 4^ üu,m ~h 2^ i?u,m (43)
u=l,3... u 2,4...

ro. ,m | in, ,m
Y,m — z 1

I, K, L xi,K,L

n—1

4 y /xu' »n

LmJ I,K,I
u=l,3..

n—2

2Y /u'
Lu I,K,L

u 2,4...

(44)

Gleichungen für die Beiträge A//PYi K L und AFfPzI>KL

oder für das Integral Gl. (21) können in entsprechender Weise

abgeleitet werden.

Insgesamt hat die Feldstärke Hp dann die Grösse :

Hp S E £ HVI
T V T ' K,L (45)

Selbstverständlich können bei der Umwandlnug der
Integrale in Gl. (20) oder (21) auch Zylinder-, Kugel- oder
allgemeine Koordinatensysteme zugrunde gelegt werden.

Mit Hilfe der Summengleichung (45) kann man für jeden
Punkt der Anordnung die Feldstärke Hp und mit Gl. (16) auch

die Induktion Bp berechnen, die von einer vorgebenen Stromdichte-

und Magnetisierungsverteilung hervorgerufen wird.

Liegt der Punkt P innerhalb eines stromdurchflossenen oder

magnetischen Teilgebietes, so muss, so lang der Abstand

r 0 ist, der Beitrag des Volumenelementes d V, in dem der

Punkt P liegt, bei der Berechnung von Hp unberücksichtigt
bleiben.

In P tritt dann die Induktion

Bp — go Hp T (Hp (46)

auf.

t3
"?2

-
/

0 5 10 16 20 103A/cm 30

2.3.7 Aufbau des Rechenmaschinenprogrammes
für numerische Magnetfeldberechnungen

Das Rechenmaschinenprogramm besteht, wie Fig. 5 zeigt,

aus den folgenden Teilschritten:

a) Eingabe der geometrischen Abmessungen
des magnetischen Kreises, der absoluten oder
relativen Gitternetzeinteilung, der
Elementeigenschaften, der Abhängigkeiten l/g f(B2)
und M f(ß2), der Anfangs- oder Ausgangswerte

für die Vektorpotentiale A i, k-
b) Berechnung der Koeffizienten der

Systemgleichungen (Differenzen- bzw. Summengleichungen),

wenn während der iterativen Berechnung

der Vektorpotential- bzw. Induktionsverteilung

die Permeabilitäten gi,K und
Magnetisierungen Mj, k konstant gehalten werden.

c) Lösen der Systemgleichungen (37) für die
Vektorpotentiale durch Einzelschrittiteration,
Zeileniteration oder Elimination, wenn während
der Iteration gi,n und Mi,k nicht geändert
werden oder durch nichtlineare Einzelschritt-
(Newton) oder Zeileniteration bzw. Berechnung
der Verteilung der magnetischen Feldstärke mit
Hilfe der Summengleichungen (42)...(44) für
eine vorgegebene Stromdichte- und
Magnetisierungsverteilung.

Fig. 7
Leitwerte und Magnetfelder von Nutenleitern,

numerisch berechnet
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d) Korrektur der Teilgebietspermeabilitäten ß\, k und der
Magnetisierungen Mi, k wenn diese während des Lösens der
Differenzengleichungen bzw. während der Auswertung der Summengleichungen

konstant gehalten werden. /<i, k und Mi,k werden unter-
relaxiert weiterverwendet [1],

e) Ermittlung und Anwendung von Konvergenzbeschleunigungsfaktoren

[1],
f) Prüfung der Konvergenz. Die Teilschritte b...f bzw. c...f

werden so lange wiederholt, bis charakteristische Werte (Ergebnisse)
konvergieren.

g) Auswertung, z. B. Berechnung der Feldverlaufes, der Nutz-
und Streuflüsse, der Kräfte, der magnetischen Spannungen,
Feldstärken usw.

3. Anwendungsbeispiele

Fig. 6 veranschaulicht eine Anwendung des finiten
Elemente-Verfahrens auf die Berechnung des magnetischen Feldes
eines Motors mit Permanentmagneterregung. Die Figur zeigt,
wie ein Querschnitt durch den Motor in finite Elemente
eingeteilt wurde. Die geometrischen Formen von Rotor und
Stator sind so, dass zwei Arten von zweidimensionalen finiten
Elementen verwendet werden mussten. Das linke Feldbild zeigt
den Verlauf der magnetischen Feldlinien im stromlosen
Zustand des Rotors, verursacht durch die Permanentmagneten im
Stator. Das rechte Feldbild lässt die Veränderung des magnetischen

Feldes erkennen, wenn in der Rotorwicklung ein Strom
fliesst. Über die Auswertung der numerischen Ergebnisse der
Feldrechnung kann das Drehmoment des Motors berechnet
werden. Die Feldberechnung ist damit ein Mittel zur Analyse
und Optimierung des Motors geworden.

Fig. 7 zeigt Nut und Leiter einer elektrischen Maschine. Die
linke Bildhälfte zeigt die Änderung des Streuflusses in der Nut
in Abhängigkeit des Nutenstromes 0n. Mittels des finiten
Elemente-Verfahrens gelang es, den Einfluss der Sättigung des

Zahnkopfes auf den Verlauf des magnetischen Feldes zu
berechnen. In Fig. 7b erkennt man die Konzentration der
Feldlinien im ungesättigten Zahnkopf. Der höhere Nutenstrom in
der Fig. 7a führt zur Sättigung des Zahnkopfes und
abgeschwächter Feldkonzentration. Das Diagramm auf der linken

24,:

gerechnet

Fig. 8

Betatronmagnet, Induktionsverlauf in der Bahnebene

Seite zeigt die Abhängigkeit des magnetischen Leitwertes An
der Nut von der Erregung 0n/Ai. Das Diagramm auf der rechten

Bildhälfte zeigt die Abhängigkeit von An von der Permeabilität

ß des Nutenkeiles. Die Feldbilder 7a und 7b wurden für
gleichen Nutenstrom berechnet. Die kleine Permeabilität
(ß 1) des Keiles in Fig. 7b führt zu der unliebsamen
Erscheinung, dass das Streufeld der Nut stark in den Luftspalt
zwischen Stator und Rotor ausweicht. Mit einem Keil von
hoher Permeabilität {ß 30) verschwindet dieser Nachteil,
wie Fig. 7a zeigt.

In Fig. 8 wird ein Vergleich
zwischen gemessener und
gerechneter Induktion auf der
Bahnebene der Elektronen in
einem Betatron in Abhängigkeit

vom Abstand von der
Bahnachse gezeigt. Der
Sollkreisradius der Bahn ist

24,5 cm, alle Induktionen
sind auf die Induktion B-m,:,

des Sollkreises bezogen. Diese

Abhängigkeit wurde ermittelt,

um zu prüfen, ob die

Wideröesche Bedingung
erfüllt ist, nach der die Induktion

.024,5 die Hälfte der mittleren

Induktion innerhalb des

Sollkreises sein muss.

[cm]

Fig. 9
Betatronmagnet, Verlauf des Feld-

indexes n in der Bahnebene
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Fig. 9 zeigt den Verlauf des Feldindexes n, der sich aus dem
Verlauf des magnetischen Vektorpotentiales entlang eines

Durchmessers der Bahn berechnet. Die Elektronenbahn ist
stabil für n < 1 ; optimale Stabilität wurde theoretisch für n ca.
0,7 ermittelt. Die Figur zeigt, dass innerhalb des Bereiches

21,5...27,5 cm Radius stabile Bahnen zu erwarten sind.
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Kurzberichte — Nouvelles brèves

In der rechnergesteuerten Fabrikation stellt der Betriebsrechner
das Bindeglied dar zwischen dem Fertigungsleitrechner, der

plant, kontrolliert und Unterlagen erstellt, und dem Steuerungsrechner,

der die Werkzeugmaschinen, Prüfautomaten und die
Datenerfassung steuert. Wichtig ist der Dialog zwischen den Rechnern

und den Menschen. Wenn aus der Serienfertigung eines
Werkstückes zu viel Ausschuss anfällt, alarmiert der Betriebsrechner

die Arbeitsvorbereitung. Diese veranlasst Massnahmen
zur Verringerung des Ausschusses und erhöht entsprechend die
vom Betriebsrechner vorgegebene Stückzahl. Die Rechnerhierarchie

im Dialog mit dem Menschen kann flexibel und leistungsfähig

arbeiten sowie neue und zusätzliche Aufgaben lösen.

Das Hersh-Sauerstoffmessgerät besteht aus einer elektrochemischen

Zelle mit einer Kathode und einer Anode. Das zu
prüfende Gas durchströmt die Zelle, wobei der von der Zelle abgegebene

elektrische Strom ein Mass für den Sauerstoffgehalt des
Gases ist. Eine Hilfselektrode in der Zelle verbessert ihre Lebensdauer,

den Messbereich und die Stabilität der Messanordnung. Es
wurde eine Reihe von Instrumenten für verschiedene Anwendungen

entwickelt.

Untersynchrone Stromrichterkaskaden mit Thyristoren ermöglichen

eine verlustarme, stufenlose Regelung der Drehzahl von
Motoren. Durchflussmengen, Drücke, Wasserstände,
Fördereinrichtungen von Trinkwasser und Abwasser, Belüftungen von Ab-
wasserbecken, Gebläse für die Tunnelbelüftung, lassen sich stufenlos,

den momentanen Erfordernissen angepasst regeln.

Ein Computer-Index über neutronenphysikalische Daten wurde
gemeinsam von vier wissenschaftlichen Zentren, der Europäischen
Kernenergie-Agentur, der Internationalen Atomenergie-Organisation

sowie Zentren der UdSSR und der USA, herausgegeben. Der
Index enthält ungefähr 70000 bibliographische Auszüge aus mehr
als 240 wissenschaftlichen Zeitschriften, 180 Schriftenreihen, 110

Büchern und Tagungsberichten und privaten Mitteilungen. Es

handelt sich um die 5. Ausgabe der Bibliographie über
neutronenphysikalische Daten.

Das Internationale Kerndaten-Komitee ist in allen auf Kerndaten

bezüglichen Fragen das beratende Organ der Internationalen

Atomenergie-Organisation. Das Komitee hält sich ständig
über die Kerndatenprogramme, die im Bereich der friedlichen
Anwendung der Kerntechnik durchgeführt werden, auf dem
laufenden. Es sammelt auch Unterlagen für Messungen an Kernreaktoren,

bei thermonuklearen Fusionen und zur Spaltflusskontrolle.
Das Komitee berät insbesondere Entwicklungsländer mit
Programmen für Messungen in der angewandten Physik im
allgemeinen und in der Kerntechnik im besonderen.

Ein Minirecorder aus den USA kann wechselweise Spannungen

und Ströme registrieren. Alle 5 s erfolgt eine Messung, deren
Resultat automatisch registriert wird. Das Gerät eignet sich sehr

gut für routinemässige Inspektionsarbeiten und die Fehlersuche.
Alle Messwerte werden fortlaufend auf dem Registrierstreifen
festgehalten. Die Aufzeichnung der Messwerte erfolgt nicht mit
Tinte, sondern durch Druck auf dem druckempfindlichen
Registrierpapier.

Eine Versuchsstrecke für Eisenbahnbetrieb wird in den USA
mit einer Spannung bis zu 50 kV (Gleich- oder Wechselspannung)
in Betrieb genommen. Die Versuchsstrecke ist ca. 6 km lang.
Sie soll für die Erprobung von Lokomotiven und Triebwagen
sowie für Versuche mit verschiedenen Fahrleitungssystemen für
hohe Spannungen dienen.

Fünfzehn Millionen Biegebeanspruchungen wurde ein
neunadriges Flachkabel unterzogen, ohne Schaden zu leiden. Die
Beanspruchung erstreckte sich über einen Zeitraum von drei Jahren

im Zwei- und Dreischichtenbetrieb in einer Überwachungseinrichtung

zu einer Kettenwirkmaschine. Die lange Lebensdauer
des Kabels war auf die gewählte Isolation mit einem Fluorkunststoff

zurückzuführen. Kabel mit anderem Isoliermaterial musste
man nach einjähriger Betriebsdauer ersetzen.

Ein Überwachungs- und Warngerät in England wurde für
Fabrikationsprozesse und für die Kontrolle von unbeaufsichtigten
Maschinenräumen entwickelt. Das Gerät wird nach Bedarf aus
Modulen zusammengesetzt, von denen jeder 5 Messpunkte oder
Messgrössen überwachen kann. Die Grösse des kontrollierten
Messwertes sowie die Grenzen des zulässigen Messwertes sind
einstellbar. Bei Uber- oder Unterschreiten der zulässigen Grenzwerte

leuchtet ein Warnsignal auf. Zusätzliche Warnstromkreise
können optische oder akustische Warneinrichtungen betätigen;
sie lassen sich auch für Regelzwecke einsetzen.

Zu einer Reihe neuer Peripheriegeräte für Digitalrechner
gehört ein elektrostatischer Zeilendrucker; dieser weist hohe
Zuverlässigkeit auf, ist geräuscharm und preiswert. Seine
Druckgeschwindigkeit beträgt 120 Zeilen/s. In jeder Zeile ist Platz für
80 Zeichen vorgesehen.

Fur Feldstärkemessungen von Stör- und Nutzsignalen wurde
ein tragbares Messgerät entwickelt. Der Frequenzbereich ist ohne
Umschaltung von 25...300 MHz einstellbar. Weitere Vorteile des
Gerätes sind seine logarithmischen und linearen Messbereiche, die
Möglichkeit, stark schwankende Signale schnell zu erfassen, die
am Gerät befestigte, abstimmbare Messantenne sowie die
Möglichkeit, das Gerät als Mikrovoltmeter einzusetzen.
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