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Das Finite-Elemente-Verfahren, angewandt auf die Analyse magnetischer Kreise

Vortrag, gehalten an der Diskussionsversammlung des SEV vom 22. Juni 1971 in Ziirich,
von K. Reichert und W. Vogt, Baden

1. Das Finite-Elemente-Verfahren
1.1 Allgemeines

Mit dem Verfahren der Finiten-Elemente konnen Tempera-
turfelder, elektrische oder magnetische Felder, mechanische
Spannungsfelder usw. numerisch, d. h. mittels programmier-
barer Rechenanlage, ermittelt werden.

Das Verfahren besteht aus den folgenden Schritten (Fig. 1):

a) Einteilung des Raumes, als Triger des Feldes, in finite Ele-
mente (Dreieck, Rechteck usw. [Fig. 2]).

b) Zuordnung der Feldgrossen zu den finiten Elementen. Im all-
gemeinen dndern sich die Eigenschaftswerte in einem Element nicht;
den Eckpunkten der finiten Elemente werden diskrete Systemgrossen-

Formulierung der Aufgabe:
Festlequng der Systemgrossen,

der Grundgleichungen,der An-
ordnung , der Naherungen, des
Losungsverfahrens, der Auswertung

Diskretisierung .
Auswahl der finiten Elemente ,
Umformung der Grundgleichungen

|

Diskretisierung der Anordnung:
Aufteilung der Anordnung in finite
Elemente, Aufstellung der
Systemgleichungen

Berechnung der Systemgrdssen:
Losung der Systemgleichungen
unter Beriicksichtigung aller
Beziehungen

Auswertung:
Priifung der Genauigkeit,
Berechnung von Sekunddrgrossen

Fig. 1
Das Verfahren der Finiten Elemente
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werte zugeordnet. Innerhalb eines Elementes wird der Verlauf der
Systemgrossen approximiert.

c) Herleitung von Beziehungen zwischen den Systemgrossen
eines Elementes und benachbarter Elemente auf Grund der Feld-
gleichungen mit Hilfe von Taylorreihenentwicklung, Variations-
methoden und Integralapproximationen.

d) Losung und Auswertung der Systemgleichungen.

Das Finite-Elemente-Verfahren liefert eine angeniherte
Losung fiir ein Feldproblem. Die Genauigkeit der Losung
hédngt ab:

a) von der Anordnung der finiten Elemente;

b) von der Approximation der Systemgrossen.

Das Verfahren erfordert einen gewissen Einblick in das zu
l6sende Problem, und das Verhéltnis Aufwand zu Erfolg hingt
nicht zuletzt von der Geschicklichkeit des Anwenders ab. Im
folgenden wird zunéchst iiber einige Besonderheiten des Ver-
fahrens berichtet. Es wird dann gezeigt, wie es zur Analyse
magnetischer Kreise verwendet werden kann.

1.2 Uber die Verteilung der finiten Elemente
(Gitternetzeinteilung)

Die finiten Elemente sind im Feldraum bzw. in der Feld-
fliche so anzuordnen, dass:

a) die Umrisse von Teilgebieten moglichst gut nachgebildet
werden;

b) der Diskretisierungsfehler F, d.h. der Unterschied
zwischen der exakten Losung und der Losung der Systemglei-
chungen eine bestimmte raumliche Verteilung hat;

¢) die Zahl der Elemente nicht zu gross wird.

Die Erfiillung dieser Forderungen ist problematisch, da der
Diskretisierungsfehler von der Verteilung der finiten Elemente
und vom Feldverlauf abhéngig ist und dementsprechend bei
der Anordnung der finiten Elemente noch nicht bekannt ist.

Es hat sich als zweckméssig erwiesen, in Bereichen inhomo-
gener Feldverhiltnisse die Elemente sehr dicht anzuordnen,
aus dem Ergebnis einer ersten Berechnung den Diskretisie-
rungsfehler abzuschéitzen und dann schrittweise die Anordnung
der Elemente abzuidndern. Dieser Vorgang ldsst sich auch in
das Feldberechnungsprogramm aufnehmen (automatische
Generierung des Gitternetzes).

1.3 Uber die Herleitung der Systemgleichungen

Das System der Feldgleichungen, Rand- und Nebenbe-
dingungen legt die Beziehungen zwischen den diskretisierten
Systemgrossen nicht eindeutig fest, da das kontinuierliche Feld
unendlich viele, das diskretisierte Feld dagegen nur endlich
viele Freiheitsgrade hat. In jedem Fall sind Beziechungen anzu-
streben, die im Grenzfall beliebig kleiner Elemente auf eine
Losung fiihren, die gegen die korrekte Losung des Feldpro-
blems konvergiert.

Drei Verfahren zur Transformation der Feldgleichungen in
Systemgleichungen sind bis jetzt bekannt:

Bull. ASE 62(1971)22, 30 octobre



Fig. 2
Finite Elemente
a zweidimensional, geometrisch; b dreidimensional,
geometrisch; ¢ physikalische Finite Elemente

Das Verfahren, die in den Feldgleichun-
gen auftretenden Differentialquotienten mit
Hilfe von Taylorreihenentwicklungen zu
berechnen [1; 6]1), ist im allgemeinsten Fall
(finite Elemente mit unterschiedlichen Eigen-
schaftswerten) sehr uniibersichtlich.

Bei der Variationsmethode [2; 6] werden
die Ansétze fiir die Teilfelder in den finiten
Elementen zur Bildung eines Funktionals
verwendet. Das Volumintegral dieses Funk-
tionals wird zu einem Minimum gemacht.
Da dabei auch die Randbedingungen eingeschlossen werden
konnen, ist dieses Verfahren sehr allgemein. Es setzt allerdings
die Kenntnis des zu einer Feldgleichung gehoérenden Funk-
tionals voraus.

Bei der Integralmethode werden Integralformen der Feld-
gleichungen approximiert [1; 6]. Dieses Verfahren ist sehr
tibersichtlich, fiihrt jedoch zu uniibersichtlichen Transforma-
tionsprozessen, wenn die Anordnung sehr unregelméissige
Elemente enthalt.

1.4 Uber die Systemgleichungen und deren Losung

Taylorreihenentwicklung, Variationsmethode und Integral-
methode fiihren unter Berticksichtigung von Rand- und Neben-
bedingungen auf ein Gleichungssystem:

DU=R @)

wenn man mit D die Koeffizientenmatrix des Gleichungs-
systems, mit U den Vektor der unbekannten Systemgrossen
und mit R den Vektor der bekannten Einflussgrossen (inhomo-
gene Glieder der Feldgleichungen, Rand- und Nebenbedin-
gungen) bezeichnet.

Fiir die Losung der Systemgleichungen (1) werden je nach
der Form verschiedene Methoden verwendet:

Ist das System positiv-definit, symmetrisch und linear, so
sind iterative Verfahren (Einzelschritt- oder Blockiteration
nach Gauss-Seidel, Zeileniteration) mit Uberrelaxation vorteil-
haft.

Nichtlineare Systemgleichungen konnen mit modifizierten
Newtonschen Verfahren [4] und mit dem Zweischrittverfahren
[8] gelost werden. Neben den iterativen Verfahren werden auch
direkte Verfahren (Gauflsche Elimination, Elimination mit
Partitionierung, Hypermatrix) fir die Losung der System-
gleichungen verwendet.

Ein Losungsverfahren ist im allgemeinen jedoch nur dann
brauchbar, wenn es zu konvergenten, stabilen und genauen
Losungen fiihrt und mit einer Rechenanlage bearbeitbar ist.

1.4 Die Auswertung

Mit Hilfe der Systemgleichungen (1) kann eine diskrete,
riaumliche und zeitliche Verteilung der Systemgrossen ermittelt
werden. Damit ist man in der Lage, einerseits besonders

1) Siehe Literatur am Schluss des Aufsatzes.
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interessierende Eigenschaften des Feldes berechnen zu konnen
und anderseits ein Modell der Anordnung erstellen zu konnen.

Die Auswertung der Losung verlangt besondere Aufmerk-
samkeit, wenn lokale oder intensive Feldgrossen wie Feld-
starken, Stromdichten interessieren. Fiir die Ermittlung dieser
Grossen sind daher Interpolationsverfahren anzuwenden,
deren Stiitzstellen die diskrete Verteilung der Systemgrossen
bilden.

1.5 Uber die Modellbildung mit Hilfe des Verfahrens
der finiten Elemente

Die Modellbildung erméglicht es, den Einfluss eines Feldes
auf ein libergeordnetes System zu erfassen. Dabei konnen die
Komponenten des iibergeordneten Systems ebenfalls finite
Elemente sein. Das Modell bzw. das entsprechende finite Ele-
ment ist so zu ermitteln, dass es das fiir das tibergeordnete
System wesentliche Verhalten zeigt.

Es gibt grundsitzlich zwei Moglichkeiten der Modellbil-
dung: Die Systemreduktion und die Systemtransformation.

Bei der Systemreduktion werden unwesentliche System-
grossen aus der Systemgleichung (1) eliminiert. Man erhilt so
die reduzierten Systemgleichungen

D* U* = R* Q)

(Beispiel : Ermittlung eines Wirmequellennetzes aus einer
Temperaturfeldberechnung.)

Bei der Systemtransformation wird der Zusammenhang
A= T E zwischen einer Eingangsgrosse E und einer Aus-
gangsgrosse A ermittelt. Dabei hingt E nur von der rechten
Seite R der Gleichung (1) und A nur von den Systemgrossen
U ab:

R=CE 3)

A=CU )

C1und C: sind im allgemeinen rechteckige Transformations-
matrizen.

Wegen GI. (3) und (4) folgt aus GI. (1):

A:C‘zD‘lclE (5)

Daraus folgt
T=C:D1(Cy 6)
(A779) 1075



die gesuchte Koppelmatrix 7 des Modells. Z. B. beschreibt die
Induktivitatsmatrix L (£ T) den Zusammenhang zwischen
den Strémen i (£ E) und den Fliissen @ (£ A).

Selbstverstindlich sind diese Verfahren nur auf lineare oder
linearisierbare Systeme anwendbar.

Mit Hilfe des Ahnlichkeitsprinzips konnen die so gewonne-
nen Modelle auch auf physikalisch dhnliche Felder iibertragen
werden. Physikalische Ahnlichkeit zweier Felder setzt geo-
metrische Ahnlichkeit voraus und besteht dann, wenn jeder
Feldgrosse (Systemgrosse, Eigenschaftswert) ein Malstab-
faktor zugeordnet werden kann, der dem Verhaltnis der zuge-
ordneten Feldgrosse an geometrisch dhnlich gelegenen Punkten
entspricht.

Bei linearen Feldern kann die Kopplungsmatrix 7" aus der
Matrix Tm des Modelles des Feldes iiber die Gleichung

Twk=T @)

berechnet werden (Index M bezieht sich auf das Modell).
Die Konstante k ist eine Funktion der Mafstabfaktoren kg

und ka, definiert durch:
EkE = EM A kA = AM (8)

Fiir das Modell gilt die Ubertragungsgleichung:

Ay = Tu En ©)
Fiir die Kopplungsmatrix 7" folgt aus
AkA:TI\{EkE (10)
die Gleichung
A= KB 1 Enebst T=XET )
ka ka

Die Malflstabfaktoren sind im allgemeinen voneinander
abhéangig [5].

Bei nichtlinearen Feldern ist der Zusammenhang A (E)
vom Zustand des Feldes abhidngig. Jedem Zustand kann
eindeutig eine Serie von Kennzahlen (Reynoldsche Zah-
len, Prantlsche Zahlen usw.) zugeordnet werden. Uber eine
grosse Anzahl Feldberechnungen von Modellfeldern wird der
Zusammenhang 4 v (Ew) in Funktion der Kennzahlen berech-
net und tabelliert. Die Kennzahlen gewihrleisten, dass zwei
Felder dann physikalisch dhnlich sind, wenn sie in allen Kenn-
zahlen tibereinstimmen. Besteht diese Ubereinstimmung zwi-
schen dem Feld des Modelles und dem Feld im iibergeordneten
System, so kann der Zusammenhang Ay (Ew) auf Grund der
Kennzahlen der Tabelle entnommen werden. Fiir E und 4 des
Elementes gelten die Beziehungen:

Eky=Ey Aka=Ax (12)
2. Die Analyse magnetischer Kreise mit dem
Finite-Elemente-Verfahren

2.1 Die Aufgabenstellung

Magnetische Kreise, d. h. Anordnungen mit stromdurch-
flossenen (Wicklungen), weichmagnetischen (Eisenteile, Anker,
Joche), permanentmagnetischen und unmagnetischen Teilge-
bieten, sind Bestandteile elektrischer Maschinen und Apparate.
Sie haben die Aufgabe, magnetische Flisse zu fithren.

Die Auslegung eines magnetischen Kreises ist eine Opti-
mierungsaufgabe:

Mit moglichst kleinem Aufwand sollen die gestellten An-
forderungen erfiillt werden. Diese Aufgabe kann jedoch meist
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nur indirekt, iterativ iber Entwurf und Analyse gelost werden.
Sie ist daher eine typische Aufgabe fiir Computer-aided-
design.

Bei der Analyse magnetischer Kreise sind das magnetische
Feld, d. h. der Verlauf der Induktion B und die magnetische
Feldstirke H sowie die Sekundirgrossen, wie Krifte, Fliisse,
Induktivitdten usw., zu ermitteln.

Im folgenden soll beschrieben werden, wie die Analyse
magnetischer Kreise mit dem Verfahren der finiten Elemente
durchgefiihrt wird.

2.2 Die Grundgleichungen
Das stationdre Magnetfeld einer Anordnung mit Luft-,
Eisen-, permanentmagnetischen und stromdurchflossenen Teil-
gebieten wird von den Gleichungen

rotH=S (13)

divB=0 (14)

divS =0 (15)
und der materialabhidngigen Vektorbeziehung

B=BH) (16)

beschrieben. Dabei ist H die magnetische Feldstirke, B die
Induktion und S die Stromdichte. Die Beziehung (16) ist in der
Regel nicht exakt bekannt. Die Néiherungen

d B =, (B)-H+ Mg (17)
un
) B = puo-H+ MH) (18)
mit
M = uox H (19)

haben sich als niitzlich erwiesen. Im Abschnitt 2.2.3 wird ndher
auf diese Naherungen eingegangen.
Es bedeuten:

Mgy Remanenzmagnetisierung

M  Magnetisierung

o  Permeabilitiat des leeren Raumes

u(B) Permeabilitit (abhidngig vom Betrag der Induktion)

x Suszeptibilitit

Die Bezichung (17) ist geeignet fiir:

a) Luft: g = uo, Mg = 0,

b) weichmagnetische Werkstoffe (unter Vernachldssigung der
Hysteresis): u > ug; Mg = 0,

¢) Dauermagnetwerkstoffe: u, Mg == 0

Mittels Gl. (18) und (19) kann die von der Stromdichte S
und der Magnetisierung M des Volumenelementes d V in einem
Punkt P hervorgerufene Feldstirke H} bzw. das entsprechende
Vektorpotential A, mit den Integralen der Grundgleichungen
berechnet werden, wenn r von Punkt P zum Volumenelement
dV weist:

1 Sxr 3M-nr M
H, T 4 ( r3 uorsii_mg)dl/ (20)
V—» o
o 1 ﬂos Mxr
Ay = 4n (f _T) e @1)

V— o
Die GI. (20) und (21) gelten fiir Luft und alle magnetischen
Werkstoffe.

2.3 Das Berechnungsverfahren
2.3.1 Allgemeines

Numerische Verfahren zur Losung der Gleichungen (13)...
(16) lassen sich in die folgenden Abschnitte unterteilen:

Bull. ASE 62(1971)22, 30 octobre



a) Wahl geeigneter Ausgangsgleichungen;

b) Approximation der Abhingigkeiten 1/u = f(B) und M =
£(B);

¢) Wahl geeigneter finiter Elemente, Festlegung der Teilgebiets-
eigenschaften;

d) Aufstellung der Systemgleichungen (Differentialgleichungs-
system oder Summengleichung) fiir das Gitternetz und fiir den Rand;

e) Iterative Berechnung der Induktionsverteilung durch Losen
der Systemgleichungen unter Beriicksichtigung der Abhéngigkeiten
1/ju = f(B) und M = f(B);

f) Auswertung der Ergebnisse.

2.3.2 Wahl der Ausgangsgleichungen

Bei zweidimensionalen Feldverhiltnissen ist die Abhingig-
keit des Feldes von nur zwei Ortskoordinaten zu berechnen.
Die Abhingigkeit von der dritten riumlichen Koordinate wird
als bekannt vorausgesetzt. In der Regel definieren diese beiden
Ortskoordinaten eine Schnittebene. Sie wird im kartesischen
Koordinatensystem z. B. durch die x- und y-Koordinate, im
Zylinderkoordinatensystem durch die r- und z-Koordinate
oder durch die r- und ¢p-Koordinate vermessen.

Steht S senkrecht auf der Schnittebene und/oder liegt Mr
in der Schnittebene, so ist die Verwendung des Vektorpoten-
tials A zweckmdssig

B=rotA,divAd=0 (22)
Wegen div rot A = 0 ist Gl. (14) erfiillt.
Mit 4 wird aus Gl. (13) und (17):
rot % rot A = S +rot —Mf- (23)

Diese Ausgangsgleichung hat den Vorteil, dass sie sich oft
auf eine skalare Gleichung fiir die zur Schnittebene senkrecht
stehende Komponente von A reduziert, weil die beiden anderen
Komponenten von A4 gleich Null gesetzt werden diirfen.

Liegt S in der Schnittebene und/oder steht My senkrecht
auf dieser Ebene und ist fiir H nur die zur Ebene senkrecht
stehende Komponente Hs von Null verschieden, so ist Hs die
geeignete Unbekannte. Fiir sie gilt

b
Hyy, —Hsy = [(kx S)-dl (24)
a
B=uH+{+ Mg (25)
k  Einheitsvektor, senkrecht zur Schnittebene
a, b Endpunkte des Linienintegrals
dl Linienelement
Zum Beweis beniitzt man GI. (13) in der Form:
d
B Scost (n, S (26)

n Normale (zum Integrationsweg) in der Schnittebene.
Es folgt

dHs=dl - Scos(<(n,S) = (k x S)-dl
Wegen Gl. (15) ist
rot(k x S)=0

27N

(28)

und das Linienintegral von GIl. (27) ist vom Integrationsweg
unabhingig.

Sind die Feldverhiltnisse dreidimensional, kann das Feld
mit Hilfe von Gl. (20)...(21) oder (23) berechnet werden. Eine
weitere Berechnungsmethode [9] setzt voraus, dass eine Losung
der Gleichung

S=rotU

fiir das Hilfspotential U bekannt ist.

(29)
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Wegen GIl. (13) und (17) folgt

rot B :ﬂ% =rotU= S 30)
und daraus
B%% —U=grad W 31)
Wegen Gl. (14) lautet die Ausgangsgleichung fiir 1
div g grad W= — div(u U + MRg) (32)
Wegen Gl. (31) berechnet sich B zu:
B = pu(grad W+ U) + Mg (33)

Hat die Anordnung nur Strombeldge, so kann ein Skalar-
potential w definiert durch

H=—grady (34)

angewendet werden. Wegen GI1. (14) und (17) lautet die Aus-
gangsgleichung fiir w:

div g grad y = div Mp (35)

2.3.3 Die Approximation der materialabhingigen
Beziechung B (H)

Die Materialien magnetischer Kreise zeigen sehr unter-
schiedliches Verhalten im magnetischen Feld. Die Abhingig-
keit B (H) dient als Mittel zur Klassifizierung dieser Materia-
lien. Im wesentlichen wird unterschieden zwischen unmagne-
tischen (u ~ wo), weichmagnetischen und permanentmagneti-
schen Materialien, die zudem strukturell isotrop oder anisotrop
(z. B. kornorientierte Bleche) sein konnen.

Fiir technisch wichtige Materialien ist die B (H) Abhingig-
keit fast nur experimentell erfassbar und in der Regel unvoll-
standig bekannt. Fiir Feldberechnungen sucht man deshalb
nach Modellen, welche im Rahmen der geforderten Genauig-
keit

a) die B(H)-Abhingigkeit gentigend genau wiedergeben,
b) die B(H )-Beziehung in einer fiir Berechnungen geeigneten Form
angeben.

Im folgenden seien einige Modelle behandelt.

a) Mit Hilfe der Kommutierungskurve [9] wird fir weichmagne-
tisches, isotropes Material (z. B. Statorbleche) u(B2) nach Gl. (17)
oder M(B2) nach Gl. (18) ermittelt. Beide Abhingigkeiten lassen sich
durch skalare Funktionen, z. B. abschnittsweise durch Geraden oder
Polynome, durch rationale gebrochene Funktionen, durch Kreis-
bogen oder Hyperbeln anndhern («curve fitting»).

b) Bei Oxydmagneten ist Mg durch den Magnetisierungsvorgang
eingeprigt und im Betriebsbereich praktisch induktionsunabhingig.
Fiir diese Materialien ist Gl. (17) geeignet, wobei x(B?) mit Hilfe der
Magnetisierungskurve berechnet werden kann. Dieses Vorgehen
geht von der Annahme aus, dass x4 nicht vom Winkel zwischen B
und My abhingt.

¢) Bei Dauermagnetwerkstoffen, wie AINiCo, hingt der Zustand
der Magnetisierung stark von der Vorgeschichte (Einbau, Um-
magnetisierung) ab. Unter diesen Umstédnden ist es zweckmdssig, mit
Hilfe einer inneren Magnetisierungsschlaufe Mg und #(B2) nach
Gl. (17) zu ermitteln, wenn das magnetische Feld fiir verdnderliche
geometrische Abmessungen (z. B. verdnderliche Ankerstellung) zu
berechnen ist.

d) Fiir kornorientierte Bleche lassen sich Kommutierungskurven
B(H), abhingig vom Winkel o zwischen H und der Vorzugsrichtung
des Bleches, messen. Entsprechend GlI. (17) (mit Mg = O) kann also
w(B2, o) ermiteltt werden. Diese Abhingigkeit kann durch eine
Kurvenschar mit « als Parameter dargestellt werden.

2.3.4 Anordnung der finiten Elemente (Gitternetzeinteilung)

Die Gl. (23) kann fiir die von Null verschiedene Kompo-
nente 4 von A numerisch mit dem Verfahren der finiten Ele-
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mente gelost werden. Dieses legt den Zusammenhang zwischen
dem Vektorpotential Ar, k eines Punktes I, K der Anordnung
und den Vektorpotentialen Ari1, x, Ar, k+1 usw. der Punkte der
Umgebung fest. Diese Punkte miissen daher zunichst definiert,
d. h. die Anordnung muss mit finiten Elementen iiberzogen
werden. Dabei kdnnen rechteckige, kreisformige oder drei-
eckige Elemente verwendet werden. Dasselbe gilt fiir eine
numerische Auswertung der GI. (20) oder (21).

Die Fig. 3 und 4 zeigen ebene und raumliche Rechteckgitter-
elemente und die Zuordnung der Figenschaftswerte. Dabei
sollen sich die Eigenschaftswerte innerhalb eines Gitterteilge-
bietes g1,k nicht, die Vektorpotentiale ldngs der Gitterlinien
linear dndern.

2.3.5 Systemgleichungen (Differenzengleichung) fuir die
Berechnung der Vektorpotentialverteilung in
zweidimensionalen Anordnungen

Bei der Ableitung geht man zweckmaissigerweise von einer
Integralform der GL. (23) aus:

M -ds

é;trotA-ds:fS-df%— =

u (36)

Beriicksichtigt man dabei nur die Vektorpotentiale der vier
Punkte I — 1, K; I+ 1, K; I, K — 1 und 7, K+ 1, die in Fig. 2
den Punkt I, K unmittelbar umgeben, so erhidlt man [1] fol-
gende Niherungsbeziehung fiir Gl. (23):

Ar ki i
Mk Mg
Y| Spx TS i T Stk |1
ALk i Ak f// A1k
' .
a, Srik-1 L ______ 1 1Skt |2
Y M-tk A B
LK~
P-4 ———L—Apr __,])—
X
Fig.3

Ebenes Rechteckgitter
1 Integrationsweg; 2 Flachenelement df

Die Vektorpotentiale der Randpunkte miissen jedoch ent-
sprechend den Rand- und Symmetriebedingungen definiert
werden:

Ist der Rand eine Feld- oder Symmetrielinie, so ist auf die-
sem das Vektorpotential gleich Null. Steht das Magnetfeld auf
dem Rand senkrecht (Symmetrielinie), so muss das Vektor-
potential am Rand gespiegelt werden.

Aus der mit Hilfe von GI. (37) und (38) ermittelten Vektor-

potentialverteilung kann nach Gl. (22) die Induktionsverteilung
berechnet werden: Es ist

O1,x A1, x+1 + Ur,k Ar,x-1 + R, x Ar+1,x + L1, x A1-1,x + D1, x

(37

AL x =

Dabei sind: K1, x = O1,x + Un,x + Ri,x + L1, x

1 P Pr_
OI,K:’Z"( L 411_)
gx \ U, K Hi-1,K
Rix— L (JL ,&-_)
Ty 2P1 \ u1,x M1, K1
Ur,x = Or1, k-1
Ly, x = Ri-1,K

Dy x = (SI, K gx Pr -+ S1-1,%x Pr-1 qx + S1,x-1 Prgx-1 +

1
4
+ S1-1 Pr1 qK—l) +

Myi-1,x
H1,-1,K

1 Myr,x ) i
+ 2 [( UI, K G 3

Myt k-1 Myr-1,x-1 Mxi1, k-1
+ — gr-1 +|——— —
M1, K—1 Hi-1, K—1 MT, K—1

o MXI,K) Py

HUI, K

T ( Mx1-1,K-1

Mxi-1,%
_ AMXI-1, K ) Plfl:l (38)
HI-1, K1

HI-1,K

wenn ein zweidimensionales Rechteckgitternetz (Fig. 1) vor-
liegt.

Gl. (37) ist im allgemeinen Fall eine nichtlineare Beziehung,
da die Teilgebietseigenschaften ur, x, M1, %, #i-1,x, M1-1,x%,...
von den Teilgebietsinduktionen Br, k, Bi-1,k,... und damit
nach Gl. (22) auch von den Vektorpotentialen A, x, Ar+1, ...
abhidngen. Da die Teilgebietseigenschaften nur die Koeffizien-
ten der Gl. (38) beeinflussen, kann mit Hilfe von Gl. (37) fiir
jeden Punkt innerhalb des Gitters eine Differenzengleichung
aufgestellt werden.
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Ki.x

B =1 A1, k1 + At Kzl — Ar,x — A1, x T
qx
39

. A1+ + 1, K — Ar+1, K — A1+1, K

+J 2p1

wenn ein Rechteckgitternetz vorliegt.
2.3.6 Summengleichungen fiir die Berechnung der Feldstirke-
und Induktionsverteilung in dreidimensionalen Anordnungen

Bei der Umwandlung der Integrale (20) oder (21) in Sum-
mengleichungen ist insbesondere dann, wenn das Volumen-

Fig. 4
Riumliches Gitternetz
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EINGABE : Abmessungen des magnetischen Kreises, Lage und Eigenschaften strom =
durchflossener , weichmagnetischer und permanentmagnetischer Teilgeblete.

Naherungsgleichungen -fur ¥/ ur = f(B) und M = f (B). Relative Gitter ~
einteilung. Anzahl der [lterationen Y .

Berechnung : Laufzahlenkoordinaten der Gitteranordnung, Gitterweiten. Erforderliche

Speicherplatzkapazitat.
Korrektur der
Gittereinteilung

Einspeicherung : Gitterweiten , Gitterkoordinaten , Stomdichte-, Permeabilitats - , Magnetisierungs -,
‘Vektorpotentialwerte.
|

/AUSGABE: Eingabedaten , Gitternetzteilung /

Speicherplatzkapazitat
ausreichend ?

N:=R:=0

@I Berechnung : Koeffizienten der Differenzengleichungen fir A [I,K]

N:=N+1
@[Berechnung : Einmalige Iteration der Vektorpotentiale in. wechselnden Richtungen |
N <2 - —

@ Berechnung : Teilgebietspermeabilitaten und Magnetisierungen,unlerréluxicrt. Res. Durch-
flutung ©peg , Konvergenzbeschleunigungsfaktor C. Luftspaltinduktion B, .

(R:=R+N;N:=0)

[AUSGABE : R, C, Zeit, Luftspalitinduktion Bo. /

=t}

{c*=1¥ic-1n) (c®=c )
L |

1
@ rKonvergenzbesichleunigung mit C®*:A[1,k]:=C*A[l,K] )

@I Auswertung 1 Induktion - und Krafteverteilung,Flisse, Leitwerte, Feldlinien u.s.w. —I

|
[A USGABE : Ergebnisse 7

Fig. 5
Rechenmaschinenprogramm fiir numerische M tfeldberech
element dV in der Nihe des Punktes P liegt, in welchem die St,x,L=1S<+jSy+ kS,
Feldstidrke Hp berechnet werden soll, darauf zu achten, dass M, %, =i My +jMy+ kM, (40)

diese moglichst gut angenihert werden. Dies wird dadurch er-
reicht, dass das Volumenelement g1, x,1. (Fig. 4) je nach der
Grosse des Abstandes r in #3 Unterelemente unterteilt wird und [ 1 [ 1 1

. . . > r X = r K % + ’ u DY U 2"
dass bei der Umwandlung Interpolationsregeln, wie z. B. die LK.L nEL+ o [Prle+3) T 9@+ D+
dreidimensionale Simpsonregel, angewandt werden.

wobei

1
Setzt man: + sulw+ 7)] —Tr
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Fig. 6
Gleichstrommotor mit Per-
t terr Git-
ternetz, numerisch berech-
netes Magnetfeld im Leer-
lauf und bei Belastung

ist — der Vektor ry} geht vom Punkt P zu dem mit den
Laufzahlen u, v, w gekennzeichneten Unterlement des Volu-
menelementes g1, x, 1. —, S0 kann man z. B. fiir die x-Kompo-

von GIl. (20) folgende

Iu,V,W

u,v,w
nente I3;'y'; des Integranten Iyy’y

Gleichung angeben:

u,v,w u,v,w

quvw _ SYT T = San ™

xLK,L u,v,w)3
( LK,L
41)
(M r™ + My ry™ + My ™) riv™ M
u,v,w)9 - wv,w\3
so (r I,K,L) wo (r LKL

Mit Hilfe der dreidimensionalen Simpsonregel erhédlt man
dann den vom Teilgebiet g1, , 1. verursachten Beitrag AHpx; 4 ..

der x-Komponente von AHpI_KL zur magnetischen Feld-
stirke Hy:

20 5

n—1 n—2
1
AHpxj, i 1= 4 % (Ao + An + 42/‘111 + 22 Au)

u=1,3... u=2.4...
(42)
n—1 n—2
Am = Bo,m + Buam + 4 Bum + 2 Bum (43)
=13 u=24..
n—I1 n—2
__ go. ,m n, ,m u, ,m u, ,m
Bym = I"I,K,L + ]XI,K,L +4 Z IXI,K,L +2 Z IXI,K,L (44)
u=1,3.. u=24..

Gleichungen fiir die Beitrige AHpy; i { und AHpz; i o

oder fiir das Integral Gl. (21) konnen in entsprechender Weise
abgeleitet werden.

Insgesamt hat die Feldstirke Hp dann die Grosse:

HD: Yy X HDI,K,L

I KL (45)

Selbstverstindlich konnen bei der Umwandlnug der Inte-
grale in Gl. (20) oder (21) auch Zylinder-, Kugel- oder allge-
meine Koordinatensysteme zugrunde gelegt werden. -

Mit Hilfe der Summengleichung (45) kann man fiir jeden
Punkt der Anordnung die Feldstirke Hy, und mit Gl. (16) auch
die Induktion By berechnen, die von einer vorgebenen Strom-
dichte- und Magnetisierungsverteilung hervorgerufen wird.
Liegt der Punkt P innerhalb eines stromdurchflossenen oder
magnetischen Teilgebietes, so muss, so lang der Abstand
r = 0 ist, der Beitrag des Volumenelementes dV, in dem der
Punkt P liegt, bei der Berechnung von H, unberiicksichtigt
bleiben.

In P tritt dann die Induktion

By = po Hy + M, (46)

auf.
2.3.7 Aufbau des Rechenmaschinenprogrammes

fiir numerische Magnetfeldberechnungen

Das Rechenmaschinenprogramm besteht, wie Fig. 5 zeigt,
aus den folgenden Teilschritten:

a) Eingabe der geometrischen Abmessungen
des magnetischen Kreises, der absoluten oder

relativen Gitternetzeinteilung, der Element-
eigenschaften, der Abhingigkeiten 1/u = f(B2)
und M = f(B?), der Anfangs- oder Ausgangs-
werte fiir die Vektorpotentiale A1, k.

b) Berechnung der Koeffizienten der System-

gleichungen (Differenzen- bzw. Summenglei-
chungen), wenn wihrend der iterativen Berech-

nung der Vektorpotential- bzw. Induktionsver-
teilung die Permeabilititen ur, k und Magneti-

sierungen M7, ¥ konstant gehalten werden.
¢) Losen der Systemgleichungen (37) fiir die
| Vektorpotentiale durch Einzelschrittiteration,

Zeileniteration oder Elimination, wenn wiahrend
der Iteration pr,x und Mp x nicht gedndert
werden oder durch nichtlineare Einzelschritt-
(Newton) oder Zeileniteration bzw. Berechnung

der Verteilung der magnetischen Feldstirke mit
Hilfe der Summengleichungen (42)...(44) fiir
eine vorgegebene Stromdichte- und Magnetisie-
rungsverteilung.

Fig.7
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Leitwerte und Magnetfelder von Nutenleitern,
numerisch berechnet
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d) Korrektur der Teilgebietspermeabilititen ur,k und der
Magnetisierungen My, gk wenn diese wihrend des Losens der Diffe-
renzengleichungen bzw. wiahrend der Auswertung der Summenglei-
chungen konstant gehalten werden. u1, k und My, x werden unter-
relaxiert weiterverwendet [1].

e) Ermittlung und Anwendung von Konvergenzbeschleuni-
gungsfaktoren [1].

f) Prifung der Konvergenz. Die Teilschritte b...f bzw. c...f
werden so lange wiederholt, bis charakteristische Werte (Ergebnisse)
konvergieren.

g) Auswertung, z. B. Berechnung der Feldverlaufes, der Nutz-
und Streufliisse, der Krifte, der magnetischen Spannungen, Feld-
stdarken usw.

3. Anwendungsbeispiele

Fig. 6 veranschaulicht eine Anwendung des finiten Ele-
mente-Verfahrens auf die Berechnung des magnetischen Feldes
eines Motors mit Permanentmagneterregung. Die Figur zeigt,
wie ein Querschnitt durch den Motor in finite Elemente ein-
geteilt wurde. Die geometrischen Formen von Rotor und
Stator sind so, dass zwei Arten von zweidimensionalen finiten
Elementen verwendet werden mussten. Das linke Feldbild zeigt
den Verlauf der magnetischen Feldlinien im stromlosen Zu-
stand des Rotors, verursacht durch die Permanentmagneten im
Stator. Das rechte Feldbild ldsst die Verinderung des magneti-
schen Feldes erkennen, wenn in der Rotorwicklung ein Strom
fliesst. Uber die Auswertung der numerischen Ergebnisse der
Feldrechnung kann das Drehmoment des Motors berechnet
werden. Die Feldberechnung ist damit ein Mittel zur Analyse
und Optimierung des Motors geworden.

Fig. 7 zeigt Nut und Leiter einer elektrischen Maschine. Die
linke Bildhélfte zeigt die Anderung des Streuflusses in der Nut
in Abhdngigkeit des Nutenstromes On. Mittels des finiten
Elemente-Verfahrens gelang es, den Einfluss der Sattigung des
Zahnkopfes auf den Verlauf des magnetischen Feldes zu be-
rechnen. In Fig. 7b erkennt man die Konzentration der Feld-
linien im ungesattigten Zahnkopf. Der hohere Nutenstrom in
der Fig. 7a fihrt zur Sittigung des Zahnkopfes und abge-
schwichter Feldkonzentration. Das Diagramm auf der linken

gemessen

gerechnet
[gstecanes.

20

Fig. 8
Betatronmagnet, Induktionsverlauf in der Bahnebene

Seite zeigt die Abhingigkeit des magnetischen Leitwertes Ax
der Nut von der Erregung 6x/bs. Das Diagramm auf der rech-
ten Bildhilfte zeigt die Abhdngigkeit von Ax von der Permea-
bilitdt u des Nutenkeiles. Die Feldbilder 7a und 7b wurden fiir
gleichen Nutenstrom berechnet. Die kleine Permeabilitit
(u = 1) des Keiles in Fig. 7b fiihrt zu der unliebsamen Er-
scheinung, dass das Streufeld der Nut stark in den Luftspalt
zwischen Stator und Rotor ausweicht. Mit einem Keil von
hoher Permeabilitdt (x = 30) verschwindet dieser Nachteil,
wie Fig. 7a zeigt.

In Fig. 8 wird ein Vergleich
zwischen gemessener und ge-
rechneter Induktion auf der
Bahnebene der Elektronen in
einem Betatron in Abhingig-

gemessen

keit vom Abstand von der
Bahnachse  gezeigt.  Der
Sollkreisradius der Bahn ist
24,5 cm, alle Induktionen
sind auf die Induktion Bsa,s
des Sollkreises bezogen. Diese

gerechnet
Rl il

Abhingigkeit wurde ermit-
telt, um zu priifen, ob die
Widerdesche Bedingung er-
fallt ist, nach der die Induk-
tion Bza,5 die Hélfte der mitt-

leren Induktion innerhalb des
Sollkreises sein muss.

Fig. 9

\\
== —— —
-\
0,5
18 20 22 24 26 28 r [cm]
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Fig. 9 zeigt den Verlauf des Feldindexes n, der sich aus dem
Verlauf des magnetischen Vektorpotentiales entlang eines
Durchmessers der Bahn berechnet. Die Elektronenbahn ist
stabil fiir n < 1; optimale Stabilitdt wurde theoretisch fiir » ca.
0,7 ermittelt. Die Figur zeigt, dass innerhalb des Bereiches
21,5...27,5 cm Radius stabile Bahnen zu erwarten sind.
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Kurzberichte — Nouvelles bréves

In der rechnergesteuerten Fabrikation stellt der Betriebsrech-
ner das Bindeglied dar zwischen dem Fertigungsleitrechner, der
plant, kontrolliert und Unterlagen erstellt, und dem Steuerungs-
rechner, der die Werkzeugmaschinen, Priifautomaten und die
Datenerfassung steuert. Wichtig ist der Dialog zwischen den Rech-
nern und den Menschen. Wenn aus der Serienfertigung eines
Werkstiickes zu viel Ausschuss anfallt, alarmiert der Betriebs-
rechner die Arbeitsvorbereitung. Diese veranlasst Massnahmen
zur Verringerung des Ausschusses und erhoht entsprechend die
vom Betriebsrechner vorgegebene Stiickzahl. Die Rechnerhier-
archie im Dialog mit dem Menschen kann flexibel und leistungs-
fihig arbeiten sowie neue und zusitzliche Aufgaben losen.

Das Hersh-Sauerstoffmessgerit besteht aus einer elektroche-
mischen Zelle mit einer Kathode und einer Anode. Das zu prii-
fende Gas durchstromt die Zelle, wobei der von der Zelle abgege-
bene elektrische Strom ein Mass fiir den Sauerstoffgehalt des
Gases ist. Eine Hilfselektrode in der Zelle verbessert ihre Lebens-
dauer, den Messbereich und die Stabilitdt der Messanordnung. Es
wurde eine Reihe von Instrumenten fiir verschiedene Anwendun-
gen entwickelt.

Untersynchrone Stromrichterkaskaden mit Thyristoren ermogli-
chen eine verlustarme, stufenlose Regelung der Drehzahl von
Motoren. Durchflussmengen, Driicke, Wasserstinde, Forderein-
richtungen von Trinkwasser und Abwasser, Beliiftungen von Ab-
wasserbecken, Geblise fur die Tunnelbeliftung, lassen sich stufen-
los, den momentanen Erfordernissen angepasst regeln.

Ein Computer-Index iiber neutronenphysikalische Daten wurde
gemeinsam von vier wissenschaftlichen Zentren, der Europdischen
Kernenergie-Agentur, der Internationalen Atomenergie-Organisa-
tion sowie Zentren der UdSSR und der USA, herausgegeben. Der
Index enthélt ungefdhr 70000 bibliographische Ausziige aus mehr
als 240 wissenschaftlichen Zeitschriften, 180 Schriftenreihen, 110
Bichern und Tagungsberichten und privaten Mitteilungen. Es
handelt sich um die 5. Ausgabe der Bibliographie iiber neutronen-
physikalische Daten.

Das Internationale Kerndaten-Komitee ist in allen auf Kern-
daten beziiglichen Fragen das beratende Organ der Internatio-
nalen Atomenergie-Organisation. Das Komitee hilt sich stindig
iiber die Kerndatenprogramme, die im Bereich der friedlichen
Anwendung der Kerntechnik durchgefiihrt werden, auf dem lau-
fenden. Es sammelt auch Unterlagen fiir Messungen an Kernreak-
toren, bei thermonuklearen Fusionen und zur Spaltflusskontrolle.
Das Komitee berdat insbesondere Entwicklungslander mit Pro-
grammen fiir Messungen in der angewandten Physik im allge-
meinen und in der Kerntechnik im besonderen.
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Ein Minirecorder aus den USA kann wechselweise Spannun-
gen und Strome registrieren. Alle 5 s erfolgt eine Messung, deren
Resultat automatisch registriert wird. Das Gerit eignet sich sehr
gut fiir routinemaissige Inspektionsarbeiten und die Fehlersuche.
Alle Messwerte werden fortlaufend auf dem Registrierstreifen
festgehalten. Die Aufzeichnung der Messwerte erfolgt nicht mit
Tinte, sondern durch Druck auf dem druckempfindlichen Regi-
strierpapier.

Eine Versuchsstrecke fiir Eisenbahnbetrieb wird in den USA
mit einer Spannung bis zu 50 kV (Gleich- oder Wechselspannung)
in Betrieb genommen. Die Versuchsstrecke ist ca. 6 km lang.
Sie soll fiir die Erprobung von Lokomotiven und Triebwagen
sowie fiir Versuche mit verschiedenen Fahrleitungssystemen fiir
hohe Spannungen dienen.

Fiinfzehn Millionen Biegebeanspruchungen wurde ein neun-
adriges Flachkabel unterzogen, ohne Schaden zu leiden. Die
Beanspruchung erstreckte sich iiber einen Zeitraum von drei Jah-
ren im Zwei- und Dreischichtenbetrieb in einer Uberwachungs-
einrichtung zu einer Kettenwirkmaschine. Die lange Lebensdauer
des Kabels war auf die gewdhlte Isolation mit einem Fluorkunst-
stoff zuriickzufiihren. Kabel mit anderem Isoliermaterial musste
man nach einjahriger Betriebsdauer ersetzen.

Ein Uberwachungs- und Warngerit in England wurde fiir
Fabrikationsprozesse und fiir die Kontrolle von unbeaufsichtigten
Maschinenrdumen entwickelt. Das Gerédt wird nach Bedarf aus
Modulen zusammengesetzt, von denen jeder 5 Messpunkte oder
Messgrossen iiberwachen kann. Die Grosse des kontrollierten
Messwertes sowie die Grenzen des zulidssigen Messwertes sind
einstellbar. Bei Uber- oder Unterschreiten der zuldassigen Grenz-
werte leuchtet ein Warnsignal auf. Zusitzliche Warnstromkreise
konnen optische oder akustische Warneinrichtungen betitigen;
sie lassen sich auch fiir Regelzwecke einsetzen.

Zu einer Reihe neuer Peripheriegerite fiir Digitalrechner ge-
hort ein elektrostatischer Zeilendrucker; dieser weist hohe Zu-
verlassigkeit auf, ist gerduscharm und preiswert. Seine Druck-
geschwindigkeit betrdgt 120 Zeilen/s. In jeder Zeile ist Platz fiir
80 Zeichen vorgesehen.

Fiir Feldstiarkemessungen von Stor- und Nutzsignalen wurde
ein tragbares Messgerit entwickelt. Der Frequenzbereich ist ohne
Umschaltung von 25...300 MHz einstellbar. Weitere Vorteile des
Gerdites sind seine logarithmischen und linearen Messbereiche, die
Moglichkeit, stark schwankende Signale schnell zu erfassen, die
am Gerit befestigte, abstimmbare Messantenne sowie die Mog-
lichkeit, das Gerit als Mikrovoltmeter einzusetzen.
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