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Einführung in die Theorie der Signalerkennung in Rauschen

Von HJ. Schlaepfer, Zürich

Die vorliegende Arbeit enthält eine Einführung in die Theorie

der Erkennung von Signalen in überlagertem Rauschen.
Ausgehend von einem allgemeinen statistischen Modell eines Übertra-
gungssystemes für digitale Nachrichten wird gezeigt, dass die
optimale Entscheidungsfunktion immer die Form eines
Wahrscheinlichkeitsverhältnisses hat («likelihood ratio test»). Als
Anwendungsbeispiele werden anschliessend insbesondere die einfachsten

Strukturen des optimalen kohärenten und des optimalen
inkohärenten binären Empfängers bei weissem, additiv überlagertem

gaußschem Rauschen berechnet und ihre Fehlerwahrscheinlichkeit

bestimmt '). Für das Verständnis der Arbeit ist die Kenntnis
der grundlegenden Zusammenhänge der Wahrscheinlichkeitsrechnung

unerlässlich.

621.391.822:621.391-88

Le travail précité renferme une introduction à la théorie de
la perception des signaux dans le bruit superposé. Partant du
modèle statique général d'un système de transmission d'informations,
on démontre que la fonction de décision optimale garde toujours
la forme d'un rapport de probabilité («likelihood ratio test»), A
titre d'exemples d'application, on calcule ensuite plus particulièrement

les structures les plus simples du récepteur binaire optimal,

cohérent et incohérent, au bruit de Gauss blanc superposé,
en déterminât également sa probabilité d'erreur x). La connaissance

des relations fondamentales du calcul des probabilités est

indispensable à la compréhension de ce travail.

1. Einleitung
Das Signal am Eingang eines Empfängers wird infolge

nichtidealer Kanaleigenschaften im allgemeinen kein getreues
Abbild mehr dessen sein, was der Sender ursprünglich erzeugt
hat. Neben verschiedenen deterministischen Eigenschaften
(Amplituden-, Phasengang) sind es statistische Parameter,
welche die Qualität des Übertragungsmediums bestimmen.
Dabei ist vor allem das Rauschen zu nennen, welches an
verschiedenen Stellen in den Kanal hineingelangt und den Signalen
überlagert wird; daneben treten aber oftmals auch zufällige
Änderungen der Übertragungscharakteristik auf, wie Fading
bei Kurzwellenverbindungen, welche an der Inonosphäre
reflektiert werden, sowie die Ausbreitung der Signale über
verschiedene Pfade mit unterschiedlichen Laufzeiten und schliesslich

— vor allem bei geschalteten Telephonleitungen —

kurzzeitige Ausfälle der Verbindung. Die vorliegende Arbeit befasst
sich nur mit dem Rauschen, in der Annahme, dass die
deterministischen Kanaleigenschaften durch Entzerrer in geeigneter
Weise kompensiert und die übrigen statistischen Einflüsse

vernachlässigbar seien.

In einem Übertragungssystem für digitale Daten kennt der
Sender grundsätzlich nur eine beschränkte Anzahl möglicher
Signale, von denen er in jedem Takt (konstanter Zeitabschnitt)
entsprechend der zu übertragenden Nachricht je eines auswählt
und übermittelt. Diese abzählbare Menge möglicher Signale
geht infolge der zufälligen Störungen im Kanal in eine Vielzahl
möglicher Signalformen über, welche der Empfänger an seinem

Ort beobachten kann. Seine Entscheidungsaufgabe besteht
dann in einer Klassifikation der beobachteten Signalmuster zu
bestimmten Entscheiden. Das Ziel der Theorie ist die Definition
eines in noch zu definierender Weise optimalen Empfängers
unter der Voraussetzung, dass die statistischen Eigenschaften
des Rauschens bekannt seinen (parametrische Entscheidungsfunktionen).

Wenn die grundlegende Theorie auch wesentlich allgemeinere

Fälle erfasst, so soll in der vorliegenden Arbeit die
Anwendung doch auf Probleme beschränkt werden, wo die

L) Die Arbeit behandelt nur das Problem der Signalerkennung und
nicht die Optimierung der Signale selbst.

Statistik des Rauschens mit allen Parametern vollständig
bekannt ist; im speziellen wird hier die Gaussverteilung für die
Momentanwerte des Rauschens vorausgesetzt werden, weil sie

zu besonders einfachen Ergebnissen führt. In neueren Arbeiten
sind als sog. nichtparametrische Entscheidungsfunktionen
Empfängerstrukturen untersucht worden, welche wesentlich
weniger Kenntnisse über die Rauschstatistik voraussetzen, und
daher für viel allgemeinere Fälle gültig sind. Eine vorzügliche
Einführung in dieses Gebiet gibt die Arbeit von Thomas [l]3),
siehe aber auch [2],

Im folgenden sei ein einfaches statistisches Modell beschrieben,

welches zur Herleitung der optimalen Entscheidungsfunktion

dient. Es ist vorläufig noch so allgemein, dass es zur
Untersuchung praktisch aller denkbaren Fälle von
Übertragungsproblemen digitaler Daten herangezogen werden
kann.

2. Statistisches Modell eines digitalen Übertragungssystemes

Das fundamentale Modell eines Übertragungssystemes für
digitale Daten ist in Fig. 1 dargestellt. Der Sender, welcher
über einen rauschenden Kanal Nachrichten in digitaler Form
an den Empfänger übermittelt, verfügt über eine abzählbare
Menge von m verschiedenen Signalen Si...Sm. Die Gesamtheit

Signal räum Beobachtungs- Entscheidungs -
räum y räum ^

Hytëj) f
y Y(qj ]

Kanal V. J \/ ai< y
Sender Empfänger

Fig. 1

Statistisches Modell eines digitalen übertragungssystemes mit den drei Räu¬

men: Signalraum Q, Beobachtungsraum r und Entscheidungsraum A
f(y 15j) und £(aj|}>) stellen die bedingten Übergangswahrscheinlichkei-

ten der einzelnen Elemente dar
ßm Elemente des Signalraumes; a±, a%, a% Elemente des

Entscheidungsraumes; y aktuelles Signal

2) Siehe Literatur am Schluss des Aufsatzes.

834 (A 609) Bull. ASE 62(1971)17, 21 août



dieser Signale (das Signalalphabeth) bildet den Signalraum ß.
Über diesen Bereich verteilt sind die apriori-Wahrscheinlich-
keiten m, welche angeben, mit welcher relativen Häufigkeit die

einzelnen Signale auftreten. Im speziellen enthält ein binäres

Signalalphabeth nur zwei Signale, zum Beispiel Si und S2, mit
den apriori-Wahrscheinlichkeiten m bzw. n-z. Allen Signalen
gemeinsam ist ihre zeitliche Dauer T, so dass der Sender nach

je T s mit der Erzeugung eines neuen Signales beginnen kann.

Die Sendersignale führen am Ort des Empfängers zu
Zeitfunktionen y(t), welche im allgemeinen nicht mehr mit dem

ursprünglichen Zeichen übereinstimmen, weil sie vom
überlagerten Rauschen in zum voraus unbekannter Art und Weise

verändert worden sind. Das Modell enthält daher auch einen

Beobachtungsraum r, in welchem alle möglichen, vom
Empfänger beobachtbaren Signale y liegen. Der Übergang vom
Signalraum auf den Beobachtungsraum stellt eine zufällige
Abbildung dar, weil sie wesentlich von der Statistik des

Rauschens beeinflusst wird. Immerhin kann bei bekannter
Verteilungsfunktion des Rauschens für jedes Element y des

Beobachtungsraumes eine bestimmte, bedingte Wahrscheinlichkeit

f(y \ Si)3) zu seiner Beobachtung angegeben werden,

wenn ein bestimmtes Signal Si erzeugt worden ist.

Schliesslich muss der Empfänger das Kontinuum möglicher
Beobachtungen im Räume r in eine abzählbare Menge
möglicher Entscheidungen a\ überführen. Diese Abbildung. ô(a\ \ y)
ist nun im Gegensatz zur ersten Transformation (ß -> r)
deterministischer Natur, weil gezeigt werden kann, dass mit
zufälligen Entscheidungsfunktionen nicht bessere Resultate
erreichbar sind als mit deterministischen. Der Entscheidungsraum

A enthält alle zulässigen Empfängerentscheide. In Bezug
auf ihre Anzahl k sind folgende drei Fälle zu unterscheiden:

a) Die Anzahl k der Elemente des Entscheidungsraumes stimmt
mit der Zahl möglicher Signale überein. Es wird zweckmässigerweise
jedem Signal ein bestimmter Entscheid zugeordnet.

b) Die Anzahl der Elemente im Entscheidungsraum ist grösser als
diejenige des Signalraumes. Damit wird gegebenenfalls ein Entscheid
der Unsicherheit in dem Sinne zulässig, dass der Empfänger dann zu
einem definitiven Entscheid noch zusätzliche Angaben braucht. Diese
Variante führt auf Systeme mit Rückfragemöglichkeit oder zur
sequentiellen Entscheidung nach Wald [3], welche laufend so lange
weitere Daten vom Sender anfordern, bis der endgültige Entscheid
mit der gewünschten Sicherheit getroffen werden kann. Wenn mit
einem solchen System auch die Entscheidung — bei gleichen
Anforderungen an die Sicherheit — im Mittel schneller möglich ist, als bei
konventionellen, so schränkt die Tatsache, dass die Signaldauer
zufällig wird, ihre Anwendungsmöglichkeit doch wesentlich ein.

c) Die Zahl der Elemente des Entscheidungsraumes ist dagegen
kleiner als die entsprechende Anzahl der Signale, wenn der
Signalverlauf nicht in allen seinen Parametern exakt definiert ist und daher
eine ganze Klasse von Signalen ein und derselben Nachricht
angehören. Zum Beispiel ist bei einem Mehrfrequenz-Übertragungssystem

oft die Phasenlage der einzelnen Signale zufällig, während
einzig ihre Frequenz den Träger der Information darstellt. Der
Signalraum eines solchen binären Frequenzumtastsystemes enthält
demnach zwei Unterräume, welche je ein Kontinuum möglicher
Signale mit den verschiedenen Trägerphasen umfassen (inkohärentes
System). Für die Berechnung des optimalen (parametrischen)
Empfängers ist die Kenntnis der statistischen Eigenschaften der zufälligen
Parameter erforderlich. Für die Trägerphase wird im allgemeinen die
Gleichverteilung angenommen, siehe Abschnitt 3.2.

Die Optimierung der Abbildungsfunktion ] y) in Fig. 1

stellt das eigentliche Ziel der Theorie dar. Als Optimierungskriterien

kommen in Betracht :

3) Mit F(y) wird der Wert der Verteilungsfunktion F einer Zufalls-
grössen an der Stelle y bezeichnet; mit f(v) dagegen ihre Dichtefunktion

nach

f» ^-F(>>)

Signal Entscheid

S,0^ — ^Oa,
N

Cß **
^ „ " C21

N
N

-N.

S2O r Oa2
c22

Fig. 2
Verlustfaktoren als Bewertung des Entscheides a-, wenn tatsächlich

das Signal S- gesendet wurde

ö|, a-2 Entscheide; C| j, C)9, Coi, Verlustfaktoren; 5], S., Signale

a) Die Regel von Bayes nach minimalem Risiko;
b) Die Minimax-Regel, welche das geringste Maximum des

Risikos bei Variation der apriori-Wahrscheinlichkeiten sucht;
c) Das Kriterium von Neyman-Pearson, welches bei einer

gegebenen Wahrscheinlichkeit für einen Fehlalarm das System mit der
grössten Erkennungswahrscheinlichkeit eines Signales sucht.

Wie gezeigt werden kann, führen alle drei Kriterien auf
dieselben Entscheidungsstrukturen [4], Im folgenden wird das

Kriterium von Bayes Anwendung finden, weil es die Herleitung
des optimalen Detektors in besonders einfacher Weise

ermöglicht.

Die Zielfunktion der Optimierung nach Bayes stellt das

Risiko dar. Zu seiner Definition müssen Verlustfaktoren Cij
eingeführt werden, welche gemäss Fig. 2 Gewichte der mk
möglichen Kombinationen von Signalen Si und Entscheiden

a; in dem Sinne darstellen, dass Entscheide mit hohen
Verlusten möglichst selten sein sollen. Allgemein gilt die
Konvention, dass der Verlust eines richtigen Entscheides zu Null
normiert wird, während der Verlustfaktor Cij V 0 für ; 4= j
ist. Als bedingtes Risiko r(ô \ Si) wird der Erwartungswert4)
des Verlustes bezeichnet, den ein bestimmtes Signal Si hervorruft.

Es hängt natürlich von der Entscheidungsfunktion <5 ab-

und lautet für den binären Fall (k 2) :

r (ß | SO J dyf(y\ Si) (Cu S (ai | y) + Ci-z ô (a-z \ y)} (1)
r

Das Risiko selbst ist schliesslich der Erwartungswert der

bedingten Risiken über alle Signale. Hier wird die Häufigkeit
71 i bedeutungsvoll, mit welcher die einzelnen Signale Si
auftreten. Man findet für das Risiko des zweiwertigen Systèmes

(m 2) :

2

R (n, d) 2 (<5> Si)

(2)
2

2 ni / dTf (v I Si) {Cil ô (ai \ y) + Ci2d(a2 ]p)}
i=i r

Unter Berücksichtigung der Normierung, dass richtige
Entscheide keinen Verlust verursachen sollen, gilt entsprechend :

R{n,S)= (3)

J dy [m f (y ] Si) C12 ô (a-z \ y) + m f(y \ S2) C21 ô (a2 | 7)}
r

Das Optimierungskriterium von Bayes verlangt von der

Entscheidungsfunktion, dass sie zum minimalen Risiko führe.

4) Als Erwartungswert E(x) einer Zufallsgrösse x wird das Moment
erster Ordnung

+ 00

E Un) f (x) d.v

OO

mit n=l bezeichnet.
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Ausgehend von der Annahme, dass der Entscheidungsraum
nur die beiden Elemente ai, ai aufweisen soll und der Tatsache,
dass sicher bei jedem Signal ein Entscheid gefällt wird, gilt:

ô (fl2 I y) 1 — <5 (ai y) (4)

Mit dieser Beziehung kann Gl. (3) umgeformt werden, so

dass nur noch ein Entscheid, z. B. <5 (ai [ y) explizit erscheint :

R(n,c5) Tri f dyf(y|5i) C12 +

+ f dyô(ai\ y) {712 f (y 52) C21 (5)

ni f (y I Si) C21} Ji + Jz

g (y) Ti2 f (y I 5a) C21 — 7iiî(y\ Si) C12

eingeführt. Der Beobachtungsraum /"kann nun nach folgenden
Kriterien eingeteilt werden :

r+ enthält alle v, so dass g (y > 0

r~ enthält alle y, so dass g (y) 0

r~ enthält alle y, so dass g (y) < 0

Damit gilt für h :

h J dy g (y) ô (ai \ y)
r

f dyg(y)ô(ai \ y) -
r+

- fày I g (y) I <5 (ai i y) + f dy g (y) S (ai y)
r— r=

ô (ai I y)
falls

falls

g y 0

g (y) < 0

1 falls f (y î 5i) ^ m C21

ô (ai I y) -

f (y I Si) 711 C12

0 falls f (y [ 5i) <
712 C21

f (y I 5a) ni C12

L (y)
712 C21

712 C12
(10)

Als Spezialfall sei hier der ideale Empfänger erwähnt,
welcher die beiden falschen Entscheide in gleicher Weise belastet :

C21 C12 1

Das erste Integral ist von der Entscheidungsfunktion
unabhängig, im Verlauf der Optimierung wird daher nur noch h
untersucht. Im weiteren wird die Abkürzung

(6)

(7)

Er weist die Eigenschaft auf, dass nicht nur das Risiko,
sondern auch die Fehlerwahrscheinlichkeit minimal ist.

Die vorliegende Entscheidungsfunktion nach Gl. (9) gilt
für alle binären Empfänger, welche nach dem Kriterium eines

minimalen Risikos optimiert werden. Die Spezialisierung auf
einzelne Fälle erfolgt dadurch, dass die Wahrscheinlichkeitsdichte

f(y ] 5i) von der tatsächlich vorliegenden Rauschstatistik

abhängt, nämlich von der Verteilungsfunktion der
Momentanwerte des Rauschens sowie — über die Korrelationsfunktion

— von den spektralen Eigenschaften der Störungen.
Wenn eine exakte Realisierung der optimalen Entscheidungsfunktion

infolge ihrer Komplexität auch oft unzweckmässig
sein kann, so erlaubt die Theorie doch die Funktionsweise des

bestmöglichen Systèmes zu bestimmen und seine Leistungsfähigkeit

zu berechnen, so dass bei der Frage nach einem

möglichen suboptimalen System doch eine Bilanz zwischen

Aufwand zur Realisierung und möglicher Entscheidungssicherheit

erleichtert wird.
Die eben durchgeführte Herleitung gilt für den binären

Fall (m 2). Den optimalen m-wertigen Detektor mit m>2
findet man auf ganz ähnliche Weise. Das Risiko R muss dann
über alle m mit den verschiedenen Signalen verbundenen
bedingten Risiken gerechnet werden, so dass entsprechend Gl.(2)
gilt:

Da das dritte Integral stets verschwindet, weil die
Wahrscheinlichkeit für das Ereignis { g(y) 0) selbst gleich null ist,
genügt es, um das Risiko möglichst klein zu machen, das erste

Integral so klein wie möglich und das zweite so gross wie

möglich zu halten. Dies gelingt dank der Tatsache, dass die

Entscheidungsfunktion nur die beiden Werte ö — 0, 1

annehmen kann, ohne weiteres mit Hilfe der Definition

R (n, ô)= ^ m f dyî (y\ St) 2 Cij ô (aj | y)
i 1 r j 1

ai)

wobei wieder die Einschränkungen einer deterministischen
Entscheidungsfunktion gültig sind :

2 <5 (zzj i y) 1

j — 1

<5 (ai I y) 0,1

(8)

Unter Berücksichtigung von Gl. (6) findet man nun für den

optimalen Empfänger die Entscheidungsfunktion

Erneut können die apriori-Wahrscheinlichkeiten 711, die

Verlustfaktoren Cij und die Übergangswahrscheinlichkeiten

f (y \ Si) zusammengefasst werden in

M (y) 2 711 Ca f (y 50 (12)

(9) so dass man für das Risiko findet :

Die Vorschrift des optimalen Empfängers lautet demnach:
Der Entscheid ô (ai \ y) 1 (entsprechend « Signal 5i
vorhanden») wird dann getroffen, wenn der Quotient der beiden

bedingten Wahrscheinlichkeiten f(y \ 5i), bzw. f(y \ Si) grösser

ist als die Schwelle U2C2ilniCi2, und umgekehrt wird
S (a2 y) — 1 (entsprechend «Signal S2 vorhanden»)
entschieden, wenn der Quotient kleiner ist als diese Schwelle.

Definiert man mit dem Wahrscheinlichkeitsverhältnis L(y)
(«likelihood ratio») diesen Quotienten der bedingten
Wahrscheinlichkeiten, so folgt für die optimale Entscheidungsvorschrift

kurz :

R(n,ô)= 2 / dy M (y) ö (aj | y)
j ir

Hier wird nun der Beobachtungsraum r derart in m Bereiche

unterteilt, dass in jedem Unterraum Tk gilt :

/V: enthält alley, so dass Ak (y) min. A, (y) (13)

Man findet in der Folge für die optimale Entscheidungsfunktion

[4] :

'0 falls Aj (y) < min Ai (y)
<5 («i I y)

1 falls A j (y) min A i (y)

836 (A 611) Bull. ASE 62(1971)17, 21 août



Der ideale m-wertige Empfänger, welcher die richtigen
Entscheide mit Ca 0 und die falschen mit Cij =1 (i j)
bewertet, bildet unter Berücksichtigung von Gl. (13) die

Entscheidungsfunktion :

/0 falls 7ij f (y | Sj) < max 7tk f (y \ Sk)

<5i («j y) I (14)
I 1 falls 7i\ f (y | Sj) max 7tk f (y \ Sk)

Durch Anwendung des Satzes von Bayes [5] kann diese

Funktion übergeführt werden in :

t0 falls f (Sj | y) < max f (ä I y)

ôi (cij I y) (15)Ii falls f (S) I y) max f (Sk I y)

Der optimale /n-wertige Empfänger (in > 2) bestimmt also

dasjenige Zeichen Sk, dessen (nachträgliche) aposteriori-Wahr-
scheinlichkeit f(Ä I y) maximal ist, nachdem das Signal y
beobachtet wurde.

In den folgenden Abschnitten wird gezeigt, wie die generelle
Entscheidungsvorschrift des optimalen binären Empfängers
nach Gl. (9) eingesetzt wird, um für einige Spezialfälle explizite
Strukturen zu finden.

3. Anwendung der Theorie auf einige Spezialfälle

3.1 Der optimale kohärente Empfänger

Den allereinfachsten Fall der Entscheidung stellt der binäre
kohärente Empfänger bei additiv überlagertem, weissem gauß-
schem Rauschen dar. Der kohärente Empfänger zeichnet sich
dadurch aus, dass ihm die Signale in allen seinen Einzelheiten
zum voraus bekannt sind ; im Gegensatz dazu muss bei einem
inkohärenten Empfänger die Trägerphase der Signale als

Zufallsgrösse betrachtet werden, wodurch der Entscheidungsvorgang

etwas erschwert wird (siehe Abschnitt 3.2). Das weisse

gaußsche Rauschen besitzt eine konstante spektrale Leistungsdichte

bei allen Frequenzen und zeigt eine gaußsche Verteilung
seiner Momentanwerte.

Für die Anwendung der Theorie wird eine Vektordarstellung

der Signale verwendet, wobei mit einem Grenzübergang
am Schluss der Ableitung die Struktur eines kontinuierlich
arbeitenden Empfängers gefunden werden kann. Das vom
Empfänger in zeitlichen Intervall k T f t< k I) T
beobachtete Signal y(t) wird zu diesem Zweck an m Stützstellen
abgetastet und die Folge der erhaltenen Momentanwerte als

Vektor j) interpretiert :

Y y(ti), y(*2),...y(tm)

Auf Grund der linearen Überlagerung von Signal und
Rauschen gilt die Vektorbeziehung :

Y=S + N
Unter der Voraussetzung von weissem gaußschem Rauschen

sind die Elemente m des Rauschvektors N unabhängige,
normalverteilte Zufallsgrössen, so dass die Verbundwahrscheinlichkeit

der Momentanwerte ni...nm gegeben ist und durch die
w-dimensionale Gaussverteilung :

f
fN (N) (n\...nm)

1

(2 71 (72)m/2 exp

1

I j

2 CT2 (16)

(2 7t <J2)m/2 exp
fliVl2!
I 2 CT2 I

(Darin ist mit I N [ der Betrag des Vektors N und er2 die
mittlere Rauschleistung). Entsprechend den Ergebnissen des

letzten Abschnittes bildet der optimale Empfänger das
Wahrscheinlichkeitsverhältnis

L(F) f (Y Si)
f (F j S2)

: Lo (17)

und trifft seinen Entscheid in Abhängigkeit davon, ob dieser

Quotient grösser oder kleiner als eine gewisse Schwelle Lo ist.
Nun kann leicht gezeigt werden, dass für die bedingte
Wahrscheinlichkeit f(Y I Sk) des beobachteten Vektors Y, unter
der Voraussetzung, dass das Signal Sk erzeugt wurde, gilt [4] :

f (F|Ä) fn(F-Ä)
so dass das Wahrscheinlichkeitsverhältnis in Gl. (17) folgender-
massen dargestellt werden kann :

L(F) fa(F-Si)
fN(F- 6V)

(18)

Setzt man darin die Gaussverteilung nach Gl. (16) ein, so
findet man nach einiger Rechnung

L(Y) exp - j
1 Vi JS-21 2 + 2[Y][SsF - 2[F][5i]Tj

2 CT2
(18)

wobei mit [S2F die transponierte Form der Matrix [52]
bezeichnet wurde. Da die Entscheidungsaufgabe in einem
Vergleich dieser Grösse mit einem Schwellwert besteht, kann
ebensogut auch der Logarithmus verwendet werden, weil er
eine streng monotone Funktion seines Argumentes ist. Man
erhält damit für die Entscheidungsfunktion des optimalen
kohärenten Empfängers unter Berücksichtigung von Gl. (9):

IÄI I Sa I 2 + 2[YFS2F — 2[F][Si|T g 2o2In (^~L2) (19)
l 712 C21)

(20)

Trifft man die vereinfachenden Annahmen, dass die beiden
Signale gleiche Energie e | Si |

2
| S2 I

2 aufweisen, ferner
dass die Verlustfaktoren C21 — C12 sowie die apriori-Wahr-
scheinlichkeiten 711 712 gleich gross seien, so ergibt sich
diese Entscheidungsregel in ihrer einfachsten Form :

Entscheid «Signal S2 vorhanden», falls [Y] [S2F 2: [Y] [SiF
Entscheid «Signal 5i vorhanden», falls [F] [A,a]T < [F] [5i]t

Man erkennt leicht eine fundamentale Eigenschaft dieses

optimalen Empfängers, dass nämlich seine Entscheidung auf
den Produkten [F] [,Sk]T beruht. Diese Grössen sind aber
nichts anderes als eine diskrete Form der Kreuzkorrelation
zwischen dem beobachteten Signal Y und dem ungestörten
Muster Sk. Der Empfänger entscheidet sich für dasjenige
Signal, dessen Kreuzkorrelation mit dem beobachteten Vektor
Y überwiegt. Er wird deshalb auch Korrelationsdetektor
genannt.

Wenn die Zahl m der Proben über alle Grenzen anwächst
und gleichzeitig — als Folge des vorausgesetzten weissen
Rauschens — die Momentanwerte von y(t) statistisch
unabhängig bleiben, so erhält man im Grenzfall den kontinuierlichen

Korrelationsdetektor, dessen Funktion dem angepassten
Filter («matched filter») entspricht. In der Tat sind Korrelation

und Filterung mit dem optimalen Filter bei additivem
weissen Rauschen zwei verschiedene Interpretationen ein und
desselben Vorganges. Sie unterscheiden sich nur darin, dass

man die Korrelation als Vorgang im Zeitbereich, die Filterung
dagegen im Frequenzbereich betrachtet.
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QOJ

1CT3
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cos 0-0

cos 0 —'l\

\ '

SRV-
10

wobei mit

15

Til P (fl2 | Si) + 712 P («1 [ Si)

und die Streuung

lie e [cos 0 — 1]

CTe2 2 a2 e (1 — cos 0)

aufweist. Damit lautet die Wahrscheinlichkeit des Entscheides
(a2 I Si):

P (ß2 Si) /
TC1C12

1

o2ln-
]/2

exp
7TOV

(x — Ue)2

2 (Te2
dx

TC2 C21 (25)

1 — er f
er2 In

711 Cl2
712 C2I + S (1 — COS 0)

]/2 er2 £ (1 — COS 0)

erf (z) f —== exp
-00 l/2i

dt

die normierte Fehlerfunktion bezeichnet wurde, deren
Funktionswerte tabelliert sind, z. B. in [6], Entsprechend findet man
für die Wahrscheinlichkeit P(a\ \ Si) den Ausdruck:

Pia, S2) — erf
er2 In

711 C12

712 C2I
e (1 — cos 0)

)/2 er2 (1 — cos 0) £

(26)

Die Fehlerwahrscheinlichkeit des gesamten Systems ergibt
sich nun durch Einsetzen der Gl. (25) und (26) in Gl. (22). Hier
soll nur der Spezialfall des idealen Beobachters (C21 C12 1)

mit gleichen apriori-Wahrscheinlichkeiten 711 712 V2 untersucht

werden. Er weist entsprechend Gl. (25) und (26) die
Fehlerwahrscheinlichkeit

Fig. 3

Fehlerwahrscheinlichkeiten PQ des kohärenten Systèmes mit entgegengesetzten
Signalen (cos (p — ~1) und orthogonalen Signalen (cos (p 0) in Funktion
des Verhältnisses SRV von Signalenergie e zur mittleren Rauschleistung er2

SR V Signal/Rausch-Verhältnis

Für die Fehlerwahrscheinlichkeit Pe des Detektors nach
Gl. (19) gilt

1 er f I j/B ' " C°s 0)
2 er2

(27)

(22)

worin z. B. mit P(a-2 \ Si) die Übergangswahrscheinlichkeit
des Signales 5i in den Entscheid 02 bezeichnet wird. Setzt man
für beide Signale gleiche Energien s | Si [

2
| S2 \ 2 voraus,

so wird immer dann der Entscheid 02 getroffen, wenn
nach Gl. (19) gilt:

[F][52F-[F][SiF^<T2ln(^|^) (23)
1 772 C 21

Im weiteren wird noch [Si] [S2F s cos 0 definiert, so
dass cos 0 den normierten Kreuzkorrelationskoeffizienten
oder 0 den Winkel zwischen den beiden Signalen [Si], [£2] im
m-dimensionalen Raum darstellt. Die Entscheidungsfunktion
in Gl. (22) kann wie folgt umgeformt werden:

mbSÏF -m[SiF £ [cos (0) - I] + [N]([S2] - [SilF (24)

Die Übergangswahrscheinlichkeit P(a-2 | Si) umfasst demnach

alle Fälle, bei denen die Schwelle in Gl. (23) kleiner ist
als die rechte Seite in Gl. (24). Diese Grösse stellt aber eine

normalverteilte Zufallszahl dar, welche, wie sich durch
Einsetzten leicht zeigen lässt, den Erwartungswert

auf. An diesem Ergebnis ist die interessante Tatsache
festzuhalten, dass in einem binären System mit gleichwahrscheinlichen

Zeichen nur das Verhältnis von Signalenergie £ zur
mittleren Rauschleistung er2 sowie das innere Produkt
(Kreuzkorrelation) cos 0der beiden Signale die Fehlerwahrscheinlichkeit

bestimmen, und nicht etwa die tatsächliche Form der
Signale. Optimiert man daher den Kreuzkorrelationskoeffizienten

so, dass die Fehlerwahrscheinlichkeit minimal wird,
so findet man :

Pe 1 — er f I i (28)

Diese minimale Fehlerwahrscheinlichkeit wird dann
erreicht, wenn cos 0 — 1 oder [Si [S2F —e ist, das heisst,

wenn im m-dimensionalen Vektorraum die Signale einen

möglichst grossen Abstand voneinander aufweisen («sich
möglichst stark voneinander unterscheiden»). Dabei handelt
es sich um entgegengesetzte Signale, während Signale mit
verschwindender Kreuzkorrelation [Si] [S2]T 0 orthogonal
genannt werden. In Fig. 3 ist der Verlauf der Fehlerwahrscheinlichkeiten

für verschiedene Signal/Rausch-Verhältnisse für die
beiden Fälle entgegengesetzter Signale (cos 0 — 1) und
orthogonaler Signale (cos 0 0) dargestellt.

3.2 Der optimale inkohärente Empfänger

Inkohärent heisst ein Empfänger dann, wenn ihm die

Trägerphase <py eines Signales der Form

Si (t, <pi) Ai (t) cos (cot t + <pi) (29)

zum voraus nicht bekannt ist, und er sie demzufolge als Zu-
fallsgrösse betrachten muss. Das inkohärente System ist ein
Spezialfall der statistischen Entscheidung zwischen
mehrfachen Hypothesen, indem die Unterräume Qi eines

Signalraumes ß selbst noch eine beliebige Menge von einzelnen
Elementen umfassen können, nämlich die Signale si (t, tp) einer
Klasse 5i mit allen möglichen Trägerphasen tp. Eine weitere

Verallgemeinerung kann zum Beispiel darin bestehen, dass die

Signalamplitude zufälligen Schwankungen unterworfen ist.
Die Herleitung eines im Sinne von Bayes optimalen Detektors
erfolgt auch dann auf ganz entsprechende Weise, vorausgesetzt
immer, dass die statistischen Eigenschaften all dieser
Parameter (Trägerphase, Signalamplitude, usw.) bekannt sind.
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Trotzdem wird die optimale Struktur infolge ihrer Komplexität
nicht mehr realisierbar sein, und nur als Grenze des theoretisch

erreichbaren dienen können.

In diesem Abschnitt soll der allereinfachste Fall eines

binären, inkohärenten Empfängers nach [4] behandelt werden,
wobei der Optimierung hier ein binäres EIN/AUS-System zu-
Grunde gelegt sei, dessen Struktur besonders übersichtlich
wird. Die Herleitung der optimalen Entscheidungsfunktion,
welche mit minimalem Risiko entscheidet, ob das Signal
gemäss Gl. (29) anwesend ist oder nicht, führt über den gleichen

Weg wie beim kohärenten Empfänger, so dass hier nur die

Unterschiede skizziert zu werden brauchen. Die entscheidende

Änderung besteht darin, dass hier das Signal nicht mehr in
allen Teilen exakt bekannt ist, sondern vielmehr von einem

weiteren Parameter <p abhängt, welcher zwar die tatsächliche

Signalform beeinflusst, für die Entscheidung aber völlig
unbedeutend ist. Ferner sind hier natürlich die Signalenergien
nicht mehr gleich gross, indem zum Beispiel Si 0 ist.

Die Herleitung gelingt hier einfacher am kontinuierlichen
Modell ; infolge des vorausgesetzten weissen Rauschens bleiben

auch im Grenzfall die Momentanwerte des Rauschens

aufeinanderfolgender Zeitinkremente statistisch unabhängig.

Das bedingte Risiko des vorliegenden Modelles entspricht
auch hier dem Erwartungswert des Verlustes, den eine

bestimmte Klasse von Signalen hervorruft :

Voraussetzung ist die Signalenergie fast unabhängig von der

tatsächlichen Trägerphase. Dieser konstante Faktor kann
daher nachträglich mit den Schwelle verrechnet werden. Die
somit vereinfachte Entscheidungsfunktion lautet nun:

+ 71 I 1

L(Y) / d q>2 exp {— f
—TT I ' n

y (0 S2 (t, <pz) dt (33)

Gemäss dieser Vorschrift ist das Kreuzkorrelationsprodukt
y(t)Sï(tyi>i,) zwischen dem beobachteten Signal und dem

ungestörten, von der Trägerphase ipi abhängigen Muster über
alle möglichen Phasen zu mittein. Allgemein erscheinen die

zur Entscheidung irrelevanten Parameter in Form von
Erwartungswerten in den Entscheidungsfunktionen. Im
vorliegenden Fall ist es der Erwartungswert der Kreuzkorrelation
über die Trägerphasen. Setzt man im Interesse einer weiteren

Vereinfachung die Amplitude des Trägers im Intervall 0<t^LT
als konstant voraus: Az(t) A, so erhält man durch Einsetzen

von Gl. (29):

+ TZ (2 s4 I
L(Y)= f d ç>2 exp !—- f y (t) cos (»2 t + (pz)\

-n \ « 0 I

Unter Verwendung von trigonometrischen Transformationen

und der Abkürzungen

r [c5 ] Si (pOl : / d (pi p (<Pi) f dy f [y \ Si (ç>0] (Cn <5 (ai | .y) + Ci2 ô (a2 I +)} (30)

Hier wurde mit p Up\) die Dichtefunktion der Trägerphase

gekennzeichnet. Dafür wird im weiteren die Gleichverteilung
vorausgesetzt werden mit:

P (<PÙ :

1

2 n
71 < (/>i ^

es f y (t) sin (cos t) dt

Ce f y{t) cos (co21) dt
0

(34)

Entsprechend Gl. (2) findet man das Risiko durch
Summation aller bedingten Risiken über alle möglichen Signale.

Auch hier ergibt sich als optimale Entscheidungsfunktion ein

Wahrscheinlichkeitsverhältnis, nun aber in erweiterter Form
[vgl. Gl. (9)]:

erhält man schliesslich

+ TT

I
1 2

ô(ai\y)= I ^
falls

1
+7T

j— / f [y I S2 (^2)] dq>2
.71 J

f(y 151)
TtäCia (31

7l\ C21

Im weiteren wird wieder die Gauss-Statistik der
Rauschamplituden vorausgesetzt mit konstanter, einseitiger spektraler
Leistungsdichte r] [W/Hz]:

L Y) J d q>2 exp J -2^- (<?c2 H <?s2) cos | <p + arctan J

Nun ist aber die modifizierte Besselfunktion der Ordnung
Null definiert durch

a + 2tc

/o (z) f exp {z cos 0 j d 0
a

so dass mit dieser Hilfe die Entscheidungsfunktion die folgende
einfache Gestalt annimmt :

L(Y)
~ f d^expLj f[y(t)- S2 (t, </>2)] dt

L(Y)=Io(-fR)^L'o

R ]/ec2 + es2

(35)

(36)

exp / y2 (0 dt (32)

Im folgenden sind zwei Vereinfachungen möglich. Das
zeitliche Integral über y2 (t) ist sicher von der Trägerphase <pi

unabhängig und kann daher weggekürzt werden. Zum zweiten
ist auch das Integral über S22 (t, <P2) von der Trägerphase praktisch

unabhängig, wenn die Modulation Ai (t) in Gl. (29) langsam

im Vergleich zur Trägerfrequenz on erfolgt. Unter dieser

die Umhüllende des Prozesses y(t) darstellt.
Da aber die modifizierte Besselfunktion nullter Ordnung

eine streng monotone Funktion ihres Argumentes ist, mithin
also auch die inverse Funktion definiert ist, kann von Gl. (34)

von beiden Seiten die zur Besselfunktion inverse Funktion
eingesetzt werden, so dass — nach Verrechnung konstanter
Faktoren — die einfache Entscheidungsfunktion

R - " Lo" (37)
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Die Wahrscheinlichkeit P (a2 | <Si) ist demnach gegeben

durch das Integral von p (P [ S Si) über alle P > Z/'o :

p (ai I Si) / f(P[P 5i) dP exp
Lo"

2 (Z/'o)2 I

'7 T I

Auf gleiche Weise findet man die Verteilung der Grössen

ec, es, wenn sie von Signal und Rauschen stammen. Nur
verschwinden ihre Erwartungswerte nicht mehr, sondern es gilt
dann:

und

E (es) - ^
sin <p

E(e c) -4r" cos <p

Fig. 4
Wahrscheinlichkeitsdichten /j. (a) der Umhüllenden von schmalbandigem

Gaußschcm Rauschen mit den Signal/Rausch-Verhältnissen i =- 0,4,8

Pq(x) ist die Rayleigh-Verteilung
/l, /8 Riceverteilung mit dem Signal/Rausch-Verhältnis 4 bzw. 8; x Um¬

hüllende

übrig bleibt. Der optimale inkohärente Detektor untersucht
demnach die Umhüllende am Ausgang des optimalen Filters
und entscheidet sich dann für ein Signal, wenn sie einen
bestimmten Schwellwert überschreitet. Der inkohärente Empfänger

wird daher auch Enveloppen-Detektor genannt.
Bezeichnet man wieder mit m die Wahrscheinlichkeit, dass

kein Signal auftritt (,S'i 0) und mit m die Wahrscheinlichkeit
für ein Signal (S2 4= 0), so gilt für die Fehlerwahrscheinlichkeit
erneut die Beziehung (22). Die Wahrscheinlichkeit P(a2 [ Si),
ein Signal anzuzeigen, wenn tatsächlich keines vorhanden ist,

lautet5) :

P(ß2|Pi) P(P>Z,0")

Nun ist aber die Umhüllende keine gaußsche Zufallsgrösse,
sondern weist, wie sich leicht zeigen lässt, eine Rayleigh-Ver-
teilung auf. Die Hilfsgrössen ec, es in Gl. (34) sind selbst

normalverteilt und weisen, unter der Voraussetzung, dass

Pi 0 war, den Erwartungswert

Die Streuungen bleiben sich jedoch gleich und ebenso
verschwindet wieder ihre Kreuzkorrelation. Für die Dichte der
Umhüllenden findet man mit Hilfe derselben Transformation
die Ricesche Dichtefunktion [5] :

„ „ s 4P 2 P2f (P I S S2) -jf exP (-l-WM-ttHW)
worin Zo wieder die modifizierte Besselfunktion ist (Fig. 4).

Schliesslich gilt für die Wahrscheinlichkeit p (ai | SS), ein
tatsächlich vorhandenes Signal Sz nicht zu erkennen:

Lo"

p (ai I SS) / f (P | P SS) dP
0

Sind die apriori-Wahrscheinlichkeiten m m '/2 und die

Verluste C21 C12 1 wieder gleich gross, so arbeitet der
ideale Beobachter mit der Schwelle

W >/

2Ä lo- Wf«
worin Zo-1 die zur modifizierten Besselfunktion inverse Funktion

darstellt. Diesen Zusammenhang findet man leicht durch
Differentiation der Fehlerwahrscheinlichkeit nach der Schwelle.
Die Fehlerwahrscheinlichkeiten dieses idealen Empfängers
sind in Fig. 4 in Abhängigkeit vom Verhältnis der
Signalenergie zur spektralen Rauschleistungsdichte eingezeichnet.
In der gleichen Figur ist auch die Fehlerwahrscheinlichkeit
eines entsprechenden kohärenten EIN/AUS-Systemes dar-

sowie die Kreuzkorrelation

E(eae c) 0

auf. Die Verbundwahrscheinlichkeit von es, ec ist daher das

Produkt der beiden einzelnen Gaussverteilungen :

1CT0

10"

1ff2

Q*

Eine einfache Transformation der beiden statistischen
Variabein eB, ec in die Umhüllende P nach Gl. (36) ergibt ihre
Dichtefunktion nach Rayleigh :

KT3

1CT

\\\ \ »\ \S \K NjS. 4

B N \N \
v

SRV •

10 15 20

5) mit P(z) wird die Wahrscheinlichkeit des Ereignisses z bezeichnet.

Fig. 5

Fehlerwahrscheinlichkeit des idealen, inkohärenten EIN/AUS-übertra-
gungssystemes A

Zum Vergleich ist der Verlauf des entsprechenden kohärenten Systèmes
B eingetragen

Bezeichnungen siehe Fig. 4

840 (A 615) Bull. ASE 62(1971)17, 21 août



gestellt. Man erkennt, dass der Verlust der Kenntnis der

Trägerphase zu einer Vergrösserung der Fehlerwahrscheinlichkeit

um rund 2,5 dB führt (Fig. 5).

Das beschriebene inkohärente Modell ist in dem Sinne ein

Sonderfall, dass die Modulation des Trägers «schmalbandig»,
das heisst langsam im Vergleich zur Trägerfrequenz vorausgesetzt

wurde, so dass hier der optimale Detektor mit zeitlich
invarianten Filtern aufgebaut werden kann. Im allgemeinen
führt die Optimierung des inkohärenten Detektors jedoch auf
nicht realisierbare, zeitlich veränderliche Filter [7]. Das
inkohärente Übertragungssystem erfordert in jedem Fall ein

etwas grösseres Signal/Rausch-Verhältnis als das kohärente
System, weil durch den zufälligen Parameter <p weitere
Unsicherheit in den Entscheidungsprozess eingeführt wird. Für
einen Vergleich verschiedener kohärenter und inkohärenter
Systeme siehe [4].

4. Schlussbemerkungen

Die beiden untersuchten Modelle stellen die einfachsten
Fälle der Entscheidungstheorie dar. Insbesondere die Frage
nach der Signalerkennung in Rauschen, dessen Leistungsspektrum

nicht konstant ist, wurde nicht behandelt. Auch hier

gelangt man nach denselben Prinzipien zur Struktur des

optimalen Detektors, doch sind dazu wesentlich mächtigere
mathematische Hilfsmittel erforderlich, welche ausserhalb des

Rahmens dieser Einführung liegen [4; 7], Dasselbe gilt auch für
das Problem der Erkennung zufälliger Signale in überlagertem
Rauschen, ein Problem, welches zum Beispiel im Bereich der

Unterwasser-Ortung mit Sonar oder auch in der
Radioastronomie auftritt.
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Commission Internationale de Réglementation

en vue de l'Approbation de l'Equipement Electrique (CEE)
Tagung vom 11. bis 21. Mai 1971 in Kopenhagen

Plenarversammlung
Die CEE hielt ihre Plenarversammlung am 21. Mai 1971 in

Kopenhagen ab. In einer kurzen Ansprache wies der Präsident L. M.
Elfström (Schweden), speziell auf die Notwendigkeit internationaler
Harmonisierung der Normen und guter Zusammenarbeit mit
verwandten Organisationen (CEI, CISPR) zwecks Vermeidung von
Doppelspurigkeiten, sowie auf die Gefahr unnötig umfangreicher
sicherheitstechnischer Vorschriften hin. Die Versammlung ehrte den
am 5. März 1971 verstorbenen Dr. A. Fritz, welcher als österreichisches

Mitglied während vieler Jahre massgeblichen Anteil an den
Arbeiten der CEE gehabt hatte.

Unter den behandelten Traktanden sind folgende Probleme und
Beschlüsse besonders erwähnenswert :

1. Resultat der «Inquiry Procedure» und Beschlüsse betreffend:
1.1 Recommendation for the Resistance of Parts of Insulating

Material to Abnormal Heat and to Fire. Obwohl dieses Dokument noch
nicht komplett ist und durch das Komitee «General Requirements»
noch weiterbearbeitet werden muss, wird es als provisorische
Publikation veröffentlicht.

1.2 Particular Specification for Dish-washing Machines, Section
L of Part II of CEE Publication 10 und Particular Specification foi-
Business Machines, Section P of Part II of CEE Publication 10. Die
vorliegenden Dokumente werden mit der Auflage herausgegeben, sie
den entsprechenden CEI-Publikationen anzupassen, sobald als diese
veröffentlicht sind.

2. Resultat der «Simplified approval procedure» und Beschlüsse
betreffend :

2.1 Modifications to CEE Publication 7, Specification for Plugs
and Socket-outlets for Domestic and Similar Purposes und Modifications

to CEE-Publication 13, Specifications for Polyvinyl Chloride
Insulated Cables and Flexible Cords gehen an die entsprechenden
technischen Komitees zur Bereinigung zurück, da keine einstimmige
Annahme erzielt werden konnte.

2.2 Modification to CEE Publication 22, Specification for
Appliance Couplers for Domestic and Similar General Purposes wird
der Redaktionskommission überwiesen, da einstimmig angenommen.

3. Über die Form, wie und wo Empfehlungen des «Committee
of Testing Stations» publiziert werden sollen, konnte keine Einigkeit

erzielt werden; England wird einen diesbezüglichen Vorschlag
unterbreiten. Der schweizerische Antrag, die Zusammenarbeit der nationalen

Prüfstellen im Rahmen der CEE zu fördern, fand allgemein
Unterstützung, doch es wurde die Erwartung ausgedrückt, dass die
Prüfstellen als Unternehmen in dieser Hinsicht durch bi- und
multilaterale Übereinkommen etwas unternehmen. Eine Einschaltung der
CEE, eventuell des «Committee of Testing Stations» wird als
unmöglich erachtet.

4. Eine eingehende Diskussion über die Einführung des Ê-Zei-
chens als international gültiges Zulassungszeichen ergab keine neuen
Aspekte gegenüber der im «Certification Body» geführten Diskussion

(siehe Bericht über Sitzung des CB vom 20.5.1971).
5. Für die Übernahme («Endorsement») von CEI-Regeln als

CEE-Vorschriften für CB-Prüfungen, welche allgemein wünschenswert

anerkannt wird, konnte noch keine formale Lösung gefunden
werden. Der Generalsekretär wird auf Grund verschiedener schriftlicher

nationaler Stellungnahmen sowie der geführten Diskussion
einen Antrag zu Händen der Plenarversammlung ausarbeiten.

6. Das Komitee «Lighting Fittings and Auxiliaries» beantragt,
die Arbeit für eine Publikation über «Fluorescent Lamp Lighting
Fittings» aufzunehmen, sowie die CEE Publikationen 12 («Fluorescent

Lamp Auxiliaries») und 25 («Incandescent Lamp Lighting
Fittings») zu revidieren. Von verschiedenen Delegierten wird
beantragt, auf diesem Gebiet nur insofern CEE-eigene Publikationen
auszuarbeiten, als keine relevanten CEI-Publikationen vorliegen
oder in Bearbeitung stehen. In diesem Sinne wird beschlossen,
vorläufig keine CEE-Publikation über «Lighting Fittings ans Auxiliaries»

zu bearbeiten, sondern auf die in Kürze bevorstehende
Herausgabe der entsprechenden CEI-Publikation 162 zu warten.
Dasselbe gilt auch für die Revision der reichlich alten CEE-Publikation
12; hier soll die in Arbeit stehende Revision der CEI-Publikation 82

abgewartet werden. Im Gegensatz dazu liegen für «Incandescent
Lamp Lighting Fittings» vorläufig keine entsprechenden CEI-
Arbeiten vor. Es wird deshalb beschlossen, die Revision der CEE-
Publikation 25 zu beschleunigen und gleichzeitig das entsprechende
CEI-Fachkomitee zu ersuchen, seine eventuellen Arbeiten auf diesem
Gebiet zurückzustellen, bis die revidierte CEE-Publikation veröffentlicht

ist.
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