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Einfithrung in die Theorie der Signalerkennung in Rauschen

Von H.J. Schlaepfer, Ziirich

Die vorliegende Arbeit enthilt eine Einfiihrung in die Theo-
rie der Erkennung von Signalen in iiberlagertem Rauschen. Aus-
gehend von einem allgemeinen statistischen Modell eines Ubertra-
gungssystemes fiir digitale Nachrichten wird gezeigt, dass die
optimale Entscheidungsfunktion immer die Form eines Wahr-
scheinlichkeitsverhdltnisses hat («likelihood ratio test»). Als An-
wendungsbeispiele werden anschliessend insbesondere die einfach-
sten Strukturen des optimalen kohdrenten und des optimalen in-
kohdrenten bindren Empfingers bei weissem, additiv iiberlager-
tem gaufischem Rauschen berechnet und ihre Fehlerwahrschein-
lichkeit bestimmt *). Fiir das Verstindnis der Arbeit ist die Kennt-
nis der grundlegenden Zusammenhdnge der Wahrscheinlichkeits-
rechnung unerldsslich.

1. Einleitung

Das Signal am Eingang eines Empfingers wird infolge
nichtidealer Kanaleigenschaften im allgemeinen kein getreues
Abbild mehr dessen sein, was der Sender urspriinglich erzeugt
hat. Neben verschiedenen deterministischen Eigenschaften
(Amplituden-, Phasengang) sind es statistische Parameter,
welche die Qualitit des Ubertragungsmediums bestimmen.
Dabei ist vor allem das Rauschen zu nennen, welches an ver-
schiedenen Stellen in den Kanal hineingelangt und den Signalen
tiberlagert wird; daneben treten aber oftmals auch zufillige
Anderungen der Ubertragungscharakteristik auf, wie Fading
bei Kurzwellenverbindungen, welche an der Inonosphire re-
flektiert werden, sowie die Ausbreitung der Signale iiber ver-
schiedene Pfade mit unterschiedlichen Laufzeiten und schliess-
lich — vor allem bei geschalteten Telephonleitungen — kurz-
zeitige Ausfille der Verbindung. Die vorliegende Arbeit befasst
sich nur mit dem Rauschen, in der Annahme, dass die deter-
ministischen Kanaleigenschaften durch Entzerrer in geeigneter
Weise kompensiert und die iibrigen statistischen Einfliisse
vernachlédssigbar seien.

In einem Ubertragungssystem fiir digitale Daten kennt der
Sender grundsitzlich nur eine beschrinkte Anzahl moglicher
Signale, von denen er in jedem Takt (konstanter Zeitabschnitt)
entsprechend der zu {ibertragenden Nachricht je eines auswahlt
und iibermittelt. Diese abzidhlbare Menge moglicher Signale
geht infolge der zufilligen Storungen im Kanal in eine Vielzahl
moglicher Signalformen tiber, welche der Empfianger an seinem
Ort beobachten kann. Seine Entscheidungsaufgabe besteht
dann in einer Klassifikation der beobachteten Signalmuster zu
bestimmten Entscheiden. Das Ziel der Theorie ist die Definition
eines in noch zu definierender Weise optimalen Empfangers
unter der Voraussetzung, dass die statistischen Eigenschaften
des Rauschens bekannt seinen (parametrische Entscheidungs-
funktionen).

Wenn die grundlegende Theorie auch wesentlich allgemei-
nere Fille erfasst, so soll in der vorliegenden Arbeit die An-
wendung doch auf Probleme beschrinkt werden, wo die

1) Die Arbeit behandelt nur das Problem der Signalerkennung und
nicht die Optimierung der Signale selbst.
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Le travail précité renferme une introduction a la théorie de
la perception des signaux dans le bruit superposé. Partant du mo-
dele statique général d’'un systéme de transmission d’informations,
on démontre que la fonction de décision optimale garde toujours
la forme d’un rapport de probabilité («likelihood ratio test»). A
titre d’exemples d’application, on calcule ensuite plus particulie-
rement les structures les plus simples du récepteur binaire opti-
mal, cohérent et incohérent, au bruit de Gauss blanc superposé,
en déterminat également sa probabilité d’erreur 1). La connais-
sance des relations fondamentales du calcul des probabilités est
indispensable a la compréhension de ce travail.

Statistik des Rauschens mit allen Parametern vollstiandig be-
kannt ist; im speziellen wird hier die Gaussverteilung fiir die
Momentanwerte des Rauschens vorausgesetzt werden, weil sie
zu besonders einfachen Ergebnissen fiihrt. In neueren Arbeiten
sind als sog. nichtparametrische Entscheidungsfunktionen
Empfiangerstrukturen untersucht worden, welche wesentlich
weniger Kenntnisse iiber die Rauschstatistik voraussetzen, und
daher fiir viel allgemeinere Fille giiltig sind. Eine vorziigliche
Einfiihrung in dieses Gebiet gibt die Arbeit von Thomas [1]2),
siehe aber auch [2].

Im folgenden sei ein einfaches statistisches Modell beschrie-
ben, welches zur Herleitung der optimalen Entscheidungs-
funktion dient. Es ist vorldufig noch so allgemein, dass es zur
Untersuchung praktisch aller denkbaren Fille von Uber-
tragungsproblemen digitaler Daten herangezogen werden
kann.

2. Statistisches Modell eines digitalen Ubertragungssystemes

Das fundamentale Modell eines Ubertragungssystemes fiir
digitale Daten ist in Fig. 1 dargestellt. Der Sender, welcher
iiber einen rauschenden Kanal Nachrichten in digitaler Form
an den Empfinger iibermittelt, verfiigt liber eine abzihlbare
Menge von m verschiedenen Signalen S;...Sm. Die Gesamtheit

Signalraum Beobachtungs- Entscheidungs -

raum
A

0 raum r

Sender Emp f @ n g e r

Fig. 1
Statistisches Modell eines digitalen Ubertragungssystemes mit den drei Riu-
men: Signalraum £, Beobachtungsraum /" und Entscheidungsraum A4
f(v|S;) und 5((13 |») stellen die bedingten Ubergangswahrscheinlichkei-
ten der einzelnen Elemente dar
24, 29, 2, Elemente des Signalraumes; ay, ag, ag aj, Elemente des
Entscheidungsraumes; y aktuelles Signal

?) Siehe Literatur am Schluss des Aufsatzes.
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dieser Signale (das Signalalphabeth) bildet den Signalraum €.
Uber diesen Bereich verteilt sind die apriori-Wahrscheinlich-
keiten i, welche angeben, mit welcher relativen Haufigkeit die
einzelnen Signale auftreten. Im speziellen enthélt ein binares
Signalalphabeth nur zwei Signale, zum Beispiel S1 und S2, mit
den apriori-Wahrscheinlichkeiten z1 bzw. 72. Allen Signalen
gemeinsam ist ihre zeitliche Dauer 7T, so dass der Sender nach
je T's mit der Erzeugung eines neuen Signales beginnen kann.

Die Sendersignale fithren am Ort des Empfangers zu Zeit-
funktionen y(¢), welche im allgemeinen nicht mehr mit dem
urspriinglichen Zeichen iibereinstimmen, weil sie vom iiber-
lagerten Rauschen in zum voraus unbekannter Art und Weise
verandert worden sind. Das Modell enthilt daher auch einen
Beobachtungsraum I, in welchem alle moglichen, vom Emp-
fanger beobachtbaren Signale y liegen. Der Ubergang vom
Signalraum auf den Beobachtungsraum stellt eine zufillige
Abbildung dar, weil sie wesentlich von der Statistik des Rau-
schens beeinflusst wird. Immerhin kann bei bekannter Ver-
teilungsfunktion des Rauschens fiir jedes Element y des
Beobachtungsraumes eine bestimmte, bedingte Wahrschein-
lichkeit f(y | Si)3) zu seiner Beobachtung angegeben werden,
wenn ein bestimmtes Signal S; erzeugt worden ist.

Schliesslich muss der Empfanger das Kontinuum moglicher
Beobachtungen im Raume /" in eine abzdhlbare Menge mog-
licher Entscheidungen aj tiberfithren. Diese Abbildung 8(a; | y)
ist nun im Gegensatz zur ersten Transformation (2 — I') de-
terministischer Natur, weil gezeigt werden kann, dass mit zu-
falligen Entscheidungsfunktionen nicht bessere Resultate er-
reichbar sind als mit deterministischen. Der Entscheidungs-
raum A enthilt alle zuldssigen Empfangerentscheide. In Bezug
auf ihre Anzahl k sind folgende drei Fille zu unterscheiden:

a) Die Anzahl k der Elemente des Entscheidungsraumes stimmt
mit der Zahl moglicher Signale iiberein. Es wird zweckmassigerweise
jedem Signal ein bestimmter Entscheid zugeordnet.

b) Die Anzahl der Elemente im Entscheidungsraum ist grosser als

diejenige des Signalraumes. Damit wird gegebenenfalls ein Entscheid
der Unsicherheit in dem Sinne zuléssig, dass der Empféanger dann zu

einem definitiven Entscheid noch zusétzliche Angaben braucht. Diese

Variante fithrt auf Systeme mit Riickfragemoglichkeit oder zur
sequentiellen Entscheidung nach Wald [3], welche laufend so lange
weitere Daten vom Sender anfordern, bis der endgiiltige Entscheid
mit der gewiinschten Sicherheit getroffen werden kann. Wenn mit
einem solchen System auch die Entscheidung — bei gleichen Anfor-
derungen an die Sicherheit — im Mittel schneller moglich ist, als bei
konventionellen, so schrinkt die Tatsache, dass die Signaldauer zu-
fallig wird, ihre Anwendungsmoglichkeit doch wesentlich ein.

¢) Die Zahl der Elemente des Entscheidungsraumes ist dagegen
kleiner als die entsprechende Anzahl der Signale, wenn der Signal-
verlauf nicht in allen seinen Parametern exakt definiert ist und daher
eine ganze Klasse von Signalen ein und derselben Nachricht an-
gehoren. Zum Beispiel ist bei einem Mehrfrequenz-Ubertragungs-
system oft die Phasenlage der einzelnen Signale zuféllig, wahrend
einzig ihre Frequenz den Trager der Information darstellt. Der
Signalraum eines solchen bindren Frequenzumtastsystemes enthélt
demnach zwei Unterrdume, welche je ein Kontinuum mdoglicher
Signale mit den verschiedenen Trigerphasen umfassen (inkohérentes
System). Fiir die Berechnung des optimalen (parametrischen) Emp-
fangers ist die Kenntnis der statistischen Eigenschaften der zufilligen
Parameter erforderlich. Fiir die Tragerphase wird im allgemeinen die
Gleichverteilung angenommen, siche Abschnitt 3.2.

Die Optimierung der Abbildungsfunktion d(a; | ¥) in Fig. 1
stellt das eigentliche Ziel der Theorie dar. Als Optimierungs-
kriterien kommen in Betracht:

%) Mit F(p) wird der Wert der Verteilungsfunktion F einer Zufalls-

grossen an der Stelle y bezeichnet; mit f(y) dagegen ihre Dichtefunk-
tion nach

b
f(y)ZTF(y)
y
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Signal Entscheid

$0<

Ca2
Fig.2

Verlustfaktoren Ci' als Bewertung des Entscheides aj, wenn tatséichlich
das Signal §; gesendet wurde

ay, as Entscheide; Cyy, Cqg, Coy, Coo Verlustfaktoren; Sy, Sy Signale

a) Die Regel von Bayes nach minimalem Risiko;

b) Die Minimax-Regel, welche das geringste Maximum des
Risikos bei Variation der apriori-Wahrscheinlichkeiten sucht;

¢) Das Kriterium von Neyman-Pearson, welches bei einer ge-
gebenen Wahrscheinlichkeit fiir einen Fehlalarm das System mit der
grossten Erkennungswahrscheinlichkeit eines Signales sucht.

Wie gezeigt werden kann, fithren alle drei Kriterien auf
dieselben Entscheidungsstrukturen [4]. Im folgenden wird das
Kriterium von Bayes Anwendung finden, weil es die Herleitung
des optimalen Detektors in besonders einfacher Weise er-
moglicht.

Die Zielfunktion der Optimierung nach Bayes stellt das
Risiko dar. Zu seiner Definition mussen Verlustfaktoren Cij
eingefithrt werden, welche gemdiss Fig. 2 Gewichte der mk
moglichen Kombinationen von Signalen S; und Entscheiden
aj in dem Sinne darstellen, dass Entscheide mit hohen Ver-
lusten moglichst selten sein sollen. Allgemein gilt die Kon-
vention, dass der Verlust eines richtigen Entscheides zu Null
normiert wird, wahrend der Verlustfaktor Cij = 0 fiir i &=/
ist. Als bedingtes Risiko r(é | Si) wird der Erwartungswert 4)
des Verlustes bezeichnet, den ein bestimmtes Signal S; hervor-
ruft. Es hidngt natiirlich von der Entscheidungsfunktion ¢ ab-
und lautet fiir den bindren Fall (k = 2):

r@1Sy=[dyf(yIS){Cud(@|y + Crd@ly| (1)
r

Das Risiko selbst ist schliesslich der Erwartungswert der
bedingten Risiken iiber alle Signale. Hier wird die Haufigkeit
i bedeutungsvoll, mit welcher die einzelnen Signale S; auf-
treten. Man findet fiir das Risiko des zweiwertigen Systemes
(m=2):

2
R(m,8) = > mr(s,S) =

i=

2
2
Unter Beriicksichtigung der Normierung, dass richtige
Entscheide keinen Verlust verursachen sollen, gilt entsprechend :
R (717, 5) = (3)
S {m (18 Crad(az|y) + m2f(y | S2) Coé(a2y))

i

i [ dyf(r1S){Cud(ar|y) + Cizdlaz]y))
r

Das Optimierungskriterium von Bayes verlangt von der
Entscheidungsfunktion, dass sie zum minimalen Risiko fiihre.

%) Als Erwartungswert E(x) einer Zufallsgrosse x wird das Moment
erster Ordnung
+ o0
E(xt) = f xBf(x)dx
— o0

mit n=1 bezeichnet.

(A 610) 835



Ausgehend von der Annahme, dass der Entscheidungsraum
nur die beiden Elemente a1, a2 aufweisen soll und der Tatsache,
dass sicher bei jedem Signal ein Entscheid gefallt wird, gilt:

d(az|ly)=1—46(ar|y) 4

Mit dieser Beziehung kann Gl. (3) umgeformt werden, so
dass nur noch ein Entscheid, z. B. 6 (a1 | ) explizit erscheint:

R(m,d)=m [dyf(y|S1)Ciz+
r

+ [dyo(ar|y) |maf (y]S2) Car — )
I
*ﬂlf(}"lSI)C.Zl}:JlJFJZ

Das erste Integral ist von der Entscheidungsfunktion un-
abhingig, im Verlauf der Optimierung wird daher nur noch /2
untersucht. Im weiteren wird die Abkiirzung

g()=mnaf (| S2) Co1 — 1 f (¥ ]S1) Ciz (6)
eingefiihrt. Der Beobachtungsraum /" kann nun nach folgenden

Kriterien eingeteilt werden:

I'* enthilt alle y, so dass g(y) >0
I'= enthdlt alle ¥, so dass g(y) =0
I~ enthilt alle y, so dass g(y) <0

Damit gilt fiir Is:

L= [dre(3) @y =
J
= [dyg(»oaly — )
T+
— [dylg)|d(ai|y) + [dyg(»)d(ar]y)
T— I'=

Da das dritte Integral stets verschwindet, weil die Wahr-
scheinlichkeit fiir das Ereignis { g(») = 0) selbst gleich null ist,
geniigt es, um das Risiko moglichst klein zu machen, das erste
Integral so klein wie moglich und das zweite so gross wie
moglich zu halten. Dies gelingt dank der Tatsache, dass die
Entscheidungsfunktion nur die beiden Werte 6 = 0,1 an-
nehmen kann, ohne weiteres mit Hilfe der Definition

IO falls g(y») =0

@IN= 1\ fas g0 <0 ®

Unter Berticksichtigung von Gl. (6) findet man nun fiir den
optimalen Empfianger die Entscheidungsfunktion

1 falls LO1S) o mCa
f(y|Se) 1 Ci2
o(aily) = C)]
0 falls LOIS) _ m2Ca
f(y|S2) n1 C1z2

Die Vorschrift des optimalen Empfangers lautet demnach:
Der Entscheid J (a1 | y) = 1 (entsprechend «Signal S1 vor-
handen») wird dann getroffen, wenn der Quotient der beiden
bedingten Wahrscheinlichkeiten f(y | S1), bzw. f(y | S2) gros-
ser ist als die Schwelle 72C21/m1C12, und umgekehrt wird
0 (a2 ]y) =1 (entsprechend «Signal S2 vorhanden») ent-
schieden, wenn der Quotient kleiner ist als diese Schwelle.
Definiert man mit dem Wahrscheinlichkeitsverhiltnis L{y)
(«likelihood ratio») diesen Quotienten der bedingten Wahr-
scheinlichkeiten, so folgt fiir die optimale Entscheidungsvor-
schrift-kurz:

836 (A611)

- m2Ca
L (y) = 75 C1a

(10)

Als Spezialfall sei hier der ideale Empfinger erwiahnt, wel-
cher die beiden falschen Entscheide in gleicher Weise belastet:

Cor=Cr2=1

Er weist die Eigenschaft auf, dass nicht nur das Risiko,
sondern auch die Fehlerwahrscheinlichkeit minimal ist.

Die vorliegende Entscheidungsfunktion nach Gl. (9) gilt
fiir alle bindiren Empfinger, welche nach dem Kriterium eines
minimalen Risikos optimiert werden. Die Spezialisierung auf
einzelne Fille erfolgt dadurch, dass die Wahrscheinlichkeits-
dichte f(y | Si) von der tatsdchlich vorliegenden Rauschsta-
tistik abhiangt, nidmlich von der Verteilungsfunktion der Mo-
mentanwerte des Rauschens sowie — iiber die Korrelations-
funktion — von den spektralen Eigenschaften der Storungen.
Wenn eine exakte Realisierung der optimalen Entscheidungs-
funktion infolge ihrer Komplexitat auch oft unzweckmadssig
sein kann, so erlaubt die Theorie doch die Funktionsweise des
bestmoglichen Systemes zu bestimmen und seine Leistungs-
fahigkeit zu berechnen, so dass bei der Frage nach einem
moglichen suboptimalen System doch eine Bilanz zwischen
Aufwand zur Realisierung und moglicher Entscheidungs-
sicherheit erleichtert wird.

Die eben durchgefiihrte Herleitung gilt fiir den bindren
Fall (m = 2). Den optimalen m-wertigen Detektor mit m>2
findet man auf ganz dhnliche Weise. Das Risiko R muss dann
iiber alle m mit den verschiedenen Signalen verbundenen be-
dingten Risiken gerechnet werden, so dass entsprechend G1.(2)
gilt:

m m
R(mo)=> m [dyf (¥[5) > Ciid(aily)
s :

i=1 i=1

an

wobei wieder die Einschriankungen einer deterministischen
Entscheidungsfunktion giiltig sind:

> daily =1
=1
d(ajly)=0,1

Erneut konnen die apriori-Wahrscheinlichkeiten 7, die
Verlustfaktoren Ci; und die Ubergangswahrscheinlichkeiten
f(y | Si) zusammengefasst werden in

Ai ()= > mCyf (¥ Sy (12)

i=1
so dass man fiir das Risiko findet:
R(m,8)= > [dyd;(»)dai|y)
i=1T

Hier wird nun der Beobachtungsraum I~ derart in m Bereiche
unterteilt, dass in jedem Unterraum Ik gilt:

13)

Man findet in der Folge fiir die optimale Entscheidungs-
funktion [4]:

I'x: enthilt alle y, so dass Ax (¥) = min. 4; ()
i

0 falls A;(y) < minAi(y)

d(ajly) =
WID= Wy e A5 i)

Bull. ASE 62(1971)17, 21 aofit



Der ideale m-wertige Empfianger, welcher die richtigen
Entscheide mit Ci; = 0 und die falschen mit Ci; =1 (i # j)
bewertet, bildet unter Beriicksichtigung von GI. (13) die
Entscheidungsfunktion:

0 falls =;f (y|Sj) <maxnef (y|Sk)
k

o1 (ajly) = (14)

1 falls 7#;f (y]S;) =maxmf (y|Sk)
k
Durch Anwendung des Satzes von Bayes [5] kann diese
Funktion tibergefiihrt werden in:

0 falls f(S;|y) <maxf (Sx|y)
k

R 5
I(a.] \J’) 1 falls f (SJ ‘y) = maXf(Skly) ( )
k

Der optimale m-wertige Empfanger (m = 2) bestimmt also
dasjenige Zeichen Sk, dessen (nachtriagliche) aposteriori-Wahr-
scheinlichkeit f(Sk | y) maximal ist, nachdem das Signal y
beobachtet wurde.

In den folgenden Abschnitten wird gezeigt, wie die generelle
Entscheidungsvorschrift des optimalen bindren Empfingers
nach Gl. (9) eingesetzt wird, um fiir einige Spezialfille explizite
Strukturen zu finden.

3. Anwendung der Theorie auf einige Spezialfille

3.1 Der optimale kohdrente Empfinger

Den allereinfachsten Fall der Entscheidung stellt der binire
kohiarente Empféinger bei additiv tiberlagertem, weissem gaul3-
schem Rauschen dar. Der kohdrente Empfanger zeichnet sich
dadurch aus, dass ihm die Signale in allen seinen Einzelheiten
zum voraus bekannt sind; im Gegensatz dazu muss bei einem
inkohidrenten Empfinger die Triagerphase der Signale als
Zufallsgrosse betrachtet werden, wodurch der Entscheidungs-
vorgang etwas erschwert wird (siche Abschnitt 3.2). Das weisse
gaullsche Rauschen besitzt eine konstante spektrale Leistungs-
dichte bei allen Frequenzen und zeigt eine gauBsche Verteilung
seiner Momentanwerte.

Fiir die Anwendung der Theorie wird eine Vektordarstel-
lung der Signale verwendet, wobei mit einem Grenziibergang
am Schluss der Ableitung die Struktur eines kontinuierlich
arbeitenden Empfingers gefunden werden kann. Das vom
Empfianger in zeitlichen Intervall k T < t<< ( k+1) T beob-
achtete Signal y(r) wird zu diesem Zweck an m Stiitzstellen
abgetastet und die Folge der erhaltenen Momentanwerte als
Vektor (y) interpretiert:

Y=y(t),y@),..y (tm)

Auf Grund der linearen Uberlagerung von Signal und Rau-
schen gilt die Vektorbeziehung:

Y=S+N

Unter der Voraussetzung von weissem gaullschem Rauschen
sind die Elemente n; des Rauschvektors IV unabhingige, nor-
malverteilte Zufallsgrossen, so dass die Verbundwahrschein-
lichkeit der Momentanwerte n:...nm gegeben ist und durch die
m-dimensionale Gaussverteilung:

m
z ni2
fx (N) = fx (n11...nm) = W exXp — % - (16)
S S— 11
Qro®)nl p 202
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(Darin ist mit | IV | der Betrag des Vektors IN und o2 die
mittlere Rauschleistung). Entsprechend den Ergebnissen des
letzten Abschnittes bildet der optimale Empfinger das Wahr-
scheinlichkeitsverhiltnis

f(Y|S8)

LAY )= f(Y|S2)

= Lo a7
und trifft seinen Entscheid in Abhéngigkeit davon, ob dieser
Quotient grosser oder kleiner als eine gewisse Schwelle Lo ist.
Nun kann leicht gezeigt werden, dass fiir die bedingte Wahr-
scheinlichkeit f(Y | Sx) des beobachteten Vektors ¥, unter

der Voraussetzung, dass das Signal Sk erzeugt wurde, gilt [4]:
f(Y]Sk) =fn(Y— Sx)

so dass das Wahrscheinlichkeitsverhiltnis in Gl. (17) folgender-
massen dargestellt werden kann:

fx (Y — S1)

L(¥)= T~ (Y — S2)

(18

Setzt man darin die Gaussverteilung nach GI. (16) ein, so
findet man nach einiger Rechnung

(1812 —[82[2 4 2[¥][Se]T — 2[Y][S1]"
202

L(Y)=exp (18)
wobei mit [S2]T die transponierte Form der Matrix [Ss] be-
zeichnet wurde. Da die Entscheidungsaufgabe in einem Ver-
gleich dieser Grosse mit einem Schwellwert besteht, kann
ebensogut auch der Logarithmus verwendet werden. weil er
eine streng monotone Funktion seines Argumentes ist. Man
erhilt damit fiir die Entscheidungsfunktion des optimalen
kohidrenten Empféangers unter Berticksichtigung von Gl. (9):

1 Ci2

[S112— |22+ 2 [YI[Sal® - 2[Y][S1[T = 20%In {72 2

| (19)

Trifft man die vereinfachenden Annahmen, dass die beiden
Signale gleiche Energie ¢ = | S1 |2 = | Sz | 2 aufweisen, ferner
dass die Verlustfaktoren C2; = Ci2 sowie die apriori-Wahr-
scheinlichkeiten 71 = 72 gleich gross seien, so ergibt sich
diese Entscheidungsregel in ihrer einfachsten Form:

Entscheid «Signal S2 vorhanden», falls [Y] [S2]T = [Y][S1]T

Entscheid «Signal S1 vorhanden», falls [Y] [S2]T < [Y][S1]T R

Man erkennt leicht eine fundamentale Eigenschaft dieses
optimalen Empfangers, dass ndmlich seine Entscheidung auf
den Produkten [Y] [Sk]™ beruht. Diese Grossen sind aber
nichts anderes als eine diskrete Form der Kreuzkorrelation
zwischen dem beobachteten Signal ¥ und dem ungestorten
Muster Sx. Der Empfinger entscheidet sich fiir dasjenige
Signal, dessen Kreuzkorrelation mit dem beobachteten Vektor
Y iiberwiegt. Er wird deshalb auch Korrelationsdetektor ge-
nannt.

Wenn die Zahl m der Proben tiber alle Grenzen anwichst
und gleichzeitig — als Folge des vorausgesetzten weissen
Rauschens — die Momentanwerte von y(r) statistisch unab-
hingig bleiben, so erhdlt man im Grenzfall den kontinuier-
lichen Korrelationsdetektor, dessen Funktion dem angepassten
Filter («matched filter») entspricht. In der Tat sind Korrela-
tion und Filterung mit dem optimalen Filter bei additivem
weissen Rauschen zwei verschiedene Interpretationen ein und
desselben Vorganges. Sie unterscheiden sich nur darin, dass
man die Korrelation als Vorgang im Zeitbereich, die Filterung
dagegen im Frequenzbereich betrachtet.
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Fig. 3
Fehlerwahrscheinlichkeiten Pe des kohiirenten Syst mit entgegengesetzten
Signalen (cos ¢ = -1) und orthogonalen Signalen (cos ¢ = 0) in Funktion

des Verhiiltnisses SRY von Signalenergie ¢ zur mittleren Rauschleisfung c2
SRV Signal/Rausch-Verhiltnis

Fiir die Fehlerwahrscheinlichkeit P. des Detektors nach
Gl. (19) gilt

Po =11 P(as | S1) + 72 P (a1 | S2) (22)

worin z. B. mit P(az | S1) die Ubergangswahrscheinlichkeit
des Signales S7 in den Entscheid a2 bezeichnet wird. Setzt man
fiir beide Signale gleiche Energien ¢ = | S1|2 = | S2 | 2 vor-
aus, so wird immer dann der Entscheid a2 getroffen, wenn
nach Gl. (19) gilt:

(23)

[YIES21" — (YIS = o%In [ Z1C12)

2 C21

Im weiteren wird noch [Si] [S2]F = ¢ cos @ definiert, so
dass cos @ den normierten Kreuzkorrelationskoeffizienten
oder @ den Winkel zwischen den beiden Signalen [S1], [S2] im
m-dimensionalen Raum darstellt. Die Entscheidungsfunktion
in Gl. (22) kann wie folgt umgeformt werden:

[Y][S2]" — [Y][S1]" = elcos (@) — 1] + [N([S2] — [S1DT (24)

Die Ubergangswahrscheinlichkeit P(as | S1) umfasst dem-
nach alle Félle, bei denen die Schwelle in Gl. (23) kleiner ist
als die rechte Seite in Gl. (24). Diese Grosse stellt aber eine
normalverteilte Zufallszahl dar, welche, wie sich durch Ein-
setzten leicht zeigen ldsst, den Erwartungswert

Ue = ecos @ — 1]
und die Streuung
g2 =202¢(1 — cos D)

aufweist. Damit lautet die Wahrscheinlichkeit des Entscheides
(az | S1):

g 1 (x — ue)?

P(az|S1) = ————exp — —, dx =

2 £1C12‘ VZ 7 Ge? 20¢?

2 nT:zCzl (25)

azlnmic12 +e(l — cos D)
=1—erf 8 Ol
V262 e(l — cos D)

838 (A 613)

wobei mit
z

1 12
erf(z) = [ ———exp — - dt
S
die normierte Fehlerfunktion bezeichnet wurde, deren Funk-
tionswerte tabelliert sind, z. B. in [6]. Entsprechend findet man
fiir die Wahrscheinlichkeit P(a1 | S2) den Ausdruck:

71 Ci2
2 Ca1
V262 (1 —cos D) ¢

cZln —&(1 — cos D)

(26)

P(a1]S2) =erf

Die Fehlerwahrscheinlichkeit des gesamten Systems ergibt
sich nun durch Einsetzen der Gl. (25) und (26) in GI. (22). Hier
soll nur der Spezialfall des idealen Beobachters (Co1 = C12 = 1)
mit gleichen apriori-Wahrscheinlichkeiten 71 = 72 = 15 unter-
sucht werden. Er weist entsprechend GIl. (25) und (26) die
Fehlerwahrscheinlichkeit

Pe=1 —erf{‘/@}

3 52 (27)

auf. An diesem Ergebnis ist die interessante Tatsache festzu-
halten, dass in einem bindren System mit gleichwahrschein-
lichen Zeichen nur das Verhiltnis von Signalenergie ¢ zur
mittleren Rauschleistung o2 sowie das innere Produkt (Kreuz-
korrelation) cos @ der beiden Signale die Fehlerwahrschein-
lichkeit bestimmen. und nicht etwa die tatsdchliche Form der
Signale. Optimiert man daher den Kreuzkorrelationskoef-
fizienten so, dass die Fehlerwahrscheinlichkeit minimal wird,

so findet man:
_ e
e=1—erf [‘/?2--]

Diese minimale Fehlerwahrscheinlichkeit wird dann er-
reicht, wenn cos @ = —1 oder [S1 [S2]T = —¢ ist, das heisst,
wenn im m-dimensionalen Vektorraum die Signale einen
moglichst grossen Abstand voneinander aufweisen («sich
moglichst stark voneinander unterscheiden»). Dabei handelt
es sich um entgegengesetzte Signale, wihrend Signale mit
verschwindender Kreuzkorrelation [S1][S2]T = 0 orthogonal
genannt werden. In Fig. 3 ist der Verlauf der Fehlerwahrschein-
lichkeiten fiir verschiedene Signal/Rausch-Verhéltnisse fir die
beiden Fille entgegengesetzter Signale (cos @ = —1) und
orthogonaler Signale (cos @ = 0) dargestellt.

(28)

3.2 Der optimale inkohdrente Empfinger

Inkohérent heisst ein Empfanger dann, wenn ihm die
Triagerphase ¢i eines Signales der Form

Si (2, ¢1) = Ai () cos (wi t + ¢1) 29)

zum voraus nicht bekannt ist, und er sie demzufolge als Zu-
fallsgrosse betrachten muss. Das inkohidrente System ist ein
Spezialfall der statistischen Entscheidung zwischen mehr-
fachen Hypothesen, indem die Unterraume Q; eines Signal-
raumes 2 selbst noch eine belicbige Menge von einzelnen
Elementen umfassen konnen, nimlich die Signale si (¢, ¢) einer
Klasse S; mit allen moglichen Tragerphasen ¢. Eine weitere
Verallgemeinerung kann zum Beispiel darin bestehen, dass die
Signalamplitude zufilligen Schwankungen unterworfen ist.
Die Herleitung eines im Sinne von Bayes optimalen Detektors
erfolgt auch dann auf ganz entsprechende Weise, vorausgesetzt
immer, dass die statistischen Eigenschaften all dieser Para-
meter (Tragerphase, Signalamplitude, usw.) bekannt sind.
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Trotzdem wird die optimale Struktur infolge ihrer Komplexitét
nicht mehr realisierbar sein, und nur als Grenze des theoretisch
erreichbaren dienen konnen.

In diesem Abschnitt soll der allereinfachste Fall eines bi-
niren, inkohidrenten Empfingers nach [4] behandelt werden,
wobei der Optimierung hier ein bindres EIN/AUS-System zu-
Grunde gelegt sei, dessen Struktur besonders iibersichtlich
wird. Die Herleitung der optimalen Entscheidungsfunktion,
welche mit minimalem Risiko entscheidet, ob das Signal ge-
mass GI. (29) anwesend ist oder nicht, fiihrt iiber den gleichen
Weg wie beim kohirenten Empfianger, so dass hier nur die
Unterschiede skizziert zu werden brauchen. Die entscheidende
Anderung besteht darin, dass hier das Signal nicht mehr in
allen Teilen exakt bekannt ist, sondern vielmehr von einem
weiteren Parameter ¢ abhingt, welcher zwar die tatsachliche
Signalform beeinflusst, fiir die Entscheidung aber vollig un-
bedeutend ist. Ferner sind hier natiirlich die Signalenergien
nicht mehr gleich gross, indem zum Beispiel S1 = 0 ist.

Die Herleitung gelingt hier einfacher am kontinuierlichen
Modell; infolge des vorausgesetzten weissen Rauschens bleiben
auch im Grenzfall die Momentanwerte des Rauschens auf-
einanderfolgender Zeitinkremente statistisch unabhingig.

Das bedingte Risiko des vorliegenden Modelles entspricht
auch hier dem Erwartungswert des Verlustes, den eine be-
stimmte Klasse von Signalen hervorruft:

(61 Si(pl = [doip(e) [dyf[y]Si(el{Cind(arly) + Cizd(az]y))
!

@i

Hier wurde mit p (i) die Dichtefunktion der Trigerphase
gekennzeichnet. Dafiir wird im weiteren die Gleichverteilung
vorausgesetzt werden mit:

(o) =iz —r<p<+n
D\pi) = 2 Pi =

Entsprechend Gl. (2) findet man das Risiko durch Sum-
mation aller bedingten Risiken iiber alle moglichen Signale.
Auch hier ergibt sich als optimale Entscheidungsfunktion ein

Wahrscheinlichkeitsverhiltnis, nun aber in erweiterter Form
[vel. Gl. (9)]:

+ 7
1
[1 ﬁ_fﬂf[y\SZ(wz)]dwz v Cra D
oarly)= falls - =
o f(y S m1 Ca1

Im weiteren wird wieder die Gauss-Statistik der Rausch-
amplituden vorausgesetzt mit konstanter, einseitiger spektraler
Leistungsdichte n [W/Hz]:

1 + 7 1 T 2‘
~27_f d(ozexp{~7 Lf [y (1) — sz (£, p2)] dt] |
L(Y)=——=F

exp [—L [[Tyz (r)drr‘ (32)
EAF J

Im folgenden sind zwei Vereinfachungen moglich. Das
zeitliche Integral iiber y2 (7) ist sicher von der Trigerphase g2
unabhédngig und kann daher weggekiirzt werden. Zum zweiten
ist auch das Integral tiber 522 (¢, p2) von der Trigerphase prak-
tisch unabhéngig, wenn die Modulation A4; (7) in GI. (29) lang-
sam im Vergleich zur Trigerfrequenz w; erfolgt. Unter dieser
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Voraussetzung ist die Signalenergie fast unabhingig von der
tatsdchlichen Trigerphase. Dieser konstante Faktor kann
daher nachtriglich mit den Schwelle verrechnet werden. Die
somit vereinfachte Entscheidungsfunktion lautet nun:

+1m j ) T
L(Y)= [ dpzexp lT’-fy(t)52(f, p2) dt (33)
o 11 0

Gemass dieser Vorschrift ist das Kreuzkorrelationsprodukt
y(t)sa(t,p2) zwischen dem beobachteten Signal und dem un-
gestorten, von der Triagerphase ¢o abhingigen Muster iiber
alle moglichen Phasen zu mitteln. Allgemein erscheinen die
zur Entscheidung irrelevanten Parameter in Form von Er-
wartungswerten in den Entscheidungsfunktionen. Im vorlie-
genden Fall ist es der Erwartungswert der Kreuzkorrelation
uber die Tragerphasen. Setzt man im Interesse einer weiteren
Vereinfachung die Amplitude des Tragers im Intervall 0 <t<T
als konstant voraus: A2(t) = A, so erhélt man durch Einsetzen
von GI. (29):

4 ’ZA T
L(Y)= [ dgsexp ley(r)cos(w2t+¢2)
0

T

Unter Verwendung von trigonometrischen Transformatio-
nen und der Abkiirzungen

(30)

i
es= [ y(t)sin(wa1)dt
0
. (34
e. = fy(t)cos (w2 t)dt
0

erhilt man schliesslich

+ 7
L(Y)= f d ¢s exp {%4 (ec? + es?) cos [(o + arctan ,,e”f{]}
o ¢
Nun ist aber die modifizierte Besselfunktion der Ordnung
Null definiert durch

a+2m
I (z) = f exp{zcos @} de
*%
so dass mit dieser Hilfe die Entscheidungsfunktion die folgende
einfache Gestalt annimmt:

_ . (24AR ,
L(Y)—Io( g )zLo (35)
worin
R=}ee? | e (36)

die Umbhiillende des Prozesses y(¢) darstellt.

Da aber die modifizierte Besselfunktion nullter Ordnung
eine streng monotone Funktion ihres Argumentes ist, mithin
also auch die inverse Funktion definiert ist, kann von GI. (34)
von beiden Seiten die zur Besselfunktion inverse Funktion
eingesetzt werden, so dass — nach Verrechnung konstanter
Faktoren — die einfache Entscheidungsfunktion

R=Ly (37)
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‘Wahrscheinlichkeitsdichten p; (x) der Umhiillenden von schmalbandigem
Gauflschem Rauschen mit den Signal/Rausch-Verhiiltnissen i = 0,4,8
po(x) ist die Rayleigh-Verteilung
/4> fg Riceverteilung mit dem Signal/Rausch-Verhiltnis 4 bzw. 8; x Um-
hiillende

iibrig bleibt. Der optimale inkohdrente Detektor untersucht
demnach die Umhiillende am Ausgang des optimalen Filters
und entscheidet sich dann fiir ein Signal, wenn sie einen be-
stimmten Schwellwert iiberschreitet. Der inkohdrente Empfén-
ger wird daher auch Enveloppen-Detektor genannt.

Bezeichnet man wieder mit 71 die Wahrscheinlichkeit, dass
kein Signal auftritt (S1 = 0) und mit 72 die Wahrscheinlichkeit
fiir ein Signal (S2 == 0), so gilt fiir die Fehlerwahrscheinlichkeit
erneut die Bezichung (22). Die Wahrscheinlichkeit P(as | S1),
ein Signal anzuzeigen, wenn tatsichlich keines vorhanden ist,
lautet 5):

P(az|S1) = P(R> Ly
Nun ist aber die Umhiillende keine gauBBsche Zufallsgrosse,
sondern weist, wie sich leicht zeigen ldsst, eine Rayleigh-Ver-
teilung auf. Die Hilfsgrossen ec, es in Gl. (34) sind selbst

normalverteilt und weisen, unter der Voraussetzung, dass
S1 = 0 war, den Erwartungswert

E(ec) = E(es) =0
und die Streuung

E(eed) = E(e?) =]

sowie die Kreuzkorrelation
E (6’ € c) =0

auf. Die Verbundwahrscheinlichkeit von e, ec ist daher das
Produkt der beiden einzelnen Gaussverteilungen:

f(ec, es) = A exp {

- g(ecz + esz)}
anT

nT

Eine einfache Transformation der beiden statistischen Va-
riabeln es, ec in die Umhiillende R nach GI. (36) ergibt ihre
Dichtefunktion nach Rayleigh:

4R 2 R?
f(R]S*Sl)—ﬁCXp—‘ﬁ

Die Wahrscheinlichkeit P (az | S1) ist demnach gegeben
durch das Integral von p (R | S = S1) uber alle R = L’y:

®) mit P(z) wird die Wahrscheinlichkeit des Ereignisses z bezeichnet.

840 (A 615)

o0
2 L// 2
pla S = [ T(RIS=5)dR=exp | J,,Q}
Ly nT
Auf gleiche Weise findet man die Verteilung der Grossen
e, es, wenn sie von Signal und Rauschen stammen. Nur ver-
schwinden ihre Erwartungswerte nicht mehr, sondern es gilt

dann:

E (es) = % sin ¢

und

E(ec) = A1 cos @
2
Die Streuungen bleiben sich jedoch gleich und ebenso ver-
schwindet wieder ihre Kreuzkorrelation. Fiir die Dichte der
Umhiillenden findet man mit Hilfe derselben Transformation
die Ricesche Dichtefunktion [5]:

f(R|S=Sz>=%eXP [— ﬁ]e)‘p{_é;nz} ”(2:;4TR)

worin Ip (.) wieder die modifizierte Besselfunktion ist (Fig. 4).
Schliesslich gilt fiir die Wahrscheinlichkeit p (a1 | S2), ein
tatsidchlich vorhandenes Signal S2 nicht zu erkennen:

Lo”
plai|S2)= [ f(R|S=S2)dR
0

Sind die apriori-Wahrscheinlichkeiten 71 = 72 = 14 und die
Verluste C21 = Ci12 = 1 wieder gleich gross, so arbeitet der
ideale Beobachter mit der Schwelle

=g oo ()
Lo ZAIO exp 20

worin Ip~! die zur modifizierten Besselfunktion inverse Funk-
tion darstellt. Diesen Zusammenhang findet man leicht durch
Differentiation der Fehlerwahrscheinlichkeit nach der Schwelle.
Die Fehlerwahrscheinlichkeiten dieses idealen Empfingers
sind in Fig. 4 in Abhangigkeit vom Verhiltnis der Signal-
energie zur spektralen Rauschleistungsdichte eingezeichnet.
In der gleichen Figur ist auch die Fehlerwahrscheinlichkeit
eines entsprechenden kohidrenten EIN/AUS-Systemes dar-
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~
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Fig.5

Fehlerwahrscheinlichkeit des idealen, inkohiirenten EIN/AUS-Ubertra-
gungssystemes 4
Zum Vergleich ist der Verlauf des entsprechenden kohirenten Systemes
B eingetragen

Bezeichnungen siehe Fig. 4
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gestellt. Man erkennt, dass der Verlust der Kenntnis der
Trigerphase zu einer Vergrosserung der Fehlerwahrscheinlich-
keit um rund 2,5 dB fiihrt (Fig. 5).

Das beschriebene inkohirente Modell ist in dem Sinne ein
Sonderfall, dass die Modulation des Trigers «schmalbandig»,
das heisst langsam im Vergleich zur Tragerfrequenz voraus-
gesetzt wurde, so dass hier der optimale Detektor mit zeitlich
invarianten Filtern aufgebaut werden kann. Im allgemeinen
fithrt die Optimierung des inkohérenten Detektors jedoch auf
nicht realisierbare, zeitlich verdnderliche Filter [7]. Das in-
kohirente Ubertragungssystem erfordert in jedem Fall ein
etwas grosseres Signal/Rausch-Verhiltnis als das kohédrente
System, weil durch den zufilligen Parameter ¢ weitere Un-
sicherheit in den Entscheidungsprozess eingefiihrt wird. Fiir
einen Vergleich verschiedener kohidrenter und inkohéirenter
Systeme siche [4].

4. Schlussbemerkungen

Die beiden untersuchten Modelle stellen die einfachsten
Fille der Entscheidungstheorie dar. Insbesondere die Frage
nach der Signalerkennung in Rauschen, dessen Leistungs-
spektrum nicht konstant ist, wurde nicht behandelt. Auch hier

gelangt man nach denselben Prinzipien zur Struktur des opti-
malen Detektors, doch sind dazu wesentlich méichtigere mathe-
matische Hilfsmittel erforderlich, welche ausserhalb des Rah-
mens dieser Einfiihrung liegen [4; 7]. Dasselbe gilt auch fiir
das Problem der Erkennung zufilliger Signale in iiberlagertem
Rauschen, ein Problem, welches zum Beispiel im Bereich der
Unterwasser-Ortung mit Sonar oder auch in der Radio-
astronomie auftritt.
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Commission Internationale de Réglementation

en vue de ’Approbation de ’Equipement Electrique (CEE)

Tagung vom 11. bis 21. Mai 1971 in Kopenhagen

Plenarversammlung

Die CEE hielt ihre Plenarversammlung am 21. Mai 1971 in
Kopenhagen ab. In einer kurzen Ansprache wies der Prisident L. M.
Elfstrom (Schweden), speziell auf die Notwendigkeit internationaler
Harmonisierung der Normen und guter Zusammenarbeit mit ver-
wandten Organisationen (CEI, CISPR) zwecks Vermeidung von
Doppelspurigkeiten, sowie auf die Gefahr unnétig umfangreicher
sicherheitstechnischer Vorschriften hin. Die Versammlung ehrte den
am 5. Mérz 1971 verstorbenen Dr. A. Fritz, welcher als dsterreichi-
sches Mitglied wihrend vieler Jahre massgeblichen Anteil an den
Arbeiten der CEE gehabt hatte.

Unter den behandelten Traktanden sind folgende Probleme und
Beschliisse besonders erwdhnenswert :

1. Resultat der «Inquiry Procedure» und Beschliisse betreffend :

1.1 Recommendation for the Resistance of Parts of Insulating Ma-
terial to Abnormal Heat and to Fire. Obwohl dieses Dokument noch
nicht komplett ist und durch das Komitee «General Requirements»
noch weiterbearbeitet werden muss, wird es als provisorische Publi-
kation veroffentlicht.

1.2 Particular Specification for Dish-washing Machines, Section
L of Part IT of CEE Publication 10 und Particular Specification for
Business Machines, Section P of Part II of CEE Publication 10. Die
vorliegenden Dokumente werden mit der Auflage herausgegeben, sie
den entsprechenden CEI-Publikationen anzupassen, sobald als diese
veroffentlicht sind.

2. Resultat der «Simplified approval procedure» und Beschliisse
betreffend:

2.1 Modifications to CEE Publication 7, Specification for Plugs
and Socket-outlets for Domestic and Similar Purposes und Modifi-
cations to CEE-Publication 13, Specifications for Polyvinyl Chloride
Insulated Cables and Flexible Cords gehen an die entsprechenden
technischen Komitees zur Bereinigung zuriick, da keine einstimmige
Annahme erzielt werden konnte.

2.2 Modification to CEE Publication 22, Specification for Ap-
pliance Couplers for Domestic and Similar General Purposes wird
der Redaktionskommission iiberwiesen, da einstimmig angenommen.

3. Uber die Form, wie und wo Empfehlungen des « Committee
of Testing Stations» publiziert werden sollen, konnte keine Einigkeit
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erzielt werden; England wird einen diesbeziiglichen Vorschlag unter-
breiten. Der schweizerische Antrag, die Zusammenarbeit der natio-
nalen Priifstellen im Rahmen der CEE zu f6rdern, fand allgemein
Unterstiitzung, doch es wurde die Erwartung ausgedriickt, dass die
Priifstellen als Unternehmen in dieser Hinsicht durch bi- und multi-
laterale Ubereinkommen etwas unternehmen. Eine Einschaltung der
CEE, eventuell des «Committee of Testing Stations» wird als un-
moglich erachtet.

4. Eine eingehende Diskussion iiber die Einfithrung des E-Zei-
chens als international giiltiges Zulassungszeichen ergab keine neuen
Aspekte gegeniiber der im «Certification Body» gefiihrten Diskus-
sion (siehe Bericht iiber Sitzung des CB vom 20.5.1971).

5. Fiir die Ubernahme («Endorsement») von CEI-Regeln als
CEE-Vorschriften fiir CB-Priifungen, welche allgemein wiinschens-
wert anerkannt wird, konnte noch keine formale Losung gefunden
werden. Der Generalsekretdar wird auf Grund verschiedener schrift-
licher nationaler Stellungnahmen sowie der gefiihrten Diskussion
einen Antrag zu Handen der Plenarversammlung ausarbeiten.

6. Das Komitee «Lighting Fittings and Auxiliaries» beantragt,
die Arbeit fiir eine Publikation iiber «Fluorescent Lamp Lighting
Fittings» aufzunehmen, sowie die CEE Publikationen 12 («Fluores-
cent Lamp Auxiliaries») und 25 («Incandescent Lamp Lighting
Fittings») zu revidieren. Von verschiedenen Delegierten wird be-
antragt, auf diesem Gebiet nur insofern CEE-eigene Publikationen
auszuarbeiten, als keine relevanten CEI-Publikationen vorliegen
oder in Bearbeitung stehen. In diesem Sinne wird beschlossen, vor-
laufig keine CEE-Publikation iiber «Lighting Fittings ans Auxili-
aries» zu bearbeiten, sondern auf die in Kiirze bevorstehende Her-
ausgabe der entsprechenden CEI-Publikation 162 zu warten. Das-
selbe gilt auch fiir die Revision der reichlich alten CEE-Publikation
12; hier soll die in Arbeit stehende Revision der CEI-Publikation 82
abgewartet werden. Im Gegensatz dazu liegen fiir «Incandescent
Lamp Lighting Fittings» vorldufig keine entsprechenden CEI-
Arbeiten vor. Es wird deshalb beschlossen, die Revision der CEE-
Publikation 25 zu beschleunigen und gleichzeitig das entsprechende
CEI-Fachkomitee zu ersuchen, seine eventuellen Arbeiten auf diesem
Gebiet zuriickzustellen, bis die revidierte CEE-Publikation veroffent-
licht ist.
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