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'BULLETIN

DES SCHWEIZERISCHEN ELEKTROTECHNISCHEN VEREINS

Gemeinsames Publikationsorgan des Schweizerischen Elektrotechnischen Vereins (SEV)
und des Verbandes Schweizerischer Elektrizitdtswerke (VSE)

Signalerkennung mit parametrischen und nichtparametrischen Methoden

Von H.J. Schlaepfer, Ziirich.

Die vorliegende Arbeit enthilt in Anlehnung an [11" eine
kurze Einfiihrung in das Problem der Erkennung von Signalen
mit bekanntem zeitlichen Verlauf in iiberlagertem Rauschen. Im
besonderen werden nichtparametrische und parametrische Me-
thoden einander gegeniibergestellt und im Hinblick auf die Reali-
sierungsmaoglichkeit und die Leistungsfdhigkeit miteinander ver-
glichen. Es werden einige neue Ergebnisse von Berechnungen des
Wirkungsgrades des (nichtparametrischen) Vorzeichen-Detektors
bei endlichen Stichprobenzahlen und gaufischem Rauschen gege-
ben. Fiir das Verstindnis der Arbeit ist die Kenntnis der grund-
legenden Zusammenhinge der Wahrscheinlichkeitsrechnung un-
erldsslich.

1. Einleitung

1.1 Allgemeines iiber die Signalerkennung in digitalen Uber-
tragungssystemen

In der vorliegenden Arbeit wird das Problem untersucht,
ein dem Empfinger eines digitalen Ubertragungssystems zum
voraus bekanntes Signal s1(z), welches vom Kanal mit Rau-
schen iiberlagert wurde, dann mit mdoglichst grosser Sicher-
heit zu erkennen, wenn es tatsichlich vorhanden ist. Das Ziel
besteht in der funktionalen Definition eines Entscheidungs-
gliedes D («Detektor»), welches in bestimmter, noch zu de-
finierender Weise optimale Eigenschaften aufweist. Diese
Problemstellung ist in der Nachrichtentechnik charakteristisch
fiir alle digitalen Ubertragungssysteme, bei welchen der Sender
in jedem Takt aus einem beschrinkten Vorrat von Signalen
jeweilen eines auswiihlt und tibermittelt. Als Beispiel sei die
Ubertragung der Wihlinformation beim Telefon genannt, wo
die 10 Zeichen 0...9 zehn verschiedenen (hier allerdings zeitlich
ungleich langen) Signalformen entsprechen. Die abzihlbare
Menge moglicher Sendesignale eines digitalen Ubertragungs-
systems (Fig. 1) heisst Signalalphabet. Den folgenden Aus-
flihrungen wird ein bindres Alphabet zu Grunde gelegt, wel-
ches nur die beiden Signale S = 0 und S = s1(¢) enthilt. Das
bindre System ist naturgeméiss das einfachste, mit welchem
tiberhaupt Information iibertragen werden kann.

Die theoretischen Hilfsmittel zur Losung der gestellten
Aufgabe stellt die mathematische Statistik bereit; es handelt
sich im vorliegenden Fall insbesondere um den Entscheid
zwischen einer einfachen Hypothese und einer einzigen Alter-

1) Siehe Literatur am Schluss des Aufsatzes.
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L’exposé précité — basé sur [11') — renferme une courte
introduction au probléme de la perception des signaux a allure
chronologique connue du bruit superposé. On confronte en parti-
culier des méthodes paramétriques et non-paramétriques pour les
comparer du point de vue de leurs possibilités de réalisation et de
leur capacité. On fournit de nouveaux résultats des calculs de
rendement du détecteur de signes (non-paramétrique) lors de son-
dages finis et de bruit de Gauss. La compréhension de ce travail
présume la connaissance des relations fondamentales du calcul
des probabilités.

nativen. Die Herleitung des optimalen Detektors geht von de
Annahme aus, dass der Empfinger im zeitlichen Intervall
0 < r < T (einem Takt entsprechend) das Signal y(¢) beob-
achten kann, welches als lineare Uberlagerung des Signales S
und des Rauschens n(r) entstanden ist:

y () =n(t) falls S =0
y() =n(t) + s(r) falls S = s (r)
Im speziellen werden in diesem Intervall nur eine Anzahl
N von Momentanwerten der beobachteten Funktion y(#)
untersucht und als Vektor dargestellt, siehe Fig. 2:
[Y]1= [y (1), y (t2)...y (tn)]

Da sich die einzelnen Momentanwerte als Uberlagerung
des Signalvektors [S] und des Rauschvektors [N] ergeben, gilt
die Vektorbeziehung:

SENDER EMPFANGER
KANAL
S, a4
s, s(t) y(t) a,
S ‘ -
n(t)
RAUSCHEN
Fig. 1

Grundsiitzliches Modell eines Digital-Ubertragungssystems
Si...85y verschiedene Signale; ay...a;,, Empfianger-Entscheide
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[Y]=[S]1+[N] )

Das Ziel besteht nun in der Definition der optimalen
Detektorfunktion D(Y). Dazu wird eine bestimmte Fehlalarm-
Wahrscheinlichkeit « vorgegeben, das heisst eine gewisse
Wabhrscheinlichkeit dafiir, dass sich der Detektor fiir die
Hypothese «Signal anwesend » entscheidet, wenn tatsachlich
S = 0 war. Zusammen mit dieser Nebenbedingung wird nun
derjenige Detektor gesucht, welcher eine maximale Erken-
nungswahrscheinlichkeit £ aufweist, das heisst, dass die Wahr-
scheinlichkeit, ein tatsichlich vorhandenes Signal zu er-
kennen, mdoglichst gross wird. Diese Maximierung der Er-
kennungswahrscheinlichkeit bei gegebener Fehlalarmrate ist
der Inhalt des Optimierungskriteriums von Neyman-Pearson.
In der Literatur (z.B. [2; 3]) wird gezeigt, dass der im Sinne
von Neyman-Pearson optimale Empfinger als Entscheidungs-
grundlage den Quotienten zweier Wahrscheinlichkeiten 2) ver-
wendet, («likelihood ratio test »):

Y| S=s51()) )

L =" s5=0

Die Grossen fy(Y | S = s1(¢) und fy(Y | S = 0) stellen die
bedingten Wahrscheinlichkeiten fiir die beobachteten Momen-
tanwerte yi...y~ dar, unter der Voraussetzung, dass das Signal
S = s51(z) vorhanden war, bzw. dass S = 0 war. Die Ent-
scheidungsfunktion D(Y') des optimalen Detektors lautet daher

D(Y)=0falls L(Y) < Lo

3)
D(Y)=1falls L(Y) = Lo

Dieser Vorschrift entsprechend ist der Ausgang des Detek-
tors D(Y) = 1 («Signal Si(#) anwesend »), falls der Quotient
der bedingten Wahrscheinlichkeiten eine gewisse Schwelle Lo
tiberschreitet und umgekehrt ist D(Y) = 0 («kein Signal an-
wesend »), falls der Quotient der beiden bedingten Wahr-
scheinlichkeiten kleiner ist als Ly. Die Zuordnung des Gleich-
heitszeichens zu einem der Entscheide ist willkiirlich, denn die
Gleichheit tritt nur mit verschwindender Wahrscheinlichkeit
ein.

1.2 Gegeniiberstellung parametrischer und nichtparametrischer
Methoden zur Signalerkennung

Bis hierher wurde ganz allgemein das Problem der Er-
kennung ecines deterministischen Signales in tiberlagertem
Rauschen formuliert; in der Art und Weise, wie sie dieses
Ziel erreichen, unterscheiden sich jedoch die parametrischen
von den nichtparametrischen Methoden. Damit eine explizite
Form der Detektorfunktion gefunden werden kann, miissen
noch gewisse Angaben iiber die Statistik der Rauschproben
vorliegen.

Die parametrischen Detektoren gehen nun von der An-
nahme aus, dass die statistische Verteilungsfunktion Fn(ni)
der Momentanwerte n; des Rauschens mit allen ihren Para-
metern bekannt sei. Dieser Weg wird in Abschnitt 2 be-
schritten werden, wo fiir die Rausch-Proben die Gaussver-
teilung vorausgesetzt wird. Damit gelingt es, einen einzigen,

7y Mit Jy(x) wird in dieser Arbeit die Wahrscheinlichkeitsdichte der
Zufallsgrossen y an der Stelle x bezeichnet, wihrend mit

X
Frw= [ f@dz

-_%

die (kumulative) Verteilungsfunktion von y an der Stelle x dargestellt
wird,

580 (A 443)

im Sinne von Neyman-Pearson optimalen Detektor zu definie-
ren, welcher bei einer vorgegebenen Fehlalarm-Wahrschein-
lichkeit die grosstmogliche Erkennungswahrscheinlichkeit er-
reicht. In den allereinfachsten Féllen ist dieser optimale Detek-
tor auch noch realisierbar, doch werden die entsprechenden
Strukturen bei etwas realistischeren Annahmen bald derart
kompliziert, dass sie nur noch angenédhert nachgebildet werden
konnen.

In der Praxis taucht aber eine zusitzliche Schwierigkeit in
dem Sinne auf, dass sich die statistischen Eigenschaften des
Rauschens auf unbekannte Art und Weise zeitlich dndern
konnen, oder dass sie im Extremfall zum voraus tiberhaupt
nicht bekannt sind. Tatsdchlich wird man in den wenigsten Fil-
len soviel tiber die Statistik der Rauschproben wissen, dass die
Voraussetzungen der parametrischen Detektoren exakt erfiillt
sind. Wiirde man dann — in Verletzung der Voraussetzungen
— versuchen, die Erkennungsaufgabe auch bei nicht-gauss-
schem Rauschen mit dem fiir gaussches Rauschen optimalen
Detektor zu 16sen, so wiirde man finden, dass mit wesentlich
einfacheren Detektor-Strukturen moglicherweise bessere Resul-
tate erzielt werden konnen.

Auf diesen Erkenntnissen beruhen die nichtparametrischen
Detektoren, welche von wesentlich allgemeineren Voraus-
setzungen an die Statistik der Rauschproben ausgehen. Die in
Abschnitt 3 besprochenen nichtparametrischen Methoden ver-
langen von den Dichtefunktionen fu(#i) der Rauschamplituden
nur noch Symmetrie-Eigenschaften:

S (ni) = fo(— mi) (4)

Diese Klasse symmetrischer Dichtefunktionen enthélt eine
nicht abzidhlbare Menge moglicher Dichtefunktionen, insbe-
sondere auch die Gaussverteilung mit dem Erwartungswert
E(n)) = 0 und beliebiger Streuung. Ein nichtparametrischer
Detektor ist nun gerade dadurch definiert, dass er eine kon-
stante Fehlalarm-Wahrscheinlichkeit unabhdngig von der tat-
sdchlichen Form der Dichtefunktion der Rauschproben unter
sehr allgemeinen Voraussetzungen (z.B. Symmetrie-Eigen-
schaften) aufweist [1]. Der nichtparametrische Detektor
garantiert also gewisse minimale Eigenschaften fiir sehr zahl-
reiche mogliche Arbeitsbedingungen, verbunden mit — im
allgemeinen — recht einfachen Entscheidungsvorschriften.

Zusammenfassend konnen die Eigenschaften der nichtpara-
metrischen Detektoren denen der parametrischen folgender-
massen gegeniibergestellt werden:

a) Sie weisen im allgemeinen relativ einfache Strukturen auf.

b) Sie beriicksichtigen einen nur sehr kleinen Bruchteil der
moglicherweise zum voraus nicht bekannten statistischen Eigen-
schaften der Rauschproben.

¢) Sie sind sicher den optimalen parametrischen Detektoren bei
bekannter Statistik des Rauschens unterlegen (suboptimale Detek-
toren).

d) Sie sind aber parametrischen Detektoren moglicherweise weit
tiberlegen, fiir Verhéltnisse, bei denen die Voraussetzungen des
optimalen parametrischen Detektors nicht mehr erfiillt sind.

e) Sie garantieren eine bestimmte Fehlalarm-Wahrscheinlichkeit
fiir eine sehr grosse Klasse von Dichtefunktionen der Rauschproben.

Die Leistungsfihigkeit eines nichtparametrischen Detek-
tors wird beurteilt durch einen Vergleich mit dem optimalen
parametrischen Detektor. Als Mass der Wirksamkeit wird das
Verhiltnis der erforderlichen Anzahl von Stichproben des
nichtparametrischen (n.p) gegeniiber dem parametrischen (np)
Detektor bei wohldefinierten Bedingungen verwendet (defi-
nierte Verteilfunktion des Rauschens, gegebene Fehlalarm-
und Erkennungswahrscheinlichkeiten). Als asymptotischer
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Fig.2
Zur Vektordarstellung des Signals y(r)
fy...1y Abtastmomente; ¢ Zeit; yy...yxy Momentanwerte des
Signals y(t) zu den Zeiten fq...ty

relativer Wirkungsgrad de des nichtparametrischen Ent-
scheidungsgliedes wird der Quotient der beiden erforderlichen
Stichprobenzahlen bezeichnet, wenn diese tiber alle Grenzen
wachsen und gleichzeitig die Amplitude A des Signales 1 s1(7)
gegen Null strebt:

T flnp (OC, ﬂ, A)
deo =M o (@, B, 1) )
=0

In Abschnitt 3 wird fir verschiedene einfache nichtpara-
metrische Detektorstrukturen der asymptotische Wirkungs-
grad sowie der Wirkungsgrad bei endlichen Stichprobenzahlen
fiir den Vorzeichen-Detektor bei nicht verschwindender Signal-
amplitude berechnet werden. Es wird sich zeigen, dass der
asymptotische Wirkungsgrad auch fiir endliche Stichproben-
zahlen eine sehr gute Anndherung darstellt.

2. Parametrische Signalerkennung

Das einfachste Beispiel einer Signalerkennung mit para-
metrischen Methoden stellt das folgende Entscheidungspro-
blem dar:

Gegeben sei der Vektor [Y] = [y1, 2, ... ¥x] von Daten,
welche gemdiss Fig. 2 aufeinanderfolgende Momentanwerte
einer vom Empfinger eines Ubertragungssystemes beobacht-
baren Zeitfunktion y(7) darstellen. Von dieser Signalfunktion
ist bekannt, dass sie als lineare Uberlagerung von GauBschem
Rauschen mit dem Mittelwert x = 03) und der Streuung
(Leistung) ¢2 und gegebenenfalls einem bekannten Signal s1(7)
entstanden ist. Das Entscheidungsproblem besteht nun darin,
den nach Neyman-Pearson optimalen parametrischen Detek-
tor D zu finden. In der Statistik wird die Aufgabe des Detektors
als Entscheid zwischen einer einfachen Hypothese A und einer
einfachen Alternativen 4 beschrieben; ndmlich
H1 Signal S anwesend: die Proben y(#;) sind gaussverteilt mit dem

Erwartungswert E[y(7i)] = s1(fi) und der Streuung o2.

Ay Signal S = 0: die Proben y(ri) sind gaussverteilt mit dem Er-
wartungswert E[y(#i)] = 0 und der Streuung ¢2.

Im folgenden soll im Interesse der Ubersichtlichkeit ange-
nommen werden, dass das Signal s1(7) im untersuchten zeit-

%) Mit p = E(x) wird der Mittel- oder Erwartungswert der Zufalls-

grosse x bezeichnet:
\
+ 00

u=E(x) = f X fx (x) dx

— 00
Entsprechend gilt fur die Streuung 6* von x:

e
2 =E{x—w¥ = [ (x—w2fx(@dx

— 00
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lichen Intervall 0 < ¢ < T konstant, nimlich si1(¢) = 1 sei.
Die interessanten Fiille zeitlich verinderlicher Signale werden
in der Literatur ausfiihrlich behandelt (siche zum Beispiel [2]).

Die Verbundwahrscheinlichkeit fu(yi...yx | S = A) fiir die
Momentanwerte y1...yx des beobachteten Signales ergibt sich,
wenn statistische Unabhéngigkeit der einzelnen Rauschproben
vorausgesetzt wird, fiir den Fall, dass das Signal S = A an-
wesend ist, zu

N
SrOryn|S=2) ='£I.1fy(y1 |§=A=

N
Soi—ne| ©
i=1

= Croy i P T 32

Entsprechend findet man die Verbundwahrscheinlichkeit
der Proben unter der Voraussetzung, dass der Vektor Y vom
Rauschen allein stammt:

N
Sr(y1..yn | S=0) z'ljlfy (i|S=0)=

N
2l O
2

2 g2

1
T QnodNe P

Nach den Ausfiihrungen in Abschnitt 1 besteht die Funk-
tion des optimalen Empféingers in der Bildung des Quotienten
der bedingten Wahrscheinlichkeiten und im Vergleich dieser
Grosse mit einer Schwelle Lo. Setzt man dazu die Ausdriicke
(6) und (7) in die Gleichung (7) ein, so findet man fiir die Ent-
scheidungsfunktion des optimalen Detektors

N
L(Y):exp[z (Zyil—ﬂ.z)] = Lo 8)
i=1
Infolge der monotonen Abhingigkeit des Logaritmus von
seinem Argument gilt aber auch

N
In[L(Y)] =224 [yl — NA2 = 1n(Lo) ©)

i=1
Verrechnet man konstante Summanden und Faktoren mit
der Schwelle, Lo, so findet man schliesslich die allereinfachste
Form des optimalen parametrischen Detektors, welcher, we-
gen seiner Funktion, auch «linearer Detektor » genannt wird:

N
ZZZyiéLo'

i=1

(10)

Entsprechend dem Kriterium von Neyman-Pearson wird
die Schwelle Lo” so bestimmt, dass die Fehlalarm-Wahrschein-
lichkeit einen bestimmten Wert « erreicht. Die Grosse z in
Gl.. (10) ist normalverteilt, weil sie eine Summe von normal-
verteilten Zufallsgrossen yi ist. Thr Erwartungswert ist E(z)
= 0, sofern kein Signal vorhanden ist, und die Streuung o2,
ergibt sich als Summe der einzelnen Streuungen:

N 2
Gzz—E(Zz):E<[z yi:| )=Na2
i=1
Damit lautet die Dichtefunktion der Zufallsgrosse z, welche
die entscheidende Grosse des Detektors ist, auf welcher seine
Entscheidung beruht:

1) =t e — () an

5
V21t N g2
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Fig. 3

Der Verlauf der normierten Schwelle L, = L/ VIV in Abhiingigkeit
der zulissigen Fehlalarm-Wahrscheinlichkeit o

Mit Hilfe von Tabellen der normierten kumulativen Gauss-
verteilung (z.B. [4]) findet man den in Fig. 3 gezeigten Verlauf
der Schwelle Lo’ in Abhingigkeit der zuldssigen Fehlalarm-
Wabhrscheinlichkeit. Von speziellem Interesse ist, dass die
Schwelle Lo’ unabhingig von der zu erwartenden Signal-
amplitude A ist, was bei allen nach dem Kriterium von Neyman-
Pearson optimierten Detektoren zutrifft. Dagegen hingt
natiirlich die Erkennungswahrscheinlichkeit f sehr wohl von
der Signalamplitude ab, wie es in Fig. 4 fiir verschiedene Ver-
hiltnisse von (NA2/g2) (Signal/Rauschverhiltnis) dargestellt
ist.

Im allgemeinen Fall eines zeitabhdngigen Signales S = s1(7)
mit dem Momentanwert s1(7i) nimmt der lineare Detektor die
Form

N
z= Z s1(t) yi = Lo”
i=1
an, welche auch als «Korrelationsdetektor » bekannt ist. Der
lineare Detektor entscheidet also in jedem Falle auf Grund
einer Linearkombination der Stichproben. Beim inkohédrenten
Ubertragungssystem mit unbekannter Trigerphase ¢ des

Signales
s(t) = A () sin(wot + @)

beruht der Entscheid auf einer Grosse e, der Umhiillenden
der beobachteten Signalfunktion y(z) mit:

e = Ve + es?
wobei

N
ec = Z i A (1) cos (wo 13)

i=1

N
es = z yi A (t1) sin (wo 1)

i=1
Dieser inkohirente Detektor heisst Enveloppendetektor.
Seine Entscheidungssicherheit ist bei gleichem Signal/Rausch-
Verhiltnis natiirlich kleiner als ein koharenter Detektor nach
Gl. (10), weil die unbekannte Triagerphase ¢ zusitzliche Un-
sicherheit fiir die Entscheidung mit sich bringt. Die Erkennung
eines inkohirenten Signales in Rauschen entspricht im statisti-
schen Sprachgebrauch einem Entscheid zwischen einer ein-
fachen Hypothese («kein Signal da») und einer mehrfachen
Alternativen («Signal S vorhanden», Phase ¢ unbekannt).
Lisst man mehrere mdgliche Signale zu, von denen der Sender
in jedem Takt je eines tibermitteln kann, so hat der Empfianger

582 (A 445)

einen Entscheid zwischen einer Hypothese («kein Signal vor-
handen») und mehreren (moglicherweise wieder mehrfachen)
Alternativen («Signal S; vorhanden, Phase ¢; unbekannt)
oder («Signal Se vorhanden », Phase g2 unbekannt usw.) zu
entscheiden. Als Beispiel sei ein Ubertragungssystem im Mehr-
frequenzcode erwihnt, bei welchem in jedem Takt einer von
m moglichen Sinustonen mit zufdlligen Phasen iibermittelt
wird. Der Empfénger entscheidet sich nun fir den wahrschein-
lichsten Kanal [2]. Die dann optimalen Entscheidungsfunk-
tionen sind aber im allgemeinen nur noch angenihert reali-
sierbar.

3. Nichtparametrische Signalerkennung

Das in Abschnitt 2 beschriebene Erkennungsproblem bezog
sich auf ein zeitlich konstantes Signal A in additivem Rauschen.
Die entsprechende nichtparametrische Erkennungsaufgabe
geht nun aber im Gegensatz dazu nicht von einer exakt be-
kannten Dichtefunktion fn(ni) der Rauschproben n; aus,
sondern setzt wesentlich allgemeinere Eigenschaften voraus.
In dieser Arbeit soll angenommen werden, dass die Dichte-
funktion fn eine gerade (symmetrische) Funktion sei:

fn (ﬂi) :fn (“‘ni)
Der Meridian xp einer Verteilung Fy ist definiert durch:

Xm

[ fx () dx = Fx(xwm) = 0,5 (12)
— o0
Er fallt bei einer geraden Dichtefunktion mit dem Null-
punkt zusammen (xm = 0). Ein positives, additiv tiberlagertes
Signal (4 > 0) verschiebt nun den Meridian der Dichtefunk-
tion fy(yi) der Proben y; zu positiven Werten hin (xm > 0).
Bezeichnet man mit p die Wahrscheinlichkeit, dass die Probe
»i ein positives Vorzeichen aufweist, ferner mit fy*(y;) die
Dichtefunktion der Probe y; unter der Voraussetzung, dass sie
positiv ist [fy"(y1) = fy(yi | yi = 0)], sowie mit fy(yi) die ent-
sprechende Dichte fiir den Fall, dass y; < Oist [fy (i | yi < 0)],
so findet man mit Hilfe des Satzes lber die bedingte
Wahrscheinlichkeit (z.B. [5]) fur die Dichtefunktion fy(y)
der Probe y; den Zusammenhang:

Se ) =pfyt () + A = p)fy~ (7) (13)

Bei fehlendem Signal (A = 0) wird infolge der Koinzidenz
des Meridianes mit dem Nullpunkt die Wahrscheinlichkeit p

1,0 —

///./(
8
oo 1 A
, /2 //
06 / /)'/5
| Y 7
/ // 0
/|
0,4
Ly
0,2 / /
0,1 /
/
01 02 c(it- 0,6 0,8 1,0

Fig. 4

Fehlalarm- und Erk hkeiten ¢, f§ des optimalen linearen
Detektors mit dem Signal/Rauschverhiiltnis als Parameter
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fur ein yi = 0 gerade 0,5; die Dichtefunktion der Probe yi

lautet daher unter diesen Voraussetzungen:

£y 00 = 3 LA+ 00 + f ()] (14)

Wie bei den parametrischen Detektoren fiihrt hier die An-
wendung des Optimierungskriteriums von Neyman-Pearson
auf einen Quotienten bedingter Wahrscheinlichkeiten. Setzt
man auch wieder statistische Unabhédngigkeit der einzelnen
Proben y; voraus, so findet man fiir das Wahrscheinlichkeits-
Verhiltnis L(Y):

L N P00 =n o)

1 , 15
i=1 = [AT 0+ G G] )
Die einzelnen Multiplikanden weisen dabei den Wert
piv(y)
[ ey AR (16)
S ()
falls yi= 0 und
1— Wi
(IpV§U):ZU_m -
jfy_ (»i)

auf, falls yi < 0. Das Wahrscheinlichkeitsverhéltnis in G1. (15)
nimmt daher die Form an:

N N
Y N-Yuw
Ly=25p"" a-p 7
worin u(x) die Einheits-Schrittfunktion ist:
ulx)=1fallsx =0

u(x)=0falls x <0

(18)

Da auch hier der Ausdruck L(Y) eine monotone Funktion
N
des Argumentes Z u( 1) ist, kann man ebensogut das Argument
i=1
selbst mit einer geeigneten Schwelle L” vergleichen. Damit
lautet die optimale nichtparametrische Detektorfunktion:

N
k=L(X)=2>u(pw=L"

i=1

(19)

Diesen Detektor nennt man «Vorzeichen-Detektor », weil
er von den einzelnen Proben y: nur noch die Vorzeichen be-
riicksichtigt. Dementsprechend ist er einfacher zu realisieren:
man braucht nur noch die Stichproben mit positivem Vor-
zeichen zu zéhlen und mit einer Schwelle zu vergleichen. Diese
wird auch hier nach dem Kriterium von Neyman-Pearson
durch Angabe einer bestimmten Fehlalarmwahrscheinlichkeit
bestimmt.

Die Grosse & in Gl. (19) ist binomialverteilt, sie stellt die
Anzahl der Proben mit positivem Vorzeichen dar. Unter der
Voraussetzung, dass kein Signal vorhanden ist, lautet die
Dichtefunktion von k, weil ja mit gleicher Wahrscheinlichkeit
positive und negative Vorzeichen erscheinen:

Ji (k) = ( Z) %

wéahrend im Falle eines tatsidchlich vorhandenen Signales die
Wahrscheinlichkeit p fiir eine positive Probe grosser als 0.5 ist;

0<k=<N (20)

fey=(R ) —prro<k<n @
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Die Schwelle L” ergibt sich unter Beriicksichtigung von
GI. (20) und (19) aus:

| - N
>
2N Z (%)=
K=L"

Die tatsidchliche Fehlalarm-Wahrscheinlichkeit weist (in-
folge der hier diskreten Schwelle) einen Wert auf, der gerade
grosser oder gleich dem vorgegebenen « ist. Entsprechend
findet man fiir die Erkennungswahrscheinlichkeit :

Z (}Z)pk(l —pNE

Kk=L""

@2n

(22)

Im folgenden sei die Leistungsfihigkeit des Vorzeichen-
Detektors im Vergleich zum linearen Detektor nach GI1. (10)
untersucht. Es kann gezeigt werden, dass fiir den asymtotischen
Wirkungsgrad de angenidhert gilt ([1]):

doo 51 4 g 2fn2 (0) (23)

Hierzu wurden die Voraussetzungen fiir die Ableitung des
asymptotischen Wirkungsgrades von Abschnitt 1.2 bertick-
sichtigt. Wenn nun die Rauschproben normal verteilt sind, so
wird

fn(0) = 1/ )/2na®

und der asymptotische Wirkungsgrad fiir sehr grosse Stich-
probenzahlen erreicht den Wert

P % ~ 647 (24)

Falls aber die Rauschproben exponentiell verteilt sind nach

fn(ni)zgexp—oc\m\ 25)

so strebt der asymptotische Wirkungsgrad gegen:
dccexp = 200 %

Es ldsst sich eine ganze Klasse von Dichtefunktionen fn
definieren, welche beim Vorzeichen-Detektor zu Wirkungs-
graden uber 100 9; fiihren [1].

Fir die Anwendung interessant ist insbesondere die Frage
wie weit die Beurteilung der Wirksamkeit durch den aysymp-
totischen Wirkungsgrad schon bei endlichen Stichproben-
zahlen giiltig ist, und wie sich der Wirkungsgrad bei nicht
verschwindender Signalamplitude A verhilt. Zu diesem Zweck
wurde der Wirkungsgrad des Vorzeichendetektors bei gauss-
schem Rauschen fiir die Anzahl N der Stichproben im Bereich
I < N = 40 numerisch berechnet (Fig. 5 und 6). Es zeigt sich,
dass der asymptotische Wirkungsgrad auch fiur die Verhilt-
nisse mit endlichen Stichprobenzahlen und nicht verschwinden-
der Signalamplitude eine brauchbare Niherung darstellt.
Immerhin ist dabei eine leichte Abhingigkeit des Wirkungs-
grades von der zulédssigen Fehlalarm-Wahrscheinlichkeit fest-
zustellen, eine Abhingigkeit, welche fiir N — oo verschwindet.
Die Oszillation der Kurven kommt durch die Tatsache zu-
stande, dass infolge der diskreten moglichen Schwellen des
Vorzeichendetektors die tatsdchlichen Fehlalarm-Wahrschein-
lichkeiten nicht immer gleich sind, wodurch eben auch der
Wirkungsgrad schwankt.

Wihrend die Entscheidungssicherheit des linearen Detek-
tors bei gauflschem Rauschen von keiner anderen Funktion
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tibertroffen werden kann, weil er fiir diese spezielle Statistik
der Storamplituden optimiert wurde, kann der Wirkungsgrad
des Vorzeichendetektors bei anderen Dichtefunktionen der
Rauschamplituden betrdachtlich iiber 100 9% liegen, ndmlich
z.B. 200 9% beim exponentiellen Rauschen nach GIl. (25).
Immerhin sind auch Fille moglich, bei denen der asymptotische
Wirkungsgrad wesentlich geringer ist; dies tritt immer dann
ein, wenn die Dichtefunktion mit zunehmender Amplitude
rasch genug abnimmt [1].

Nun gibt es aber erstaunlicherweise auch nichtparametri-
sche Detektoren, welche einen bestimmten minimalen Wir-
kungsgrad garantieren. Unter ihnen ist der Wilcoxon-Detektor
zu nennen, dessen Wirkungsgrad immer tiber 86 9% liegt [6].
Der Wilcoxon-Detektor verwendet von den Stichproben mehr
Information als nur ihr Vorzeichen, nimlich zusitzlich noch ein
Mass fiir ihren Abstand vom Nullpunkt. Ordnet man die N
Stichproben

Y1, y2...YN

in der Reihenfolge ihrer Betrige

|yer | <|ygz2l..| yex |

so ist die Entscheidungsfunktion des Wilcoxon-Detektors die
Summe der Ordnungen:

N
L(Y)= 2 di=Lo" (26)
i=1

definiert, wobei

0 falls ygi =0

dy= [i falls ygi >0

In [1] wird gezeigt, dass der asymptotische Wirkungsgrad
des Wilcoxon-Detektors gegeniiber dem linearen Detektor bei
beliebiger symmetrischer Dichtefunktion fn(n;) der Rausch-
proben #; gegeben ist durch:

+ 00 2
dv =1206% | [ fu2(m)dn @7

Bei gaul3schem Rauschen wird der Wirkungsgrad des Wil-

coxon-Detektors
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o |
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Fig. 5
Der Wirkungsgrad d des Vorzeichendetektors bei gausschem Rauschen und
endlichen Stichprobenzahlen N bei einer Fehlalarmwahrscheinlichkeit von
o = 0,001
Signal/Rausch-Verhiltnis A%/c? = 10-* bzw. 10°
ARE: asymptotischer Wirkungsgrad
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Wie Fig. 5, aber mit der Fehlalarmwahrscheinlichkeit oo = 0,01
ARE': asymptotischer Wirkungsgrad

3
d‘Vgauss = ? ~ 95 % (28)

bei exponentieller Verteilung der Rauschproben wird dagegen

3

5 = 150 % (29)

B g =

In [7] wird gezeigt, dass der Wirkungsgrad des Wilcoxon-
Detektors niemals unter 86 9%, sein kann, was die Dichte-
funktion fn(ni) der Storamplituden auch immer fiir eine Form
aufweise. Selbstverstindlich erkauft man diese Sicherheit mit
erhohtem Aufwand bei der Realisierung: wihrend der Vor-
zeichendetektor mit einem Schwellwertschalter und einem
Zihler auskommt, erfordert der Wilcoxon-Detektor unter
anderem einen Speicher fiir alle N-Stichproben.

Das Repertoire nichtparametrischer Entscheidungsfunktio-
nen ist mit den beiden erwidhnten Beispielen durchaus nicht
erschopft. Sie stellen im Gegenteil die beiden einfachsten
Fille einer ausserordentlich grossen Zahl nichtparametrischer
Entscheidungsregeln dar, [7; 8]. Dazu kommen neben den be-
sprochenen Detektoren mit einem einzigen Signaleingang
solche mit mehreren Eingéingen, z. B. Korrelatoren (Polaritéts-
Koinzidenz-Korrelatoren), ferner nichtparametrische Detek-
toren fiir zeitlich verdnderliche Signale, usw.
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