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BULLETIN
DES SCHWEIZERISCHEN ELEKTROTECHNISCHEN VEREINS

Gemeinsames Publikationsorgan des Schweizerischen Elektrotechnischen Vereins (SEV)
und des Verbandes Schweizerischer Elektrizitätswerke (VSE)

Signalerkennung mit parametrischen und nichtparametrischen Methoden
Von H. J. Schlaepfer, Zürich.

Die vorliegende Arbeit enthält in Anlehnung an [1]" eine
kurze Einführung in das Problem der Erkennung von Signalen
mit bekanntem zeitlichen Verlauf in überlagertem Rauschen. Im
besonderen werden nichtparametrische und parametrische
Methoden einander gegenübergestellt und im Hinblick auf die
Realisierungsmöglichkeit und die Leistungsfähigkeit miteinander
verglichen. Es werden einige neue Ergebnisse von Berechnungen des
Wirkungsgrades des (nichtparametrischen) Vorzeichen-Detektors
bei endlichen Stichprobenzahlen und gaußschem Rauschen gegeben.

Für das Verständnis der Arbeit ist die Kenntnis der
grundlegenden Zusammenhänge der Wahrscheinlichkeitsrechnung un-
er lassi ich.

621.391.8

L'exposé précité — basé sur [7]1) -— renferme une courte
introduction au problème de la perception des signaux à allure
chronologique connue du bruit superposé. On confronte en
particulier des méthodes paramétriques et non-paramétriques pour les

comparer du point de vue de leurs possibilités de réalisation et de
leur capacité. On fournit de nouveaux résultats des calculs de
rendement du détecteur de signes (non-paramétrique) lors de
sondages finis et de bruit de Gauss. La compréhension de ce travail
présume la connaissance des relations fondamentales du calcul
des probabilités.

1. Einleitung

1.1 Allgemeines über die Signalerkennung in digitalen Über¬

tragungssystemen

In der vorliegenden Arbeit wird das Problem untersucht,
ein dem Empfänger eines digitalen Übertragungssystems zum

voraus bekanntes Signal Ji(r), welches vom Kanal mit
Rauschen überlagert wurde, dann mit möglichst grosser Sicherheit

zu erkennen, wenn es tatsächlich vorhanden ist. Das Ziel
besteht in der funktionalen Definition eines Entscheidungsgliedes

D («Detektor»), welches in bestimmter, noch zu
definierender Weise optimale Eigenschaften aufweist. Diese

Problemstellung ist in der Nachrichtentechnik charakteristisch
für alle digitalen Übertragungssysteme, bei welchen der Sender

in jedem Takt aus einem beschränkten Vorrat von Signalen

jeweilen eines auswählt und übermittelt. Als Beispiel sei die

Übertragung der Wählinformation beim Telefon genannt, wo
die 10 Zeichen 0...9 zehn verschiedenen (hier allerdings zeitlich
ungleich langen) Signalformen entsprechen. Die abzählbare

Menge möglicher Sendesignale eines digitalen Übertragungssystems

(Fig. 1) heisst Signalalphabet. Den folgenden
Ausführungen wird ein binäres Alphabet zu Grunde gelegt,
welches nur die beiden Signale S 0 und S äi(?) enthält. Das

binäre System ist naturgemäss das einfachste, mit welchem

überhaupt Information übertragen werden kann.

Die theoretischen Hilfsmittel zur Lösung der gestellten

Aufgabe stellt die mathematische Statistik bereit; es handelt
sich im vorliegenden Fall insbesondere um den Entscheid
zwischen einer einfachen Hypothese und einer einzigen Alter-

b Siehe Literatur am Schluss des Aufsatzes.

nativen. Die Herleitung des optimalen Detektors geht von de
Annahme aus, dass der Empfänger im zeitlichen Intervall
0 ^ t < T (einem Takt entsprechend) das Signal y(t)
beobachten kann, welches als lineare Überlagerung des Signales S
und des Rauschens n(t) entstanden ist:

y(t) n (t) falls S 0

y(t) n (t) + s (t) falls S s (t)
Im speziellen werden in diesem Intervall nur eine Anzahl

N von Momentanwerten der beobachteten Funktion y(t)
untersucht und als Vektor dargestellt, siehe Fig. 2 :

[E] [y (h), y (t2)...y (tu)]

Da sich die einzelnen Momentanwerte als Überlagerung
des Signalvektors [V] und des Rauschvektors [A] ergeben, gilt
die Vektorbeziehung:

SENDER EMPFÄNGER

Fig. 1

Grundsätzliches Modell eines Digital-übertragungssystems
Sj...5m verschiedene Signale; a^...am Empfänger-Entscheide
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[^] [5] + [N] (1)

Das Ziel besteht nun in der Definition der optimalen
Detektorfunktion D(Y). Dazu wird eine bestimmte Fehlalarm-
Wahrscheinlichkeit a vorgegeben, das heisst eine gewisse

Wahrscheinlichkeit dafür, dass sich der Detektor für die

Hypothese «Signal anwesend» entscheidet, wenn tatsächlich
5 0 war. Zusammen mit dieser Nebenbedingung wird nun
derjenige Detektor gesucht, welcher eine maximale
Erkennungswahrscheinlichkeit ß aufweist, das heisst, dass die
Wahrscheinlichkeit, ein tatsächlich vorhandenes Signal zu
erkennen, möglichst gross wird. Diese Maximierung der

Erkennungswahrscheinlichkeit bei gegebener Fehlalarmrate ist
der Inhalt des Optimierungskriteriums von Neyman-Pearson.
In der Literatur (z.B. [2; 3]) wird gezeigt, dass der im Sinne

von Neyman-Pearson optimale Empfänger als Entscheidungsgrundlage

den Quotienten zweier Wahrscheinlichkeiten2)
verwendet, («likelihood ratio test»):

L(Y) fy{Y\S Sl

/y K | 5 0)
(2)

Die Grössen /y(E | S si(t) und /y(E | S 0) stellen die

bedingten Wahrscheinlichkeiten für die beobachteten
Momentanwerte yi...yN dar, unter der Voraussetzung, dass das Signal
5 si(t) vorhanden war, bzw. dass 5 0 war. Die
Entscheidungsfunktion D(Y) des optimalen Detektors lautet daher

D (Y) 0 falls L{Y) < L0

D{Y) 1 falls L(Y)^L0
(3)

Dieser Vorschrift entsprechend ist der Ausgang des Detektors

D(Y) 1 («Signal 5i(Q anwesend»), falls der Quotient
der bedingten Wahrscheinlichkeiten eine gewisse Schwelle La

überschreitet und umgekehrt ist D(Y) 0 («kein Signal
anwesend »), falls der Quotient der beiden bedingten
Wahrscheinlichkeiten kleiner ist als La. Die Zuordnung des

Gleichheitszeichens zu einem der Entscheide ist willkürlich, denn die
Gleichheit tritt nur mit verschwindender Wahrscheinlichkeit
ein.

1.2 Gegenüberstellung parametrischer und nichtparametrischer
Methoden zur Signalerkennung

Bis hierher wurde ganz allgemein das Problem der
Erkennung eines deterministischen Signales in überlagertem
Rauschen formuliert; in der Art und Weise, wie sie dieses

Ziel erreichen, unterscheiden sich jedoch die parametrischen
von den nichtparametrischen Methoden. Damit eine explizite
Form der Detektorfunktion gefunden werden kann, müssen

noch gewisse Angaben über die Statistik der Rauschproben
vorliegen.

Die parametrischen Detektoren gehen nun von der
Annahme aus, dass die statistische Verteilungsfunktion Fn(m)
der Momentanwerte m des Rauschens mit allen ihren
Parametern bekannt sei. Dieser Weg wird in Abschnitt 2
beschritten werden, wo für die Rausch-Proben die Gaussverteilung

vorausgesetzt wird. Damit gelingt es, einen einzigen,

-') Mit fy(x) wird in dieser Arbeit die Wahrscheinlichkeitsdichte der
Zufallsgrössen y an der Stelle x bezeichnet, während mit

'( v) / fydz
die (kumulative) Verteilungsfunktion von y an der Stelle x dargestellt
wird.

im Sinne von Neyman-Pearson optimalen Detektor zu definieren,

welcher bei einer vorgegebenen Fehlalarm-Wahrscheinlichkeit

die grösstmögliche Erkennungswahrscheinlichkeit
erreicht. In den allereinfachsten Fällen ist dieser optimale Detektor

auch noch realisierbar, doch werden die entsprechenden
Strukturen bei etwas realistischeren Annahmen bald derart
kompliziert, dass sie nur noch angenähert nachgebildet werden
können.

In der Praxis taucht aber eine zusätzliche Schwierigkeit in
dem Sinne auf, dass sich die statistischen Eigenschaften des

Rauschens auf unbekannte Art und Weise zeitlich ändern

können, oder dass sie im Extremfall zum voraus überhaupt
nicht bekannt sind. Tatsächlich wird man in den wenigsten Fällen

soviel über die Statistik der Rauschproben wissen, dass die

Voraussetzungen der parametrischen Detektoren exakt erfüllt
sind. Würde man dann — in Verletzung der Voraussetzungen

- versuchen, die Erkennungsaufgabe auch bei nicht-gauss-
schem Rauschen mit dem für gaussches Rauschen optimalen
Detektor zu lösen, so würde man finden, dass mit wesentlich
einfacheren Detektor-Strukturen möglicherweise bessere Resultate

erzielt werden können.
Auf diesen Erkenntnissen beruhen die nichtparametrischen

Detektoren, welche von wesentlich allgemeineren
Voraussetzungen an die Statistik der Rauschproben ausgehen. Die in
Abschnitt 3 besprochenen nichtparametrischen Methoden
verlangen von den Dichtefunktionen/n(«i) der Rauschamplituden
nur noch Symmetrie-Eigenschaften :

/n (ni) fn (— ni) (4)

Diese Klasse symmetrischer Dichtefunktionen enthält eine

nicht abzählbare Menge möglicher Dichtefunktionen,
insbesondere auch die Gaussverteilung mit dem Erwartungswert
E{n0 0 und beliebiger Streuung. Ein nichtparametrischer
Detektor ist nun gerade dadurch definiert, dass er eine
konstante Fehlalarm-Wahrscheinlichkeit unabhängig von der
tatsächlichen Form der Dichtefunktion der Rauschproben unter
sehr allgemeinen Voraussetzungen (z.B. Symmetrie-Eigenschaften)

aufweist [1]. Der nichtparametrische Detektor
garantiert also gewisse minimale Eigenschaften für sehr
zahlreiche mögliche Arbeitsbedingungen, verbunden mit — im
allgemeinen — recht einfachen Entscheidungsvorschriften.

Zusammenfassend können die Eigenschaften der
nichtparametrischen Detektoren denen der parametrischen folgender-
massen gegenübergestellt werden :

a) Sie weisen im allgemeinen relativ einfache Strukturen auf.
b) Sie berücksichtigen einen nur sehr kleinen Bruchteil der

möglicherweise zum voraus nicht bekannten statistischen
Eigenschaften der Rauschproben.

c) Sie sind sicher den optimalen parametrischen Detektoren bei
bekannter Statistik des Rauschens unterlegen (suboptimale Detektoren).

d) Sie sind aber parametrischen Detektoren möglicherweise weit
überlegen, für Verhältnisse, bei denen die Voraussetzungen des
optimalen parametrischen Detektors nicht mehr erfüllt sind.

e) Sie garantieren eine bestimmte Fehlalarm-Wahrscheinlichkeit
für eine sehr grosse Klasse von Dichtefunktionen der Rauschproben.

Die Leistungsfähigkeit eines nichtparametrischen Detektors

wird beurteilt durch einen Vergleich mit dem optimalen
parametrischen Detektor. Als Mass der Wirksamkeit wird das

Verhältnis der erforderlichen Anzahl von Stichproben des

nichtparametrischen (nnp) gegenüber dem parametrischen («p)

Detektor bei wohldefinierten Bedingungen verwendet
(definierte Verteilfunktion des Rauschens, gegebene Fehlalarm-
und Erkennungswahrscheinlichkeiten). Als asymptotischer
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doo lim
Wp, «np c

A —> 0

nnp («, ß, X)

«P (a, /?, A)

3) Mit ß E(x) wird der Mittel- oder Erwartungswert der Zufalls-
grösse x bezeichnet:

+ OO

« E(x)= J xfx (a) dx
— OO

Entsprechend gilt für die Streuung er2 von x:

+ OO

<T2 E {(a — ß)2) J (x — ß)2 fx (x) dx

lichen Intervall 0 t < T konstant, nämlich ,si(/) X sei.

Die interessanten Fälle zeitlich veränderlicher Signale werden
in der Literatur ausführlich behandelt (siehe zum Beispiel [2]).

Die Verbundwahrscheinlichkeit fn(yi...yN I S X) für die
Momentanwerte yi...yN des beobachteten Signales ergibt sich,
wenn statistische Unabhängigkeit der einzelnen Rauschproben
vorausgesetzt wird, für den Fall, dass das Signal S 2

anwesend ist, zu

fy (Li-
Fig. 2

Zur Vektordarstellung des Signals y(t)
Abtastmomente; t Zeit; Momentanwerte des

Signals y(f) zu den Zeiten ti—ffj

relativer Wirkungsgrad doo des nichtparametrischen
Entscheidungsgliedes wird der Quotient der beiden erforderlichen
Stichprobenzahlen bezeichnet, wenn diese über alle Grenzen
wachsen und gleichzeitig die Amplitude X des Signales X si(t)
gegen Null strebt :

.y:s S X) n/yOtt
i= 1

1

;.)

2 (Li - 2)2
(6)

(2 7t CT2)N/2 exp —
2 er2

Entsprechend findet man die Verbundwahrscheinlichkeit
der Proben unter der Voraussetzung, dass der Vektor Y vom
Rauschen allein stammt:

/y (Li.-LN I 5 0) II /y (yi | 5 0)
i i

(5) 1

(2 7t fj2)N/2 exp —

2 Li2

2 ff2

(7)

In Abschnitt 3 wird für verschiedene einfache nichtpara-
metrische Detektorstrukturen der asymptotische Wirkungsgrad

sowie der Wirkungsgrad bei endlichen Stichprobenzahlen
für den Vorzeichen-Detektor bei nicht verschwindender
Signalamplitude berechnet werden. Es wird sich zeigen, dass der

asymptotische Wirkungsgrad auch für endliche Stichprobenzahlen

eine sehr gute Annäherung darstellt.

2. Parametrische Signalerkennung
Das einfachste Beispiel einer Signalerkennung mit

parametrischen Methoden stellt das folgende Entscheidungsproblem

dar :

Gegeben sei der Vektor [F] [yi, y2, ln] von Daten,
welche gemäss Fig. 2 aufeinanderfolgende Momentanwerte
einer vom Empfänger eines Übertragungssystemes beobachtbaren

Zeitfunktion y(t) darstellen. Von dieser Signalfunktion
ist bekannt, dass sie als lineare Überlagerung von Gaußschem
Rauschen mit dem Mittelwert ß 03) und der Streuung
(Leistung) er2 und gegebenenfalls einem bekannten Signal «(7)
entstanden ist. Das Entscheidungsproblem besteht nun darin,
den nach Neyman-Pearson optimalen parametrischen Detektor

D zu finden. In der Statistik wird die Aufgabe des Detektors
als Entscheid zwischen einer einfachen Hypothese H und einer
einfachen Alternativen A beschrieben; nämlich

H\ Signal S anwesend: die Proben y(Ji) sind gaussverteilt mit dem
Erwartungswert F[y(7i)] Ji(/i) und der Streuung er2.

Ai Signal 5=0: die Proben y(t{) sind gaussverteilt mit dem Er¬
wartungswert E [>'(7i)] 0 und der Streuung er2.

Im folgenden soll im Interesse der Übersichtlichkeit
angenommen werden, dass das Signal si(t) im untersuchten zeit-

Nach den Ausführungen in Abschnitt 1 besteht die Funktion

des optimalen Empfängers in der Bildung des Quotienten
der bedingten Wahrscheinlichkeiten und im Vergleich dieser
Grösse mit einer Schwelle Lo. Setzt man dazu die Ausdrücke
(6) und (7) in die Gleichung (7) ein, so findet man für die
Entscheidungsfunktion des optimalen Detektors

L(Y) exp 2 (2 yiX-X*) : Lo (8)

Infolge der monotonen Abhängigkeit des Logaritmus von
seinem Argument gilt aber auch

ln[L(F)] 2A2[Li] - AU2Sgln(L0) (9)

Verrechnet man konstante Summanden und Faktoren mit
der Schwelle, Los so findet man schliesslich die allereinfachste
Form des optimalen parametrischen Detektors, welcher,
wegen seiner Funktion, auch «linearer Detektor» genannt wird:

2 Zi S Lo' (10)

Entsprechend dem Kriterium von Neyman-Pearson wird
die Schwelle Lo' so bestimmt, dass die Fehlalarm-Wahrscheinlichkeit

einen bestimmten Wert a erreicht. Die Grösse z in
GL. (10) ist normalverteilt, weil sie eine Summe von
normalverteilten Zufallsgrössen yi ist. Ihr Erwartungswert ist E(z)

0, sofern kein Signal vorhanden ist, und die Streuung cr2z

ergibt sich als Summe der einzelnen Streuungen :

Oz2 E(z2) E No2

Damit lautet die Dichtefunktion der Zufallsgrösse z, welche
die entscheidende Grösse des Detektors ist, auf welcher seine

Entscheidung beruht :

/« (z)
V2KN<

- exp 2 Act2 (11)
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i-n
Fig. 3

Der Verlauf der normierten Schwelle Ln /.(l (y yN in Abhängigkeit
der zulässigen Fehlalarm-\Vahrscheinlichkeit a

Mit Hilfe von Tabellen der normierten kumulativen
Gaussverteilung (z. B. [4]) findet man den in Fig. 3 gezeigten Verlauf
der Schwelle Lo' in Abhängigkeit der zulässigen Fehlalarm-
Wahrscheinlichkeit. Von speziellem Interesse ist, dass die
Schwelle Lo unabhängig von der zu erwartenden
Signalamplitude X ist, was bei allen nach dem Kriterium von Neyman-
Pearson optimierten Detektoren zutrifft. Dagegen hängt
natürlich die Erkennungswahrscheinlichkeit ß sehr wohl von
der Signalamplitude ab, wie es in Fig. 4 für verschiedene
Verhältnisse von (NX2/a2) (Signal/Rauschverhältnis) dargestellt
ist.

Im allgemeinen Fall eines zeitabhängigen Signales S si(t)
mit dem Momentanwert si(?i) nimmt der lineare Detektor die

Form
N

z 2 Sl (Ii) Vi S Lo"
i 1

an, welche auch als «Korrelationsdetektor» bekannt ist. Der
lineare Detektor entscheidet also in jedem Falle auf Grund
einer Linearkombination der Stichproben. Beim inkohärenten
Übertragungssystem mit unbekannter Trägerphase <p des

Signales
s A sin (cuo + q>)

beruht der Entscheid auf einer Grösse e, der Umhüllenden
der beobachteten Signalfunktion y{t) mit :

e fec2 + es2

wobei
N

ec 2 Li A (?i) cos (töo Ii)
i= 1

N
<?S 2 Vi A (?0 sin (coo 11)

i 1

Dieser inkohärente Detektor heisst Enveloppendetektor.
Seine Entscheidungssicherheit ist bei gleichem Signal/Rausch-
Verhältnis natürlich kleiner als ein kohärenter Detektor nach

Gl. (10), weil die unbekannte Trägerphase (p zusätzliche
Unsicherheit für die Entscheidung mit sich bringt. Die Erkennung
eines inkohärenten Signales in Rauschen entspricht im statistischen

Sprachgebrauch einem Entscheid zwischen einer
einfachen Hypothese («kein Signal da») und einer mehrfachen
Alternativen («Signal S vorhanden», Phase <p unbekannt).
Lässt man mehrere mögliche Signale zu, von denen der Sender

in jedem Takt je eines übermitteln kann, so hat der Empfänger

einen Entscheid zwischen einer Hypothese («kein Signal
vorhanden») und mehreren (möglicherweise wieder mehrfachen)
Alternativen («Signal Si vorhanden, Phase pi unbekannt)
oder («Signal S2 vorhanden», Phase ^2 unbekannt usw.) zu
entscheiden. Als Beispiel sei ein Übertragungssystem im
Mehrfrequenzcode erwähnt, bei welchem in jedem Takt einer von
m möglichen Sinustönen mit zufälligen Phasen übermittelt
wird. Der Empfänger entscheidet sich nun für den wahrscheinlichsten

Kanal [2]. Die dann optimalen Entscheidungsfunktionen

sind aber im allgemeinen nur noch angenähert
realisierbar.

3. Nichtparametrische Signalerkennung
Das in Abschnitt 2 beschriebene Erkennungsproblem bezog

sich auf ein zeitlich konstantes Signal X in additivem Rauschen.
Die entsprechende nichtparametrische Erkennungsaufgabe
geht nun aber im Gegensatz dazu nicht von einer exakt
bekannten Dichtefunktion /n(«i) der Rauschproben m aus,
sondern setzt wesentlich allgemeinere Eigenschaften voraus.
In dieser Arbeit soll angenommen werden, dass die
Dichtefunktion /n eine gerade (symmetrische) Funktion sei:

/n(«i) =/n(-«i)
Der Meridian xm einer Verteilung Fx ist definiert durch :

xm

/ fx (x) dx Fx (Xm) 0,5 (12)
— 00

Er fällt bei einer geraden Dichtefunktion mit dem
Nullpunkt zusammen (xm 0). Ein positives, additiv überlagertes
Signal (X > 0) verschiebt nun den Meridian der Dichtefunktion

/yüi) der Proben yi zu positiven Werten hin (xm > 0).
Bezeichnet man mit p die Wahrscheinlichkeit, dass die Probe

yi ein positives Vorzeichen aufweist, ferner mit /y+(v0 die

Dichtefunktion der Probe y\ unter der Voraussetzung, dass sie

positiv ist L/yü» fy{yi \ yi ^ 0)], sowie mit fp (yi) die
entsprechende Dichte für den Fall, dass y\ < 0 ist [/y 0>i | y\ < 0)],
so findet man mit Hilfe des Satzes über die bedingte
Wahrscheinlichkeit (z.B. [5]) für die Dichtefunktion fy{yi)
der Probe yi den Zusammenhang :

/y(Vi)=P/y+(Vi) + (l P)fy~ (Vi) (13)

Bei fehlendem Signal (A 0) wird infolge der Koinzidenz
des Meridianes mit dem Nullpunkt die Wahrscheinlichkeit p

1,0

0,8

0,6

0,4

t

ca.

0,2

0,1

0,1 0,2 0,4 0 6 0,8 1,0
oC

Fig. 4
Fehlalarm- und Erkennungswahrscheinlichkeiten a, ß des optimalen linearen

Detektors mit dem Signal/Rauschverhältnis als Parameter
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für ein yi i> 0 gerade 0,5; die Dichtefunktion der Probe yi
lautet daher unter diesen Voraussetzungen:

/y (fi) — y t/y+ (ki) + /y (ki)]

z,(y) n p^^yi) + <-1 ~p)fv~(-yù

'=1 y [/y+ (kO + (y~ (kO]

Die einzelnen Multiplikanden weisen dabei den Wert

pfy+ (ki)

falls ki^ 0 und

y /y+ (ki)

(1 P)fy~ (kl)

y/y"(ki)

: 2/7

2(1 -/>)

(15)

(16)

(17)

auf, falls yi < 0. Das Wahrscheinlichkeitsverhältnis in Gl. (15)
nimmt daher die Form an :

N N
£u(yi) N— £u(yi) (18)

L(F) 2*V 1

(1-/0 i=1

worin u(x) die Einheits-Schrittfunktion ist :

il (x) — 1 falls x ^ 0

u (x) 0 falls x < 0

Da auch hier der Ausdruck L(Y) eine monotone Funktion
N

des Argumentes ^ "(kO ist, kann man ebensogut das Argument
i 1

selbst mit einer geeigneten Schwelle L"' vergleichen. Damit
lautet die optimale nichtparametrische Detektorfunktiori :

k L (F) 2 "(ki) : (19)

Diesen Detektor nennt man «Vorzeichen-Detektor», weil

er von den einzelnen Proben yi nur noch die Vorzeichen
berücksichtigt. Dementsprechend ist er einfacher zu realisieren :

man braucht nur noch die Stichproben mit positivem
Vorzeichen zu zählen und mit einer Schwelle zu vergleichen. Diese

wird auch hier nach dem Kriterium von Neyman-Pearson
durch Angabe einer bestimmten Fehlalarmwahrscheinlichkeit
bestimmt.

Die Grösse k in Gl. (19) ist binomialverteilt, sie stellt die
Anzahl der Proben mit positivem Vorzeichen dar. Unter der

Voraussetzung, dass kein Signal vorhanden ist, lautet die

Dichtefunktion von k, weil ja mit gleicher Wahrscheinlichkeit
positive und negative Vorzeichen erscheinen:

0 <k<N (20)

während im Falle eines tatsächlich vorhandenen Signales die

Wahrscheinlichkeitp für eine positive Probe grösser als 0.5 ist;

A(k) (^)/>k(l 0£k£N (21)

Die Schwelle L'" ergibt sich unter Berücksichtigung von
Gl. (20) und (19) aus:

(14)

Wie bei den parametrischen Detektoren führt hier die
Anwendung des Optimierungskriteriums von Neyman-Pearson
auf einen Quotienten bedingter Wahrscheinlichkeiten. Setzt

man auch wieder statistische Unabhängigkeit der einzelnen
Proben yi voraus, so findet man für das Wahrscheinlichkeits-
Verhältnis L(Y):

1

2N (21)
k L"

Die tatsächliche Fehlalarm-Wahrscheinlichkeit weist
(infolge der hier diskreten Schwelle) einen Wert auf, der gerade

grösser oder gleich dem vorgegebenen a ist. Entsprechend
findet man für die Erkennungswahrscheinlichkeit :

I 0,(|
c V"

-p)> (22)

Im folgenden sei die Feistungsfähigkeit des Vorzeichen-
Detektors im Vergleich zum linearen Detektor nach Gl. (10)
untersucht. Es kann gezeigt werden, dass für den asymtotischen
Wirkungsgrad dœ angenähert gilt ([1]):

4cr2/„2(0) (23)

Flierzu wurden die Voraussetzungen für die Ableitung des

asymptotischen Wirkungsgrades von Abschnitt 1.2

berücksichtigt. Wenn nun die Rauschproben normal verteilt sind, so
wird

/n (0) 1/ J/W
und der asymptotische Wirkungsgrad für sehr grosse
Stichprobenzahlen erreicht den Wert

dco gauss — — ^ 64 % (24)
TT

Falls aber die Rauschproben exponentiell verteilt sind nach

/n im) y exp - a m (25)

so strebt der asymptotische Wirkungsgrad gegen :

dcaexp — 200 %

Es lässt sich eine ganze Klasse von Dichtefunktionen /n
definieren, welche beim Vorzeichen-Detektor zu Wirkungsgraden

über 100 % führen [1],

Für die Anwendung interessant ist insbesondere die Frage
wie weit die Beurteilung der Wirksamkeit durch den aysymp-
totischen Wirkungsgrad schon bei endlichen Stichprobenzahlen

gültig ist, und wie sich der Wirkungsgrad bei nicht
verschwindender Signalamplitude X verhält. Zu diesem Zweck
wurde der Wirkungsgrad des Vorzeichendetektors bei gauss-
schem Rauschen für die Anzahl N der Stichproben im Bereich
1 ^ N ^ 40 numerisch berechnet (Fig. 5 und 6). Es zeigt sich,
dass der asymptotische Wirkungsgrad auch für die Verhältnisse

mit endlichen Stichprobenzahlen und nicht verschwindender

Signalamplitude eine brauchbare Näherung darstellt.
Immerhin ist dabei eine leichte Abhängigkeit des Wirkungsgrades

von der zulässigen Fehlalarm-Wahrscheinlichkeit
festzustellen, eine Abhängigkeit, welche für N oo verschwindet.
Die Oszillation der Kurven kommt durch die Tatsache
zustande, dass infolge der diskreten möglichen Schwellen des

Vorzeichendetektors die tatsächlichen Fehlalarm-Wahrscheinlichkeiten

nicht immer gleich sind, wodurch eben auch der

Wirkungsgrad schwankt.
Während die Entscheidungssicherheit des linearen Detektors

bei gaußschem Rauschen von keiner anderen Funktion
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übertroffen werden kann, weil er für diese spezielle Statistik
der Störamplituden optimiert wurde, kann der Wirkungsgrad
des Vorzeichendetektors bei anderen Dichtefunktionen der

Rauschamplituden beträchtlich über 100 % liegen, nämlich
z. B. 200 % beim exponentiellen Rauschen nach Gl. (25).
Immerhin sind auch Fälle möglich, bei denen der asymptotische
Wirkungsgrad wesentlich geringer ist; dies tritt immer dann
ein, wenn die Dichtefunktion mit zunehmender Amplitude
rasch genug abnimmt [1],

Nun gibt es aber erstaunlicherweise auch nichtparametri-
sche Detektoren, welche einen bestimmten minimalen
Wirkungsgrad garantieren. Unter ihnen ist der Wilcoxon-Detektor
zu nennen, dessen Wirkungsgrad immer über 86 % liegt [6].

Der Wilcoxon-Detektor verwendet von den Stichproben mehr
Information als nur ihr Vorzeichen, nämlich zusätzlich noch ein

Mass für ihren Abstand vom Nullpunkt. Ordnet man die N
Stichproben

yi, yz—y-s

in der Reihenfolge ihrer Beträge

1 Vgl I < I JV2 ]...| VgN :

so ist die Entscheidungsfunktion des Wilcoxon-Detektors die
Summe der Ordnungen :

L(Y)= J di SLo" (26)

di-

definiert, wobei
' 0 falls ygi V 0

falls ygi > 0

In [1] wird gezeigt, dass der asymptotische Wirkungsgrad
des Wilcoxon-Detektors gegenüber dem linearen Detektor bei

beliebiger symmetrischer Dichtefunktion fn(m) der Rauschproben

m gegeben ist durch :

na

dy, 12 er2
+ oo

/ /n2(m)d« (27)

Bei gaußschem Rauschen wird der Wirkungsgrad des

Wilcoxon-Detektors

Fig. 5

Der Wirkungsgrad d des Vorzeichendetektors bei gausschein Rauschen und
endlichen Stichprobenzahlen N bei einer Fehlalarmwahrscheinliclikeit von

a 0,001

Signal/Rausch-Verhältnis X2/g2 10-4 bzw. 10°

ARE: asymptotischer Wirkungsgrad

Wie Fig. 5, aber mit der FehlalarmWahrscheinlichkeit a 0,01

ARE: asymptotischer Wirkungsgrad

-*wgauss " 95% (28)

bei exponentieller Verteilung der Rauschproben wird dagegen

rfwexP= V 150% (29)

In [7] wird gezeigt, dass der Wirkungsgrad des Wilcoxon-
Detektors niemals unter 86 % sein kann, was die
Dichtefunktion /n(m) der Störamplituden auch immer für eine Form
aufweise. Selbstverständlich erkauft man diese Sicherheit mit
erhöhtem Aufwand bei der Realisierung: während der
Vorzeichendetektor mit einem Schwellwertschalter und einem
Zähler auskommt, erfordert der Wilcoxon-Detektor unter
anderem einen Speicher für alle V-Stichproben.

Das Repertoire nichtparametrischer Entscheidungsfunktionen

ist mit den beiden erwähnten Beispielen durchaus nicht
erschöpft. Sie stellen im Gegenteil die beiden einfachsten
Fälle einer ausserordentlich grossen Zahl nichtparametrischer
Entscheidungsregeln dar, [7 ; 8], Dazu kommen neben den

besprochenen Detektoren mit einem einzigen Signaleingang
solche mit mehreren Eingängen, z. B. Korrelatoren (Polaritäts-
Koinzidenz-Korrelatoren), ferner nichtparametrische Detektoren

für zeitlich veränderliche Signale, usw.
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