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Bestimmung statistischer Parameter auf Grund von Stichproben
Von H.J. Schlaepfer, Ziirich

Es werden die beiden wichtigsten Methoden zur Bestimmung
der statistischen Eigenschaften der Elemente einer Menge mit
Hilfe einer beschrinkten Anzahl von Stichproben beschrieben
und die Grenzen der Genauigkeit gezeigt, welche sich damit er-
reichen lassen. An Hand einfacher Beispiele wird der praktische
Einsatz theoretischer Ergebnisse erldutert. Fiir das Verstindnis
der Arbeit ist die Kenntnis der grundlegenden Zusammenhdinge
der Wahrscheinlichkeitsrechnung unerldsslich.

1. Einleitung

In der vorliegenden Arbeit wird ein kurzer Uberblick iiber
die Bestimmung der statistischen Eigenschaften der Elemente
einer Menge auf Grund einer beschrinkten Anzahl von Stich-
proben gegeben. Die «Theory of Estimation» wurde von R. 4.
Fisher (1921) begriindet; die vorliegenden Ausfiihrungen ba-
sieren im wesentlichen auf der zusammenfassenden Darstellung
von H. Cramér [1]11).

Das grundsitzliche Problem, welches in dieser Arbeit theo-
retisch untersucht wird, lasst sich folgendermassen beschreiben :

Gegeben sei eine beschrinkte Anzahl N unabhingiger
Stichproben xi...xn aus einer Menge X. Die Elemente x; dieser
Menge weisen bestimmte Eigenschaften (ai...am) auf, deren
Haiufigkeit durch die Funktion p (x; gi...am) beschrieben wird.
Von diesen Verteilungsfunktionen sei zwar die mathematische
Form (Gaussverteilung, Gleichverteilung, usw) bekannt, doch
weisen sie eine Anzahl m unbekannter Parameter ai...am auf.
Das Ziel besteht darin, einige oder alle der unbekannten Para-
meter ax mit Hilfe der verfiigbaren Stichproben moglichst
genau abzuschitzen. Gesucht ist demnach der beste aus der in
jedem Falle unendlichen Vielfalt moglicher Zusammenhidnge
zwischen den Stichproben xi...xx einerseits und den gesuchten
Parameter ai...am andrerseits.

Beispiel 1: Aus einer grossen Menge von Kohleschicht-Wider-
stinden mit dem Nominalwert 1k wurden fiinf Stichproben mit den
Werten x1=1-03k, xo=1-05k, x3=0-99k, xa=0-96k, x5=1-06k ge-
nommen. Typische Fragestellungen betreffen die Art und Weise, wie
man den Mittelwert der gesamten Menge von Widerstinden ab-

schiitzt oder den Bruchteil der Widerstinde, welche ausserhalb der
Toleranz 1k + 5 % liegen.

Es stehen daher folgende Fragen zur Diskussion:

a) Welches sind die funktionalen Zusammenhénge
dx = dx (x1...xn), welche die gesuchten Parameter ayx (K = 1...m)
auf Grund der zufilligen Stichproben x; moglichst gut beschreiben ?

b) Wie findet man diese optimalen Zusammenhédnge ?

¢) Mit welchen Kriterien ist die Qualitét solcher Abschétzungs-
funktionen zu beurteilen ?

d) Welches sind die theoretischen Grenzen der Genauigkeit, mit
welcher die gesuchten Parameter abgeschitzt werden konnen ?

Damit das Problem in seiner einfachsten Form untersucht
werden kann, werden folgende drei Voraussetzungen getroffen:

1. Die Zahl der Elemente der zu untersuchenden Menge sei sehr
gross, jedenfalls so gross, dass die statistischen Eigenschaften der
Stichproben von den Ergebnissen fritherer Stichproben unabhingig
sind.

1) Siehe Literatur am Schluss des Aufsatzes.
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On décrit les deux méthodes les plus importantes de la déter-
mination des propriétés statistiques des éléments d'une quantité
a lPaide d'un nombre limité de sondages, en indiquant les limites
de précision ainsi atteintes. On explique application pratique
des résultats théoriques par quelques exemples simplifiés. La con-
naissance des relations fondamentales du calcul des probabilités
demeure indispensable a la parfaite compréhension de cet exposé.

Beispiel 2: Die Menge der Kugeln einer Urne, welche aus zwei
roten und einer weissen Kugel besteht, erfiillt diese Voraussetzung
nicht; denn nachdem zum Beispiel die weisse Kugel entfernt wurde,
ist die Wahrscheinlichkeit dafiir, dass in der nichsten Stichprobe eine
rote Kugel genommen wird prot=1 (anstatt 23 bei der ersten Stich-
probe), wihrend keine weisse Kugel mehr vorhanden ist (pweiss=0
anstatt pweiss= V4 beim ersten Mal).

2. Die Zahl N der Stichproben sei zum voraus bekannt. Unter-
suchungen, bei welchen laufend entschieden wird, ob die vorhande-
nen Stichproben fiir eine bestimmte Sicherheit der Abschitzung
geniigen oder nicht, werden hier nicht betrachtet. (Siehe dazu [2]).

3. Alle Stichproben x;j sollen von derselben Menge X stammen,
sie weisen also alle dieselbe Haufigkeit p(x, ai...am) auf. Eine Er-
weiterung auf Stichproben aus mehreren Mengen X, Y, Z, ... mit
gemeinsamen Parametern ist jedoch durchaus moglich [1].

2. Hilfsmittel

In diesem Abschnitt seien die wichtigsten theoretischen
Hilfsmittel zusammengetragen, mit denen sich die gestellten
Aufgaben 16sen lassen. Im {ibrigen muss aber die Kenntnis der
grundlegenden Zusammenhidnge der Wahrscheinlichkeits-
rechnung als bekannt vorausgesetzt werden. Eine sehr gute
Einfiihrung enthélt z. B. [3].

In folgenden soll x stets eine kontinuierliche Zufallsgrosse
sein, welche im Intervall 4 = x = Balle beliebigen Werte an-
nehmen kann.

Beispiel 3: Der Momentanwert x der Spannung an einem rau-
schenden Widerstand ist eine kontinuierliche Zufallsgrosse, welche
alle moglichen Werte im Bereich — co < x < oo annehmen kann

(Fig. 1).

Dagegen soll y stets eine diskrete Zufallsgrosse sein, welche
im Intervall C < y < D nur eine abzihlbare Menge moglicher
Werte annehmen kann.

Beispiel 4: Die Zahl y der Augen eines Wiirfels, welche an der
oberen Seitenfliche erscheinen, ist eine diskrete Zufallsgrosse, mit
allen ganzzahligen Werten im Bereich 1 < y < 6 (Fig. 2).
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Relative Hiufigkeit p(x) des Momentanwertes einer Rauschspannung
1 Erwartungswert; o2 Streuung
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Fig. 2
Relative Hiiufigkeit p(y) der Anzahl der Augen eines symmetrischen Wiirfels

Die wesentliche Eigenschaft einer Zufallsgrosse besteht
darin, dass ihre Werte nicht exakt voraussagbar sind. Trotzdem
wird man bei vielfachen Versuchen eine Regelmaissigkeit in
dem Sinne beobachten konnen, dass diese Zufallsgrosse offen-
sichtlich doch bestimmten Gesetzmassigkeiten unterworfen ist.
So werden sich die Momentanwerte der Rauschspannung stark
um einen gewissen Mittelwert konzentrieren, wiahrend sehr
grosse Abweichungen davon wesentlich seltener sind (Fig. 1).

In dhnlicher Weise wird man beim Wiirfel feststellen kon-
nen, dass alle Augenzahlen etwa mit derselben Haufigkeit er-
scheinen (Fig. 2). Die Dichtefunktion p(x) stellt nun ein Mass
fiir die relative Haufigkeit des Wertes x bezogen auf die ge-
samte Anzahl von Versuchen dar. Dank dieser Definition gilt
sicher, weil die Intervalle (4, B) und (C, D) alle moglichen
Werte der Zufallsgrossen x und y enthalten und weil die Wahr-
scheinlichkeit p(z) = 1 die vollkommene Sicherheit des Ereig-
nisses z darstellt:

B
mox = fp(x)dx: 1
= (n
D
Moy — Z Pi= 1
i=C

wobei das Integral fiir die kontinuierliche Zufallsgrosse x und
die Summe fiir die diskrete Zufallsgrosse y gilt. Diese Dichte-
funktionen dienen zur Definition einiger abgeleiteter Grossen
wie den Mittelwert mi :

B
mix=E@ =[x -px)dx .
A

= @
my=E@M=2 np

i=c
und allgemein fiir den Erwartungswert E(mi):

B

mix = E (x¥) = f x5 p(x)dx
A
3)

D
mey = E (¥ =2 yEpi
i=c
In Analogie zur Massenverteilung der Mechanik werden
diese Grossen auch « Momente» genannt. m entspricht dann
dem Schwerpunkt der Massenverteilung p(x) bzw. p(y). Die
zentralen Momente werden auf den Mittelwert m; bezogen. Es
gilt daher fiir das zentrale Moment ui der Ordnung k:
B
pex =E (x — mi¥ = [ (x — mo)¥p (x) dx
A
" @
xy = E (y — miy)* = Z (i — miy)¥ p:

i=c
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Der Erwartungswert mi stellt den Mittelwert einer sehr
grossen Anzahl von Stichproben dar, wéhrend das zentrale
Moment u2 (auch Streuung genannt) ein reziprokes Mass dafiir
ist, wie stark sich die moglichen Werte um den Mittelwert
konzentrieren.

Beispiel 5: Wenn y die Zahl der Augen eines Wiirfels ist, so lautet
die diskrete Dichtefunktion nach Fig. 2:

py=D=p(r=2=..=p(=6="1s

Im Mittel erscheinen

6
1 1 1
i=1

Augen und die Streuung der Augenzahl ist:

6
pr=2 (i—352p(y =i)=(— 2,5

i=1
1

1
=+ 2.~
g T (2,5) G 2,9

Entsprechend den Momenten der diskreten Zufallsgrossen
konnen auch Momente von den Stichproben bestimmt werden.
Das Moment mi” und das zentrale Moment g’ der Ordnung
k der Stichproben lauten allgemein :

(%)

Wihrend aber die Momente mi, ux der Dichtefunktionen
determinierte Grossen sind, weil sie die Eigenschaften aller
Elemente einer Menge beriicksichtigen, so sind die Momente
my’, i’ der Stichproben Zufallsgrossen, weil sie selbst Funk-
tionen einer zufélligen und unvollstindigen Auswahl von
Elementen sind.

Damit stehen die wesentlichen Hilfsmittel fiir die Ab-
schiatzung der statistischen Parameter zur Verfiigung.

3. Eigenschaften von Abschitzungsfunktionen

Als «Abschiatzungsfunktionen» werden im folgenden alle
funktionalen Zusammenhdnge zwischen den Ergebnissen der
N Stichproben xi...xn einerseits und dem unbekannten Para-
meter ao anderseits verstanden. Im Interesse einer einfachen
Darstellung wird der Fall einer einzelnen unbekannten Grosse
ao untersucht, die Erweiterung auf mehrere Unbekannte folgt
unmittelbar aus dem Gesagten und soll an Hand eines Beispiels
gezeigt werden.

Aus der unendlichen Menge moglicher Abschiatzungsfunk-
tionen soll diejenige d = d(x1...xx) gesucht werden, welche in
bestimmter Hinsicht optimal ist. Im folgenden seien einige der
niitzlichen und erforderlichen Eigenschaften untersucht, welche
die Abschitzungsfunktion é aufweisen soll.

3.1 Systematischer Fehler
Eine Abschatzungsfunktion d; ist sicher dann einer zweiten
ds vorzuziehen, wenn bei vielfacher Anwendung der Ab-
schiatzungsfunktion @1 der Wert der gefundenen Grosse niher
beim tatsdchlichen Wert des gesuchten Parameters liegt als
dies bei Verwendung von do der Fall ist. Da aber die Argu-
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mente der Abschitzungsfunktion Zufallsgrossen sind, wird
auch der Wert 4 der Abschétzung eine Zufallsgrosse sein, deren
Mittelwert im besten Falle mit dem tatsdchlichen Wert ao des
gesuchten Parameters tibereinstimmt. Eine erste Forderung an
eine gute Abschiatzungsfunktion betrifft daher den Erwartungs-
wert der Abschitzung, welcher gleich dem tatsdchlichen Wert
ap sein soll:

E (@ = ao ©

Wenn diese Bestimmung gilt, so wird die Abschidtzungs-
funktion a als «frei von systematischen Fehlern» bezeichnet.
Da eine Korrektur des systematischen Fehlers in vielen Fillen
sehr leicht moglich ist, wie das folgende Beispiel zeigt, ist das
im nédchsten Abschnitt besprochene Kriterium des mittleren
Fehlerquadrates von wesentlich grosserer Bedeutung.

Beispiel 6: Von der Normalverteilung p(x) soll auf Grund von N
unabhéngigen Stichproben die Streuung u2 bestimmt werden. Dazu

erscheint das zentrale Moment zweiter Ordnung der Stichproben als
geeignete Abschitzungsfunktion:

1 N
=ty =5 D (xi — mp)?
i=1

wobei

Fiir den Erwartungswert von ug gilt daher:

" I+ ’ N—1
E (j22) :E(W_Z (xy — ml)Z) = ( -

i=1

)ﬂz#uz

Das zentrale Moment zweiter Ordnung der Stichproben ist bei
unbekanntem Erwartungswert der Normalverteilung keine von
systematischen Fehlern freie Abschétzung fiir die Streuung, doch
wird dieser Fehler mit sinkender Stichprobenzahl immer kleiner.
Dagegen ist, wie man sich leicht {iberzeugen kann, die folgende
Abschitzung frei von systematischen Fehlern:

1 N
o= g 2 = m?

i=1

=)

3.2 Mittlerer quadratischer Fehler und Wirkungsgrad

Nicht nur sollte der Erwartungswert einer Abschidtzung mit
dem tatsichlichen Wert des gesuchten Parameters iiberein-
stimmen, sondern vielmehr sollten bei zahlreichen Versuchen
die abgeschitzten Werte ¢ moglichst nahe beim tatsdchlichen
Wert ag liegen. Ein reziprokes Mass fiir die Konzentration, mit
der sich die Abschiatzungen um den Erwartungswert gruppie-
ren, ist das mittlere Fehlerquadrat. Dieses an sich willkiirliche
Mass ist aber durchaus gerechtfertigt, weil im Falle einer sehr
grossen Anzahl unabhingiger Stichproben die Abschitzung
die Normalverteilung annimmt, bei welcher diese Definition
der Abweichung gerade mit der Steuung iibereinstimmt.

Die zweite Forderung an eine gute Abschitzungsfunktion
betrifft daher den mittleren quadratischen Fehler

E(d — ao)? = min
welcher natiirlich so klein wie moglich sein soll. Nun kann aber
mit einer gegebenen Anzahl von Stichproben dieser Fehler
niemals unterhalb einen gewissen Minimalwert sinken. Man
ist daher interessiert daran, Abschitzungsfunktionen zu be-
sitzen, welche diese untere Grenze des mittleren Fehlerquadra-
tes gerade erreichen. Eine solche Abschidtzungsfunktion wird
wirksam genannt im Gegensatz zu solchen, bei denen das
mittlere Fehlerquadrat grosser ist. Diese untere Grenze wird
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durch die Ungleichung von Cramér-Rao [1] bestimmt. Sie
lautet unter allgemeinen Voraussetzungen, falls 4 frei von
systematischen Fehlern ist:
i
A 2 > 2
E (G — ao)? = NE(blnp(x)_)
dao

Als Wirkungsgrad d einer Abschitzung wird im folgenden
der Quotient von minimalem quadratischen Fehler nach
Cramér-Rao und dem mittleren Fehlerquadrat der untersuch-
ten Abschatzung verstanden. Sicher gilt, dass d < 100 %.

Waihrend fiir endliche Stichprobenzahlen nur in den aller-
einfachsten Fillen wirksame Abschitzungsfunktionen be-
stehen, sind asymptotisch wirksame Funktionen wesentlich
héaufiger, welche den Wirkungsgrad d = 100 9, erst im Grenz-
fall unendlich vieler Stichproben erreichen. Die folgenden drei
Beispiele behandeln wirksame, asymptotisch wirksame und
nicht wirksame Abschitzungsfunktionen.

Beispiel 7: Fiir den Erwartungswert x der Gaussverteilung

als Abschitzungsfunktion verwendet.

1. Ist diese Abschétzungsfunktion frei von systematischen Fehlern ?

N

1 1
E(ﬁ)zE(W =z xi) :WEIE(’“) =u

i=1

Der arithmetische Mittelwert gaussverteilter Stichproben weist
keinen systematischen Fehler auf.

2. Welches ist das minimale mittlere Fehlerquadrat nach Cramér-
Rao?
1

2%

En (i — p? =

3. Welches ist der mittlere quadratische Fehler, welchen der
arithmetische Mittelwert liefert ?

2
E(i = w2 = EG)? — 20 EG) + 12 = -

Da das mittlere Fehlerquadrat gerade mit dem Grenzwert von
Cramér-Rao iibereinstimmt, stellt der arithmetische Mittelwert der
Stichproben eine wirksame Abschitzungsfunktion fiir gaussverteilte
Proben dar. Der Wirkungsgrad der Abschéitzung ist immer 100 %,.

Beispiel 8: Nach Beispiel 6 ist die Funktion

1 N
P e E : 2
o2 N1 i=1(x1 mi’)

zur Abschitzung der Streuung der N normalverteilten Stichproben

frei von systematischen Fehlern.

1. Welches ist die untere Grenze fiir das mittlere Fehlerquadrat
nach Cramér-Rao fiir diese Abschitzung?

. - 20t
Em (g2 — p2)?> = ——

2. Welches ist das mittlere Fehlerquadrat der gewidhlten Ab-
schitzungsfunktion ?
2 g4
N—1

E(iz — p9)*> =
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Wirkungsgrad der Abschitzung der Streuung normalverteilter Stichproben
d Wirkungsgrad; N Anzahl unabhingiger Stichproben

Der Wirkungsgrad d betriagt demnach

d=1o0 =1

%% << 100 %

Diese Abschitzungsfunktion ist nur asymptotisch wirksam; ihr
Wirkungsgrad strebt gegen 100 %, erst wenn die Zahl der Stich-
proben tiber alle Grenzen wichst (Fig. 3).

Beispiel 9: Der Mittelwert u der Gaussverteilung von Beispiel 7
werde durch den Meridian z (Fig. 4) der N Stichproben bestimmt,
welcher so definiert ist, dass die eine Hélfte der Stichproben grosser
ist als z und die andere Halfte kleiner. Fiir grosse Stichprobenzahlen
ist der Meridian eine normalverteilte Zufallsgrosse mit dem Er-
wartungswert x und Streuung

i g
E(z— uw a TN

Nach Beispiel 7 ist die untere Grenze fiir das mittlere Fehler-
quadrat aber nach Cramér-Rao

o2

Em (2 — p? %

=

weshalb der Wirkungsgrad dieser Abschidtzung immer kleiner als
100 %; ist, namlich :

2 2N 200 .
d—]OOW G'ZTI: —T~63/0

Das bedeutet, dass man nur etwa 63 9, der Stichproben benétigen
wiirde, um mit dem arithmetischen Mittelwert der Stichproben
den Erwartungswert x der Gaussverteilung mit derselben Genauigkeit
abzuschétzen.

4. Methoden zur Bestimmung der Abschatzungsfunktion

Wenn die Stichproben nicht mehr normalverteilt sind, so
werden im allgemeinen nicht mehr der arithmetische Mittelwert
der Stichproben und das zweite zentrale Moment die besten
Abschitzungsfunktionen sein. Es erhebt sich daher die Frage,
auf welche Weise wirksame oder doch mdoglichst gute Ab-
schitzungen zu finden sind. Im folgenden werden die beiden
hauptsiachlichen Methoden der Statistik besprochen, welche
auf Grund der bekannten Verteilungsfunktionen geeignete
Abschitzungsfunktionen fiir die unbekannten Parameter
liefern.

4.1 Die Methode der Momente

Der élteste Vorschlag zur Bestimmung von Abschitzungs-
funktionen stammt von K. Pearson (1928): die Methode der
Momente. Sie besteht darin, dass von der Dichtefunktion
p(x; a) der Stichproben das erste Moment berechnet wird,
welches eine Funktion des unbekannten Parameters a sein
wird. Dieses Moment wird mit dem entsprechenden Moment
der Stichproben verglichen. Allgemein wird man die m ersten
Momente der Dichtefunktion berechnen und sie mit den m

318 (A 265)

ersten Momenten der Stichproben vergleichen. Es entsteht so
ein Gleichungssystem von m Gleichungen fiir die m unbekann-
ten Parameter ai...am. Diese Methode fiihrt, allerdings auf
Kosten des Wirkungsgrades, oft zu einfacheren Abschitzungs-
funktionen als andere Methoden. Sie sind im allgemeinen nicht
einmal asymptotisch wirksam.

4.2 Die Methode der grissten Wahrscheinlichkeit

Die Methode der grossten Wahrscheinlichkeit (maximum
likelihood) von R. A. Fisher besitzt ausserordentlich grosse
Bedeutung, weil sie immer eine wirksame Abschatzungsfunk-
tion liefert, sofern eine solche tiberhaupt existiert. Diese Me-
thode basiert auf der Definition der Verbundwahrscheinlichkeit
der Stichproben:

N
L (x1...xx; @0) = p (x1; @o)...p (xn; ao) = _H1 p (xi; ao)
i=

Bei gegebenen Werten xi..xnx der Stichproben ist diese
Wahrscheinlichkeitsfunktion nur noch vom unbekannten
Parameter ao abhingig. Man kann daher diesen Parameter so
bestimmen, dass die Verbundwahrscheinlichkeit der Stich-
proben maximal wird. Da der Logarithmus eine streng mono-
tone Funktion seines Argumentes ist, kann die Gleichung:

dlnL  OL* —0
dao dao

zur Bestimmung des unbekannten Parameters ao verwendet
werden. Allgemein wird man im Falle von m unbekannten
Parametern ai...am die m partiellen Ableitungen von L* nach
den a; bilden und so ein Gleichungssystem von m Gleichungen
fiir die m unbekannten Parameter erhalten.

Beispiel 10: Zur Bestimmung von Mittelwert und Streuung der

Normalverteilung in Beispiel 7 wird die Wahrscheinlichkeitsfunktion
L* der Stichproben gebildet:

N N
L* (x1, ...xx; 4,0) =1In 1l p(xi;uo) = —711‘1(02)—
=1
N
N 1
_ A _ 2
o G — = i;m )

Durch partielle Differentation nach den gesuchten Parametern
1 und o2 erhilt man das Gleichungssystem:

N
o L* u
_— == i—u)=0
= o 21 1 —w)
N
dL* N 1
E iy s i o= )2 =0
d o2 202 T 202 igl i —4)
t 0=
>
=
X
=T
N
= 05
Z‘~26‘ zl—o‘ Z z;=l‘6 Z‘I‘ZG‘
X————
Fig. 4

Zur Definition des Meridians z
Bezeichnungen siehe Fig. 1
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Zur Definition des Vertrauensintervalles ; + ¢ auf Gruond der Verteilung
der Abschitzung d

Weitere Bezeichnungen siehe Fig. 1

womit man fiir die Abschédtzungsfunktionen erhélt:

. 1 &
n g

1 N
b P

Die Abschitzungsfunktion fiir den Erwartungswert g ist in jedem
Falle wirksam, wihrend die Streuung ¢2 nur dann wirksam abge-
schitzt wird, wenn der Erwartungswert bekannt ist. Im anderen
Falle weist diese Abschdtzung nach Beispiel 6 einen systematischen
Fehler auf und ist — nach der im selben Beispiel erwihnten Korrek-
tur — nur asymptotisch wirksam.

5. Das Vertrauensintervall

Wie in Abschnitt 2 festgestellt wurde, ist die Abschitzung
a eine Zufallsgrosse, weil sie selbst eine Funktion einer zufélli-
gen Auswahl von Stichproben ist. Diese Abschitzungen sind
fiir normalverteilte Stichproben selbst normalverteilt oder
werden es nach dem zentralen Grenzwertsatz der Statistik fir
sehr grosse Stichprobenzahlen auch bei praktisch beliebigen
Verteilungsfunktionen. Die Normalverteilung ist aber durch
die Angabe der beiden Parameter u (Erwartungswert) und o2
(Streuung) bestimmt. Man kann daher bei Kenntnis des syste-
matischen Fehlers E (@ — ao) und des mittleren Fehlerquadrates
E (4— ao)2die Verteilungsfunktion der Abschétzung durch eine
Normalverteilung darstellen. Damit gelingt es, ein Intervall zu
definieren, welches mit einer Sicherheit von p %, die abge-
schiatzten Werte enthélt (Fig. 5). Dieses Intervall wird p-%-
Vertrauensintervall genannt. Die Grenzen dieses Bereiches
sind so definiert, dass innerhalb g—& < x < u-+ ¢ der Bruchteil
p/100 der gesamten Fliche der Normalverteilung liegt:

u-—e

PP 14
P @9 o0
Dieses Integral stellt die Differenz der kumulativen Gauss-
schen Verteilungsfunktion an den Stellen ¢ = u + & und
d = p — ¢ dar. Thre numerischen Werte lassen sich nach ge-
eigneter Normung aus Funktionstafeln (z. B. [4]) entnehmen.

Beispiel 11: Von der Normalverteilung

(x — pp?
2

1
plx,p) = —— —
1/271: P

mit der Streuung 1 ldsst sich der Erwartungswert durch den Mittel-
wert der Stichproben abschitzen. Der Erwartungswert der Ab-
schdtzung ist nach Beispiel 7: E(x) = pund dasmittlere Fehlerquadrat
ist: E(u— p)? = 1. Mit 10 Stichproben ergibt dies ein 90-%-Ver-
trauensintervall mit Hilfe der Beziechung
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u -+ e10
[p(@)di =09
u—ei1o
Zu

1,65 0.52
oy ——=~ 0,
10 VIO

Demnach liegt mit einer Sicherheit von 90 %, der tatséichliche
Mittelwert der Stichproben im Intervall

i—052<u<ji +0,5

Mit viermal mehr Stichproben wird das Vertrauensintervall nur
um einen Faktor 2 verringert:

165 026
g0y ——~ 0,
% Vao

Allgemein werden fiir eine c-fache Genauigkeit ¢2 mal mehr
Stichproben bendotigt.

Beispiel 12: Im ersten Beispiel wurde nach dem Prozentsatz der
Widerstinde gefragt, welche ausserhalb des Toleranzbereiches von
1k + 59, liegen. Zur Abschitzung dieser Grosse standen die fiinf
Stichproben xi...x5 zur Verfiigung. Wenn man annimmt, dass die
tatsdchlichen Werte der Widerstdnde normalverteilt sind, so kann
nach Beispiel 7 ihr Mittelwert durch den arithmetischen Mittelwert
der Stichproben abgeschitzt werden:

& o L
.ux—4.
i

1
Xi =

= ?(1,03 + .+ 1,06) k = 1,018 k
1

HMU-

Nach Beispiel 6 ist die folgende Abschitzung fiir das zentrale
Moment zweiter Ordnung (welches der Streuung der Normalver-
teilung entspricht) frei von systematischen Fehlern:

5
R 1
52 = ) Z (xi — 1,01 8%)2 = 7,08 - 10°3 k2

i=1

Der Bruchteil p der Widerstinde, welche innerhalb des Toleranz-
bereiches liegen ergibt sich demnach zu:

1,05 .
o (x — fix)?

5 XP — —5 =, —dx
0,95 1/211: Gx? 2 0x

p=

Da die Tabellen die genormte kumulative Gaussverteilung an-
geben, ist folgende Variabelntransformation erforderlich:

_ X T M
Y= G
Damit erhélt man:
1,05 — Gix
(3
X 1 2
D= ——— €xXp — y? dy = 0,438
0.95—ax V2T
Gy

Es liegen demnach nur rund 44 9 der Widerstinde innerhalb der
geforderten Toleranz, widhrend etwa 56 9, ausserhalb liegen. Der
praktische Wert einer Probe von nur 5 Widerstdnden ist allerdings
sehr gering, denn im vorliegenden Fall umfasst das 90- %;-Vertrauens-
intervall fiir den Mittelwert u, nicht weniger als etwa 14 9% des
Nennwertes. Eine wesentliche Vergrosserung der Stichprobenzahl
ist daher unumgénglich.
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