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Bestimmung statistischer Parameter auf Grund von Stichproben
Von H. J. Schlaepfer, Zürich

Es werden die beiden wichtigsten Methoden zur Bestimmung
der statistischen Eigenschaften der Elemente einer Menge mit
Hilfe einer beschränkten Anzahl von Stichproben beschrieben
und die Grenzen der Genauigkeit gezeigt, welche sich damit
erreichen lassen. An Hand einfacher Beispiele wird der praktische
Einsatz theoretischer Ergebnisse erläutert. Für das Verständnis
der Arbeit ist die Kenntnis der grundlegenden Zusammenhänge
der Wahrscheinlichkeitsrechnung unerlässlich.

519.241.2

On décrit les deux méthodes les plus importantes de la
détermination des propriétés statistiques des éléments d'une quantité
à l'aide d'un nombre limité de sondages, en indiquant les limites
de précision ainsi atteintes. On explique l'application pratique
des résultats théoriques par quelques exemples simplifiés. La
connaissance des relations fondamentales du calcul des probabilités
demeure indispensable à la parfaite compréhension de cet exposé.

1. Einleitung
In der vorliegenden Arbeit wird ein kurzer Überblick über

die Bestimmung der statistischen Eigenschaften der Elemente

einer Menge auf Grund einer beschränkten Anzahl von
Stichproben gegeben. Die «Theory of Estimation» wurde von R. A.
Fisher (1921) begründet; die vorliegenden Ausführungen
basieren im wesentlichen auf der zusammenfassenden Darstellung
von H. Cramer [l]1).

Das grundsätzliche Problem, welches in dieser Arbeit
theoretisch untersucht wird, lässt sich folgendermassen beschreiben :

Gegeben sei eine beschränkte Anzahl N unabhängiger
Stichproben xi...xn aus einer Menge X. Die Elemente xi dieser

Menge weisen bestimmte Eigenschaften (ai...am) auf, deren

Häufigkeit durch die Funktion p (x; ai...am) beschrieben wird.
Von diesen Verteilungsfunktionen sei zwar die mathematische

Form (Gaussverteilung, Gleichverteilung, usw) bekannt, doch
weisen sie eine Anzahl m unbekannter Parameter ai...am auf.

Das Ziel besteht darin, einige oder alle der unbekannten
Parameter ab mit Hilfe der verfügbaren Stichproben möglichst

genau abzuschätzen. Gesucht ist demnach der beste aus der in
jedem Falle unendlichen Vielfalt möglicher Zusammenhänge
zwischen den Stichproben x\...xt$ einerseits und den gesuchten
Parameter ai...am andrerseits.

Beispiel 1: Aus einer grossen Menge von Kohleschicht-Wider-
ständen mit dem Nominalwert 1k wurden fünf Stichproben mit den
Werten xr l-03Ä:, X2 \-05k, *3=0-99k, xn=0-96k, X5 l-06k
genommen. Typische Fragestellungen betreffen die Art und Weise, wie
man den Mittelwert der gesamten Menge von Widerständen
abschätzt oder den Bruchteil der Widerstände, welche ausserhalb der
Toleranz \k ± 5 % liegen.

Es stehen daher folgende Fragen zur Diskussion :

a) Welches sind die funktionalen Zusammenhänge
âk âb Gi...xu), welche die gesuchten Parameter «t (k — 1 ...m)
auf Grand der zufälligen Stichproben xi möglichst gut beschreiben

b) Wie findet man diese optimalen Zusammenhänge
c) Mit welchen Kriterien ist die Qualität solcher Abschätzungsfunktionen

zu beurteilen?
d) Welches sind die theoretischen Grenzen der Genauigkeit, mit

welcher die gesuchten Parameter abgeschätzt werden können

Damit das Problem in seiner einfachsten Form untersucht
werden kann, werden folgende drei Voraussetzungen getroffen:

1. Die Zahl der Elemente der zu untersuchenden Menge sei sehr
gross, jedenfalls so gross, dass die statistischen Eigenschaften der
Stichproben von den Ergebnissen früherer Stichproben unabhängig
sind.

Beispiel 2: Die Menge der Kugeln einer Urne, welche aus zwei
roten und einer weissen Kugel besteht, erfüllt diese Voraussetzung
nicht ; denn nachdem zum Beispiel die weisse Kugel entfernt wurde,
ist die Wahrscheinlichkeit dafür, dass in der nächsten Stichprobe eine
rote Kugel genommen wird _prot=l (anstatt % bei der ersten
Stichprobe), während keine weisse Kugel mehr vorhanden ist (pweiss=0
anstatt />weiss=1/3 beim ersten Mal).

2. Die Zahl N der Stichproben sei zum voraus bekannt.
Untersuchungen, bei welchen laufend entschieden wird, ob die vorhandenen

Stichproben für eine bestimmte Sicherheit der Abschätzung
genügen oder nicht, werden hier nicht betrachtet. (Siehe dazu [2]).

3. Alle Stichproben xi sollen von derselben Menge Xstammen,
sie weisen also alle dieselbe Häufigkeit p(x, ai...am) auf. Eine
Erweiterung auf Stichproben aus mehreren Mengen X, Y, Z, mit
gemeinsamen Parametern ist jedoch durchaus möglich [1].

2. Hilfsmittel
In diesem Abschnitt seien die wichtigsten theoretischen

Hilfsmittel zusammengetragen, mit denen sich die gestellten

Aufgaben lösen lassen. Im übrigen muss aber die Kenntnis der

grundlegenden Zusammenhänge der Wahrscheinlichkeitsrechnung

als bekannt vorausgesetzt werden. Eine sehr gute

Einführung enthält z. B. [3].

In folgenden soll x stets eine kontinuierliche Zufallsgrösse
sein, welche im Intervall A^xïffB alle beliebigen Werte
annehmen kann.

Beispiel 3: Der Momentanwert x der Spannung an einem
rauschenden Widerstand ist eine kontinuierliche Zufallsgrösse, welche
alle möglichen Werte im Bereich — oo x tL oo annehmen kann
(Fig. 1).

Dagegen soll y stets eine diskrete Zufallsgrösse sein, welche

im Intervall C ffL y ^ D nur eine abzählbare Menge möglicher
Werte annehmen kann.

Beispiel 4: Die Zahl y der Augen eines Würfels, welche an der
oberen Seitenfläche erscheinen, ist eine diskrete Zufallsgrösse, mit
allen ganzzahligen Werten im Bereich 1 G y ffL 6 (Fig. 2).
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fi Siehe Literatur am Schluss des Aufsatzes.

Fig. 1

Relative Häufigkeit p(x) des Momentanwertes einer Rauschspannung

p Erwartungswert; et2 Streuung
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und allgemein für den Erwartungswert E(mk) :
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Der Erwartungswert mi stellt den Mittelwert einer sehr

grossen Anzahl von Stichproben dar, während das zentrale
Moment ß2 (auch Streuung genannt) ein reziprokes Mass dafür
ist, wie stark sich die möglichen Werte um den Mittelwert
konzentrieren.

Beispiel 5: Wenn y die Zahl der Augen eines Würfels ist, so lautet
die diskrete Dichtefunktion nach Fig. 2 :

1 2 3 U 5 6

r—-
Fig. 2

Relative Häufigkeit p(y) der Anzahl der Augen eines symmetrischen Würfels

Die wesentliche Eigenschaft einer Zufallsgrösse besteht

darin, dass ihre Werte nicht exakt voraussagbar sind. Trotzdem
wird man bei vielfachen Versuchen eine Regelmässigkeit in
dem Sinne beobachten können, dass diese Zufallsgrösse
offensichtlich doch bestimmten Gesetzmässigkeiten unterworfen ist.
So werden sich die Momentanwerte der Rauschspannung stark
um einen gewissen Mittelwert konzentrieren, während sehr

grosse Abweichungen davon wesentlich seltener sind (Fig. 1).

In ähnlicher Weise wird man beim Würfel feststellen können,

dass alle Augenzahlen etwa mit derselben Häufigkeit
erscheinen (Fig. 2). Die Dichtefunktion p(x) stellt nun ein Mass
für die relative Häufigkeit des Wertes x bezogen auf die
gesamte Anzahl von Versuchen dar. Dank dieser Definition gilt
sicher, weil die Intervalle (A, B) und (C, D) alle möglichen
Werte der Zufallsgrössen x und y enthalten und weil die
Wahrscheinlichkeit p(z) 1 die vollkommene Sicherheit des Ereignisses

z darstellt :

p (y l) p (y 2)

Im Mittel erscheinen

m\ 2 ' ' P b> i) 1

p(y 6)

3,5

Augen und die Streuung der Augenzahl ist :

6

«3=2 (i - 3,5)2 p Cr 0 — 2,5)2.
i 1

• ~ + + (2,5)2 • 4 «a 2,9
D O

Entsprechend den Momenten der diskreten Zufallsgrössen
können auch Momente von den Stichproben bestimmt werden.
Das Moment mk und das zentrale Moment pk der Ordnung
k der Stichproben lauten allgemein :

m k :

1 NL y xf
N ^N

(5)

Pk : y 2

(i)

wobei das Integral für die kontinuierliche Zufallsgrösse x und
die Summe für die diskrete Zufallsgrösse y gilt. Diese
Dichtefunktionen dienen zur Definition einiger abgeleiteter Grössen
wie den Mittelwert mi :

(2)

(3)

In Analogie zur Massenverteilung der Mechanik werden
diese Grössen auch «Momente» genannt, mi entspricht dann
dem Schwerpunkt der Massenverteilung p(x) bzw. p(y). Die
zentralen Momente werden auf den Mittelwert mi bezogen. Es

gilt daher für das zentrale Moment der Ordnung k :

(4)

Während aber die Momente mk, der Dichtefunktionen
determinierte Grössen sind, weil sie die Eigenschaften aller
Elemente einer Menge berücksichtigen, so sind die Momente

mk, ßk der Stichproben Zufallsgrössen, weil sie selbst
Funktionen einer zufälligen und unvollständigen Auswahl von
Elementen sind.

Damit stehen die wesentlichen Hilfsmittel für die
Abschätzung der statistischen Parameter zur Verfügung.

3. Eigenschaften von Abschätzungsfunktionen
Als «Abschätzungsfunktionen» werden im folgenden alle

funktionalen Zusammenhänge zwischen den Ergebnissen der

N Stichproben xi...xn einerseits und dem unbekannten
Parameter a0 anderseits verstanden. Im Interesse einer einfachen

Darstellung wird der Fall einer einzelnen unbekannten Grösse

ao untersucht, die Erweiterung auf mehrere Unbekannte folgt
unmittelbar aus dem Gesagten und soll an Hand eines Beispiels
gezeigt werden.

Aus der unendlichen Menge möglicher Abschätzungsfunktionen

soll diejenige â ö(xi...xn) gesucht werden, welche in
bestimmter Hinsicht optimal ist. Im folgenden seien einige der
nützlichen und erforderlichen Eigenschaften untersucht, welche
die Abschätzungsfunktion â aufweisen soll.

3.1 Systematischer Fehler

Eine Abschätzungsfunktion âi ist sicher dann einer zweiten

ü2 vorzuziehen, wenn bei vielfacher Anwendung der

Abschätzungsfunktion âi der Wert der gefundenen Grösse näher
beim tatsächlichen Wert des gesuchten Parameters liegt als

dies bei Verwendung von 02 der Fall ist. Da aber die Argu-
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mente der Abschätzungsfunktion Zufallsgrössen sind, wird
auch der Wert â der Abschätzung eine Zufallsgrösse sein, deren

Mittelwert im besten Falle mit dem tatsächlichen Wert ao des

gesuchten Parameters übereinstimmt. Eine erste Forderung an
eine gute Abschätzungsfunktion betrifft daher den Erwartungswert

der Abschätzung, welcher gleich dem tatsächlichen Wert
ao sein soll :

E (ô) ao (6)

Wenn diese Bestimmung gilt, so wird die Abschätzungsfunktion

â als «frei von systematischen Fehlern» bezeichnet.

Da eine Korrektur des systematischen Fehlers in vielen Fällen
sehr leicht möglich ist, wie das folgende Beispiel zeigt, ist das

im nächsten Abschnitt besprochene Kriterium des mittleren
Fehlerquadrates von wesentlich grösserer Bedeutung.

Beispiel 6: Von der NormalVerteilung p(x) soll auf Grund von N
unabhängigen Stichproben die Streuung pz bestimmt werden. Dazu
erscheint das zentrale Moment zweiter Ordnung der Stichproben als
geeignete Abschätzungsfunktion :

pz m'ri2

wobei

1 V
TT.2 XI

i X

Für den Erwartungswert von pz gilt daher :

N

N
E (pz) E l X- 2 Cxi — m{)2\

i 1

N — 1

N PI =1= PZ

1

P2 N - 1 2 (xi — mi)2

durch die Ungleichung von Cramer-Rao [I] bestimmt. Sie

lautet unter allgemeinen Voraussetzungen, falls â frei von
systematischen Fehlern ist :

1_
E(â- ao)2 A NE /hin p (x)\2/hin p (x)\2

\ h(70 /

Als Wirkungsgrad d einer Abschätzung wird im folgenden
der Quotient von minimalem quadratischen Fehler nach
Cramér-Rao und dem mittleren Fehlerquadrat der untersuchten

Abschätzung verstanden. Sicher gilt, dass d ^ 100 %.

Während für endliche Stichprobenzahlen nur in den aller-
einfachsten Fällen wirksame Abschätzungsfunktionen
bestehen, sind asymptotisch wirksame Funktionen wesentlich
häufiger, welche den Wirkungsgrad d 100 % erst im Grenzfall

unendlich vieler Stichproben erreichen. Die folgenden drei

Beispiele behandeln wirksame, asymptotisch wirksame und
nicht wirksame Abschätzungsfunktionen.

Beispiel 7: Für den Erwartungswert p der Gaussverteilung

PW
1

exp
1/2 71 ff 2 a

wird der arithmetische Mittelwert der Stichproben

(x — p)2

B Xi
i 1

Das zentrale Moment zweiter Ordnung der Stichproben ist bei
unbekanntem Erwartungswert der Normalverteilung keine von
systematischen Fehlern freie Abschätzung für die Streuung, doch
wird dieser Fehler mit sinkender Stichprobenzahl immer kleiner.
Dagegen ist, wie man sich leicht überzeugen kann, die folgende
Abschätzung frei von systematischen Fehlern :

als Abschätzungsfunktion verwendet.

1. Ist diese Abschätzungsfunktion freivon systematischen Fehlern?

n \ N

E(£) £(-2 2 xi k.ZEM - g
i 1

Der arithmetische Mittelwert gaussverteilter Stichproben weist
keinen systematischen Fehler auf.

2. Welches ist das minimale mittlere Fehlerquadrat nach Cramér-
Rao 7

1 /t2
Em(p — p)2 iE -

NE
3.2 Mittlerer quadratischer Fehler und Wirkungsgrad

Nicht nur sollte der Erwartungswert einer Abschätzung mit
dem tatsächlichen Wert des gesuchten Parameters
übereinstimmen, sondern vielmehr sollten bei zahlreichen Versuchen
die abgeschätzten Werte â möglichst nahe beim tatsächlichen
Wert ao liegen. Ein reziprokes Mass für die Konzentration, mit
der sich die Abschätzungen um den Erwartungswert gruppieren,

ist das mittlere Fehlerquadrat. Dieses an sich willkürliche
Mass ist aber durchaus gerechtfertigt, weil im Falle einer sehr

grossen Anzahl unabhängiger Stichproben die Abschätzung
die Normalverteilung annimmt, bei welcher diese Definition
der Abweichung gerade mit der Steuung übereinstimmt.

Die zweite Forderung an eine gute Abschätzungsfunktion
betrifft daher den mittleren quadratischen Fehler

E (â — ao)2 min

welcher natürlich so klein wie möglich sein soll. Nun kann aber

mit einer gegebenen Anzahl von Stichproben dieser Fehler
niemals unterhalb einen gewissen Minimalwert sinken. Man
ist daher interessiert daran, Abschätzungsfunktionen zu
besitzen, welche diese untere Grenze des mittleren Fehlerquadrates

gerade erreichen. Eine solche Abschätzungsfunktion wird
wirksam genannt im Gegensatz zu solchen, bei denen das

mittlere Fehlerquadrat grösser ist. Diese untere Grenze wird

In p (x)j2

CT

~N

3. Welches ist der mittlere quadratische Fehler, welchen der
arithmetische Mittelwert liefert

E(p p)2 E(p)2 — 2p Elp) + p2 —

Da das mittlere Fehlerquadrat gerade mit dem Grenzwert von
Cramér-Rao übereinstimmt, stellt der arithmetische Mittelwert der
Stichproben eine wirksame Abschätzungsfunktion für gaussverteilte
Proben dar. Der Wirkungsgrad der Abschätzung ist immer 100 %.

Beispiel 8: Nach Beispiel 6 ist die Funktion

p 2 :

N
I

N
- 2 (xi ~ mi')2

zur Abschätzung der Streuung der N normalverteilten Stichproben
frei von systematischen Fehlern.

1. Welches ist die untere Grenze für das mittlere Fehlei-quadrat
nach Cramér-Rao für diese Abschätzung?

Em lp2 — pi)2
2 o4

N

2. Welches ist das mittlere Fehlerquadrat der gewählten
Abschätzungsfunktion

E (pz — pz)2
2 CT4

N — 1
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Fig. 3

Wirkungsgrad der Abschätzung der Streuung normaiverteilter Stichproben
d Wirkungsgrad; N Anzahl unabhängiger Stichproben

Der Wirkungsgrad d beträgt demnach

d 100 N~ 1

%< 100%

Diese Abschätzungsfunktion ist nur asymptotisch wirksam; ihr
Wirkungsgrad strebt gegen 100 %, erst wenn die Zahl der
Stichproben über alle Grenzen wächst (Fig. 3).

Beispiel 9: Der Mittelwert p der Gaussverteilung von Beispiel 7
werde durch den Meridian z (Fig. 4) der N Stichproben bestimmt,
welcher so definiert ist, dass die eine Flälfte der Stichproben grösser
ist als z und die andere Hälfte kleiner. Für grosse Stichprobenzahlen
ist der Meridian eine normalverteilte Zufallsgrösse mit dem
Erwartungswert p und Streuung

E(z — p)— ,i\2 „2
2 N

Nach Beispiel 7 ist die untere Grenze für das mittlere
Fehlerquadrat aber nach Cramér-Rao

Em(ß —ß)2^ N

100
2N

N
200

Tt
63 %

ersten Momenten der Stichproben vergleichen. Es entsteht so

ein Gleichungssystem von m Gleichungen für die m unbekannten

Parameter ai...am. Diese Methode führt, allerdings auf
Kosten des Wirkungsgrades, oft zu einfacheren Abschätzungs-
funktionen als andere Methoden. Sie sind im allgemeinen nicht
einmal asymptotisch wirksam.

4.2 Die Methode der grössten Wahrscheinlichkeit

Die Methode der grössten Wahrscheinlichkeit (maximum
likelihood) von R. A. Fisher besitzt ausserordentlich grosse
Bedeutung, weil sie immer eine wirksame Abschätzungsfunktion

liefert, sofern eine solche überhaupt existiert. Diese
Methode basiert auf der Definition der Verbundwahrscheinlichkeit
der Stichproben :

L (X1....VN ; ao) p C*i ; rto)...p (a'n ; ao) 11 p(A'i;ao)
i l

Bei gegebenen Werten xi...xn der Stichproben ist diese

Wahrscheinlichkeitsfunktion nur noch vom unbekannten
Parameter ao abhängig. Man kann daher diesen Parameter so

bestimmen, dass die Verbundwahrscheinlichkeit der
Stichproben maximal wird. Da der Logarithmus eine streng monotone

Funktion seines Argumentes ist, kann die Gleichung:

î> InL ÖL*
ö ao ö ao

0

weshalb der Wirkungsgrad dieser Abschätzung immer kleiner als
100 % ist, nämlich :

zur Bestimmung des unbekannten Parameters ao verwendet
werden. Allgemein wird man im Falle von m unbekannten
Parametern ai...am die m partiellen Ableitungen von L* nach

den ai bilden und so ein Gleichungssystem von m Gleichungen
für die m unbekannten Parameter erhalten.

Beispiel 10: Zur Bestimmung von Mittelwert und Streuung der
NormalVerteilung in Beispiel 7 wird die Wahrscheinlichkeitsfunktion
L* der Stichproben gebildet:

L* (xi, an; ß, er) In II p(xt;pa)
i 1

N
— — !n (er2) —

Das bedeutet, dass man nur etwa 63 % der Stichproben benötigen
würde, um mit dem arithmetischen Mittelwert der Stichproben
den Erwartungswert p der Gaussverteilung mit derselben Genauigkeit
abzuschätzen.

4. Methoden zur Bestimmung der Abschätzungsfunktion
Wenn die Stichproben nicht mehr normalverteilt sind, so

werden im allgemeinen nicht mehr der arithmetische Mittelwert
der Stichproben und das zweite zentrale Moment die besten

Abschätzungsfunktionen sein. Es erhebt sich daher die Frage,
auf welche Weise wirksame oder doch möglichst gute
Abschätzungen zu finden sind. Im folgenden werden die beiden

hauptsächlichen Methoden der Statistik besprochen, welche
auf Grund der bekannten Verteilungsfunktionen geeignete

Abschätzungsfunktionen für die unbekannten Parameter
liefern.

4.1 Die Methode der Momente

Der älteste Vorschlag zur Bestimmung von Abschätzungsfunktionen

stammt von K. Pearson (1928): die Methode der
Momente. Sie besteht darin, dass von der Dichtefunktion
p(x; a) der Stichproben das erste Moment berechnet wird,
welches eine Funktion des unbekannten Parameters a sein

wird. Dieses Moment wird mit dem entsprechenden Moment
der Stichproben verglichen. Allgemein wird man die m ersten
Momente der Dichtefunktion berechnen und sie mit den m

N
In (2 7t)

2er2 2 (-vi — ß)2

Durch partielle Differentation nach den gesuchten Parametern
ß und er2 erhält man das Gleichungssystem:

iL*
iß 2 (^i - i") 0

iL*
3 <T2

N
2a2 + 2 <*i - <")2 :

z-2<r Z-G Z+G Z+ÏG

Fig. 4
Zur Definition des Meridians ;
Bezeichnungen siehe Fig. 1
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Fig. 5
Zur Definition des Vertrauensintervalles ß ± s auf Grund der Verteilung

der Abschätzung â

Weitere Bezeichnungen siehe Fig. 1

womit man für die Abschätzungsfunktionen erhält :

N
1

ß
1

N

-TT 2
i 1

N

N

2 (vi-/<)2

J p (â) dâ
u + e

p
100

u + eio

/ P iß) dp 0,9
u —Ein

£10 '
1,65
7j= ^ 0,52
]/10

Demnach liegt mit einer Sicherheit von 90 % der tatsächliche
Mittelwert der Stichproben im Intervall

p — 0,52 5Ï p ^ p + 0,52

Mit viermal mehr Stichproben wird das Vertrauensintervall nur
um einen Faktor 2 verringert :

£40 f
1,65

]/40
0,26

Allgemein werden für eine c-fache Genauigkeit c2 mal mehr
Stichproben benötigt.

Beispiel 12: Im ersten Beispiel wurde nach dem Prozentsatz der
Widerstände gefragt, welche ausserhalb des Toleranzbereiches von
1 k ± 5 % liegen. Zur Abschätzung dieser Grösse standen die fünf
Stichproben X1...X5 zur Verfügung. Wenn man annimmt, dass die
tatsächlichen Werte der Widerstände normalverteilt sind, so kann
nach Beispiel 7 ihr Mittelwert durch den arithmetischen Mittelwert
der Stichproben abgeschätzt werden :

Die Abschätzungsfunktion für den Erwartungswert p ist in jedem
Falle wirksam, während die Streuung er2 nur dann wirksam
abgeschätzt wird, wenn der Erwartungswert bekannt ist. Im anderen
Falle weist diese Abschätzung nach Beispiel 6 einen systematischen
Fehler auf und ist — nach der im selben Beispiel erwähnten Korrektur

— nur asymptotisch wirksam.

5. Das Vertrauensintervall

Wie in Abschnitt 2. festgestellt wurde, ist die Abschätzung
â eine Zufallsgrösse, weil sie selbst eine Funktion einer zufälligen

Auswahl von Stichproben ist. Diese Abschätzungen sind

für normalverteilte Stichproben selbst normalverteilt oder
werden es nach dem zentralen Grenzwertsatz der Statistik für
sehr grosse Stichprobenzahlen auch bei praktisch beliebigen
Verteilungsfunktionen. Die NormalVerteilung ist aber durch
die Angabe der beiden Parameter p (Erwartungswert) und <r2

(Streuung) bestimmt. Man kann daher bei Kenntnis des

systematischen Fehlers E (â — ao) und des mittleren Fehlerquadrates

E(â— flo) 2 die Verteilungsfunktion der Abschätzung durch eine

Normalverteilung darstellen. Damit gelingt es, ein Intervall zu
definieren, welches mit einer Sicherheit von p % die
abgeschätzten Werte enthält (Fig. 5). Dieses Intervall wird p-%-
Vertrauensintervall genannt. Die Grenzen dieses Bereiches

sind so definiert, dass innerhalb p—e ^ x ^ p+ s der Bruchteil
p/100 der gesamten Fläche der Normalverteilung liegt:

1 V4-.Z * (1,03 + + 1,06) >fc 1,018 /c

Nach Beispiel 6 ist die folgende Abschätzung für das zentrale
Moment zweiter Ordnung (welches der Streuung der Normalverteilung

entspricht) frei von systematischen Fehlern :

1,01 8k)2 7,08 • 10"3 k2

Der Bruchteil p der Widerstände, welche innerhalb des Toleranzbereiches

liegen ergibt sich demnach zu:

1.05

P= I 1/27

(x — px)2
exp - Jz' dx2(7 2

Da die Tabellen die genormte kumulative Gaussverteilung
angeben, ist folgende Variabeintransformation erforderlich :

y
x — px

Damit erhält man :

1,05 — Ûx

<?x

rJ
0,95 — Ûx

Ox

Dieses Integral stellt die Differenz der kumulativen Gauss-
schen Verteilungsfunktion an den Stellen â p + e und
â p — e dar. Ihre numerischen Werte lassen sich nach
geeigneter Normung aus Funktionstafeln (z. B. [4]) entnehmen.

Beispiel 11: Von der Normalverteilung

1 (x — p)2

p«.<0-p=«p jüL

mit der Streuung 1 lässt sich der Erwartungswert durch den Mittelwert

der Stichproben abschätzen. Der Erwartungswert der
Abschätzung ist nach Beispiel 7: E(p) p und dasmittlereFehlerquadrat
ist: Elp — p)2 1. Mit 10 Stichproben ergibt dies ein 90-%-Ver-
trauensintervall mit Hilfe der Beziehung

Es liegen demnach nur rund 44 % der Widerstände innerhalb der
geforderten Toleranz, während etwa 56 % ausserhalb liegen. Der
praktische Wert einer Probe von nur 5 Widerständen ist allerdings
sehr gering, denn im vorliegenden Fall umfasst das 90- %-Vertrauens-
intervall für den Mittelwert nicht weniger als etwa 14 % des
Nennwertes. Eine wesentliche Vergrösserung der Stichprobenzahl
ist daher unumgänglich.
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