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Optimale Netzregelung mit Prozessrechnern ')
Von H. Biihler, Ciona di Carona

Fiir den optimalen Betrieb von hydraulischen und thermi-
schen Kraftwerken wird die Kurzzeit-Optimierung und die Netz-
regelung betrachtet. Bei der Kurzzeit-Optimierung werden die
Produktionskosten, Nebenbedingungen und Begrenzungen be-
sprochen und anschliessend eine geeignete Ldsungsmaglichkeit
gezeigt, bei der eine Aufteilung in Netzberechnung, Blind- und
Wirkleistungs-Optimierung erfolgt. Schliesslich wird eine Nihe-
rungsmethode erliutert, welche gestattet, die optimale Leistungs-
verteilung mit der Netzregelung durch Prozessrechner im On-line-
Betrieb sicherzustellen.

1. Einleitung

Die modernen Methoden der Automatik, insbesondere die
verschiedenen Optimierungsverfahren finden immer mehr An-
wendung in der Praxis. Diese Entwicklung wird dadurch er-
moglicht, dass einerseits die neuen Verfahren auf einen Stand
gebracht werden, dass sie einer praktischen Anwendung zu-
ginglich sind, und dass anderseits im Prozessrechner ein Hilfs-
mittel zur Verfiigung steht, mit dem die umfangreichen nu-
merischen Rechnungen in kurzer Zeit und falls notwendig pro-
zessgekuppelt durchgefiihrt werden konnen.

Ein interessantes Anwendungsgebiet fiir die Optimierungs-
verfahren stellt der Betrieb von grossen elektrischen Verbund-
netzen dar. Hier geht es darum, die Energieproduktion in den
einzelnen Kraftwerken so zu steuern, dass die Kosten fiir die
Energieproduktion minimal werden. Nachstehend soll die da-
bei auftretende Problemstellung dargelegt und die Losungs-
moglichkeiten aufgezeigt werden. Dabei wird absichtlich der
notwendige umfangreiche mathematische Formelapparat weg-
gelassen, indem versucht wird, auf moglichst anschauliche
Weise das Problem darzustellen, so dass vor allem der Prak-
tiker, der mit dem Betrieb von elektrischen Verbundnetzen
betraut ist, einen Einblick in diese neuen Mdoglichkeiten be-
kommen soll.

Beim Betrieb von hydraulischen und thermischen Kraft-
werken kann man mehrere Optimierungsstufen unterscheiden,
die sich hierarchisch aufbauen, wie dies in Fig. 1 schematisch
dargestellt ist.

Die Langzeit-Optimierung erstreckt sich iiber ein Jahr. Hier
wird die zur Verfiigung stehende Wassermenge so eingeteilt
bzw. ausgeniitzt, dass die zusitzlich in den thermischen Kraft-
werken zu erzeugende Energie mit moglichst geringen Kosten
erzeugt werden kann. Da aber weder die Belastung noch die
zur Verfiigung stehende Wassermenge fiir ein ganzes Jahr im
voraus bekannt ist, so kann diese erste Optimierungsstufe nur
Erwartungswerte liefern. Die Streuung wird um so grosser sein,
je weiter die Werte in die Zukunft extrapoliert werden miissen.

Die Mittelzeit-Optimierung umfasst einen Zeitraum von
einer Woche bis einen Monat. Hier werden die Resultate der
Langzeit-Optimierung verbessert und vor allem bestimmt, wel-
che Kraftwerke bzw. Maschinengruppen zu welchen Zeitpunk-

Y Vortrag, gehalten im Rahmen des Kolloquiums fiir Forschungs-
probleme der Energietechnik an der ETH-Zirich, am 12. Mai 1970.
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On examine l'optimisation temporaire et le réglage du réseau
indispensables au service optimal des centrales hydrauliques et
thermiques. Dans l'optimisation temporaire, on discute les frais
de production, les conditions accessoires et les limitations, en pré-
sentant ensuite une solution appropriée qui implique une déter-
mination séparée du calcul du réseau et de l'optimisation de la
puissance réactive et effective. On explique ensuite une méthode
d’approche, permettant d'assurer a l'aide d’une calculatrice de
processus en service on-line une répartition optimale de la puis-
sance par réglage du réseau.

ten in Betrieb zu nehmen sind. Bei den thermischen Kraft-
werken werden die Anlaufkosten beriicksichtigt. Neben reinen
Kostentiberlegungen muss aber auch dafiir gesorgt werden,
dass in jeder Netzregion geniigend rotierende Reserve vor-
handen ist, um auch bei Storungen den Betrieb sicherstellen
zu konnen.

Die Kurzzeit-Optimierung erstreckt sich iiber einen Tag.
Hier wird das Betriebsprogramm fiir den folgenden Tag fest-
gelegt, wobei die voraussichtliche Last so auf die einzelnen
Kraftwerke verteilt wird, dass die Produktionskosten minimal
werden.

Bei der Momentan-Optimierung wird schliesslich dafiir
gesorgt, dass die Produktionskosten in jedem Moment mini-
mal sind.

Die Momentan-Optimierung als Netzregelung ist im On-
line-Betrieb, also prozessgekuppelt durchzufiihren, wozu ein
Prozessrechner notwendig ist. Die tibrigen Optimierungen kon-
nen Off-line, also unabhingig vom Prozess berechnet werden.
Diese Rechnungen kénnen ebenfalls im Prozessrechner durch-
gefuhrt werden, und zwar in den Pausen, in denen er nicht fir
die Netzregelung benotigt wird.

Nachstehend werden die Kurzzeit-Optimierung sowie die
Momentan-Optimierung, d.h. Netzregelung, nidher betrachtet.

2. Kurzzeit-Optimierung
2.1 Problemstellung
In Fig. 2 ist ein einfaches Verbundnetz mit vier Knoten-
punkten und entsprechendem Ubertragungsnetz dargestellt,

das alles Wesentliche zur Erlduterung der Problemstellung fiir
die Kurzzeit-Optimierung enthélt.

Langzeit- Optimierung, 1 Jahr

]
Off-line

==z

Mittelzeit Optimierung, 1Woche...1Monat  Off-line
O

Kurzzeit Optimierung, 1Tag Off-line
]

Momentan-Optimierung, ( Netzregelung) ~ On-line

Fig. 1
Optimaler Betrieb von hydraulischen und thermischen Kraftwerken
Hierarchisch iiberlagerte Optimierungsstufen
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Fig.2
Einfaches Verbundnetz mit thermischem Kraftwerk (1), Hochdruck-Speicher-
werk (2), Niederdruck-Laufwerk (3) und Knotenpunkt (4) mit Ubertragungs-
leitung zum Nachbarnetz

In den Knotenpunkt 1 speist ein thermisches Kraftwerk ein.
Im Knotenpunkt 2 befindet sich ein Hochdruck-Speicherwerk
und im Knotenpunkt 3 ein Niederdruck-Laufwerk. Knoten-
punkt 4 ist mit einer weiteren Ubertragungsleitung zu einem
Nachbarnetz verbunden, tiber die eine bestimmte Austausch-
leistung zu tibertragen ist. An jedem Knotenpunkt sind Ver-
braucher angeschlossen. Fiir jeden Verbraucher ist das Be-
lastungsdiagramm fiir den folgenden Tag gegeben, und zwar
sowohl fiir die Wirklast Pp, wie auch fiir die Blindlast Op
(Fig. 3a). Diese Belastungsdiagramme lassen sich aufgrund von
statistischen Untersuchungen mit guter Nédherung voraus-
sagen. Die notwendige Wirk- und Blindleistung ist nun so auf
die einzelnen Kraftwerke aufzuteilen, dass die Produktions-
kosten minimal werden. Dabei ist zusitzlich zu beriicksich-
tigen, dass in den hydraulischen Kraftwerken die durch die
Mittelzeit-Optimierung vorgeschricbene Wassermenge pro Tag
verbraucht wird, um den Wasserhaushalt nicht zu storen.

Damit das Problem mit verniinftigem Rechenaufwand ge-
16st werden kann, ist es notwendig, die Zeit zu diskretisieren,
indem die Zeitspanne von einem Tag in z.B. 24 Teile von je
einer Stunde aufgeteilt wird. Somit wird die stetige Belastungs-
kurve durch ein treppenformiges Diagramm ersetzt (Fig. 3b).

2.2 Zielfunktion, Nebenbedingungen und Begrenzungen
2.2.1 Allgemeines

Bei jedem Optimierungsproblem wird eine sog. Zielfunk-
tion definiert, deren Wert optimal gemacht werden soll. Die
Zielfunktion hidngt von den beeinflussbaren Variablen ab.
Diese konnen normalerweise nicht beliebig verindert werden,
sondern es sind eine Reihe von Nebenbedingungen und Be-
grenzungen zu beachten.

Im vorliegenden Fall wird die Zielfunktion durch die totalen
Produktionskosten im Verbundnetz gebildet. Die beeinfluss-

(A ]
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0 6 1?2 18 h 24 0 6 12 18 h 24
P — ! —————
Fig. 3

Belastungsdiagramm der einzelnen Verbraucher fiir Wirklast PD und
Blindlast QD in Abhiingigkeit der Tageszeit ¢
a stetiges Diagramm; b treppenformiges Diagramm

114 (A 106)

baren Variablen sind die in den einzelnen Kraftwerken er-
zeugten Wirk- und Blindleistungen. Nebenbedingungen und
Begrenzungen ergeben sich durch Wasserhaushalt, Leistungs-
fluss im Ubertragungsnetz und begrenzte Maschinenleistungen.
Nachstehend seien die Einzelheiten niher betrachtet.

2.2.2 Produktionskosten

Die stiindlichen Produktionskosten F setzen sich aus einem
Grundanteil Fe und einem leistungsabhingigen Anteil zusam-
men (Fig. 4). Die Grundkosten sind bedingt durch Aufwen-
dungen fiir Amortisierung, Zinsen, Personalkosten usw. und
laufen unabhingig von der jeweiligen Produktion auf. Bei
thermischen Kraftwerken steigen die Kosten mehr als linear
mit der erzeugten Leistung an, bedingt durch den Verbrauch
von Kohle, Ol oder nuklearen Brennstoffen, was mit entspre-
chenden Kosten verbunden ist. Bei hydraulischen Kraftwerken

/ >,
~ s
o -
" F- 2 Fiy(Ry)
F=SF-At
t
%]tZFTh(PTh)=m|n
ot £t
“Th ~Th
FEE Z@ b3 PR }—» = min

Fig. 4
Produktionskosten (Zielfunktion)
F stiindliche Produktionskosten; Frpy, leistungsabhingiger Anteil der
stiindlichen Produktionskosten bei thermischen Kraftwerken; Fpy lei-
stungsabhidngiger Anteil der stiindlichen Produktionskosten bei hydrau-
lischen Kraftwerken; Frp totale Produktionskosten im Verbundnetz pro
Tag; P Leistung

steht das Wasser praktisch kostenfrei zur Verfiigung, so dass
die gesamten Kosten praktisch konstant, d.h. unabhéngig von
der produzierten Leistung sind.

Im folgenden sollen unter Produktionskosten nur die lei-
stungsabhingigen Kosten verstanden werden, die somit bei
hydraulischen Kraftwerken gleich Null sind (Fr=0) und bei
thermischen Kraftwerken etwas mehr als linear mit der Lei-
stung ansteigen (Frn).

Die gesamten stiindlichen Produktionskosten im Verbund-
netz F ergeben sich somit durch Summierung tiber alle thermi-
schen Kraftwerke, was eine Funktion der einzelnen Leistungen
in den thermischen Kraftwerken Pty ist. Um die totalen Pro-
duktionskosten fiir den ganzen Tag Fr zu erhalten, ist eine
Summierung liber siamtliche Zeitabschnitte Az durchzufiihren
(Fig. 4b).
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Verarbeitete Wassermenge
W Wassermenge pro Stunde; W totale Wassermenge pro Tag;
Py Leistung im hydraulischen Kraftwerk

Werden alle Zeitabschnitte Ar gleich gewihlt, so kann man
als Zielfunktion die Doppelsumme iiber Zeit und alle thermi-
schen Kraftwerke der stiindlichen Produktionskosten

Y X Frn (Prn)
Th t
ansetzen. Diese Zielfunktion muss minimalisiert werden.

Dieser Zusammenhang kann schematisch dargestellt wer-
den (Fig. 4b). Die in den einzelnen thermischen Kraftwerken zu
den einzelnen Zeitabschnitten erzeugten Wirkleistungen werden
zu einem Vektor Prtph zusammengefasst. Dass der Vektor alle
Zeitabschnitte umfasst, soll durch den hochgestellten Index t
zum Ausdruck kommen und am Pfeil durch die Karierung
angedeutet werden. Mit einer nichtlinearen Funktion (der
Kostenfunktion) entsteht der Vektor der stiindlichen Betriebs-
kosten Fi,. Eine erste Summation iiber die Zeit 7 reduziert die
Dimension des Vektors (der Pfeil ist nicht mehr kariert).
Durch eine weitere Summation iiber die thermischen Kraft-
werke Th entsteht ein Skalar, eben die gesuchte Zielfunktion,
die minimal gemacht werden soll.

Es sei noch kurz darauf hingewiesen, dass die Dimension
des Vektors Py, recht betrichtlich sein kann. Befinden sich
z.B. in einem Verbundnetz 10 thermische Kraftwerke, so ergibt
sich bei 24 Zeitabschnitten eine Dimension von 240!

2.2.3 Verarbeitete Wassermenge

Eine erste Reihe von Nebenbedingungen ist bei den hydrau-
lischen Kraftwerken zu beachten. Die Summe der stiindlich
verbrauchten Wassermenge W muss fiir jedes Kraftwerk gleich
der Wassermenge W pro Tag sein. Diese wird von der Mittel-
zeit-Optimierung vorgegeben. Damit ist gewihrleistet, dass
der vorgesehene Wasserhaushalt eingehalten wird. Die stiind-
lich verbrauchte Wassermenge ist von der erzeugten Leistung
abhingig und steigt mit ihr etwas mehr als linear an (Fig. 5a).

Diese Nebenbedingung ist in Fig. 5b schematisch darge-
stellt. Die in allen hydraulischen Kraftwerken erzeugten Lei-
stungen zu allen Zeitabschnitten werden zu einem Vektor Pl
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zusammengefasst. Die nichtlineare Funktion des Wasserver-
brauchs liefert den Vektor der stiindlich verbrauchten Wasser-
menge W', Eine Summierung tiber die Zeit reduziert auch hier
die Ordnung des Vektors. Davon wird die vorgeschriebene
Wassermenge pro Tag W subtrahiert. Der resultierende Vek-
tor, der sich uber alle hydraulischen Kraftwerke erstreckt,
muss dann gleich Null sein.

Die Verteilung der verarbeiteten Wassermenge tiiber die
einzelnen Zeitabschnitte bedarf noch nidherer Betrachtungen,
wie anhand von Fig. 6 gezeigt werden soll. In Fig. 6a ist die
stiindlich verbrauchte Wassermenge W dargestellt, wiahrend
aus Fig. 6b der tber die Zeitabschnitte kumulierte Verlauf
> W - At hervorgeht.

Bei Kraftwerken mit Jahresspeichern (1 in Fig. 6) kann die
Wassermenge praktisch beliebig iiber den Tag verteilt werden.
Insbesondere kann der Wasserverbrauch in einzelnen Zeit-
abschnitten gleich Null sein. Bei Laufkraftwerken ohne Spei-
chermoglichkeit (3 in Fig. 6) muss die verarbeitete Wasser-
menge (konstanten Zufluss vorausgesetzt) konstant sein. Bei
Kraftwerken mit Tagesspeichern (2 in Fig.6) konnen Variatio-
nen zugelassen werden, jedoch ist dafiir zu sorgen, dass der
kumulierte Verlauf der Wassermenge nicht allzu stark vom
Mittelwert abweicht, und zwar gerade so, dass der minimal
bzw. maximal zulédssige Wasserspiegel nicht unter- bzw. iiber-
schritten wird. Nachfolgend sollen diese Feinheiten der Tages-
speicher der Einfachheit halber nicht weiter berticksichtigt
werden.

2.24 Leistungsbilanz und Begrenzungen der Leistungen

(Nebenbedingungen und Begrenzungen sind in Fig. 7 darge-
stellt.)

Gemiss der Leistungsbilanz muss die Energieproduktion
minus Verbrauch minus Verluste gleich Null sein, und zwar
gilt dies sowohl fir die Wirkleistung P, wie auch fiir die Blind-
leistung Q. Die Wirk- und Blindleistungsverluste P1, bzw. Q1.
entstehen je nach der Leistungsiibertragung in den einzelnen
Leitungen. Darauf wird in Abschnitt 2.2.5 niher eingegangen.

Im weiteren sind die Wirk- und Blindleistungen, die in den
Kraftwerken erzeugt werden konnen, begrenzt (Fig. 7b). Die
Wirkleistung ist nach oben durch die Leistungsfahigkeit der

ZW-nt
N,
NN
\

0 6 s
a t—
Fig. 6

Verteilung der verarbeiteten Wassermenge
a stiindlich verarbeitete Wassermenge W in Abhingigkeit der Tages-
zeit 1; O kumulierter Verlauf ZW At der verarbeiteten Wassermenge in
Abhingigkeit der Tageszeit #; W totale Wassermenge pro Tag; / Jah-
resspeicher; 2 Tagesspeicher; 3 Laufkraftwerk ohne wesentliche Spei-
chermdoglichkeit

8 h 2 0 6 1

f——

18 h 2
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Leistungsbilanz (a) und Begrenzungen der Leistungen (b)
P Wirkleistung; Q Blindleistung; S Scheinleistung;
Indizes: Th thermisches Kraftwerk; H hydraulisches Kraftwerk;
D Verbraucher; L Verluste

Erkldrungen siehe im Text

Turbine begrenzt (P). Die untere Wirkleistungsgrenze P ist bei
hydraulischen Kraftwerken praktisch gleich Null (f’H). Bei
thermischen Kraftwerken ist die Kesselmindestlast zu beach-
ten, unter der ein Normalbetrieb nicht durchgefiihrt werden
soll (Prn).

Ein prinzipieller Unterschied besteht ebenfalls zwischen
hydraulischen und thermischen Kraftwerken hinsichtlich der
Grenze der Blindleistung in negativer Richtung (O, bzw.
QTn), d.h. bei untererregten Generatoren. Hydraulische Kraft-
werke besitzen Synchrongeneratoren mit ausgepragten Polen.
Hier kann die Erregung bis etwa auf Null reduziert werden,
ohne die Stabilitit des Parallelbetriebes zu gefihrden. Bei den
Vollpolgeneratoren der thermischen Kraftwerke dagegen darf
die Erregung nur etwa bis zur halben Leerlauferregung redu-
ziert werden. Da Turbogeneratoren iiberdies wesentlich hohere
Synchronreaktanzen aufweisen, so ist bei thermischen Kraft-
werken, bei gleicher Nennleistung die untere Grenze der Blind-
leistung stark reduziert.

Schliesslich entsteht noch eine weitere Begrenzung durch
die maximal zuldssige Scheinleistung S.

Der Bereich, in dem der Betriebspunkt eines Kraftwerkes
liegen darf, ist somit begrenzt.

2.2.5 Wirk- und Blindleistungsverluste im Ubertragungsnetz

Zur Berechnung der Wirk- und Blindleistungsverluste im
Ubertragungsnetz eignet sich die Einspeisungsmethode, auch
«méthode des injections» genannt, sehr gut. Dieses Verfahren
wurde vor allem in Frankreich entwickelt. Die Methode soll
kurz anhand der Fig. 8 besprochen werden.

An jedem Netzknotenpunkt wird eine Wirk- und Blind-
leistung 7, bzw. K ins Netz eingespeist (Fig. 8a). Das Symbol 7
darf hier nicht mit dem Strom verwechselt werden; sondern soll
an «Injection» erinnern. Die Einspeisungen missen mit den
im betreffenden Knotenpunkt erzeugten und verbrauchten
Wirk- und Blindleistungen im Gleichgewicht sein.

Zur Erliduterung der Einspeisungen betrachte man das Bei-
spiel einer einzigen Ubertragungsleitung, die durch ein Lings-
glied bestehend aus Ohmschem Widerstand R und Reaktanz X
besteht (Fig. 8b). Die Wirk- und Blindleistungen, die sich am
Leitungsanfang einspeisen lassen, hdngen vom Betrag der
Spannungen am Anfang und Ende der Leitung ab sowie von
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der Differenz der Phasenwinkel der Spannungszeiger. Die ein-
speisbare Wirkleistung / verlduft annidhernd linear mit der
Winkeldifferenz @1 — @2, wobei der Einfluss der Spannung U
relativ gering ist. Wesentlich ausgeprigter ist der Einfluss der
Spannungen auf die einspeisbare Blindleistung K. Dabei ist zu
beachten, dass auch hier die Phasenwinkeldifferenz @1 — @2
einen merkbaren Einfluss ausiibt (Fig. 8¢).

Die Wirk- und Blindleistungsverluste in der Ubertragungs-
leitung Pr, bzw. Q1. verlaufen parabelihnlich mit der Differenz
der Phasenwinkel @1 — @2. Der Betrag der Spannungen U libt
einen relativ kleinen Einfluss aus (Fig. 8d).

Gehen von einem Knotenpunkt mehrere Leitungen weg,
so ergibt sich die totale Einspeisung aus der Uberlagerung der
in die einzelnen Leitungen eingespeisten Leistungen. Sind die
in den einzelnen Knotenpunkten erzeugten und verbrauchten
Wirk- und Blindleistungen gegeben, so miissen Betrag und
Phasenwinkel der einzelnen Knotenpunktspannungen so an-
gepasst werden, dass in allen Knotenpunkten die Einspeisungs-
bedingungen fiir Wirk- und Blindleistung erfillt sind (Fig. 8e).

Auch hier sind noch eine Anzahl Begrenzungen zu beachten
(Fig. 8f). Die zulissige Phasenwinkeldifferenz iiber jeder Uber-
tragungsleitung ist begrenzt und zwar vor allem mit Riicksicht
auf die Wirkverluste, die ja praktisch eine Funktion der Pha-
sendifferenz @1 — @- sind, und die eine entsprechende Erwar-
mung der Leitung zur Folge haben. Anderseits sind auch die
Betrige der einzelnen Spannungen nach oben und unten be-
grenzt, mit Riicksicht auf eine befriedigende Spannungshaltung
im Netz.

Werden diese Begrenzungen nicht eingehalten, so muss ent-
weder eine andere Verteilung der erzeugten Wirk- und Blind-
leistungen gewihlt werden, oder es ist, falls moglich, das Netz
durch Zuschalten von weiteren Ubertragungsleitungen zu ver-
starken.

2.3 Losung des Optimierungsproblems
2.3.1 Allgemeines

Die Losung des vorliegenden Optimierungsproblems unter
Beriicksichtigung der besprochenen Nebenbedingungen und
Begrenzungen ist sechr mithsam und umfangreich, vor allem
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Fig. 8
Netzberechnung nach der Einspeisungsmethode
a Netzknotenpunkt; b einfache Ubertragungsleitung; ¢ Wirk- und
Blindleistungseinspeisung in eine Ubertragungsleitung; d Wirk- und

Blindleistungsverluste in einer Ubertragungsleitung; e Einspeisungs-
bedingungen; f Begrenzungen;

I Wirkleistungseinspeisung; K Blindleistungseinspeisung; P erzeugte

Wirkleistung; Q erzeugte Blindleistung; Py, Wirklast; Qp, Blindlast;

U Spannungsbetrag; @ Phasenwinkel der Spannung; R Ohmscher

Widerstand; X Reaktanz; P, Wirkleistungsverluste; Qr, Blindleistungs-

verluste; ™ oberer Grenzwert; ~ unterer Grenzwert
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Annahme: Wirk -und
Blindleistungsverteilung

i

Do t=1..T

Netzberechnung:
Naherung fur Verluste

|

Blindleistungs —
Optimierung :
PL“ min

e

Wirkleistungs —
Optimierung:
Fr=min
1

Korrektur:

Ja Anfangsdaten fur
Wirk-u. Blindleistungs
Verteilung notwendig

6%)Nein

Fig. 9
Generelles Strukturdiagramm fiir die Kurzzeit-Optimierung
Do t = 1..T iiber alle Zeitabschnitte eines Tages zu berechnen;
Py, Wirkleistungsverluste im Netz; Frp totale Produktionskosten pro Tag

w

wegen der hohen Dimension der abhangigen und unabhingi-
gen Vektoren, deren Elemente sich nicht nur {iber die einzelnen
Kraftwerke bzw. Knotenpunkte erstrecken, sondern auch iiber
alle Zeitabschnitte. Es ist daher angebracht, die Rechnung in
einzelne Schritte aufzuteilen, wodurch die Ubersicht verbessert
und vor allem die Programmierung vereinfacht wird. Ein
generelles Strukturdiagramm ist in Fig. 9 dargestellt.

Vorerst wird eine geeignete Annahme tiber die Verteilung
der erzeugten Wirk- und Blindleistung getroffen (1). Die nich-
sten zwei Rechenschritte werden fiir jeden einzelnen Zeit-
abschnitt des Tages getrennt durchgefiihrt. Damit ist eine
wesentliche Reduktion der Dimension der einzelnen Vektoren
moglich. Zuerst wird die Netzberechnung durchgefiibrt (2),
wobei eine Nédherung fiir die Verluste aufgestellt wird, wie
spater noch gezéigt werden wird. Anschliessend folgt eine
Blindleistungs-Optimierung (3). Dabei werden die erzeugten
Blindleistungen derart verdndert, dass die Wirkleistungsver-
luste Py, im Netz minimal werden. Nachdem diese Rechnungen
fiir alle Zeitabschnitte durchgefiihrt wurden, folgt die Wirk-
leistungs-Optimierung, bei der die erzeugten Wirkleistungen
derart veriandert werden, dass die totalen Produktionskosten
Fr pro Tag minimal werden (4). Erst bei diesem Schritt sind
simtliche Zeitabschnitte gleichzeitig zu beachten. Da aber
Netzberechnung und Blindleistungs-Optimierung schon vor-
weg erledigt wurden, so reduziert sich der Rechenaufwand bei
diesem Schritt betrachtlich.

Schliesslich wird kontrolliert, ob das gefundene Optimum
stark von den Anfangsdaten fiir Wirk- und Blindleistungs-
verteilung abweicht (5). Wenn ja, so sind die Nihrungsbezie-
hungen fiir die Verluste ungenau. Die Anfangsdaten werden
dann korrigiert, d.h. gleich den zuletzt gefundenen optimalen
Werten gesetzt und die Rechnung erneut durchgefiihrt.

Nachfolgend sollen Netzberechnung, Blindleistungs-Opti-
mierung und Wirkleistungs-Optimierung in schematischer
Form nidher betrachtet werden.

2.3.2 Netzberechnung

Vorerst soll die Netzberechnung besprochen werden, die
wie bereits dargelegt wurde, auf der Einspeisungsmethode
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beruht (sieche Abschnitt 2.2.5). Der Rechnungsgang ist in
Fig. 10 schematisch dargestellt.

Da die Wirk- und Blindleistungseinspeisungen nur von der
Differenz der Phasenwinkel der Spannungszeiger abhédngen,
so muss ein Knotenpunkt des Netzes als Bezugspunkt fest-
gelegt werden. Es sei hiezu der Knotenpunkt 1 gewihlt, wobei
der Phasenwinkel @1 = 0 gesetzt wird. Die iibrigen Phasen-
winkel werden zu einem Vektor @’ zusammengefasst. Dass
darin der Knotenpunkt 1 fehlt, soll durch einen Strich gekenn-
zeichnet werden. Von den Phasenwinkeln werden die Differen-
zen gebildet und entsprechend begrenzt. Anderseits werden
die Betrige der Spannungen in allen Knotenpunkten zu einem
Vektor U zusammengefasst, wobei ebenfalls die Begrenzungen
zu beachten sind.

Durch nichtlineare Bezichungen ergeben sich die Wirk-
leistungseinspeisung /1 im Knotenpunkt 1 und in den iibrigen
Knotenpunkten I, die wiederum zu einem Vektor zusammen-
gefasst werden, sowie die Blindleistungseinspeisungen in allen
Knotenpunkten K. Werden davon die produzierten Leistun-
gen P’ bzw. ) subtrahiert und die verbrauchten Leistungen
Py’ bzw. Q,, addiert, so ergibt sich je ein Vektor, der gemass
den Gleichgewichtsbedingungen fiir die Einspeisungen gleich
Null sein muss.

Um dies zu erreichen, wird eine Quadrierung und Summie-
rung tiber alle Knotenpunkte K durchgefiihrt. Durch Zusam-
menfassung ergibt sich ein Skalar, der minimal gemacht werden
soll. Man erkennt leicht, dass infolge der quadratischen Be-
wertungsfunktion das Minimum identisch mit der Losung
Null ist.

Damit ist die Netzberechnung auf ein nichtlineares Opti-
mierungsproblem zuriickgefiihrt. Mit Hilfe der nichtlinearen
Programmierung (NLP) werden nun die unabhidngigen Vek-
toren @’ und U derart verindert, dass das Minimum erreicht
wird. Es sind hier ausser den Begrenzungen keine weiteren
Nebenbedingungen vorhanden.

Einen Hinweis bedarf noch die im Knotenpunkt 1 erzeugte
Wirkleistung P1. Diese ist {iberbestimmt und kann somit nicht
vorgegeben werden. Sie ergibt sich vielmehr aus der Wirk-
leistungseinspeisung /; und der in diesem Knotenpunkt ver-
brauchten Leistung Pp1, und ist gerade so gross, dass die Wirk-
leistungsbilanz erfillt ist.

2.3.3 Blindleistungs-Optimierung
Als nichstes sei die Blindleistungs-Optimierung betrachtet
(Fig. 11). Die in allen Knotenpunkten erzeugten Blindleistun-

gen werden zu einem Vektor @ zusammengefasst, wobei die
Begrenzungen zu berlicksichtigen sind.

Fig. 10
Schematische Darstellung der Netzberechnung
NLP nichtlineare Programmierung; U Spannungsbetrag; @ Phasen-
winkel der Spannung; I Wirkleistungseinspeisung; K Blindleistungs-
einspeisung; P erzeugte Wirkleistung; Q erzeugte Blindleistung;
Py, Wirklast; Qp, Blindlast
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Fig. 11 )
Schematische Darstellung der Blindleistungs-Optimierung
NLP nichtlineare Programmierung; NB Nebenbedingungen; Q er-
zeugte Blindleistung; Qpy Blindlast; P, Wirkleistungsverluste im Netz;
Qj, Blindleistungsverluste im Netz; P; im Knotenpunkt 1 erzeugte
Wirkleistung

Aufgrund der Netzberechnung ldsst sich fiir die Wirk-
leistungsverluste Py, eine quadratische Niaherungsbeziehung in
Abhingigkeit von den erzeugten Blindleistungen Q) angeben.
Im vorliegenden Fall bilden die Wirkleistungsverluste Py die
Zielfunktion, die minimalisiert werden muss, wozu wiederum
die nichtlineare Programmierung herbeigezogen wird (NLP).

Im vorliegenden Fall muss jedoch noch eine Nebenbedin-
gung beachtet werden, niamlich die Blindleistungsbilanz, die
fordert, dass Produktion (Y, Q) minus Verbrauch (¥ O,)
minus Verluste Qr, gleich Null sein muss. Die Blindleistungs-
verluste Qr, werden ebenfalls durch einen quadratischen
Néherungsausdruck in Abhingigkeit der erzeugten Blind-
leistungen @ ausgedriickt.

Ein Hinweis ist auch hier auf die im Knotenpunkt 1 produ-
zierte Wirkleistung P; erforderlich. Bei einer Anderung der
Wirkleistungsverluste muss sich auch die im Knotenpunkt 1
erzeugte Wirkleistung dndern, damit die Wirkleistungsbilanz
erfiillt ist.

2.34 Wirkleistungs-Optimierung

Schliesslich muss man noch die Wirkleistungs-Optimierung
betrachten (Fig. 12). Wie bereits erwihnt, sind hier alle variab-
len Vektoren auch tiber alle Zeitabschnitte zu erstrecken, was
in Fig. 12 durch Karierung bzw. Schraffierung der Pfeile zum
Ausdruck gebracht wird.

Die Zielfunktion ergibt sich aus der in den thermischen
Kraftwerken erzeugten Wirkleistung Py unter Beriicksichti-
gung der Begrenzungen und der nichtlinearen Kostenfunktion
sowie der Summierung tiber die Zeit 7 und tiber alle thermischen
Kraftwerke Th. Diese wird mit der nichtlinearen Program-
mierung (NLP) minimalisiert, wozu die in den thermischen
Kraftwerken erzeugte Wirkleistung Pr}h zu beeinflussen ist.

Im vorliegenden Fall sind eine Reihe von Nebenbedingun-
gen zu beachten. Die in den hydraulischen Kraftwerken ver-
brauchte Wassermenge W' summiert iiber die Zeit / minus die
vorgeschriebene pro Tag zu verbrauchende Wassermenge Wr
muss gleich Null sein. Es ergeben sich soviele Nebenbedingun-
gen wie hydraulische Kraftwerke vorhanden sind. Diese Neben-
bedingungen haben eine Riickwirkung auf die in den hydrau-
lischen Kraftwerken erzeugte Wirkleistung Pl zur Folge.

Eine weitere Serie von Nebenbedingungen entsteht durch
die Wirkleistungsbilanz. Die Summe aller erzeugten Wirk-
leistungen (Y . P), minus Verbrauch (), P)), minus Verluste Py,
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muss gleich Null sein. Die Verluste Py, werden auch hier durch
einen quadratischen Ausdruck angendhert. Die Anzahl dieser
Nebenbedingungen ist gleich der Anzahl der Zeitabschnitte.
Hier ergibt sich eine Riickwirkung auf die in den thermischen
und hydraulischen Kraftwerken erzeugten Wirkleistungen Pin
und P%[, womit sich eine Kopplung der beiden Kraftwerk-
arten ergibt.

2.3.5 Nichtlineare Programmierung, Gradientenverfahren

In allen drei Rechenschritten, Netzberechnung, Blindlei-
stungs- und Wirkleistungs-Optimierung wird die nichtlineare
Programmierung bendtigt. Die Mathematiker haben hiezu
eine ganze Reihe von Methoden bereitgestellt. Davon soll
anhand von Fig. 13 kurz ein wichtiges Verfahren, nimlich das
Gradientenverfahren skizziert werden.

Eine Zielfunktion von zwei Variablen X7 und X> soll z.B.
ellipsenformige Kurven bilden. Zur Bestimmung des Mini-
mums geht man von einem beliebig gewihlten Punkt Py aus
(Fig. 13a). Hier wird der Gradient gebildet und in dieser Rich-
tung ein Strahl gelegt, auf dem man so weit fortschreitet, bis
darauf das Minimum erreicht ist. Damit hat man das mehr-
dimensionale Problem in ein eindimensionales umgeformt. Im
neuen Punkt P; bildet man erneut den Gradienten und geht
langs dem neuen Strahl so weit, bis darauf wiederum das Mini-
mum erreicht ist. Das Verfahren wird solange fortgesetzt, bis
das Minimum der Zielfunktion Pmin erreicht ist.

Ist eine Nebenbedingung NB vorgegeben, so miissen samt-
liche Losungen auf der durch die Nebenbedingungen vorge-
schriebene Kurve liegen (Fig. 13b). Der Ausgangspunkt Py
muss selbstverstindlich die Nebenbedingungen erfiillen. Man
bildet hier den reduzierten Gradienten, der im Falle des zwei-
dimensionalen Problems in Richtung der Tangente fillt. Lings
diesem Strahl geht man so weit bis ein Minimum erreicht ist.
Dieser Punkt P; weicht aber im nichtlinearen Fall von der
Nebenbedingung ab, wozu vorerst eine Korrektur vorzuneh-
men ist (P1"). Hier wird das Verfahren fortgesetzt, bis das
Minimum auf der Nebenbedingung Pmin erreicht ist. Dieses
Minimum weicht vom absoluten Minimum Pmin der Zielfunk-
tion ab.

S <, )

L

Fig. 12
Schematische Darstellung der Wirkleistungs-Optimierung
Py, in thermischen Kraftwerken erzeugte Wirkleistung; Py in hydrau-
lischen Kraftwerken erzeugte Wirkleistung; P erzeugte Wirkleistung;
Fry, stiindliche Produktionskosten in thermischen Kraftwerken;
Py Wirklast; Py, Wirkleistungsverluste im Netz; W stiindlich ver-
brauchte Wassermenge; W totale Wassermenge pro Tag

Weitere Bezeichnungen siehe Fig. 11

Bull. ASE 62(1971)2, 23 janvier



Fig. 13
Gradientenverfahren der nichtlinearen Programmierung
a ohne Nebenbedingungen (NB) und Begrenzungen (B); b mit Neben-
bedingungen; ¢ mit Begrenzungen; d mit Nebenbedingungen und Be-
grenzungen; X{, X, unabhiingige Variablen

Liegen Begrenzungen B vor, die den zulédssigen Bereich ein-
grenzen, so darf lings des Gradientenstrahls nur solange fort-
geschritten werden, als keine Begrenzung verletzt wird (Fig. 13¢).
Das Minimum Pmin kann hier lings einer Begrenzung auf-
treten.

Sind sowohl Begrenzung B wie Nebenbedingungen NB
vorhanden, so darf der reduzierte Gradient nur hochstens bis
an die Begrenzung fortgesetzt werden (Fig. 13d). Auch hier
kann das Minimum Phin an einer Begrenzung liegen.

Man erkennt deutlich, dass das jeweilige Minimum sehr
stark von den Nebenbedingungen und Begrenzungen beein-
flusst wird, ein Umstand, der bei allen Optimierungsproblemen
zu beachten ist.

3. Netzregelung
3.1 Problemstellung

Es sollen nun die Probleme betrachtet werden, die bei der
Momentan-Optimierung, d.h. bei der optimalen Netzregelung
auftreten.

Bei der Kurzzeit-Optimierung wurde ein treppenférmiges
Belastungsdiagramm vorausgesetzt (Fig. 3b). Der wirkliche
Belastungsverlauf weicht von dieser Treppenform ab, erstens
weil die Belastung stetig und nicht treppenformig verlduft,
zweitens weil zwischen der vorausgesetzten und der tatsdchli-

! h

t

Fig. 14

Abweichungen vom Belastungsdiagramm
Py Wirklast; APy Abweichung der Wirklast vom treppenférmigen
Diagramm; ¢ Zeit
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chen Belastung ein Unterschied auftreten kann und schliesslich
drittens weil immer mehr oder weniger grosse stochastische
Anderungen iiberlagert sind (Fig. 14).

Trotz dieser Abweichungen APp der Belastung muss die zu
erzeugende Leistung so auf die einzelnen Kraftwerke aufgeteilt
werden, dass der Betrieb in jedem Zeitpunkt optimal ist. Diese
Aufgabe muss durch die Netzregelung tibernommen werden;
und zwar sowohl fiir die Wirkleistung, wie auch fiir die Blind-
leistung.

Es konnte das in Abschnitt 2 beschriebene Optimierungs-
Verfahren angewendet werden, wobei diese Rechnung auf
einen Zeitabschnitt beschriankt, in kurz aufeinanderfolgenden
Zeitpunkten zu wiederholen ist. Diese Rechnungen sind in
einem Prozessrechner im «On-line»-Betrieb durchzufiihren.
Der Rechenaufwand wird somit jedoch ganz betréchtlich sein.
Da es sich jedoch um mehr oder weniger kleine Abweichungen
von einem bereits berechneten optimalen Betriebspunkt han-
delt, ist es angebracht, ein Niherungsverfahren anzuwenden,
das mit wenig Rechenaufwand die notwendigen Korrekturen
zu bestimmen gestattet.

f(x)=min \

f(x) +Ag(x) e
G

f(x) =min
fx)+ulx=b)  ~
/

Pmin
A
N g(x)
%m— 0 E
oA B

Fig. 15

Zur Erlauterung des Kuhn-Tucker-Theorems
A Optimierungsproblem mit Nebenbedingung; B Optimierungsproblem
mit Begrenzung; f(x) Zielfunktion; g(x) Funktion der Nebenbedingung;
A Lagrangescher Multiplikator; » Begrenzung x<b; u duale Variable

3.2 Kuhn-Tucker-Theorem

Zur Ableitung eines geeigneten Niherungs-Verfahrens wird
in Fig. 15 kurz ein zweites Verfahren der nichtlinearen Pro-
grammierung besprochen, nimlich das Kuhn-Tucker-Theorem.
Dazu wird der sehr anschauliche aber triviale eindimensionale
Fall verwendet.

Gegeben sei die Zielfunktion f(x), die minimal zu machen
ist. Ohne weitere Nebenbedingungen befindet sich das Mini-
mum im Punkt Pmin (Fig. 15A), der sich dadurch auszeichnet,
dass hier die Tangente horizontal verliuft, d.h. dass hier die
erste Ableitung der Zielfunktion f(x) nach der unabhiingigen
Variablen gleich Null ist.

Nun soll eine zweite Funktion g(x) gegeben sein, die als
Nebenbedingung g(x) = 0 fordert. Man bildet nun eine Funk-
tion, die sich aus der Zielfunktion f(x) und der Funktion der
Nebenbedingung g(x) zusammensetzt, wobei die letztere mit
einem Faktor 2 multipliziert wird. Dieser Faktor ist gleich dem
bekannten Lagrangeschen Multiplikator. Je nach dem Wert
von 4 verschiebt sich der Punkt, bei dem die Funktion eine
horizontale Tangente aufweist. Das Minimum unter Beriick-
sichtigung der Nebenbedingung liegt nun bei dem Wert von x,
bei dem die Ableitung der Funktion gleich Null ist und bei dem
gleichzeitig die Nebenbedingung g(x) = 0 erfiillt ist (Punkt
Prain).
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Fig. 16
Optimierung von kleinen Abweichungen der Wirklast
a Auswirkung bei thermischem Kraftwerk; » Auswirkung bei hydrau-
lischem Kraftwerk; P Wirkleistung; F Produktionskosten; X P Wirk-
leistungsbilanz; W stiindlicher Wasserverbrauch; W von Kurzzeit-Opti-
mierung vorgeschriebener stiindlicher Wasserverbrauch; A, p Lagrange-
sche Multiplikatoren;
Indizes: Th thermisches Kraftwerk; H hydraulisches Kraftwerk;
D Last; L Verluste

Liegt an Stelle einer Nebenbedingung eine Begrenzung vor,
so ist das Verfahren etwas zu modifizieren. In Fig. 15B ist ein
Fall dargestellt, bei dem der zulissige Bereich von x auf x < b
eingeschriankt wird. Die Zielfunktion f(x) sei gleich wie in
Fig. 15A. Es wird auch hier eine Funktion gebildet, die sich
jetzt aus der Zielfunktion f(x) und aus der Differenz x — b zu-
sammensetzt, wobei der letztere Ausdruck mit einer dualen
Variablen u# multipliziert wird. Im zuldssigen Bereich ist die
duale Variable « gleich Null, so dass sich die Funktion nicht
von der Zielfunktion unterscheidet. Im unzulédssigen Bereich
ist # von Null verschieden und zwar muss dieser Wert gerade
so gewihlt werden, dass die Ableitung der Funktion an der
Begrenzung gleich Null wird.

Im mehrdimensionalen Fall konnen gleichzeitig Nebenbe-
dingungen und Begrenzungen auftreten. In diesem Fall setzt
sich die Funktion zusammen aus der Zielfunktion, den Neben-
bedingungen, mit den Lagrangeschen Faktoren multipliziert
und den Abweichungen von den Begrenzungen, die mit den
dualen Faktoren u zu multiplizieren sind. Das Minimum ist
dort erreicht, wo die Ableitungen der Funktion nach allen
Variablen Null sind, die Nebenbedingungen erfiillt sind und
die Begrenzungen nicht verletzt werden.

Dieses Theorem eignet sich vorziiglich zur Ableitung eines
Niaherungsverfahrens, wie im nédchsten Abschnitt gezeigt wer-
den soll. Dabei werden der Einfachheit halber die Begrenzun-

gen ausser acht gelassen. In Wirklichkeit lassen sich die Be--

grenzungen dank dem soeben beschriebenen Kuhn-Tucker-
Theorem ohne weiteres beriicksichtigen.

3.3 Optimierung von kleinen Abweichungen

Zur Ableitung des Nidherungsverfahrens fiir die Optimie-
rung von kleinen Abweichungen wird ein einfaches Verbund-
netz betrachtet, das ein thermisches und ein hydraulisches
Kraftwerk aufweisen soll.

Die Produktionskosten F(Prn) in Abhédngigkeit der im
thermischen Kraftwerk erzeugten Leistung Py ist in Fig. 16a
dargestellt. Die Kriimmung wurde dabei absichtlich {ibertrie-
ben, um die Verhéltnisse deutlicher darstellen zu konnen. Als
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Nebenbedingung ist die Wirkleistungsbilanz zu beriicksichti-
gen, die fordert, dass £ P = 0 sein soll.

Vorerst sollen die Verhédltnisse im thermischen Kraftwerk
untersucht werden, wenn die produzierte Leistung im hydrau-
lischen Kraftwerk konstant bleibt. Es ist hier eine Funktion
aus den Produktionskosten F(Prn) und £ P zu bilden, wobei
letztere mit dem Lagrangeschen Multiplikator A multipliziert
werden. Wird als Bezugspunkt derjenige Punkt zugrunde ge-
legt, der als optimaler Punkt fiir den betreffenden Zeitabschnitt
der Kurzzeit-Optimierung gefunden wurde, so sind in der
Funktion alle Werte ausser dem Lagrangeschen Multiplikator
bekannt. Dieser ldsst sich aber leicht berechnen, gemiss der
Bedingung, dass im optimalen Punkt die Ableitung der Funk-
tion gleich Null sein soll.

In diesem Bezugspunkt A1 wird eine Ersatzparabel £P; an
die Funktionskurve gelegt. Diese Ersatzparabel wird nun als
neue Zielfunktion betrachtet, der, wie gesagt, der optimale
Punkt der Kurzzeit-Optimierung zugrunde liegt. Abweichun-
gen, die im Betrieb auftreten, werden auf diesen Punkt bezogen.
Veriandert sich die Wirklast um APp, so verschiebt sich ent-
sprechend die Nebenbedingung.

Es wird nun eine neue Funktion aus der Ersatzparabel EP;
und der verschobenen Nebenbedingung gebildet, wobei letztere
mit einem neuen Lagrangeschen Multiplikator zu multiplizie-
ren ist. Das Minimum der Produktionskosten ergibt sich dann
aus der Bedingung, dass die Ableitung der Funktion gleich
Null sein, und gleichzeitig die verschobene Nebenbedingung
erfiillt sein muss. Im eindimensionalen Fall ist diese Bedingung
trivial. Sind im Netz mehrere thermische Kraftwerke vorhan-
den, so liefert diese Bedingung die notwendigen Beziehungen,
um die Wirklastabweichung optimal auf die einzelnen Kraft-
werke aufzuteilen. Dank der Ersatzparabeln geben die Ab-
leitungen ein lineares Gleichungssystem, das sich relativ einfach
16sen lasst. '

Nun sollen die Verhiltnisse beim hydraulischen Kraftwerk
betrachtet werden (Fig. 16b). Die Produktionskosten F(Prn)
zeigen unter Beriicksichtigung der Wirkleistungsbilanz einen
abfallenden Verlauf. Je mehr Leistung Px das hydraulische
Kraftwerk {ibernimmt, um so weniger ist im thermischen Kraft-
werk zu produzieren, womit die Kosten um so kleiner werden.
Aus der Kurzzeit-Optimierung ergibt sich die vom hydrauli-
schen Kraftwerk zu tibernehmende Leistung unter Beriick-
sichtigung der zu verarbeitenden Wassermenge. Andert sich
nun der Verbrauch um APp, so verschiebt sich die Kurve der
Kostenfunktion. Léisst man die im hydraulischen Kraftwerk
produzierte Leistung konstant, so steigen die Produktions-
kosten um AFrh sehr stark an.

Wird die Lastinderung vom hydraulischen Kraftwerk allein
ubernommen, so bleiben die Produktionskosten zwar konstant,
dafiir andert sich aber der Wasserverbrauch um AWw und der
Wasserhaushalt wird stark gestort. Beide Fille sind nicht er-
winscht, wobei allerdings der erste Fall, d.h. konstante hy-
draulische Leistung, bei einem Laufkraftwerk vorauszusetzen
ist, da hier die anfallende Wassermenge verarbeitet werden
muss. Normalerweise wird aber danach getrachtet, die Last-
dnderung auf die thermischen und hydraulischen Kraftwerke
zu verteilen. Nachstehend wird gezeigt, wie eine geeignete Ziel-
funktion gebildet werden kann, welche eine optimale Leistungs-
verteilung zu bestimmen gestattet.

Es wird eine Funktion gebildet, die aus der Kostenfunktion
F(Prn) besteht und der mit dem Lagrangeschen Faktor u be-
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Fig. 17

Ersatzzielfunktion zur optimalen Aufteilung einer Lastinderung

P Wirkleistung
Indizes: Th thermisches Kraftwerk; H hydraulisches Kraftwerk;
D Last; L Verluste

werteten Abweichung W — Wy des stiindlichen Wasserver-
brauchs (Fig. 16b). Dabei ist ' die von der Kurzzeit-Optimie-
rung vorgeschriecbene zu verarbeitende stiindliche Wasser-
menge. Der Lagrangesche Multiplikator x4 wird so gewihlt,
dass die Funktion fiir den optimalen Punkt der Kurzzeit-
Optimierung eine horizontale Tangente bildet. Der Multipli-
kator u stellt dann eine Kostenbewertung der Abweichung der
Wassermenge von der vorgeschriebenen Wassermenge dar.
Dieser Faktor u lasst sich wiederum aufgrund der Daten der
Kurzzeit-Optimierung berechnen. Durch den optimalen Punkt
B1 der Kurzzeit-Optimierung wird wiederum an die Funktion
eine Ersatzparabel EP; gelegt. Abweichungen im Betrieb sind
auf diesen Bezugspunkt zu beziehen.

Die beiden Ersatzparabeln EP: in Abhédngigkeit der Lei-
stungsdnderung im thermischen Kraftwerk (Fig. 16a), bzw. im
hydraulischen Kraftwerk (Fig. 16b), die als neue Zielfunktio-
nen eingefiihrt wurden, bilden in der APy — APry-Ebene Ellip-
sen (Fig. 17). Das Minimum liegt im Ursprung. Als Neben-
bedingung tritt die Wirkleistungsbilanz auf, die mit guter
Niherung als Gerade mit 459 Neigung vorausgesetzt werden
kann. Thre Lage verschiebt sich je nach der Lastinderung APp.
Die Aufteilung einer Lastdnderung auf das thermische und auf
das hydraulische Kraftwerk muss auf dieser Geraden liegen.
Die optimale Aufteilung liegt dann vor, wenn gleichzeitig das
Minimum der Zielfunktion erreicht ist, was im Punkt A4 der
Fall ist.

Wie sich die Aufteilung der Lastinderung auf die Produk-
tionskosten und auf den Wasserverbrauch auswirken, geht aus
Fig. 16b hervor. Der durch das thermische Kraftwerk tiber-
nommenen Leistungsidnderung APry entspricht eine Anderung
der Produktionskosten um den Betrag AF. Infolge der vom
hydraulischen Kraftwerk ilibernommenen Leistungsdnderung
APy dndert sich der Wasserverbrauch um AW,

Dank der neu eingefiihrten quadratischen Zielfunktion und
der linearisierten Nebenbedingung kann das Optimum mit der
quadratischen Optimierung bestimmt werden, wozu sich das in
Abschnitt 3.2 angefiihrte Kuhn-Tucker-Theorem vorziiglich
eignet. Damit lassen sich insbesondere auch die hier vernach-
lassigten Begrenzungen beriicksichtigen. Zur Losung bestehen
einige relativ leicht programmierbare Algorithmen. Die opti-
male Verteilung ist dann eine Funktion der Lastabweichung
APvp.
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Fig. 18a zeigt den prinzipiellen Verlauf fiir eine optimale
Verteilung der Wirklastdnderung APp auf ein thermisches
Kraftwerk APpn und ein hydraulisches Kraftwerk APgs mit
Jahresspeicher. Ein Laufkraftwerk nimmt an der Ausregelung
nicht teil, d.h. es ist APuy, = 0, da die anfallende Wassermenge
zu verarbeiten ist. Die Knicke in den Geradenziigen treten
dann auf, wenn irgend eine Begrenzung erreicht wird.

Analoge Uberlegungen wie fiir die Wirkleistung lassen sich
auch fiir die Blindleistung durchfithren. Auch hier erhilt man
einen Kurvenverlauf fiir die Anderung der Blindleistungs-
erzeugung, der sich aus mehreren Geradenstiicken zusammen-
setzt (Fig. 18b). Die Blindlastabweichung wird dabei auf die
Blindleistungserzeuger so verteilt, dass die Wirkleistungsver-
luste im Netz minimal bleiben.

Schliesslich soll noch gezeigt werden, wie die Wirk- und
Blindlastabweichungen APp bzw. AQp bestimmt werden kon-
nen.

Anstatt siamtliche Verbraucherleistungen zu messen und
daraus die Abweichung vom vorausgesetzten Lastzustand zu
berechnen, ist es zweckmassiger, die Wirk- und Blindlastdnde-
rung indirekt zu ermitteln.

Die Wirklastanderung ldsst sich aus der Frequenzinderung
A f bestimmen, die mit dem Faktor Ky multipliziert wird. Dazu
wird die Abweichung von der programmierten Austausch-
leistung mit dem Nachbarnetz AP 4 hinzugefiigt (Fig. 18¢). Die
Summe iiber die Zeit integriert ergibt eine Ersatzgrosse fiir die
Lastabweichung APp. Mit diesem Verfahren werden gleich-
zeitig auch die Wirklastverluste im Netz berticksichtigt. Die
Lastabweichung APy ist also gleich derjenigen Grosse, die bei
der Frequenz-Leistungs-Regelung gebildet wird.

Analog wird die Blindlastinderung aus der Spannungs-
dnderung AUx in einem Netzpunkt bestimmt, welche mit dem
Faktor Ky multipliziert und anschliessend tiber die Zeit inte-
griert wird (Fig. 18d). Anstatt nur die Spannungsabweichung
in einem Netzpunkt zu nehmen, ist es zweckmaissig, eine ge-
wisse Mittelwertbildung iiber mehrere Netzpunkte zu verwen-
den.

Die Kenndaten der Geradenziige fiir die Wirk- und Blind-
leistungsinderungen in Fig. 18a und b konnen fiir jeden Zeit-
abschnitt der Kurzzeitoptimierung im voraus berechnet wer-
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Fig. 18
Optimale Sollwertiinderung filr Wirk- und Blindleistung
a Aufteilung der Wirklastinderung; 5 Aufteilung der Blindlastinde-
rung; ¢ Bildung der Ersatzgrisse fiir die Wirklastinderung; d Bildung
der Ersatzgrosse fiir die Blindlastinderung; AP Wirkleistungsinderung;
AQ Blindleistungsinderung; Af Frequenzinderung; AUy Netzspan-
nungsanderung
Indizes: Th thermisches Kraftwerk; HS hydraulisches Kraftwerk mit
Jahresspeicher; D Last; A Austauschleistung; C Sollwert
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Fig. 19
Generelles Strukturdiagramm fiir die Netzregelung
(Programm fiir die Wirkleistung)

Bezeichnungen siehe im Text

den. Die Berechnung der Leistungsianderungen fiir eine be-
stimmte Lastabweichung erfordert dann nur einen sehr gerin-
gen Rechenaufwand, der leicht « On-line» durchgefiihrt werden
kann. Die berechneten Anderungen bilden dann die Sollwert-
dnderungen AP. bzw. AQ., wobei die Netzregelung dafiir zu
sorgen hat, dass die erzeugten Wirk- und Blindleistungen den
Sollwerten angepasst werden.

3.4 Netzregelung mit Prozessrechner
3.4.1 Programm fiir die Netzregelung

Fig. 19 zeigt ein stark vereinfachtes Strukturdiagramm fiir
das Rechenprogramm der Netzregelung auf dem Prozessrech-
ner. Dieses Programm gilt fiir die Wirkleistung, ein analoges
Programm kann auch fiir die Blindleistung aufgestellt werden.

Vorerst werden die notwendigen Daten eingelesen (1), und
zwar Frequenzabweichung A f, Abweichung von der program-
mierten Austauschleistung AP, sowie die in allen Kraftwerken
erzeugten Wirkleistungen Pi...Px. Als nichstes wird der Er-
satzwert APp’ fir die Lastabweichung berechnet (2), wobei
die Integration durch eine Summation ersetzt wird. 7%, ist die
Abtastperiode zwischen zwei aufeinanderfolgenden Rechen-
schritten und 7 die Integrationszeitkonstante.

Die nichsten zwei Rechenschritte werden nachemander fir
alle Kraftwerke 1..K durchgerechnet, und zwar Bestimmung
des Sollwertes P.i fir die Wirkleistung im Kraftwerk 7 (3).
Diese ergibt sich aus dem Wert der Kurzzeit-Optimierung,
korrigiert um die notwendige Abweichung infolge einer Last-
anderung. Hier werden die in Fig. 18a angegebenen Geraden-
ziige verwertet. Schliesslich wird noch die Regelabweichung
ei = P.i— P; fur jedes Kraftwerk bestimmt (4). Nachdem diese
beiden Rechnungen fiir alle Kraftwerke durchgefiihrt wurden,
wird eine zweite Serie von Rechnungen ebenfalls fiir alle Kraft-
werke durchgerechnet.

In (5) wird der Regelalgorithmus fiir die direkte digitale
Regelung (direct digital control, DDC) verarbeitet, d.h. die
Stellgrosse Uxpi fur die Netzregelung der Wirkleistung im
Kraftwerk i gebildet. Diese ist eine Funktion der Regelabwei-
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chung e in allen Kraftwerken, und zwar nicht nur im gegen-
wirtigen Abtastzeitpunkt n, sondern auch in N zuriickliegen-
den Abtastzeitpunkten n — 1, ..., n — N. Je mehr Abtastzeit-
punkte hinzugenommen werden, um so besser wird im Prinzip
die Regelgiite, um so grosser wird aber der Rechenaufwand.
Man wird daher normalerweise etwa drei Abtastzeitpunkte
beriicksichtigen. Abschliessend werden die neu berechneten
Stellgrossen Uxrpi ausgegeben (6).

Das Regelverhalten kann verbessert werden, indem bei der
Bildung der Lastabweichung AP’p nicht nur die Summe be-
riicksichtigt wird, welche im Prinzip einem Integralanteil ent-
spricht, sondern dass auch ein proportionaler Anteil des Sum-
manden beriicksichtigt wird. Uberdies ist es angebracht, die
Eingangsgrossen, denen stochastische Anderungen iiberlagert
sind, vorerst zu glitten, was in digitaler Form auch auf dem
Prozessrechner durchgefiihrt werden kann.

Anschliessend an die besprochene Rechnung wird ein ana-
loger Rechnungsgang fiir die Blindleistungsregelung durch-
gerechnet. Diese Rechnungen werden dann in periodischen
Abstidnden, dem Abtastintervall, von etwa 5...30 s wiederholt,
so dass der Prozessrechner das Netz praktisch dauernd tiber-
wacht und die notwendigen Anderungen so vorgibt, dass immer
eine optimale Leistungsverteilung vorhanden ist.

3.4.2 Geritetechnische Anordnung des Prozessrechners

Abschliessend soll noch kurz in Fig. 20 die geritetechnische
Anordnung des Prozessrechners gezeigt werden.

Af ——=
APA — o
o° > Unp
Ay—= ¢ \
P ) °oco AD —] N
Q — DA
M

PR

Fig. 20
Geriitetechnische Anordnung des Prozessrechners fiir die Netzregelung
M Multiplexer; AD Analog-Digital-Wandler; PR Prozessrechner;
DA Digital-Analog-Wandler

Samtliche benotigte Grossen, wie Frequenzabweichung Af,
Abweichung der Austauschleistung APa, und Abweichung der
Netzspannung AUx sowie alle erzeugten Wirk- und Blind-
leistungen P, bzw. Q werden mittels Fernlibertragung an einen
zentralen Lastverteiler tibertragen. Dort tastet ein Multiplexer
M alle Grossen in periodischen Abstinden ab. Ein Analog-
Digital-Wandler AD sorgt fiir eine Umwandlung der analogen
Grossen in digitale Form, mit denen der Prozessrechner PR
arbeiten kann. Dieser verarbeitet das in Abschnitt 3.4.1 be-
sprochene Programm und gibt die Steligrossen aus, die in
einem Digital-Analog-Wandler DA in analoge Grossen um-
gewandelt werden. Die Stellgrossen Unp, bzw. Ung werden
dann mittels Fernuibertragung an die einzelnen Kraftwerke
iibertragen. Dort greifen die Stellgrossen im Prinzip in den
Drehzahl- bzw. Spannungseinsteller der Turbinen-, bzw. Gene-
ratorregelung ein, und beeinflussen dann in gewiinschter Art
und Weise die Wirk- und Blindleistungen.
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