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Ein Verfahren zur Korrektur von Fehlerbursts grösstmöglicher Länge

Von H. Ohnsorge, Ulm

In der vorliegenden Arbeit wird ein neues Verfahren zur
Korrektur von Fehlerbündeln in Binärcodes beschrieben. Es wird
zunächst theoretisch gezeigt, dass mit diesem Verfahren Fehlerbursts
bis zur Länge m, d. h. bis zur Länge des Redunanzteiles des Codes
korrigiert werden können. Anschliessend folgt die Beschreibung
einer Realisierungsmöglichkeit des Verfahrens. Die mit diesem
Verfahren erreichbare Restfehlerwahrscheinlichkeit wird
abgeschätzt. Anschliessend werden die sonstigen Eigenschaften und
die Anwendbarkeit des Verfahrens erläutert.

681.3.041.5

Le présent article décrit un nouveau procédé de correction
d'impulsions de défaut dans des codes binaires. On prouve d'abord
d'une manière purement théorique que ce procédé permet de

corriger des impulsions de défaut jusqu'à la longueur m, c'est-à-dire

jusqu'à la partie de redondance du code. On décrit ensuite les

possibilités de réalisation du procédé. La probabilité de faute
résiduelle obtenue par ce procédé est évaluée. On explique ensuite les

autres propriétés et applications du procédé.

1. Einleitung
Über die Korrektur gebündelter Fehler oder Fehlerbursts

sind bereits eine Reihe von Arbeiten erschienen, z. B. [1] bis

[3]1)- Besonders das Verfahren von Fire zeichnet sich durch

geringen Realisierungsaufwand aus, hat aber den Nachteil, dass

Bursts nur bis zur Länge B 1/3 m korrigierbar sind, wobei m

die Zahl der Prüfzeichen ist, die der gewählte Code besitzt.

Bessere Verfahren erfordern meist einen erheblich höheren

Aufwand als das Verfahren von Fire. In dieser Arbeit wird ein

neues Fehlerburst-Korrekturverfahren beschrieben, das nur
mit einem geringfügig grösserem Aufwand als das Fire-Ver-
fahren arbeitet, dafür aber Bursts bis zur Länge m — s korrigiert.

Das Verfahren hat ausserdem den Vorteil, dass die
Wahrscheinlichkeit für eine fehlerhafte Korrektur proportional 2~z

fällt, so dass man leicht eine beliebig kleine Wahrscheinlichkeit

für den kritischen Fall erreichen kann, dass ein fehlerhaftes

Codewort an die Datensenke gelangt. Der Aufwand steigt bei

diesem Verfahren wie bei Fire linear mit der Codewort- oder

Blocklänge n an. Das Verfahren setzt die Verwendung zyklischer
Codes voraus, allerdings ist es für jeden zyklischen Code
einsetzbar. Neu ist dabei, dass zur Kennzeichnung von Ort und

Länge des Bursts im Codewort Mittel verwendet werden, die

unabhängig von dem verwendeten Code sind, und dass mit
Hilfe dieser Mittel eine Nulltestlogik adaptiv gesteuert wird.

f (X) XI Z«"1 + X2 Xn-* + + Xn X°

g (X) diXm + dz X-1 + + dm+i X°

erzeugt, wobei g (X) das Polynom Xn — 1 ohne Rest teilen

muss, wenn ein zyklischer Code durch g (X) erzeugt werden

soll. Eine für das behandelte Burstkorrekturverfahren wichtige

Eigenschaft zyklischer Codes ist, dass durch zyklische
Verschiebung eines Codeworts wieder ein Codewort entsteht, d.h.

wenn die Folge {xi, X2...xn] ein Codewort ist, so stellen auch

{jtn JC2...JC1} und |Xn-i Xn, X3...X1, x%} usw. Codewörter dar. Ein

Codewort wird gebildet, indem man das Polynom K(x)
XI XK 1 + X2 XK 2...xk X" das K Informationszeichen sym-

s -— dividiert und den Rest der Division zubolisiert durch -

Xn
Xm K (X) addiert, also :

XmK(X)
g(X) di (X) n(X)

g(X)
(3)

K (X) - ri {X) q (X) • g (X) S (X) (4)

2. Die theoretischen Grundlagen

Obgleich die Theorie zur Behandlung zyklischer Codes an

vielen Stellen beschrieben ist, z. B. [1], wird für die leichtere

Lesbarkeit der Arbeit das wesentliche Rüstzeug in folgendem
nochmals kurz zusammengefasst. Dabei wird auch gezeigt, dass

durch eine Polynom-Division aus dem fehlerhaften Codewort

jeder Fehlerbursts bis zur Länge m als Restpolynom bestimmt

werden kann, wenn der Beginn des Bursts bekannt ist. Folgen

von Binärzeichen xi; xz; xn, werden als Polynom

bildet, wobei die Koeffizientenoperationen mod 2 durchzuführen

sind, d. h. die Koeffizienten Xi werden als Elemente des

Galois-Feldes GF(2) behandelt. S (X) entspricht dem gesendeten

Codewort, die ersten /G Koeffizienten sind dabei die

Informationszeichen, die weiteren /«-Koeffizienten bilden die

Prüfzeichen. Die Division wird durch ein rückgekoppeltes

Schieberegister in bekannter Weise durchgeführt [1], dessen

Rückkopplungen durch g (X) bestimmt sind. Nach
ausgeführter Division bilden die Werte 0 oder 1 in den Registerstufen

die Koeffizienten des Restpolynoms n (X).
Als Fehlerburst B (X) wird die Folge von Binärzeichen vom

ersten bis zum letzten Fehler im Codewort bezeichnet, die

durch Störung der Übertragung entstehen. Ein Empfangswort
kann als Summe von Codewort und Fehlerburst in der Form

E(X) S(X) + X*B(X) (5)

(1)

beschrieben, wobei X ein Operator und Xi die Zeichen der

Binärfolge sind.

Der Code wird durch ein sog. Generatorpolynom

(2)

h Siehe Literatur am Schluss des Aufsatzes.

Fig. 1

Darstellung eines Fehlerbursts im Codewort

e Zahl der fehlerfreien Binärzeichen vor Beginn des Fehlerbursts;

j Zahl der fehlerfreien Binärzeichen nach dem Fehlerburst im Code¬

wort; n Codewort der Länge; t Zeit; B Länge des Fehlerbursts
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Fig. 2
Rückgekoppeltes Schieberegister zur Bestimmung des Restes

von E(X)/g(X)
dy 1 bedeutet eine einfache Durchschaltung der zuge¬

hörigen Rückführleitung;
® Multiplizierer bzw. Aus-Ein-Schalter;
@ Modulo-2-Addierer

<3> Cm+1

by -®— b

"®-

<È> d3 ® d2

)m-2 -©- bm_y -©- bm

1
Takt

E(X)

geschrieben werden, wenn der letzte Fehler in der Position
n — j im Codewort auftritt. Die Länge des Bursts sei B (Fig. 1).

Es soll nun folgende Gleichung bewiesen werden:

Xe Xm E(X)
g(X) y (X) +

Xm-B B(X)
g(X)

für B < m (6)

In Worten besagt die Gleichung: Beginnt ein Burst in der
(e + l)-ten Position eines Codewortes, dann erhält man in den
ersten .B-Stellen eines Schieberegisters das vollständige Fehlermuster

des Bursts, wenn dieses Register das mit Xm+e
multiplizierte Empfangswort E (X) durch g (X) dividiert, solange
die Burstlänge B die Zahl der Prüfzeichen nicht überschreitet.

Zum Beweis dieser Behauptung entnimmt man Fig. 1

e + j n — B (7)

und man schreibt die bereits erwähnte Bedingung für zyklische
Codes in die Form

- 1

g(X)

Rest 0

Y(X)
(8)

Nun lässt sich Gl. (6) mit den Gl. (4), (5) und (6) wie folgt
umformen :

Xm+eE(X) _ Xm+e-S (X) xm+n-B B(X)
g(X) g(X)

Xm+°-S(X)

g(X)

rm-B(A-n - !)• B(X)
g(X)

Xm-B. B(X)
g(X)

X"'-B B(X)

+g(X) 1

(9)

Xm+e qi + Xm-B Y (X) B (X) +

Xm~B B{X)
g(X) — 1 (x) + -

g(X) q. e. d.

Ein Schieberegister nach Fig. 2 [1] führt die Division nach
Gl. (6) durch, wenn man die n Binärzeichen des Empfangswortes

E (X) Bit für Bit eingibt und anschliessend ohne weitere
Eingabe, das Register um e Takte weiterarbeiten lässt. Der
Registerinhalt entspricht dann den Koeffizienten des Polynoms-

^m-B ß (JSr) Xm-B (6m J^B-l + bm_x XB-Z

+ + Äm-B+1 X°)
(10)

Beim Empfang eines fehlerhaften Codewortes kann man
durch die Division

XmE(X)
g(X)

- q-AX r-z (X)
g(X) (H)

mit dem Kriterium r-2 (X) #= 0 zwar feststellen, dass ein Burst
im Codewort enthalten ist — solange X' B (X) kein Codewort
darstellt — aber man kennt den Ort des Burstes nicht.

Bildet man durch ein Schieberegister nach Fig. 2, das r-z (X)
als Syndrom erhält, X1 rz (20 mod g (X) mit i 1,2,...«,
dann wiederholt sich der Registerinhalt spätestens nach i n

Schritten, denn

also

X* rz {X) (X" -| 1) rz (X) - r2 (X)

XRrz(X)_ r2 (X)
g(X) ~ 2 —

~gTxJ (12)

Auch Perioden < n können auftreten. Die Folge der n
Syndrome X' rz (X) mod g (X) i 1 bis n bietet die gesamte
Information, die durch das rückgekoppelte Schieberegister aus
dem Empfangswort zur Fehlerkorrektur gewonnen werden
kann. Für die 2m 1 möglichen Bursts der Länge B EL m stehen
also n • 2m~1 Syndrome für die Auswertung zur Verfügung; da

nur 2m — 1 verschiedene Syndrome möglich sind, ist also in
dem betrachteten Kollektiv der n • 2"1-1 Syndrome im Mittel
jedes

(13)
n • 2m~1 n
~2m - 1 ^ 2

mal vertreten. In den n 2m~1 Syndromen sind also ^ ' 2m~1

Syndrome, die gleich einem Burst sind, zu erwarten; also ist
im Mittel jedes zweite Syndrom ein mögliches Burstmuster,
wenn man Bursts bis zur Länge B <m zulässt. Das Register
kann in diesem Fall nur eine Aussage über die Form des Bursts
machen, Länge und Lage des Bursts im Codewort müssen
daher zumindest näherungsweise mit anderen Mitteln bestimmt
werden. Zu diesem Zweck sind Störungsdetektoren (auch
Signalqualitätdetektoren genannt) geeignet [4; 5; 6], Mit einem
Störungsdetektor wird ein empfangenes Signal bezüglich der
Abweichung von der Sollform beurteilt, ist diese Abweichung
zu gross, dann erfolgt Störanzeige. Ein Binärfehler wird auf
diese Weise mit der Wahrscheinlichkeit p (st \ f) angezeigt.
Eine Störung, die der Stördetektor erkennt, muss aber nicht
mit Sicherheit zur Falschinterpretation des betreffenden
Zeichens durch den Empfänger führen, d. h. Störung führt
nicht immer zu einem Übertragungsfehler. Daher werden auch
Zeichen als gestört angezeigt, die richtig interpretiert wurden ;

dies geschieht mit der Wahrscheinlichkeit p (st \ r). Bei burst-
gestörten Kanälen unterscheidet man zwei Zustände [7; 8]:

1. Zustand «ungestört»
2. Zustand «gestört»

wobei der zweite Zustand durch Störungsbündel entsteht, die
die Fehlerbursts hervorrufen, während im ersten Zustand der
Kanal nur durch das immer vorhandene Grundgeräusch
gestört ist, das zu einer vernachlässigbar kleinen
Fehlerwahrscheinlichkeit führt. Für Zustand 1. kann man p (st \ r) 0
annehmen. Im Zustand 2. ist das Signal- zu Störleistungs-

Bull. SEV 61(1970)16, 8. August (A 471) 721



Fig. 3

Veranschaulichung der Zustände eines bündelgestörten Kanals und der

daraus resultierenden Fehlerstruktur und Störanzeige

Ba Länge des angenommenen Fehlerbursts; t Zeit; 2 S angenommene

Differenz zwischen dem Fehlerbünde] und dem angezeig¬

ten Störbündel

Zustand 1

Störung:

Zustand 2

I

y—'Störbündel
P=>0,5

Zustand 1

Zeit t

Fehler:
p(st Ir)-

verhältnis 5/7V im allgemeinen < 1, so dass sowohl p {st \ r)
als auch p {st \ /) gegen 1 und die Binärfehlerwahrscheinlichkeit

gegen 0,5 streben. Diese Verhältnisse sind in

Fig. 3 veranschaulicht. Störanzeiger-.

Der Stördetektor zeigt Beginn und Ende eines Störbündels

mit relativ kleiner Toleranz an. Das Fehlerbündel ist

kleiner als das Störbündel und mit grosser Wahrscheinlichkeit

kleiner oder gleich dem Bündel der Störanzeigen. Ort
und Länge des Bursts wird also mit einer gewissen Toleranz 5
durch den Stördetektor angezeigt. Obgleich meist das Fehlerbündel

kleiner sein wird als das Bündel der Störanzeigen, ist

5 positiv anzunehmen, um sicher zu gehen, dass der abgesuchte

Bereich alle Fehler umfasst, die zum Bündel gehören, da sonst

falsche Korrektur erfolgt.

1
I

p(st I r) :

p(st I f) :

II Hill

.1
g> 1

Hl HU I

—Fehlerbündel
(Burst)

HUI' I "Hl IHM p

—Rj—gestört,aber fehlerfrei

—Störanzeigebündel —,1 :—jj— gestört aber nicht angezeigt

-Sa

3. Prinzip des Fehlerkorrekturverfahrens

Die Burstkorrektur geschieht nun in folgender Weise:

Durch einen Stördetektor wird bei Empfang eines Wortes
die Voraussage gemacht «ein Fehlerburst beginnt in der Position

est + 1 und endet in der Position n — /st», wenn in diesen

Positionen die erste und letzte Störanzeige im Empfangswort
entsteht.

Ist i"2 {X) 4= 0, dann wird die Annahme getroffen, dass der

Burst mit der Position est + 1 — s beginnt und die Länge

Bs n — est—jst + 2s (14)
hat.

Mit dem rückgekoppelten Schieberegister wird nun

Xest-S r2{X)modg{X) (15)

gebildet. War die getroffene Annahme richtig, dann weisen nun
die letzten m — Bs. Registerstufen die Stellung «0» auf, und die

erste Registerstufe steht auf « 1 ». Entsprechend Fig. 3 beginnt
der Burst aber mit grosser Wahrscheinlichkeit erst in einer

Position mit der Nummer > est + 1 — s. Man lässt daher das

Register um 2 S Takte weiterrechnen und prüft bei jedem Takt
die erste und die m — Bs letzten Stufen. Steht das Burstmuster

am Ende des Registers, dann wird es ohne Strukturänderung
durch das Register geschoben, bis der Burstanfang in der

ersten Stufe des Registers steht. Ist nach den weiteren 2 5-Ver-
suchen das Ereignis :

erste Stufe «1»; die letzten m — Bs. Stufen «0»

nicht eingetreten und stehen danach die erste Stufe auf 0 und

die letzten m— Bs. Stufen nicht auf 0, dann kann angenommen

werden, dass der Burst zwar im Register steht, aber noch nicht
bis in die ersten B Stufen vorgeschoben ist. Nach den 25+1-
Versuchen kann daher das Register noch so lange
weitergeschoben werden, bis die erste Stufe auf 1 steht ; ist in diesem

Falle der Registerinhalt der letzten m — Bs. Stufen + 0, dann

liegt ein nichtkorrigierbarer Burst vor.
Tritt das Ereignis:
erste Stufe «1»; die letzten m — Bs, Stufen «0»

bei den 2 5+ 1-Versuchen mehrmals auf, dann kann keine

eindeutige Entscheidung getroffen werden, und auch in diesem

Falle sind die Fehler im Codewort nicht korrigierbar. Dieser

Fall kann z. B. auftreten, wenn neben dem angezeigten Burst

noch Einzelfehler im Empfangswort sind, die nicht vom
Stördetektor aufgezeigt wurden oder durch irrtümliche Störanzeige

der Fehlerburst völlig falsch vorausgesagt wurde.

Hat der Stördetektor Bs > m + 2 S angezeigt, dann ist die

tatsächliche Burstlänge B vermutlich grösser als m, diese

Empfangswörter werden sofort als nicht korrigierbar
verworfen.

Im Bereich

m£Bs£m + 2S (16)

ist die Erkennung des Bursts mit relativ grosser Unsicherheit

behaftet, da das Kriterium «m — Bs Stufen 0» entfällt. Soll

die Wahrscheinlichkeit, dass ein fehlerhaftes Wort an die Senke

gelangt, sehr klein sein, dann wird man die Schranke Bs^m — e

mit s ä; 1 für nicht korrigierbare Bursts setzen. Steigendes s

verringert die Restfehlerwahrscheinlichkeit der Daten, die an

die Senke gelangen.

Lautet dagegen die Forderung, möglichst alle Bursts, die

korrigierbar sind, zu korrigieren, auch unter Verzicht auf eine

kleine Restfehlerwahrscheinlichkeit, dann wird man zur
Korrektur das Syndrom

Xe st f-2 {X) mod g (A)
bei (17)

m ^ Bs ^ m + 2 5
benutzen.

Sind die genannten Kriterien /-Takte nach vollständigem

Empfang eines Wortes erfüllt, dann bildet man zur
Fehlerkorrektur :

E{X)-X*-in*{X) S*{X)
mit

r* i (X) X' r-z (X) mod g (X

War i e und m + B, dann ist

!(X) ==Xm"BB(X)
und

E{X) Xk~e xm~B B{X)

E{X)-X^B{X) S{X)

(18)

(19)

(20)

(21)

das korrigierte Codewort.

4. Eine Realisierungsmöglichkeit des Verfahrens

Das Blockschaltbild des Korrektursystems ist in Fig. 4

dargestellt. Mit dem Takt 1 werden die übertragenen Binärzeichen

722 (A 472) Bull. ASE 61(1970)16, 8 août



E(X)

Taktl Takt 2

-&

S4

Schiebe-Speicher

stop

l>m+25 I

Sa

start

Steuerwerk

&

Takt 1 0 Takt 2

_J i L
rückgek. Schieberegister

ll'-lol-fest Vj'

Fig. 4
Blockschaltbild des Burstfehlerkorrekturverfahrens

I3:l Steuerung des O-Tests; E(X) Empfangswort; S(X)
korrigiertes Codewort; S|, S2, S$, S4, S-t elektronische Schalter;

elektronische Zähler

SS3

Stördetektor

T

in einen Speicher mit n Binärstufen eingegeben, gleichzeitig
bildet das rückgekoppelte Schieberegister

Xm E(X) mod g (X) r2 (X)

Alle Schalter sperren zunächst. Beginnend mit dem ersten
Binärzeichen eines Empfangswortes zählt der Zähler Z1 die

Takte, bis die erste Stördetektoranzeige erfolgt. ZI erhält nun
keine weiteren Takte und steht auf der Stellung est. Zähler Z2,
der periodisch bis n zählt, wird bei jeder Stördetektoranzeige
auf die Stellung n — s zurückgestellt, so dass er nach Empfang
des vollständigen Wortes E (X) die Zahl jst — s enthält. Tritt
gar keine Störanzeige auf, dann bleiben die Zähler unberücksichtigt.

Steht gleichzeitig auch das rückgekoppelte Register
auf 0 [>2 (X) — 0], dann wird das empfangene Wort als Codewort

£ (X) an die Senke abgegeben.

Ist ein Burst aufgetreten, dann erfolgt normalerweise
Störanzeige, und f2 (-T) ist 4= 0. In diesem Falle werden nun £1 und
£2 geschlossen und das System erhält den Takt 2. Im Schiebespeicher

wird E (X) i Takte zyklisch verschoben, das

rückgekoppelte Schieberegister bildet jeweils X' r-i (X) mod g (X).
Zähler ZI zählt rückwärts, bis die Logik £ den Zählerstand £
anzeigt; Z2 hat die <?st — £ Takte über Schalter £2 erhalten und
steht nun auf (yst — £) + (est — £). Die Logik (> m + 2 £)
prüft, ob n — (y'st I <*st — 2 £) ßa > m + 2 £ (oder > m — e)

ist; trifft dies zu, dann wird das im Speicher befindliche

Empfangswort nicht an die Senke abgegeben, d. h. £0 bleibt
gesperrt, bis das nächste Empfangswort verarbeitet wird. Ist

n — (y'st 4 «st — 2 £) ßa < m-2 S, dann schaltet die Logik
Bn den 1-Test an die erste Stufe und die letzten m — ßa-Stufen
des Schieberegisters an die O-Testlogik. Das Ergebnis dieser

Tests gelangt jeweils über £3, der von der Logik £ geschlossen

wurde, an das Steuerwerk. Das System arbeitet nun mit
Takt 2 maximal 2 £ Schritte weiter. Wird dabei einmal der
1- oder O-Test erfüllt, dann schliesst zu diesem Zeitpunkt £4,

und die Rückkopplung des Schieberegisters wird ausgeschaltet.

Der Registerinhalt addiert sich nun mod 2 Bit für Bit zu E {X),
so dass nach Gl. (21) £ (X) entsteht.

Auf die Eindeutigkeitsprüfung des 1- und O-Test-Ergeb-
nisses ist hier zur Vereinfachung verzichtet. Diese Prüfung
würde erfordern, dass ohne Ausschaltung der Registerrückkopplungen

die 2£-Takte durchlaufen werden, wobei das

Steuerwerk die Eindeutigkeit feststellen kann. Lässt man dann

S(X)

das Register n — 2 £ Takte weiterlaufen, dann steht

das System wieder in dem Zustand, den es einnahm,
als Z 1 auf den Stand £ zurückgelaufen war, und der

Korrekturprozess kann sich in der vorher geschilderten

Weise abspielen, falls Eindeutigkeit erkannt
wurde. Andernfalls wird durch £5 wiederum die Ausgabe

des empfangenen Wortes verhindert.
Nach Überlagerung des Bursts aus dem

rückgekoppelten Register wird die zyklische Verschiebung

fortgesetzt, bis das korrigierte Wort in der

ursprünglichen Reihenfolge der Binärzeichen im
Speicher steht. Für diesen Prozess sind also insgesamt n
Takte (bei Eindeutigkeitsprüfung zu 2«-Takten) notwendig.
Wählt man die Geschwindigkeit von Takt 2 so hoch,
dass sich dieser ganze Prozess zwischen dem Empfang zweier

aufeinanderfolgender Binärzeichen abspielt, dann kann nun
der ursprüngliche Systemzustand hergestellt werden mit der
Änderung, dass £5 geschlossen bleibt und der Speicher das

korrigierte Codewort enthält. Die Binärzeichen des folgenden
Empfangswortes werden nun mit Takt 1 in den Schiebespeicher
eingegeben, während im gleichen Takt das korrigierte Codewort
an die Senke gelangt. Stördetektor, Zähler und rückgekoppeltes
Schieberegister arbeiten nun wie bei Empfang des ersten
Wortes.

Hat der Übertragungskanal die Geschwindigkeit Vk bit/s,
dann muss die Geschwindigkeit von Takt 2 etwas höher als Vk2

(bzw. 2 Vk2 bei Eindeutigkeitsprüfung) sein.

Ein Burstfehler korrigierender Code korrigiert Bursts bis zu
einer bestimmten Länge mit Sicherheit richtig. Z. B. korrigieren
Fire-Codes Bursts bis etwa m/3 immer richtig. Diese Eigenschaft

kann ausgenutzt werden, wenn bei r2 (X) 4= 0 keine
Störanzeige im zugehörigen Empfangswort entstand. In diesem
Fall muss mit einem Einzelfehler oder einem sehr kurzen Burst
gerechnet werden. Der Nulltest wird dann anstatt über m — ßa

Stufen z. B. über 2/3 w-Stufen erstreckt, falls ein Fire-Code
verwendet wird.

5. Erreichbare Restfehlerwahrscheinlichkeit

Liegt der tatsächliche Fehlerburst der Länge B innerhalb des

angenommenen Fehlerbursts der Länge ßa, und ist B& m,
dann wird mit Sicherheit richtig korrigiert, denn der Fehlerburst

steht dann nach est 4 1 — £-Takten im Schieberegister
und wird nur noch bis an den Anfang des Registers geschoben.
Durch das « 1 » Kriterium für die erste Registerstufe werden
irrtümliche Zweideutigkeiten ausgeschlossen.

Fehlerhafte Korrektur kann also nur durch Fehler
verursacht werden, die ausserhalb der angenommenen Bursts der

Länge Bd liegen. Die Wahrscheinlichkeit für ein derartiges
Ereignis hängt von der Störstruktur des Übertragungskanals
und von der Art des Stördetektors ab; sie sei durch pb (st \ f
gegeben. Im Idealfall entsprechend dem Gilbertkanal (Fig. 3)

ist pb (st\f 0.
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Nimmt man an, dass jedes Syndrom gleich wahrscheinlich
ist, es trete also mit der Wahrscheinlichkeit auf,

I

Psyn —
2m J

dann ist die Wahrscheinlichkeit für das einmalige Ereignis

«erste Stufe 1, die m — iL letzten Stufen 0»

proportional

Psyn ' 2Ba 1 sa 2 - Ba+ 1

Die Restfehlerwahrscheinlichkeit, mit der ein fehlerhafter
Block an die Senke gelangt, ist also proportional

PB(St\f) 2m_'Ba
+ 1

bzw. proportional einem Faktor pn(sr\f)

ist mit g m — iL max, wenn Bursts nur bis zur Länge iL max

korrigiert werden sollen. Bei burstgestörten Kanälen muss man
oft mit Bursts von einigen hundert Binärzeichen und mehr
rechnen. Bei £ 30 ist aber obiger Faktor bereits < 10~9, so
dass man mit diesem Verfahren sehr hohe Sicherheit gegenüber
irrtümlicher Korrektur erreichen und vor allem bei grossen
Codewörtern gleichzeitig Bursts bis annähernd zur Länge m

korrigieren kann.

6. Schlussbemerkungen

Das vorliegende Verfahren ist bis zu sehr grossen
Blocklängen einsetzbar, da der Aufwand nur linear mit der Blocklänge

steigt. Es ist besonders in den Fällen anwendbar, bei

denen es in erster Linie darauf ankommt, dass kein fehlerhaftes
Codewort an die Senke gelangt. Die Wahrscheinlichkeit dafür
hat man durch die Wahl von e frei beeinflussbar. Gegenüber
dem Fire-Verfahren ist der Vorteil die grössere Burstkorrektur-
fähigkeit, die mit etwas grösserem Aufwand erkauft werden

muss und den Einsatz eines Stördetektors erfordert.
Gegenüber einem Verfahren von Gallager [9] bietet das

Verfahren den Vorteil, dass auch Bursts bis zur Länge von
nahezu m mit hoher Sicherheit richtig korrigiert werden und
bei Bursts der Länge > m mit grosser Wahrscheinlichkeit kein
Korrekturversuch unternommen wird, während bei dem

Gallager-Verfahren die Wahrscheinlichkeit für irrtümliche
Korrektur bei langen Bursts sehr hoch ist.

Literatur
[1] W. W. Peterson: Error correcting codes. Cambridge/Massachusetts,

Massachusetts Institute of Technology Press and New York, John
Wiley, 1961.

[2] D. W. Hagelberger: Recurrent codes: Easily mechanized burst-correcting,
binary codes. eBll Syst. Techn. J. 38(1959)7, p. 969...984.

[3] J. M. Wozencraft and B. Reiffen: Sequential decoding. Cambridge/
Massachusetts, Massachusetts Institute of Technology Press and New
York, John Wiley, 1961.

[4] H. Marko: Systemtechnik der Datenübertragung und Fernsprechtechnik
NTF 19(1960), S. 63...69.

[5] H. Ohnsorge und W. Wagner: Zur Kombination von Störungsdetektoren
und redundanten Codes für die Fehlererkennung. AEÜ 21(1967)9,
S. 487...492.

[6] H. Ohnsorge: Wirksamkeit von Stördetektoren bei Datenübertragung.
NTZ 22(1969)2, S. 113...119.

[7] E. N. Gilbert: Capacity of a burst-noise channel. Bell Syst. Techn. J.
39(1960)9, p. 1253...1265.

[8] J. Swoboda: Ein statistisches Modell für die Fehler bei binärer Daten¬
übertragung. AEÜ 23(1969)6, S. 313...322.

[9] R. G. Gallager: Information theory and reliable and communications.
New York, John Wiley, 1968.

Adresse des Autors:
Dr. H. Ohnsorge, Allgemeine Elektrizitäts-Gesellschaft, AEG-Telefunken-
Forschungsinstitut Elisabethenstrasse 3, D-79 Ulm/Donau.

Kurzberichte — Nouvelles brèves

Ein kleines Unterseeboot aus Frankreich mit einer Länge
von 27,8 m, einer Breite von 6,8 m und einer Höhe von 8,5 m
ist für die Untersuchung des Meeresbodens, für den Einsatz bei
Erdölbohrungen und für den Erzgewinn aus dem Meeresboden
bestimmt. Zur Energieversorgung im getauchten Zustand ist eine
Akkumulatorenbatterie mit einer Kapazität von 1200 kWh
vorgesehen. Sie ist in Behältern ausserhalb des Druckkörpers
untergebracht. Die Batterie kann dem Unterseeboot im getauchten
Zustand während dreier Tage den benötigten elektrischen Strom
liefern. Sie wird im aufgetauchten Zustand durch ein
Dieselaggregat mit 250 PS Leistung aufgeladen.

Linearniotoren für Schnellbahnsysteme der Zukunft. Elektrische

Triebfahrzeuge für den Fern- und Nahverkehr erzeugen ihre
Schubkraft heute noch mit rotierenden Motoren und übertragen
sie über Zwischengetriebe und Rad auf die Schiene. Insbesondere

bei höheren Geschwindigkeiten reicht jedoch die Haftreibung

zwischen Rad und Schiene für den Vortrieb nicht mehr aus.
Bei künftigen Schnellbahnsystemen für Höchstgeschwindigkeiten
ist es deshalb unbedingt notwendig, die Schubkraft direkt zu
übertragen.

Für diese Aufgaben eignen sich ganz besonders elektrische
Linearmotoren. Sie lassen sich aus den rotierenden Drehstrommotoren

ableiten, wobei der Läufer in abgewickelter Form zu
einer Längsschiene wird und die Ständerwicklung hufeisenförmig
um diese Schiene greift. Diese sogenannte Reaktionsschiene
wird entlang der Strecke fest angeordnet, während der Ständer
mit der Drehstromwicklung sich auf dem Fahrzeug befindet.
Durch die elektromagnetischen Vorgänge zwischen dem Ständer
auf dem Fahrzeug und der stationär angeordneten Reaktionsschiene

ergibt sich eine Schubwirkung auf das Fahrzeug. Eine
elektrische Bremsung ist ebenso möglich.

Im Versuchsfeld des Dynamowerkes Berlin der Siemens AG
wurden grundlegende Untersuchungen an verschiedenen Bauformen

solcher Linearmotoren durchgeführt. Hierzu wurde eine
Modellanlage aufgebaut, bei der verschiedene stationäre Reaktionsschienen

in kreisförmiger Anordnung nachgebildet wurden.
Die Untersuchungen zeigten, dass die von Siemens entwickelte

Bauform des Synchron-Linearmotors für die Anwendung bei
künftigen Schnellbahnsystemen grosse Vorteile in wirtschaftlicher
und betriebstechnischer Hinsicht gegenüber den bisher bekannten
Bauformen bietet.
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