Zeitschrift: Bulletin des Schweizerischen Elektrotechnischen Vereins

Herausgeber: Schweizerischer Elektrotechnischer Verein; Verband Schweizerischer

Elektrizitätswerke

Band: 61 (1970)

Heft: 12

Rubrik: Energie-Erzeugung und -Verteilung : die Seiten des VSE

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 11.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Energie-Erzeugung und -Verteilung

Die Seiten des VSE

Kleine energiewirtschaftliche Rundschau

Von F. Wanner, Zürich

In den nächsten Wochen und Monaten erleben wir besonders deutlich, welche Grenzen dem Gesetzgeber zur Eindämmung einer überbordenden Konjunktur und der von ihr ausgelösten Teuerung gesetzt sind. Wie auch immer der Entscheid über die Fremdarbeiter-Frage, das Exportdepot oder andere Steuerungsmassnahmen für das weitere Wirtschaftswachstum ausfällt, so ist klar, dass auch die Elektrizitätswirtschaft Objekt solcher Entscheide ist und dass ihre Entwicklung unmittelbar davon betroffen wird. Die Folgen der Geldverteuerung, der Geldentwertung, der Austrocknung des Arbeitsmarktes und der mit ihr verbundenen Lohnpolitik spüren auch die Elektrizitätswerke.

Ein Ausweichen vor diesen Folgen ist bei ihnen um so weniger möglich, als der Strom in der Schweiz zu jenen Dingen gehört, auf die niemand verzichten will und der den Mangel an Arbeitskräften am ehesten zu kompensieren vermag. Um so erstaunlicher ist deshalb wohl die Reserve, die der Schweiz. Energiekonsumentenverband gegenüber den seit langem angekündigten Strompreis-Erhöhungen kürzlich angemeldet hat: Erstaunlich deshalb, weil die meisten Elektrizitätswerke öffentlich Rechnung ablegen. Weil Stromproduktion und Verteilung auch im Atomzeitalter besonders kapitalintensiv bleiben werden und weil die Werke als Dauerkunden des Baugewerbes und der Maschinen-Industrie den Teuerungsanstieg dieser Branchen aus eigener Anschauung kennen. Höhere Kapitalkosten, höhere Baukosten beim Kraftwerkbau und bei den Verteilanlagen müssen sich aber zwangsläufig auch auf die Stromkosten auswirken. Ja, diese würden ohne Zweifel gegenüber dem allgemeinen Teuerungsanstieg keine so offenkundige Sonderstellung einnehmen, dass man in der Schweiz im Gegensatz zu unseren Nachbarländern bis vor kurzem von einem Preiswunder und von fast stabilen Strompreisen sprechen konnte, wenn die Elektrizitätswerke die in der Industrie übliche Politik der Selbstfinanzierung anwenden wollten. Es besteht also gewiss kein Anlass von dieser Seite den Drohfinger zu erheben und zu einem Streitgespräch einzuladen. Es ist eine nicht zu bestreitende Tatsache, dass auch ohne staatliche Preiskontrolle dank der bestehenden föderativen Struktur unserer Werke die notwendige Transparenz und Übersicht im Preissektor sichergestellt ist und dass der Elektrizitätsfriede in unserem Lande gleichermassen einer wachsamen öffentlichen Meinung wie dem Vertrauen der Bevölkerung zu verdanken ist.

Das Bundesgericht gewährt auch im Tessin dem Installations-Monopol keinen Schutz mehr. Das musste zu ihrem Nachteil die Società elettrica sopracenerina erfahren, die in ihrem Verteilgebiet in Locarno einer im nur 5 km nahen Gordola domizilierten Installationsfirma die Installationsbe-

willigung nicht erteilte. Die Sopracenerina ist eine private Unternehmung, die (von den Gemeinden) in ihrem weitverzweigten Verteigebiet nach dem tessinischen Gesetz vom 12. Dezember 1907 über den Betrieb der öffentlichen Dienste durch die Gemeinden das ausschliessliche Recht zur Verteilung elektrischer Energie erhalten hat. Die staatsrechtliche Beschwerde wird im fraglichen Fall von Gordola ausnahmsweise auch als zulässig erklärt gegen einen Entscheid einer privatrechtlichen Unternehmung, der auf Grund einer staatlichen Delegation oder der Delegation einer Gemeinde getroffen wurde. Mit diesem neuesten Entscheid spricht sich das Bundesgericht wiederum zugunsten der Wettbewerbsfreiheit und zum Schutz der Handels- und Gewerbefreiheit aus. Als einzige Begrenzung wird wie in früheren Entscheiden die Sicherstellung eines beförderlichen Reparaturdienstes verlangt, wie sie bei einer Distanz von nur 5 km ohne weiteres als gegeben erscheint. Weitere Bewilligungs-Kriterien, wie z. B. das Erforderniss eines fünfjährigen Domizils in der betreffenden Gemeinde, müssten unter diesen Umständen als verfassungswidrig bezeichnet werden. Es ist erfreulich, dass das Bundesgericht dem Installationsmonopol auch nicht durch eine Hintertür Einlass gewährt und an seine freiheitliche Praxis einzig die Bedingung der Sicherstellung des Reparaturdienstes knüpft.

Die Gewässerschutz-Gesetzgebung gerät erneut in Bewegung und wird allen Wasserverbrauchern grössere Auflagen und damit auch höhere Kosten bringen. Es ist so, wie es der Vorort in seiner Vernehmlassung an das Eidg. Departement des Inneren ausdrückt: Die Aufwendungen für den Gewässerschutz stellen unter den heutigen Verhältnissen einen Teil der Gewinnungskosten dar, die jeder Unternehmung, die sich in unserem Lande wirtschaftlich betätigt, mit gutem Gewissen abverlangt werden können, so gut etwa wie ausreichende Löhne und Sozialeinrichtungen. Auch der VSE stellt sich zu der geplanten Generalrevision des Gewässerschutz-Gesetzes von 1955 durchaus positiv ein, auch wenn es sich für die Werke zum Teil um sehr aufwendige Auflagen handelt. Allerdings wird ihnen mit der Verpflichtung zur Beseitigung des Treibgutes, des an den Rechen anfallenden sogenannten Geschwemmsels, eine öffentliche Aufgabe zugemutet, an er sich wohl auch die öffentliche Hand selber beteiligen sollte. Eine Kostenteilung drängt sich deshalb überall dort auf, wo für den Abtransport besondere Verlade-Einrichtungen benötigt werden. Zu bedenken ist in diesem Zusammenhang auch, dass die Kraftwerke nicht die Verursacher des sich an den Staustrecken ansammelnden Treibgutes sind. Sorglosigkeit, Bequemlichkeit und Rücksichtslosigkeit werden geradezu prämiert, wenn man die Elektrizitätswerke zum Beseitigen allen Unrates in den Flüssen verpflichtet. Hier muss ein modernes Gewässerschutz-Gesetz nicht nur den Weg des geringsten Widerstandes beschreiten. Mit einer breit angelegten Aufklärungsund Erziehungsaktion wie auch eigentlichen Strafsanktionen sollte das Verschmutzungsproblem an der Wurzel erfasst werden. Eine allzu perfekte Flussreinigungs-Maschinerie der Werke bremst den Eifer des Bürgers, einen eigenen aktiven Beitrag für die Sauberhaltung des Wassers zu leisten. Ein wirksamer Gewässerschutz muss unbedingt schon beim einzelnen Bürger, Gewerbetreibenden und Industriellen beginnen und darf nicht zu einer missbräuchlichen oder übersetzten Inanspruchnahme öffentlicher Dienste führen.

Das Erdgas ist im Kommen. Bereits hat die Mittelland-Gasverbundgesellschaft für ihre 160 000 Abonnenten mit 250 000 Gasgeräten die Umstellung auf Erdgas beschlossen. Dieser Entschluss ist von grosser finanzieller Tragweite, weil er eine Investierung von 30—40 Mio. Franken für die Netzsanierung und die Geräte-Anpassung nötig macht, was pro Gas-Abonnenten eine einmalige Aufwendung von 150—200 Franken bedeutet. Mit einer Verbilligung der Gaspreise ist unter diesen Umständen in den nächsten Jahren nicht zu rechnen, dagegen wird vom Erdgas auf die Dauer ein dämpfender Einfluss auf den Kostenanstieg erwartet. Einzelne Gasversorgungen haben inzwischen bereits Tariferhöhungen bekanntgegeben, die sie in ähnlichem Rahmen wie die Strompreisaufschläge bewegen.

Mit der Einführung des Naturgases in die schweizerische Gaswirtschaft befasst sich auch eine vor kurzem im Verlag Benziger, Einsiedeln, unter diesem Titel erschienene Basler Dissertation (Philosophisch-Historische Fakultät) von Willy Hofstetter. Es handelt sich um eine sehr reich dokumentierte Arbeit von fast 200 Seiten, die angesichts des bevorstehenden Überganges zum Naturgas an Stelle der Eigenproduktion von aktuellstem Interesse ist. Der Verfasser zeichnet die Voraussetzungen auf, unter welchen eine Einführung des Naturgases die gewünschte Verbesserung der Ertragslage und Wettbewerbsposition auf dem Energiemarkt zu bringen vermöchte. Für die Elektrizitätswerke von Bedeutung ist die Feststellung, dass angesichts der Stabilität der Strompreise die bisherigen Sanierungs-Anstrengungen zur Erneuerung der Gaswirtschaft sich noch als ungenügend erwiesen hätten. Die Objektivität des Verfassers zeigt auch sein Hinweis auf die Notwendigkeit sehr langer Verteilleitungen zu den Naturgasfeldern und den an internationalen Maßstäben gemessenen unbedeutenden Bedarf der Schweiz. Er kommt deshalb zum Schluss, dass die niederen Energiepreise in der

Schweiz die Substitution oder Ergänzung des Energieangebotes durch Naturgas noch weitgehend verhindern und dass aus einer ausschliesslich kommerziellen Haltung heraus die heutigen Naturgasangebote für den schweizerischen, industriellen Brennstoff-Verbraucher in der Regel noch nicht als voll wettbewerbsfähig zu betrachten seien.

Gewiss mögen diese Ergebnisse der Dissertation Hofstetter im Hinblick auf dem sich in starker Bewegung befindlichen europäischen Erdgas-Markt heute teilweise bereits wieder überholt sein. Die mit vielen Äquivalenzpreis-Berechnungen ausgestattete Arbeit, die sich von jedem Energie-Dirigismus freihält, stellt trotzdem einen wertvollen Beitrag zur Energiewirtschaftspolitik unseres Landes dar. Sie bestätigt eindeutig die prekäre wirtschaftliche Situation der schweirischen Gasversorgung, die sich sehr spät zu einer umfassenden Rationalisierung und Umstellung auf neue Produktionsmethoden entschlossen hat. Sie verschweigt auch nicht die Risiken der jetzt begonnenen Umstellung auf Erdgas, mit der zwar der Gedanke der Diversifikation verwirklicht wird, dafür aber zweifellos eine grössere Auslandabhängigkeit in Kauf genommen werden muss.

Der Verfasser erbringt den Beweis dafür, dass unter den bisherigen Verhältnissen das Gas gegenüber der Elektrizität nicht mehr wettbewerbsfähig ist, sofern kostendeckende Tarife für alle Verwendungszwecke verlangt würden. Er erwartet denn auch in der jetzt anbrechenden Erdgas-Phase weniger eine Substituierung der Elektrizität durch das Gas in der Küche, als ein Vordringen des Gases bei der Heizung auf Kosten des Öls. Sollten sich diese Erwartungen erfüllen — in der Fernseh-Werbung wird zur Zeit immer noch die Überlegenheit der Gasküche progagiert —, so würden die beiden Netzenergien Gas und Elektrizität wohl kaum mehr in einem so scharfen Wettbewerbsverhältnis zueinander stehen. Bewirbt sich das Gas im Haushalt und vor allem in der Industrie um die Heizung und nicht mehr in erster Linie um den Kochherd vom Einfamilienhaus bis zur Grossüberbauung, so würde das in vielen ländlichen Verteilgebieten die Rentabilität der Elektrizitätsversorgung verbessern, die heute durch die Gasexpansion einzelner Stadtwerke und der beiden Gasverbund-Gesellschaften in die neuen Satelliten-Städte auf der Landschaft beeinträchtigt wird. Ob aber die Gasheizung in solchen Wohnkonzentrationen und in der Industrie wirklich die Absatzsorgen der Gaswerke zu beseitigen vermögen, ist eine andere Frage.

Adresse des Autors:

Dr. F. Wanner, Direktor der EKZ, Dreikönigstrasse 18, 8022 Zürich.

Methode zur approximativen Einpassung eines Erzeugungsaggregates in die Lastganglinie

Von H. G. Schild, München

Einführung

Bei vielen Arten von Energiewirtschaftsuntersuchungen sind dem erzielbaren Niveau der Genauigkeit durch die Prognostizierbarkeit von Parametern (z. B. Lastganglinie, Hydraulizität, Verfügbarkeit der thermischen Blöcke) Grenzen gesetzt. Man kann deswegen mit der horizontalen Einpassung eine Lösung finden. Unter der horizontalen Einpassung eines Er-

zeugungsaggregates wird hier der Einsatz des Aggregates so in die Lastganglinie verstanden, dass dieses Aggregat während der Betrachtungsperiode ein horizontal liegendes Lastband (oder auch mehrere) deckt. Der Energieinhalt des Bandes (der Bänder) muss der erzeugbaren Arbeit des Aggregates während der Betrachtungsperiode entsprechen und die Bandbreite (Summe der Bandbreiten) der Leistungsfähigkeit. Die Forde-

rung genügt im wesentlichen zur Fixierung der Lage des Lastbandes, wenn Leistung und Arbeit des Aggregates bekannt sind.

Neben der Verwendung dieses Ansatzes bei wasserwirtschaftlichen Studien lässt er sich u.a. bei Programmen zur Bestimmung des Jahresfahrplanes in Verbundsystemen,

welche ausser über thermische und Laufwasserkraftwerke noch über Speicherwasserkraftanlagen und Fremdbezüge mit Arbeitsabnahmeverpflichtung verfügen, zweckmässig verwenden.

Die horizontale Einpassung nimmt auf die arbeitsabhängigen Kosten (Absolutkosten) des betroffenen Werkes oder Aggregates von Werken keine Rücksicht, sondern befriedigt nur die energetischen Bedingungen. Deswegen sollen ausschliesslich Aggregate horizontal eingepasst werden, die verschwindend kleine Absolutkosten verursachen (Speicherwasserkraftwerke oder Fremdbezüge mit Arbeitsabnahmeverpflichtungen, die sich als ideelle Speicherwasserkraftwerke mit einem Arbeitsvermögen gleich der Arbeitsabnahmeverpflichtung auffassen lassen). Weiter müssen sie über einen hohen Leistungsanpassungsgradienten verfügen. Der Einsatz solcher Aggregate wird zweckmässigerweise so angesetzt, dass der übrigbleibende Lastbereich der Lastganglinie von den zu seiner Deckung vorgesehenen Wärmekraftwerken mit möglichst wenig Nachregelung abgedeckt werden kann. Dieser Einsatz impliziert die Annahme, dass die Wärmekraftwerke dann minimale Arbeitskosten verursachen, wenn sie vor allem Grund- und Trapezlast übernehmen. Man gibt deswegen das horizontal einzupassende Aggregat in den Spitzenlastbereich, muss aber unter Umständen mit einem Rest an Arbeit und Leistungen in die Grundlast. Dies entspricht nicht dem in der Wirklichkeit auftretenden Einsatz; dieser würde nämlich den Rest an Arbeit und Leistung durch eine sogenannte schräge Einpassung im Trapezlastbereich unterbringen und dort Flanken abschleifen. Mit dem Fehler des Ansatzes erkauft man sich jedoch seine Einfachheit.

Als Instrument zur Erfassung der Lastganglinie und Durchführung der gesamten Prozedur wird die Energieinhaltslinie verwendet.

2. Die Energieinhaltslinie

Die Energieinhaltslinie ist eine eindeutige (nicht umkehrbar eindeutige) Abbildung der Lastganglinie. Sie lässt sich als Integralfunktion über die Dauer der Last unter der Lastganglinie definieren.

$$e = \int_{p}^{px} T(p) \, \mathrm{d}p \tag{1}$$

Dabei bedeuten

- p die Last, welche zwischen 0 und der Höchstlast p x variiert
- e der Energieinhalt für den Lastbereich von p x bis p und
- e x die Gesamtarbeit unter der Lastganglinie

Der Energieinhalt ist für eine gegebene Lastganglinie somit eine eindeutige Funktion des Lastverlaufes. Weil die Lastganglinie häufig in Form von diskreten Lastwerten, welche mittlere Lasten während eines Zeitschrittes darstellen, erfasst wird, soll das Bildungsgesetz für die Energieinhaltslinie für den Fall einer Lastganglinie, die in Form einer Treppenkurve gegeben ist, formuliert werden.

Mit den Bezeichnungen

$$\Delta p$$
 Lastschrittweite

 $p p = p / \Delta p$ Schrittindex der Last

 $p p x = p x / \Delta p$ Schrittindex der Höchstlast

 $h(p)$ Anzahl der Zeitschritte während welcher

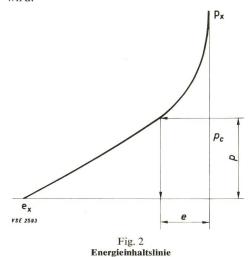
die Lastganglinie genau den Wert p hat,

bestimmt sich die Energieinhaltslinie folgendermassen:

$$e = f(p) = \sum_{j=1}^{p p x - p p + 1} j \cdot \Delta p \cdot h [(p p + j) \cdot \Delta p]$$
 (2)

Zur Illustration des Bildungsvorganges seien die beiden Werte der Energieinhaltslinie für den in Abb. 1 enthaltenen Ausschnitt aus einer Lastganglinie bestimmt.

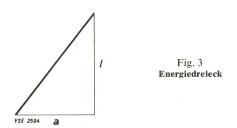
$$h(p x) = 1 h(p 1) = 3$$


$$e(p 1) = 1 \cdot \Delta p$$

$$e(p 2) = 2 \cdot \Delta p \cdot h(p x) + 1 \cdot \Delta p \cdot h(p 1)$$

$$= 2 \cdot \Delta p \cdot 1 + 1 \cdot \Delta p \cdot 3 = 5 \cdot \Delta p$$
(3)

Praktisch gelangt man zu einer Energieinhaltslinie aus der Lastganglinie durch Auszählen der Häufigkeit der in den Zeitschritten auftretenden Lastganglinienwerte, somit der Bestimmung der Häufigkeitslinie und punktweise Berechnung entsprechend (2), oder mittels eines Rekursionsalgorithmus. Die Energieinhaltslinie für eine Lastganglinie sieht etwa so aus, wie Abb. 2 zeigt. Dabei bedeutet


p c jene Last, die von der Lastganglinie nie unterschritten wird.

Gewöhnlich wird der Bereich zwischen 0 und p c Grundlastbereich und der zwischen p c und p x Lastschwankungsbereich genannt.

3. Aufgabenstellung bei der horizontalen Einpassung

Entsprechend den Ausführungen in Pkt. 1 sollen horizontal nur Werke oder Aggregate von Werken eingepasst werden, die über einen grossen frei steuerbaren Laständerungsgradienten verfügen, während der Betrachtungsperiode ein konstantes Leistungsvermögen besitzen und vorwiegend kleine arbeitsabhängige Kosten verursachen. Demnach sind Laufwasserkraftwerke und thermische Kraftwerke nicht, Speicherwasserkraftwerke ganz besonders, Fremdstrombezüge aber nur, wenn sie über Arbeitsabnahmeverpflichtungsklauseln verfügen, geeignet. Fremdstrombezüge ohne Arbeitsabnahmeverpflichtungen entsprechen in ihrer energiewirtschaftlichen Charakteristik thermischen Kraftwerken ohne Anfahrkosten. Man

wird deswegen die in einem Verbundsystem arbeitenden Erzeugungsanlagen zu drei Aggregaten zusammenfassen, in

- a) das Aggregat 1 der nichtsteuerbaren Grundlastwerke; darunter fallen die Laufwasserkraftwerke und andere Erzeugungsanlagen mit ähnlicher Charakteristik wie z.B. Heizkraftwerke
- b) das Aggregat 2 der thermischen Werke inklusive Fremdstrombezüge ohne Arbeitsabnahmeverpflichtung und schliesslich
- c) das *Aggregat 3* der horizontal einpassbaren Speicherwasserkraftwerke und Fremdbezüge mit Arbeitsabnahmeverpflichtung.

Das letzte Aggregat bestehend aus m Werken lässt sich beschreiben durch seine Gesamtleistung

$$l = \sum_{i=1}^{m} l_i \tag{4}$$

seine Gesamtarbeit während der Betrachtungsperiode

$$a = \sum_{i=1}^{m} a_i \tag{5}$$

und somit durch sein Energiedreieck nach Abb. 3.

Es stellt sich nun die Aufgabe, die drei Aggregate entsprechend ihren energiewirtschaftlichen Charakteristiken in die Lastganglinie bzw. Energieinhaltslinie einzupassen, so dass der vom Aggregat 2 abzudeckende Lastbereich einen möglichst hohen Belastungsfaktor besitzt. Man wird deswegen zuerst einmal das nichtsteuerbare Aggregat 1 in die Lastganglinie einführen und für den übrigbleibenden Teil der Lastganglinie die Energieinhaltslinie bestimmen. Das Aggregat 3 wird nun horizontal in diese Energieinhaltslinie eingepasst und zwar so, dass seine verfügbare Leistung möglichst viel Last mit dem höchsten Belastungsfaktor deckt, also die Energieinhaltslinie von oben beginnend auffüllt. Dabei pflegt in der Regel der Fall einzutreten, dass das Aggregat 3 über mehr Arbeitsvermögen verfügt als jener Teil der Energieinhaltslinie beinhalten, den man erhält, wenn die Leistung voll in der Spitze eingesetzt wird. Man muss dann die Leistung l des Aggregates in einen Anteil, der in die Spitze kommt ($p \times p = p = 1$), und einen, der in der Grundlast liegt l - (p x - p 1), aufteilen, so dass die beiden der Aufteilung entsprechenden Lastbänder einen Energieinhalt besitzen, der dem Arbeitsvermögen a des Aggregates in der Zeitperiode entspricht:

$$\underbrace{e(p1)}_{k1} + \underbrace{ex - e[l - (px - p1)]}_{k2} = a \tag{6}$$

Gesucht ist demnach das Lastniveau p 1. Man könnte p 1 von 0 bis p x durchprobieren. Im folgenden Abschnitt soll ein direktes Lösungsverfahren erläutert werden.

4. Lösungsverfahren

Zur Ableitung des direkten Lösungsverfahrens ist von (6) auszugehen. Während in (6) die Leistung p 1 als einzige unabhängige Grösse eingeht (alle anderen Leistungsgrössen sind konstant) und als abhängige Grösse eine Arbeitsmenge erscheint, sind beim Problem der Einpassung wohl auch die Leistungsgrössen l und p x Konstante, die Arbeitsmenge a ist aber die unabhängige Grösse. Durch Invertieren von (6) wäre der Ausdruck zu erhalten in dem man mit einer bestimmten Arbeitsmenge eingehend das zugehörige p 1 findet.

Der auf der linken Seite von (6) stehende Ausdruck zerfällt eindeutig in zwei Teile, graphisch dargestellt entsprechend diesen Teilen 2 Kurven. Die erste Kurve k 1 ist die eigentliche Energieinhaltslinie. Zur Diskussion der zweiten Kurve k 2 scheint es zweckmässig, sich erst einmal zu überlegen, für welchen Lastwert p 2 sie den Funktionswert 0 besitzt. An dieser Stelle schneidet dann die Kurve k 2 die Kurve k 1. Es soll also k 2 gleich 0 gesetzt werden.

$$k \ 2 = 0. \rightarrow e \ x - e \ [l - (p \ x - p \ 2)] = 0.$$
 (7)

Beachtet man, dass bei e x die Last p = 0. steht, so gilt

$$e(0) - e[l - (px - p2)] = 0.$$
 (8)

Da beide Teile der Gleichung unter derselben Funktion stehen und diese Funktion monoton ist, kann man die Betrachtung auf die Argumente beschränken. Dies liefert

$$0. = l - p x + p 2 \tag{9}$$

und weiter

$$p 2 = p x - l \tag{10}$$

Bei *p* 2 handelt es sich um jenen Lastwert, der sich ergibt, wenn die Gesamtleistung des Aggregates in die Energieinhaltslinie von oben nach unten eingetragen wird.

Führt man den gefundenen Wert p 2 in (6) ein, so ergibt sich

$$e^*(p) = k \cdot 1 + k \cdot 2 =$$

$$= \begin{cases} e(p) & \longleftrightarrow & 0 \le p \le p \cdot 2 \\ e(p) + ex - e(p - p \cdot 2) & \longleftrightarrow & p \cdot 2
(11)$$

In Abb. 4 sind die Kurven graphisch dargestellt für den Fall $p \ 2 > p \ c$.

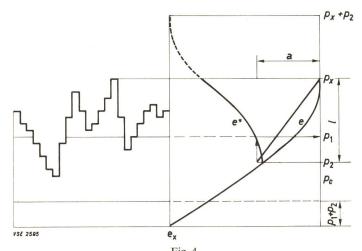


Fig. 4 Schema der horizontalen Einpassung

Man sieht, dass bei Vorliegen der Kurven für einen konkreten Fall durch Abgreifen einer bestimmten Arbeitsmenge sich die Lage des Lastniveaus p 1 sofort ergibt, woraus andererseits unmittelbar die Aufteilung der Leistung des Aggregates in den Spitzenlastanteilen und den Grundlastanteilen folgt. Je nach der Grösse von p2 sind zwei Fälle zu unterscheiden, nämlich der Fall, dass p 2 über oder unter p c liegt. Für den eigentlichen Einpassungsvorgang spielt dies aber keine Rolle, wie man leicht überprüfen kann.

Interessant ist vielleicht noch der Fall, dass p 1 über p x zu liegen kommt. Dies bedeutet: das Aggregat lässt sich horizontal auch dann nicht einpassen, wenn es keinen Lastspitzenanteil übernimmt, sondern von unten herauf nur Grundlast und Trapezlast decken würde: es kann in der betreffenden Lastganglinie seine Arbeit nicht ganz unterbringen.

Mit den so abgeleiteten Zusammenhängen lässt sich der Algorithmus des Invertierens und des Einpassens in fünf Stufen beschreiben.

a) Zur Ermittlung der Energieinhaltslinie ist die Auszählung der Lastganglinie notwendig. Daraus ergibt sich die Energieinhaltslinie, die in einer mengentheoretischen Schreibweise folgendermassen aussieht:

$$\{\langle p, e(p) \rangle\} \tag{12}$$

b) Mit dem für ein Aggregat gegebenen konstanten Wert und der vorhin ermittelten Energieinhaltslinie wird die Kurve e^* (p) errechnet. Wieder in mengentheoretischer Schreibweise geschrieben, bedeutet dies

$$\{\langle p, e^*(p) : p \ge p \, 2 \rangle\} \tag{13}$$

c) Weil die Kurve $e^*(p)$ als Menge von Zahlenpaaren gegeben ist und wir aus den vorhergegangenen Überlegungen und (6) wissen, dass sie eine monotone Funktion darstellt, lässt sich die Invertierung einfach durch das Vertauschen der abhängigen und unabhängigen Grössen erreichen. Legt man in die Punktmenge mit e^* als unabhängige Grösse und p als ab-

hängige ein Approximationspolynom entsprechend dem Verfahren der Minimierung der Quadrate der Abweichung mit dem Grade g, so ergibt sich die invertierte Funktion

$$p(e^*) = \sum_{i=0}^{g} b_i e^{*i}$$
 (14)

- d) Setzt man für e^* den konkreten Arbeitswert a des Aggregates ein, so liefert (14) unmittelbar das gesuchte p 1.
 - e) Die Aufteilung auf die Lastbereiche kann leicht erfolgen

Spitzenlastanteil $p \times p = p \cdot 1$ Grundlastbereich $p \cdot 1 = p \cdot 2$

Durch Projektion der Lastbereiche in die (um Aggregat 1 bereinigt) Lastganglinie, ist der noch verbleibende und vom Aggregat 2 zu deckende Bereich auch in seiner zeitlichen Ausprägung zu sehen (Abb. 4).

Bei energiewirtschaftlichen Fallstudien ist meist das Leistungsvermögen des Aggregates 3 als bekannt und über Perioden (z.B. Woche) als konstant anzusehen. Variiert wird das Arbeitsvermögen. Man kann deswegen für jede Periode die um die Laufkrafterzeugung korrigierte Energieinhaltslinie e und die Kurve e* bestimmen. Beide sind vom Arbeitsvermögen des Aggregates in der Periode unabhängig. Für einen bestimmten Arbeitswert des Aggregates 3 liefert das geschilderte Verfahren der horizontalen Einpassung rasch und eindeutig den Lastbereich, der vom Aggregat 2 in der Periode übernommen werden muss. Verfügt man aus anderen Berechnungen über Kataloge für die rein-thermische Lastaufteilung, so lassen sich mit deren Hilfe ohne grosse Probleme die Absolutkosten des Aggregates 2 errechnen. Zur Abschätzung der noch fehlenden Anfahrkosten der im Aggregat enthaltenen Wärmeblöcke kann man sich u. U. statistischer Methoden bedienen.

Adresse des Autors:

Dr. H. G. Schild, Goethestrasse 44, D-8051 Eching/München

Aus dem Kraftwerkbau

Thermisches Kraftwerk Chavalon: 1 Milliarde kWh überschritten!

Vor kurzem erreichte die thermische Zentrale Chavalon bei Vouvry im laufenden Betriebsjahr (1. 10. 1969 — 30. 9. 1970) eine Netto-Produktion von 1 Milliarde kWh. Es ist der bisher höchste Beitrag dieser Zentrale an den jährlichen Verbrauch unseres Landes an elektrischer Energie (ca. 26 Milliarden kWh in 1968/69, wovon 6,6 Milliarden kWh für die Westschweiz).

Die im Jahre 1966 in Betrieb genommene Zentrale Chavalon hat ihre Jahresproduktion in den 3 letzten Betriebsjahren stetig von 459 auf 701 und dann auf 848 Millionen kWh erhöht.

Es ist vorgesehen, Chavalon dieses Jahr länger in Betrieb zu lassen, einerseits infolge des ständig ansteigenden Energieverbrauchs und anderseits auf Grund der abnormal schwachen Wasserführung der Flüsse infolge des langen Winters.

Die später zu erwartende Schneeschmelze wird es den Flusskraftwerken erlauben, ihren normalen Betrieb wieder aufzunehmen und mit Vollast zu arbeiten, während Chavalon in der Sommerperiode die normalen Unterhaltsarbeiten ausführen wird.

Verbandsmitteilungen

284. Sitzung des Vorstandes VSE vom 23./24. April 1970

An einer zweitägigen Sitzung befasste sich der Vorstand des VSE unter dem Vorsitz seines Präsidenten, Herrn Dr. E. Trümpy, Olten, u. a. mit der Gestaltung der Jubiläumsgeneralversammlung vom 25. September 1970 in Aarau, genehmigte die Anträge an die Generalversammlung sowie die Rechnungen des VSE, der Einkaufsabteilung sowie deren Geschäftsberichte.

Weiter gab der Vorstand seine Zustimmung zur unveränderten Weiterführung des Vergünstigungsvertrages betreffend Maschi-

nenversicherung und erörterte eingehend die Eingabe des VSE an das eidg. Verkehrs- und Energiewirtschaftsdepartement betreffend Revision von Art. 110 der StVO, die eine erleichterte Überspannung von Gebäuden durch Hochspannungsleitungen vorsieht.

Schiesslich verabschiedete der Vorstand eine neue Musterdienstordnung für Arbeiter, die nun den Werken zur Verfügung steht.

Br.

Wirtschaftliche Mitteilungen

Erzeugung und Abgabe elektrischer Energie durch die schweizerischen Elektrizitätswerke der Allgemeinversorgung

Mitgeteilt vom Eidgenössischen Amt für Energiewirtschaft und vom Verband Schweizerischer Elektrizitätswerke

Die Statistik umfasst die Erzeugung der Elektrizitätswerke für Stromabgabe an Dritte. Nicht inbegriffen ist also die Erzeugung der bahn- und industrieeigenen Kraftwerke für den eigenen Bedarf.

	Energieerzeugung und Bezug												Spei					
		Hydraulische Thermis Erzeugung Erzeugu				ı- und strie-	und Energie- trie- einfuhr		Total Erzeugung und Bezug		Ver- ände- rung gegen Vor-	Energieinhalt der Speicher am Monatsende		Änderung im Berichts- monat — Entnahme + Auffüllung		Ener ausi		
	1968/69	1969/70	1968/69	1969/70	1968/69	1969/70	1968/69	1969/70	1968/69	1969 70	jahr	1968/69	1969/70	1968/69	1969/70	1968/69	1969/70	
				ir	Millior	en kWh					%	in Millionen kW				h		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
Oktober	1912	1524	101	313	26	6	314	791	2353	2634	+ 11,9	5832	5800	- 333	-480	392	517	
November	1889	1683	168	286	42	5	356	653	2455		+ 7,0		5048	- 359	-752	419	490	
Dezember	1854	1714	192	425	43	17	498	747	2587	2903	+12,2	4488	4067	- 985	-981	466	573	
Januar	1884	1692	209	472	28	16	535	775	2656	2955	+11,3	3323	3090	-1165	-977	516	668	
Februar	1818	1783	173	377	18	16	491	543	2500	2719	+ 8,8	2153	2212	-1170	-878	503	611	
März	2046	1905	108	490	35	8	380	462	2569	2865	+11,5	959	1218	-1194	-994	463	621	
April	1682		17		17		560		2276			507		- 452		335		
Mai	2319		3		102		113		2537			1567		+1060		597		
Juni	2474		1		80		91		2646			2807		+1240		677		
Juli	2715		6		100		88		2909			4675		+1868		874		
August	2278		34		100		249		2661			5967		+1292		653		
September	1770		127		56		427		2380			62804)		+ 313		416		
Jahr	24641		1139		647		4102		30529							6311		
OktMärz	11403	10301	951	2363	192	68	2574	3971	15120	16703	+10,5			-5206	-5062	2759	3480	

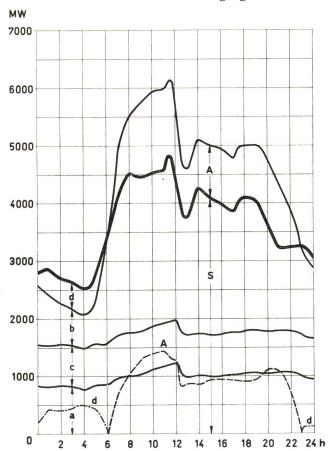
	Verteilung der Inlandabgabe											Inlandabgabe						
Monat	Haushalt, Gewerbe und Landwirtschaft		ewerbe Allgemeine und Industrie		-meta	Elektrochemie -metallurgie und -thermie		Elektro- kessel ¹)		Bahnen		Verlust und Verbrauch der Speicher- pumpen ²⁾		inklu ine okessel nd erpump.	Verän- derung gegen Vor-	Elektr	nit okessel nd erpump.	
	1968/69	1969/70	1968/69	1969/70	1968/69	1969/70	1968/69	1969/70	1968/69	1969/70	1968/69	1969/70	1968/69	1969/70	jahr ³)	1968/69	1969/70	
								in M	fillionen	kWh								
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
Oktober	951	1017	427	470	271	293	3	2	118	128	191	207	1948	2100	+ 7,8	1961	2117	
November	1005	1052	424	448	282	295	3	1	115	136	207	205	2015	2126	+ 5,5	2036	2137	
Dezember	1059	1177	419	449	300	324	1	2	131	144	211	234	2117	2317	+ 9,4	2121	2330	
Januar	1075	1162	430	449	288	323	1	1	132	138	214	214	2135	2281	+ 6,8	2140	2287	
Februar	987	1040	411	438	280	299	2	1	119	130	198	200	1993	2104	+ 5,6	1997	2108	
März	1043	1103	433	449	312	341	2	2	118	136	198	213		2237	+ 6,5	2106	2244	
April	932		399		318		3		108		181	(3)	1928			1941		
Mai	910		392		271		7		103		257		1865			1940		
Juni	892		409		269		18		103		278		1862			1969		
Juli	875		391		251		27		143		348		1857			2035		
August	901		375		254		16		135		327		1851			2008		
September	924		435		272		6		113		214		1914			1964		
Jahr	11554		4945		3368		89		1438		2824 (544)		2 3585			24218		
OktMärz	6120	6551	2544	2703	1733	1875	12	9	733	812	1219	1273	12308	13165	+ 7,0	12361	13223	

Mit einer Anschlussleistung von 250 kW und mehr und mit brennstoffgefeuerter Ersatzanlage.
 Die in Klammern gesetzten Zahlen geben den Verbrauch für den Antrieb von Speicherpumpen an.
 Kolonne 15 gegenüber Kolonne 14.

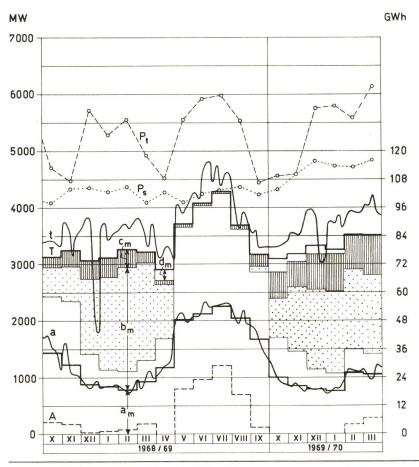
⁴⁾ Speichervermögen Ende September 1969: 7200 Millionen kWh.

Gesamte Erzeugung und Verwendung elektrischer Energie in der Schweiz

Mitgeteilt vom Eidgenössischen Amt für Energiewirtschaft


Die nachstehenden Angaben beziehen sich sowohl auf die Erzeugung der Elektrizitätswerke der Allgemeinversorgung wie der bahn-und industrieeigenen Kraftwerke.

			En	ergieerz	eugung u	nd Einfu	hr				Speic	herung						
Monat	Hydraulische Thermische Erzeugung Erzeugung		Energie- einfuhr		Total Erzeugung und Einfuhr		Ver- ände- rung gegen Vor-	Energieinhalt der Speicher am Monatsende		her monat		Energie- ausfuhr		Gesa Lan verbi				
	1968/69	1969/70	1968/69	1969/70	1968/69	1969/70	1968/69	1969/70	jahr	1968/69	1969/70	1968/69	1969/70	1968/69	1969/70	1968/69	1969/70	
			ir	Millio	nen kWł	1			%		'	ir	Millior	en kWh				
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
Oktober	2186	1775	136	349	314	794	2636	2918	+ 10,7	6214	6150	- 346	- 499	474	612	2162	2306	
November	2133	1874	207	325	356	658	2696	2857	+ 6,0	5827	5365	- 387	- 785	487	561	2209	2296	
Dezember	2048	1900	229	461	498	752	2775	3113	+12,2	4788	4320	-1039	-1045	515	638	2260	2475	
Januar	2064	1866	247	510	535	781	2846	3157	+10,9	3564	3275	-1224	-1045	566	730	2280	2427	
Februar	1983	1950	207	412	494	550	2684	2912	+ 8,5	2328	2338	-1236	- 937	550	657	2134	2255	
März	2244	2078	144	526	384	467	2772	3071	+10,8	1061	1279	-1267	-1059	521	676	2251	2395	
April	1903		49		564		2516			560		- 501		424		2092		
Mai	2732		32		115		2879			1678		+1118		710		2169		
Juni	2893		24		94		3011			2996		+1318		788		2223		
Juli	3156		30		88		3274			4987		+1991		992		2282		
August	2686		59		251		2996			6334		+1347		770		2226		
September	2117		157		432		2706			6649 ²⁾		+ 315		524		2182		
Jahr	28145		1521		4125		33791							7321		26470		
OktMärz	12658	11443	1170	2583	2581	4002	16409	18028	+ 9,9			-5499	-5370	3113	3874	13296	14154	


	Verteilung des gesamten Landesverbrauches Landesverbrauch																	
Monat	Haushalt, Gewerbe und Landwirtschaft		Allgemeine Industrie		Elektrochemie, -metallurgie und -thermie		Elektro- kessel ¹)		Bahnen		Verluste		Verbrauch der Speiche pumpen		uch Elektro		Verideru geg Vo	un ger or-
	1968/69	1969/70	1968/69	1969/70	1968/69	1969/70	1968/69	1969/70	1968/69	1969/70	1968/69	1969/70	1968/69	1969/70	1968/69	1969/70		
							in	Million	nen kWh								9	%
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	1	18
Oktober	969	1038	469	504	349	365	4	3	149	161	210	219	12	16	2146	2287	+	6.
November	1025	1072	464	486	332	344	3	1	152	160	214	222	19	11	2187	2284	+	4.
Dezember	1077	1199	452	484	317	339	2	3	172	185	236	254	4	11	2254	2461	+	9
Januar	1097	1185	467	485	304	333	2	2	167	179	238	238	5	5	2273	2420	+	6
Februar	1009	1062	444	475	296	319	2	2	157	170	223	224	3	3	2129	2250	+	5
März	1065	1128	470	486	323	359	2	4	166	179	220	234	5	5	2244	2386	+ 1	6,
April	951		437		338		4		154		198		10		2078			
Mai	927		432		359		14		149		219		69		2086			
Juni	908		447		367		34		156		219		92		2097			
Juli	893		427		371		40		168		227		156		2086			
August	918		408		358		23		162		213		144		2059			
September	935		472		366		8		158		198		45		2129			
Jahr	11774		5389		4080		138		1910		2615		564		25768			
Okt März	6242	6684	2766	2920	1921	2059	15	15	963	1034	1341	1391	48	51	13233	14088	+	6

Mit einer Anschlussleistung von 250 kW und mehr und mit brennstoffgefeuerter Ersatzanlage.
 Speichervermögen Ende September 1969: 7590 Millionen kWh.

Gesamte Erzeugung und Verwendung elektrischer Energie in der Schweiz

1. Verfügbare Leistung, Mittwo 18. März 1970	och, den MW
Laufwerke auf Grund der Zu Saisonspeicherwerke, 95 % de Thermische Werke, installiert Einfuhrüberschuss zur Zeit de	er Ausbauleistung 6270 e Leistung
Total verfügbar	8170
2. Aufgetretene Höchstleistunger 18. März 1970	n, Mittwoch, den
	4830 1430
(siehe nebenstehende Figur) a Laufwerke (inkl. Werke m speicher) b Saisonspeicherwerke c Thermische Werke d Einfuhrüberschuss S + A Gesamtbelastung S Landesverbrauch A Ausfuhrüberschuss	
4. Energieerzeugung und -verwendung	Mittwoch Samstag Sonntag 18. März 21. März 22. März GWh (Millionen kWh)

1. Erzeugung an Mittwochen

Laufwerke

Thermische Werke

Einfuhrüberschuss

Ausfuhrüberschuss

Gesamtabgabe Landesverbrauch

Laufwerke Saisonspeicherwerke

Gesamterzeugung und Einfuhrüber-

23,6

60,3

17,8

101,7

87,9

13,8

24,1

33.1

74.4

71,2

23,4

14,9

17.0

1.1

56,4

56,4

2. Mittlere tägliche Erzeugung in den einzelnen Monaten

Laufwerke

Speicherwerke, wovon punktierter Teil aus Saisonspeicherwasser

Thermische Erzeugung

Einfuhrüberschuss

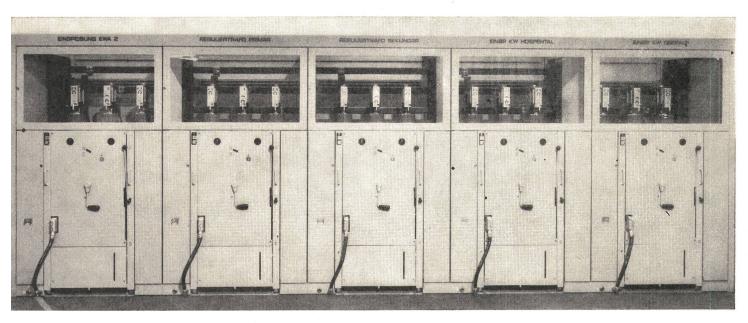
3. Mittlerer täglicher Verbrauch in den einzelnen Monaten

Gesamtverbrauch T

Ausfuhrüberschuss

-A Landesverbrauch

4. Höchstleistungen am dritten Mittwoch jedes Monates

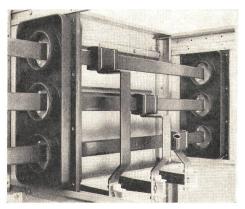

P_s Landesverbrauch

Gesamtbelastung

Redaktion der «Seiten des VSE»: Sekretariat des Verbandes Schweizerischer Elektrizitätswerke, Bahnhofplatz 3, Zürich 1; Postadresse: Postfach 8023 Zürich; Telephon (051) 27 51 91; Postcheckkonto 80-4355; Telegrammadresse: Electrunion Zürich. Redaktor: Dr. E. Bucher.

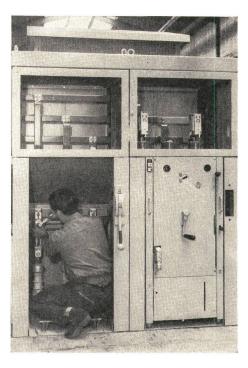
Sonderabdrucke dieser Seiten können beim Sekretariat des VSE einzeln und im Abonnement bezogen werden.

Die Bewährungsprobe für fabrikfertige Hochspannungsanlagen...



...hat unsere neueste Bausteinreihe erfolgreich bestanden. Zusammen mit den bekannten und bewährten S & S-Hochspannungsapparaten haben wir jeden Baustein zu einer kompakten Einheit entwickelt und nach schweizerischen und internationalen Vorschriften geprüft.

Die Reihe der Normalzellen mit einer Breite von 900 mm für 12 kV- und 1200 mm für 24 kV-Schaltanlagen wird jetzt auch durch eine spezielle Schmalzelle von 750 mm Breite zweckmässig ergänzt. Sie eignet sich für beide Spannungsreihen und hat die einheitliche Zellenhöhe von 2145 mm. Ohne besonderen Aufwand ist es möglich, Doppelsammelschienensysteme nach der Methode der Zweileistungsschalter auszuführen.

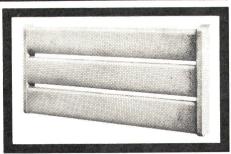

PPW306

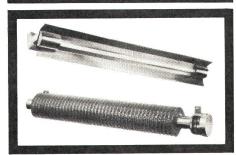
Die Kupfersammelschiene ist mit Epoxidharz isoliert und wird durch eine dreipolige Durchführungsplatte aus Giessharz gestützt. Flammsichere Isolation verhindert das Wandern eventuell auftretender Lichtbögen.

Druckentlastung nach oben, doppelte Blechwände oder Picalplatten zwischen den Zellen erhöhen die Sicherheit der Baureihe. Die Bedienungsfront ist komplett abgedeckt und bietet wirksamen Schutz des Personals. Eine zufällige Berührung der unter Spannung stehenden Teile ist somit ausgeschlossen. Klemmenständer, die in der ganzen Höhe von vorne zugänglich sind, gewährleisten gefahrloses Arbeiten. Eine Einschubplatte unter der Sammelschiene dient bei Kabelarbeiten dem erhöhten Schutz.

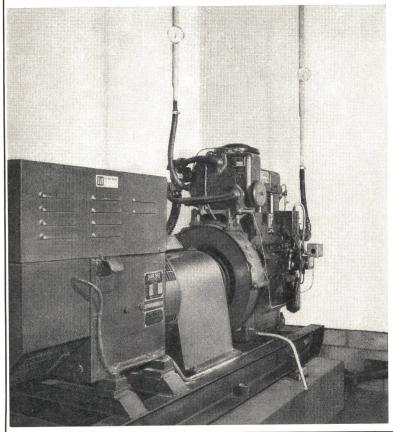
Nennströme von 800 bis 3000 A ermöglichen einen vielseitigen Einsatz, und die auf Kurzschlussfestigkeit geprüften Zellen bieten bis zu einer Leistung von 1000 MVA höchste Sicherheit. Jeder Baustein ist vollständig in sich geschlossen und wird von uns vor dem Versand fixfertig montiert und geprüft. Detaillierte Unterlagen liegen bei uns jederzeit für Sie bereit.

lieferbar als: Saalverdunkler mit oder ohne elektron.
Fernsteuerung ein- oder mehrphasig
Bühnenlicht-Stellwerke mit beliebig vielen Stell- und
Gruppenhebeln, Lichtwertvorwahl und Speicherung
Helligkeits-Regler für Strassentunnels, Regie-Räume,
Flugpisten, Operationsräume, Kommando- Zentralen
usw. Kunsteisbahnen, Sportplätze




Elektrische Raumheizungen für

Ferienhäuser Büros Kirchen Schulhäuser Kindergärten Berghotels Bergbahn-Stationen Sportanlagen Kraftwerke Garagen Säle Terrassen Eisenbahnwagen Lokomotiven Tram, Trolleybus


Wartehallen usw.

LISTER

NOTSTROM-ANLAGEN

1,5 bis 6000 kW

zuverlässig höchste Qualität — englisches Fabrikat

alle Ausführungen mit Original Lister Dauer-Garantie Eigene Schalttafelmontage

Generalvertretung:

Ing. max fischer

Lister-Blackstone-Engineering 8021 Zürich Bahnhofstrasse 86, Tel. (051) 27 77 81 Telex 54 338

LISTER-Stromerzeugungsanlage mit Kühlwasserrekuperierung